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ABSTRACT

A blockchain is a database of sequential events that is maintained by

a distributed group of nodes. A key consensus problem in blockchains

is that of determining the next block (data element) in the sequence.

Many blockchains address this by electing a new node to propose

each new block. The new block is (typically) appended to the tip

of the proposer’s local blockchain, and subsequently broadcast to

the rest of the network. Without network delay (or adversarial

behavior), this procedure would give a perfect chain, since each

proposer would have the same view of the blockchain. A major

challenge in practice is forking. Due to network delays, a proposer

may not yet have the most recent block, and may therefore cre-

ate a side chain that branches from the middle of the main chain.

Forking reduces throughput, since only one a single main chain

can survive, and all other blocks are discarded. We propose a new

P2P protocol for blockchains called Barracuda, in which each pro-

poser, prior to proposing a block, polls � other nodes for their local

blocktree information. Under a stochastic network model, we prove

that this lightweight primitive improves throughput as if the entire

network were a factor of � faster. We provide guidelines on how to

implement Barracuda in practice, guaranteeing robustness against

several real-world factors.
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1 INTRODUCTION

Blockchains are a sequential data structure in which each element

depends in a structured, predefined manner on every prior element.

Most blockchains implement this property recursively by including
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in each data element a hash of the previous element. This makes it

easy to append an element to the end of a blockchain, but difficult

to alter or insert elements in the middle of a blockchain, since

every subsequent element must be modified to preserve validity. In

parallel, the word ‘blockchain’ has also come to mean the network

and consensus algorithms that enable a distributed set of nodes to

maintain such a data structure robustly and consistently.

In practice, there are many obstacles to maintaining a distributed

blockchain, including peer churn, adversarial behavior, and unreli-

able networks. In this paper, we focus on the latter challenge and

consider how to build efficient blockchains over unreliable net-

works. Although the research community is increasingly studying

peer-to-peer (P2P) networks in blockchain systems [3, 4, 8, 16, 23],

network effects are arguably the aspect of blockchains that have

received the least attention thus far. In particular, we are interested

in how the network affects blockchain performance metrics like

latency and throughput for new data elements. To explain the prob-

lem, we start with a brief description of blockchain functionality.

Blockchain Primer. Blockchain systems are typically used to

track sequential events, such as financial transactions in a cryp-

tocurrency. A block is simply a data structure that stores a batch of

such events, along with a hash of the previous block contents. The

core problem in blockchain systems is determining (and agreeing

on) the next block in the data structure. Many leading cryptocur-

rencies (e.g., Bitcoin, Ethereum, Cardano, EOS, Monero) handle this

problem by electing a proposer who is responsible for producing

a new block and sharing it with the network. This proposer elec-

tion happens via a distributed, randomized protocol chosen by the

system designers.

In Bitcoin, proposers are selected with probability proportional

to the computational energy they have expended; this mechanism

is called proof-of-work (PoW). Under PoW, each node solves a

computational puzzle of random duration; upon solving the puzzle,

the node relays its block over the underlying P2P network, along

with proof that it solved the puzzle. Due to the high energy cost

of solving PoW puzzles (or mining) [19], a new paradigm recently

emerged called proof-of-stake (PoS). Under PoS, a proposer is elected

with probability proportional to their stake in the system. This

election process happens at fixed time intervals.

When a node is elected proposer, its job is to propose a new block,

which contains a hash of the previous block’s contents. Hence the

proposer must choose where in the blockchain to append her new

block. Most blockchains use a longest chain fork choice rule, under

which the proposer always appends her new block to the end of the

longest chain of blocks in the proposer’s local view of the blocktree.

If there is no network latency and no adversarial behavior, this rule

ensures that the blockchain will always be a perfect chain. However,

in a network with random delays, it is possible that the proposer

may not have received all blocks when she is elected. As such, she

ar
X

iv
:1

90
9.

08
71

9v
1 

 [
cs

.C
R

] 
 1

8 
Se

p 
20

19



Mobihoc ’19, July 2–5, 2019, Catania, Italy

might propose a block that causes the blockchain to fork (e.g. Figure

2). In longest-chain blockchains, this forking is eventually resolved

with probability 1 because one fork eventually overtakes the other.

Forking occurs in almost all major blockchains, and it implies

that blockchains are often not chains at all, but blocktrees. For many

consensus protocols (particularly chain-based ones like Bitcoin’s),

forking reduces throughput, because blocks that are not on the

main chain are discarded. It also has security implications; even

protocols that achieve good block throughput in the high-forking

regime have thus far been prone to security vulnerabilities (which

has been resolved in a recent work [2], which also guarantees low

latency). Nonetheless, forking is a significant obstacle to practical

performance in existing blockchains. There are two common ap-

proaches to mitigate forking. One is to improve the network itself,

e.g. by upgrading hardware and routing. This idea has been the

basis for recent projects like the Falcon network [3] and Bloxroute.

The other is to design consensus algorithms that tolerate network la-

tency by making use of forked branches. Examples include GHOST

[31], SPECTRE [29], and Inclusive/Conflux [20, 21]. In this paper,

we design a P2P protocol called Barracuda that effectively reduces

forking for a wide class of existing consensus algorithms.

Contributions.We propose a novel probabilistic framework that

allows one to formally investigate the trade-off between the net-

work delays and the throughput. We propose a new block proposal

protocol to mitigate the forking due to those network delays. We

prove that when the proposer node polls � randomly selected nodes

for their local blocktree information, then it has the same effect

as speeding up the communication network by a factor of �, thus

reducing forking significantly. This is stated informally in the fol-

lowing and precisely in Theorem 4.

Theorem 1 (Informal). In a fully connected network with ex-

ponential network delays of mean ∆, let L∆(t) denote the (random)

number of blocks included in the longest chain at time t . For suffi-

ciently small �, under the proposed �-Barracuda polling, the resulting

height of the longest chain is close to L∆/�(t) for any arbitrary block

arrival process and any local attachment protocol.

These results hold without actually changing any network hard-

ware, and they apply generally to any block arrival process or fork

choice rule. In fact, we prove a significantly stronger statement;

the entire blocktree probability mass function changes to as if the

network is faster by a factor of �, not just the downstream statistic

of longest chain length. The analysis also has connections to load

balancing in balls-and-bins problems, which may be of independent

interest. We make the following three specific contributions:

(1) We propose a new probabilistic model for the evolution of

a blockchain in proof-of-stake cryptocurrencies, where the

main source of randomness comes from the network delay.

This captures the network delays measured in real world P2P

cryptocurrency networks [8]. Simulations under this model

explain the gap observed in real-world cryptocurrencies,

between the achievable block throughput and the best block

throughput possible in an infinite-capacity network. Our

model differs from that of prior theoretical papers, which

typically assume a worst-case network model that allows

significant simplification in the analysis [13, 31]. We analyze

the effect of average network delay on system throughput

and provide a lower bound on the block throughput.

(2) To mitigate forking due to network delays, we propose a new

block proposal algorithm called �-Barracuda, under which

nodes poll � randomly-selected nodes for their local blocktree

information before proposing a new block. We show that

for small values of �, Barracuda has approximately the same

effect as if the entire network were a factor of � faster.

(3) We provide guidelines on how to implement Barracuda in

practice in order to provide robustness against several real-

world factors, such as network model mismatch and adver-

sarial behavior.

Outline. We begin by describing a stochastic model for blocktree

evolution in Section 2; we analyze the block throughput of this

model in Section 3. Next, we present Barracuda and analyze its

block throughput in Section 4. Finally, we describe real-world im-

plementation issues in Section 5, such as how to implement polling

and analyzing adversarial robustness.

2 MODEL

We propose a probabilistic model for blocktree evolution with two

sources of randomness: randomness in the timing and the proposer

of each new block, and the randomness in the delay in transmitting

messages over the network. The whole system is parametrized

by the number of nodes n, average network propagation delay ∆,
proposer waiting time ∆̃, and number of concurrent proposers k .

2.1 Modeling block generation

Wemodel block generation as a discrete-time arrival process, where

the t th block is generated at time γ (t). We previously discussed the

election of a single proposer for each block; in practice, some sys-

tems elect multiple proposers at once to provide robustness if one

proposer fails or is adversarial. Hence at time γ (t), k nodes are

chosen uniformly at random as proposers, each of which proposes

a distinct block. The index t ∈ Z+ is a positive integer, which we

also refer to as time when it is clear from the context whether we

are referring to t or γ (t). The randomness in choosing the pro-

posers is independent across time and of other sources of random-

ness in the model. We denote the k blocks proposed at time t as
(t , 1), (t , 2), . . . , (t ,k). The block arrival process follows the distri-

bution of a certain point process, which is independent of all other

randomness in the model.

Two common block arrival process are Poisson and deterministic.

Under a Poisson arrival process, γ (t) − γ (t − 1) ∼ Exp(λ) for some

constant λ, andγ (t)−γ (t−1) is independent of {γ (i)}t−1i=1 . In proof-of-

work (PoW) systems like Bitcoin, block arrivals are determined by

independent attempts at solving a cryptographic puzzle, where each

attempt has a fixed probability of success. With high probability,

one proposer is elected each time a block arrival occurs (i.e., k = 1),

and the arrival time can be modeled as a Poisson arrival process.

In many PoS protocols (e.g., Cardano, Qtum, and Particl), time is

split into quantized intervals. Some protocols give each user a fixed

probability of being chosen to propose the next block in each time

interval, leading to a geometrically-distributed block arrival time. If

the probability of selecting any proposer in each time slot is smaller

than one, the expected inter-block arrival time will be greater than
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one, as in Qtum and Particl. Other protocols explicitly designate one

proposer per time slot (e.g., Cardano [6]). Assuming all nodes are

active, such protocols can be modeled with a deterministic interval

process,γ (t) = t , for all t ∈ N. The deterministic arrival processmay

even be a reasonable approximation for certain parameter regimes

of protocols like Qtum and Particl. If the probability of electing

any proposer in a time step is close to one, there will be at least

one block proposer in each time slot with high probability, which

can be approximated by a deterministic arrival process. Regardless,

our main results apply to arbitrary arrival processes γ (t), including
geometric and deterministic.

When a block (t , i) is generated by a proposer, the proposer at-

taches the new block to one of the existing blocks, which we refer to

as the parent block of (t , i). The proposer chooses this parent block
according to a pre-determined rule called a fork-choice rule; we dis-

cuss this further in Section 2.1. Upon creating a block, the proposer

broadcasts a message containing the following information:

Mt,i = (Block (t , i), pointer to the parent block of (t , i))
to all the other nodes in the system. The broadcasting process is

governed by our network model, which is described in Section 2.1.

In this work, we focus mainly on the PoS setting due to subtleties

in the practical implementation of Barracuda (described in Sec-

tion 4). In particular, PoW blockchains require candidate proposers

to choose a block’s contents—including the parent block—before

generating the block. But in PoW, block generation itself takes an

exponentially-distributed amount of time. Hence, if a proposer were

to poll nodes before proposing, that polling information would al-

ready be (somewhat) stale by the time the block gets broadcast to

the network. In contrast, PoS cryptocurrencies allow block creation

to happen after a proposer is elected; hence polling results can

be simultaneously incorporated into a block and broadcast to the

network. Because of this difference, PoS cryptocurrencies benefit

more from Barracuda than PoW ones.

Global view of the blocktree. Notice that the collection of all

messages forms a rooted tree, called the blocktree. Each node rep-

resents a block, and each directed edge represents a pointer to a

parent block. The root is called the genesis block, and is visible to

all nodes. All blocks generated at time t = 1 point to the genesis

block as a parent. The blocktree grows with each new block, since

the block’s parent must be an existing block in the blocktree; since

each block can specify only one parent, the data structure remains

a tree. Formally, we define the global blocktree as follows.

Definition 1 (Global tree). We define the global tree at time t ,
denoted as Gt , to be a graph whose edges are described by the set

{(Block (j, i), pointer to the parent block of (j, i)) : 1 ≤ j ≤ t , 1 ≤
i ≤ k} with the vertices being the union of the genesis block and

all the blocks indexed as {(j, i) : 1 ≤ j ≤ t , 1 ≤ i ≤ k}.
If there is no network delay in communicating the messages,

then all nodes will have the same view of the blocktree. However,

due to network delays and the distributed nature of the system, a

proposer might add a block before receiving all the previous blocks.

Hence, the choice of the parent node depends on the local view of

the blocktree at the proposer node.

Local view of the blocktree. Each node has its own local view of

the blocktree, depending on which messages it has received. Upon

receiving the messageMt,i , a node updates its local view as follows.

If the local view contains the parent block referred in the message,

then the block t is attached to it. If the local view does not contain

the parent block, then the message is stored in an orphan cache

until the parent block is received. Notice that Gt is random and

each node’s local view is a subgraph of Gt .

2.2 Network model and fork choice rule

We avoid modeling the topology of the underlying communication

network by instead modeling the (stochastic) end-to-end delay of

a message from any source to any destination node. Stochastic

network models have been studied for measuring the effects of self-

ish mining [15] and blockchain throughput [25]. We assume each

block reaches a given node with delay distributed as an indepen-

dent exponential random variable with mean ∆. This exponential
delay captures the varying and dynamic network effects of real

blockchain networks, as empirically measured in [8] on Bitcoin’s

P2P network. In particular, this exponential delay encompasses both

network propagation delay and processing delays caused by nodes

checking message validity prior to relaying it. These checks are

often used to protect against denial-of-service attacks, for instance.

When a proposer is elected to generate a new block at time γ (t),
she waits time ∆̃ ∈ [0, 1) and decides on where to append the new

block in its local blocktree. The choice of parent block is governed

by the fork choice rule. The most common one is the Nakamoto

protocol (longest chain), though other fork choice rules do exist.

When a node is elected as a proposer under the Nakamoto protocol

(or longest chain rule), the node attaches the block to the leaf of the

longest chain in the local blocktree. When there is a tie, the proposer

chooses one arbitrarily. Longest chain is widely-used, including in

Bitcoin, ZCash, and Monero. The Nakamoto protocol belongs to the

family of local attachment protocols, where the proposer makes the

decision on where to attach the block solely based on the snapshot

of its local tree at time γ (t) + ∆̃, stripping away the information

on the proposer of each block. In other words, we require that the

protocol be invariant to the identity of the proposers of the newly

generated block. We show in Section 4 that our analysis applies

generally to all local attachment protocols. In practice, almost all

blockchains use local attachment protocols.

Notice that if ∆ is much smaller than the block inter-arrival time

and all nodes obey protocol, then the global blocktree Gt is more

likely to form a chain. On the other hand, if ∆ is much larger than

the block inter-arrival time, thenGt is more likely to be a star (i.e. a

depth-one rooted tree). To maximize blockchain throughput, it is

desirable to design protocols that maximize the expected length

of the longest chain of Gt . Intuitively, a faster network infrastruc-

ture with a smaller ∆ implies less forking. In this work, we are

interested primarily in settings where ∆ is larger than the mean

inter-block time. This is admittedly not a conventional setting for

existing blockchain systems, but a current trend in next-generation

blockchains is to minimize block times and/or to run blockchains

on increasingly unreliable networks (e.g., ad hoc networks, wireless

networks, etc.). In both settings, we may expect ∆ to be comparable
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to or larger than the block time. Hence our paper aims in part to

understand the feasibility of operating blockchains in this regime.

3 BLOCK THROUGHPUT ANALYSIS

A key performance metric in blockchains is transaction throughput,

or the number of transactions that can be processed per unit time.

Transaction throughput is closely related to a property called block

throughput, also known as the main chain growth rate. Given a

blocktree Gt , the length of the main chain L(Gt ) is defined as the

number of hops from the genesis block to the farthest leaf. Precisely,

L(Gt ) � max
B∈∂(Gt )

d(B0,B),

where ∂(Gt ) denotes the set of leaf blocks in Gt , and d(B0,B) de-
notes the hop distance between two vertices B0 and B inGt . We de-

fine block throughput as limt→∞ E[L(Gt )]/t . Block throughput de-

scribes how quickly blocks are added to the blockchain; if each block

is full and contains only valid transactions, then block throughput

is proportional to transaction throughput. In practice, this is not

the case, since adversarial strategies like selfish mining [10] can be

used to reduce the number of valid transactions per block. Regard-

less, block throughput is frequently used as a stepping stone for

quantifying transaction throughput [2, 13, 31].

For this reason, a key objective of our work is to quantify block

throughput, both with and without polling. We begin by studying

block throughput without polling under the Nakamoto protocol

fork-choice rule, as in Bitcoin. This has been previously studied in

[2, 13, 31], under a simple network model where there is a fixed

deterministic delay between any pair of nodes. This simple network

model is justified by arguing that if all transmission of messages

are guaranteed to arrive within a fixed maximum delay d , then the

worst case of block throughput happens when all transmission have

delay of exactly d . Such practice ignores all the network effects, for

the sake of tractable analysis. In this section, we focus on capturing

such network effect on the block throughput. We ask the funda-

mental question of how block throughput depends on the average

network delay, under a more realistic network model where each

communication is a realization of a random exponential variable

with average delay ∆. In the following (Theorem 2), we provide

a lower bound on the block throughput, under the more nuanced

network model from Section 2, and Nakamoto protocol fork-choice

rule. This result holds for a deterministic arrival process. We refer

to a longer version of this paper [11] for a proof.

Theorem 2. Suppose there is a single proposer (k = 1) at each

discrete time, γ (t) = t ∈ {1, 2, . . .}, with no waiting time (∆̃ = 0).

For any number of nodes n, any time t , any average delay ∆, and

C∆ = e
−1
∆ , under the Nakamoto protocol, we have that

E[LChain(Gt )]
t

≥ exp

( −C∆

(1 −C∆)2
)
.

Notice that trivially, E[LChain(Gt )]/t ≤ 1, with equality when

there is no network delay, ∆ = 0. Theorem 3 and our experiments in

Figure 1 suggest that Theorem 2 is tight when ∆ � 1. Hence there

is an (often substantial) gap between the realized block throughput

and the desired upper bound. This gap is caused by network delays;

since proposers may not have an up-to-date view of the blocktree

due to network latency, they may append to blocks that are not
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Figure 1: Block throughput vs. average network delay for an

inter-block time of 1 time unit.

necessarily at the end of the global main chain, thereby causing the

blockchain to fork.

One goal is to obtain a blocktree with no forking at all, i.e., a per-

fect blockchainwithLChain(Gt ) = t . Setting exp
(−C∆/(1 −C∆)2

)
=

1 − 1/t , which implies that E[LChain(Gt )] ≥ t − 1, we obtain that

∆ = Θ( 1
log t

). The following result shows that if ∆ = O( 1
log t

), then
LChain(Gt ) = t with high probability.

Theorem 3. Fix a confidence parameter δ ∈ (0, 1),k = 1,γ (t) = t .
For the Nakamoto protocol, if

1

∆
≥

(
ln t − ln ln 1

δ

)
1 − ∆̃

, (1)

then the chain Gen− 1− 2− . . . − t happens with probability at least

δ − o(1) as t → ∞ and n � t2.
Conversely, when n � (∆t ln t)2 and

1

∆
≤

(
ln t − ln ln 1

δ

)
1 − ∆̃

, (2)

then the chain Gen− 1− 2− . . . − t happens with probability at most

δ + o(1) as t → ∞. Here � ignores the dependence on the parameter

δ , which is fixed throughout.

The proof is included in Section 6.1. This result shows the preva-

lence of forking. For example, if we conservatively use Bitcoin’s

parameters settings, taking ∆ = 0.017, ∆̃ = 0, and δ = 0.01, equa-

tion (2) implies that for t � 5 blocks, forking occurs with high

probability. Hence forking is pervasive even in systems with pa-

rameters chosen specifically to avoid it.

A natural question is how to reduce forking, and thereby increase

block throughput. To this end, we next introduce a blockchain

evolution protocol called Barracuda, that effectively reduces forking

without changing the system parameter ∆, which is determined by

network bandwidth.

4 �-BARRACUDA

To reduce forking and increase block throughput, we propose �-

Barracuda, which works as follows: upon arrival of a block (t , i), the
proposer of block (t , i) selects � − 1 nodes in the network uniformly

at random, and inquires about their local tree.1 The proposer ag-

gregates the information from the � − 1 other nodes and makes a

1We use the name Barracuda to refer to the general principle, and �-Barracuda to refer
to an instantiation with polling parameter �.
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decision onwhere to attach block (t , i) based on the local attachment

protocol it follows. One key observation is that there is no conflict

between the local trees of each node, so the Barracuda strategy

simply merges totally � local trees into a single tree with union of

all the edges in the local trees that are polled. Note that we poll

� − 1 nodes, such that a total � local trees are contributing, as the

proposers own local tree also contributes to the union.

We assume that when Barracuda polling happens, the polling

requests arrive at the polled nodes instantaneously, and it takes the

proposer node time ∆̃ to make the decision on where to attach the

block. The instantaneous polling assumption is relaxed in Section

5. Recall that in our model, ∆ accounts for both network delay and

processing delays. In live blockchain P2P networks, a substantial

fraction of block propagation delays originate from the processing

(e.g. validity checks) done by each node before relaying the block.

These delays could grow more pronounced for blockchains with

more complex processing requirements, such as smart contracts.

Since these computational checks are not included in the polling

process, the polling delay can be much smaller than the overall

network propagation delay. To simplify the analysis, we also assume

that each node processes the additional polled information in real

time, but does not store the polled information. In other words,

the information a node obtains from polling at time t is forgotten
at time t ′ > t + ∆̃. This modeling choice is made to simplify the

analysis; it results in a lower bound on the improvements due to

polling since nodes are discarding information. In practice, network

delay affects polling communication as well, and we investigate

experimentally these effects in Section 5.1.

To investigate the effect of polling on the blockchain, we define

appropriate events on the probabilistic model of block arrival and

block tree growth. We denote X ∼ Exp(λ) an exponential random

variable with probability density function pX (t) = λe−λt1(t ≥ 0),
and define set [m] � {1, 2, . . . ,m} for any integer m ≥ 1. For a

message

Mj,i = (Block (j, i), point to the parent block of (j, i)),
denote its arrival time to nodem as R(j,i),m . Ifm is the proposer of

block (j, i), then R(j,i),m = γ (j)+ ∆̃. Ifm is not the proposer of block

(j, i), then R(j,i),m = γ (j)+ ∆̃+B(j,i),m , where B(j,i),m ∼ Exp(1/∆).
It follows from our assumptions that the random variables B(j,i),m
are mutually independent for all 1 ≤ j ≤ t , 1 ≤ i ≤ k, 1 ≤ m ≤ n.
We also denote the proposer of block (j, i) asm(j,i). To denote polled
nodes, we also writem(j,i) asm

(1)
(j,i), and denote the other �−1 nodes

polled by nodem(j,i) asm
(2)
(j,i),m

(3)
(j,i), . . . ,m

(�)
(j,i).

When block (j, i) is being proposed, we define the following

random variables. Let random variable

ej,i,l,r =


1 if by the time (j, i) was proposed, node

m
(l )
(j,i) already received block r

0 otherwise

(3)

Here j ∈ [t], i ∈ [k], l ∈ [�], r ∈ {(a,b) : a ∈ [j − 1],b ∈ [k]}. For
any r = (a,b), we denote r [1] = a, r [2] = b.

Since we will aggregate the information from the total � nodes

whenever a proposer proposes, we also define ej,i,r = 1−∏�
l=1

(1−
ej,i,l,r ) as the event that when (j, i)was proposed, at least one node

m
(l )
(j,i) has received block r . The crucial observation is that when

the proposer tries to propose block (j, i), the complete information

it utilizes for decision is the collection of random variables

{ej,i,r : r [1] ∈ [j − 1], r [2] ∈ [k]}. (4)

The global tree at time γ (t) + ∆̃, denoted as Gt , is a tree consist-

ing of kt + 1 blocks including the Genesis block. We are interested

in the distribution of the global tree Gt . To illustrate how to com-

pute the probability of a certain tree structure, we demonstrate the

computation through an example where k = 1, t = 3, and � = 1.

Figure 2: Examples of G3 with varying structures.

For simplicity, we denote ej,i,(r [1],r [2]) as ej,r [1] since for this

example k = 1. The probability of some of the configurations of G3

in Figure 2a can be written as

P [G3 = Figure 2a] = P (e2,1 = 1, e3,1 = 1, e3,2 = 1
)
,

P [G3 = Figure 2b] = P (e2,1 = 1, e3,1 = 1, e3,2 = 0
)
, and

P [G3 = Figure 2c] = P (e2,1 = 1, e3,1 = 0
)
.

Note that for the event in Figure 2, it does not matter whether node

m(3,1) has received block (2, 1) or not, as the parent of that block is

missing inm(3,1)’s local tree. Block (2, 1) is therefore not included
in the local tree of nodem(3,1) at that point in time.

4.1 Main result

Under any local attachment protocol C and any block arrival dis-

tribution, the event that EC,t,д = {Gt = д} depends on the ran-

dom choices of proposers and polled nodes, {m(l )
(j,i) : j ∈ [t], i ∈

[k], l ∈ [�]}, and the messages received at those respective nodes,

{ej,i,r : j ∈ [t], i ∈ [k], r [1] ∈ [j − 1], r [2] ∈ [k]}, and some ad-

ditional outside randomness on the network delay and the block

arrival time. The following theorem characterizes the distribution

of Gt on the system parameters t ,∆, �, ∆̃ for a general local attach-

ment protocol C (including the longest chain protocol). We provide

a proof in Section 6.2.

Theorem 4. For any local attachment protocol C and any inter-

block arrival distribution, define random variable G̃t which takes

values in the set of all possible structures of tree Gt such that 2

P(G̃t = д) �

E

[
1(EC,t,д)



{m(l )
(j,i)

}
j ∈[t ],i ∈[k ],l ∈[�] are distinct

]
. (5)

We have the following results:

2The random variable G̃t is well defined, since the protocol C is assumed not to
depend the identity of the proposer of each block. Hence, the conditional expectation

is identical conditioned on each specific {m(l )
(j,i ) : j ∈ [t ], i ∈ [k ], l ∈ [�]} whenever

all tk� nodes in it are distinct.
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(a) There exists a function F independent of all the parameters in

the model such that for any possible tree structure д,

P(G̃t = д) = F
( ∆
�
, ∆̃,д,C

)
. (6)

(b) The total variation distance between the distribution ofGt and

G̃t is upper bounded:

TV
(
PGt
, P

G̃t

) ≤ (�kt)2
2n

. (7)

In the definition in Eq. (5), we condition on the event that all

proposers and polled nodes are distinct. This conditioning ensures

that all received blocks ej,i,l,r ’s at those nodes are independent
over time j . This in turn allows us to capture the precise effect of �

in the main result in Eq. (6). Further, the bound in Eq. (7) implies

that such conditioning is not too far from the actual evolution of

the blockchains, as long as the number of nodes are large enough:

n � (�kt)2. While this condition may seem restrictive since t → ∞,

notice that in practice, many blockchains operate in epochs of finite

duration, such that the state of the blockchain is finalized between

epochs [5, 17]. Finalization means that the system chooses a single

fork, and builds on the last block of that fork in the subsequent

epoch. Hence, the above condition can be physically met with finite

n. Moreover, in practice, n need not be so large, as we show in

Figure 3. Even with n = 10, 000 < (�kt)2 = 160, 000 for 4-polling,

the experiments support the predictions of Theorem 4.

The main message of the above theorem is that �-Barracuda ef-

fectively reduces the network delay by a factor of �. For any local

attachment protocol and any block arrival process, up to a total

variation distance of (�kt)2/n, the distribution of the evolution of

the blocktree with �-Barracuda is the same as the distribution of

the evolution of the blocktree with no polling, but with a network

that is � times faster. We confirm this in numerical experiments

(plotted in Figure 3), for a choice of ∆̃ = 0, n = 10, 000, k = 1,

t = 100, γ (t) = t , and the longest chain fork choice rule. In the

inset we show the same results, but scaled the x-axis as ∆/�. As
predicted by Theorem 4, the curves converge to a single curve, and

are indistinguishable from one another. We used the network model

from Section 2.2.
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Figure 3: Comparing the average block throughput for var-

ious choices of � confirms the theoretical prediction that �-

Barracuda effectively speeds up the network by a factor of �;

all curves are indistinguishable when x-axis is scaled as ∆/�
as shown in the inset.

Without polling, the throughput degrades quickly as the net-

work delay increases. This becomes critical as we try to scale up

PoS systems; blocks should be generated more frequently, pushing

network infrastructure to its limits. With polling, we can achieve

an effective speedup of the network without investing resources on

hardware upgrades. Note that in this figure, we are comparing the

average block throughput, which is the main property of interest.

We make this connection between the throughput and � precise

in the following. Define LChain(Gt ) to be the length of the longest

chain in Gt excluding the Genesis block. Throughput is defined as

E[LChain(Gt )]/t . We have the following Corollary of Theorem 4.

Corollary 1. There exists a function L(∆/�, ∆̃,C) independent
of all the parameters in the model such that


E[LChain(Gt )] − E

[
L
(∆
�
, ∆̃,C

) ] 


 ≤ t(�kt)2
2n

. (8)

In other words, in the regime that n � t3(k�)2, the expectation
of the length of the longest chain depends on the delay parameter ∆
and the polling parameter � only through their ratio ∆/�. Hence, the
block throughput enjoys the same polling gain, as the distribution

of the resulting block trees.

4.2 Connections to balls-in-bins example

In this section, we give a brief explanation of the balls-in-bins

problem and the power of two choices in load balancing. We then

make a concrete connection between the blockchain problem and

the power of �-polling in information balancing.

In the classical balls-in-bins example, we have t balls and t bins,
and we sequentially throw each ball into a uniformly randomly

selected bin. Then, the maximum loaded bin has load (i.e. number

of balls in that bin) scaling as Θ (log t/log log t) [24]. The result of
power of two choices states that if every time we select � (� ≥ 2)

bins uniformly at random and throw the ball into the least loaded

bin, the maximum load enjoys an near-exponential reduction to

Θ (log log t/log �) [24].
Our polling idea is inspired by this power of two choices in load

balancing. We make this connection gradually more concrete in the

following. First, consider the case when the underlying network

is extremely slow such that no broadcast of the blocks is received.

When there is no polling, each node is only aware of its local

blockchain consisting of only those blocks it generated. There is a

one-to-one correspondence to the balls-in-bins setting, as blocks

(balls) arriving at each node (bin) build up a load (local blockchain).

When there are t nodes and t blocks, then it trivially follows that

the length of the longest chain scales as Θ(log t/log log t), when
there is no polling.

Themain departure is that in blockchains, the goal is to maximize

the length of the longest chain (maximum load). This leads to the

following fundamental question in the balls-in-bins problem, which

has not been solved, to the best of our knowledge. If we throw the

ball into the most loaded bin among � randomly chosen bins at

each step, how does the maximum load scale with t and �? That
is, if one wanted to maximize the maximum load, leading to load

unbalancing, how much gain does the power of � choices give? We

give a precise answer in the following.
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Theorem 5. Given t empty bins and t balls, we sequentially al-

locate balls to bins as follows. For each ball, we select uniformly at

random � bins, and put the ball into the maximally-loaded bin among

the � chosen ones. Then, the maximum load of the t bins after the
placement of all t balls is at most

C · � · log t

log log t
(9)

with probability at least 1 − 1
t , where C > 0 is a universal constant.

We refer to a longer version of this paper [11] for a proof. This

shows that the gain of �-polling in maximizing the maximum load

is linear in �. Even though this is not as dramatic as the exponential

gain of the load balancing case, this gives a precise characterization

of the gain in the throughput of �-Barracuda in blockchains when

∆ � 1. This is under a slightly modified protocol where the polling

happens in a bidirectional manner, such that the local tree and the

newly appended block of the proposer are also sent to the polled

nodes.

For moderate to small ∆ regime, which is the operating regime

of real systems, blocktree evolution is connected to a generalization

of the balls-in-bins model. Now, it is as if the balls are copied and

broadcasted to all other bins over a communication network. This

is where the intuitive connection to balls-and-bins stops, as we

are storing the information in a specific data structure that we call

blocktrees. However, we borrow the terminology from ‘load bal-

ancing’, and refer to the effect of polling as ‘information balancing’,

even though load balancing refers tominimizing the maximum load,

whereas information balancing refers to maximizing the maximum

load (longest chain) by balancing the information throughout the

nodes using polling.

5 SYSTEM AND IMPLEMENTATION ISSUES

We empirically verify the robustness of our proposed protocol under

various issues that might come up in a practical implementation

of �-Barracuda. Our experiment consists of n nodes connected via

a network which emulates the end to end delay as an exponential

distribution; this model is inspired by the measurements of the

Bitcoin P2P network made in [8].

Each of the n nodes maintains a local blocktree which is a subset

of the global blocktree. We use a deterministic block arrival process

with γ (t) = t , i.e. we assume a unit block arrival time which is also

termed as an epoch in this section. This represents an upper bound

on block arrivals in real-world PoS systems, where blocks can only

arrive at fixed time intervals. At the start of arrival t , k proposers

are chosen at random and each of these proposers proposes a block.

When there is no polling, each proposer chooses themost eligible

block from its blocktree to be a parent to the block it is proposing,

based on the fork choice rule. In the case of �-Barracuda, the pro-

poser sends a pull message to � − 1 randomly chosen nodes, and

these nodes send their block tree back to the proposer. The pro-

poser receives the block trees from the polled nodes after a delay ∆̃,
and updates her local blocktree by taking the union of all received

blocktrees. The same fork choice rule is applied to decide the parent

to the newly generated block. In all experiments, Nakamoto longest

chain fork choice rule is used. Experiments are run for T = 100

time epochs on a network with n = 10, 000 nodes with k = 1.

5.1 Effect of polling delay

In reality, there is delay between initializing a poll request and

receiving the blocktree information. We expect polling delay to be

smaller than the delay of the P2P relay network because polling

communication is point-to-point rather than occurring through the

P2P relay network. To understand the effects of polling delay, we

ran simulations in which a proposer polls � − 1 nodes at the time

of proposal, and each piece of polled information arrives after time

∆̃1, ∆̃2, .., ∆̃�−1 ∼ Exp( 1
0.1∆ ). The proposer determines the pointer

of the new block when all polled messages are received.

Figure 5 shows the effect of such polling delay, as measured by

∆0.8(�), the largest delay ∆ that achieves a block throughput of at

least 0.8 under �-Barracuda. More precisely,

∆0.8(�) = max

{
∆ : lim

t→∞
E [L(Gt )]

t
≥ 0.8

}
.

Under this model, polling more nodes means waiting for more

responses; the gains of polling hence saturate for large enough �,

and there is an appropriate practical choice of � that depends on

the interplay between the P2P network speed and the polling delay.

In practice, there is a strategy to get a large polling gain, even

with delays: the proposer polls a large number of nodes, but only

waits a fixed amount of time before making a decision. Under this

protocol, polling more nodes can only help; the only cost of polling

is the communication cost. The results of our experiments under

this protocol are illustrated in Figure 5 (‘poll delay fixed wait’ curve).

This implies a gap in our model, which does not fully account

for the practical cost of polling. In order to account for polling

costs, we make the model more realistic by assigning a small and

constant delay of 0.01∆ to set up a connection with a polling node,

and assume that the connection setup occurs sequentially for � − 1

nodes. The proposer follows the same strategy as above: waiting

for a fixed amount of time before making the decision. We see that

under such model, there is a finite optimal � as shown in Figure 6.

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8  9  10

poll delay 0.25∆ ; wait 0.25∆

poll delay 0.1∆; wait 0.1∆

no poll delay

∆
0
.8
(�)

�

Figure 4: The polling gain continues for large � even with a

more practical choice of a polling delay 0.25∆.

As practical polling delays might be larger than 0.1D, we com-

pare it to a more practical setting where polling delay is D/4 with
a threshold wait time of D/4 in Figure 4. With this larger delays,

the performance is still continuously increasing with �, and still

provides 250% improvement at �=10.
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Figure 5: With a polling delay, the per-

formance saturates after � = 6. However,

we can continuously harness polling

gain if the proposers propose a new

block after a fixed time without waiting

for all polling to arrive.

 0

 0.5

 1

 1.5

 2

 1  2  3  4  5  6  7  8  9  10

setup delay

Effects of setup delay

∆
0
.8
(�)

�

Figure 6: We assume a polling delay of

Exp(1/(0.1∆)) but the proposer waits ex-

actly ∆̃ = 0.1∆ time before proposing.

When there is a setup delay ∝ �, we see

an optimal �, which depends on all sys-

tem parameters.
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Figure 7: Heterogeneous networks enjoy

the same polling gain as homogeneous

ones. Heterogeneous �-Barracuda pro-

vides a speedup of the network by a fac-

tor of about �, as shown in the inset

where the x-axis is scaled by ∆/�.

5.2 Heterogeneous networks

The theoretical and experimental evidence of the benefits of �-

Barracuda have so far been demonstrated in the context of a ho-

mogeneous network: all the nodes in the network have the same

bandwidth and processing speeds. Further, individual variation in

end-to-end delay due to network traffic is captured by statistically-

identical exponential random variables. In practice, heterogeneity is

natural: some nodes have stronger network capabilities. We model

this by clustering the nodes into h different groups based on av-

erage network speed. The speed of a connection is determined

by the speed of the slower node. We compare the performance

of �-Barracuda with no polling (which has worse performance

and serves as a lower bound). We follow the following uniform

polling strategy: Let the delay ∆ of a node be a part of the set

D = {∆1,∆2, ..,∆h }; a node’s delay is defined as follows: the av-

erage delay of transmitting a block across the P2P network from

node with delay ∆i to a node with delay ∆j is max(∆i ,∆j ) ∀i ∈ [h].
In Figure 7, we show the performance of a heterogeneous network

with h = 2: half of the nodes have delay ∆ and the others have

delay 5∆. Every node has the same proposer election probability.

�-Barracuda gives a throughput increase in line Theorem 4.

5.3 Other practical issues

There are remaining three major practical issues. First, the polling

studied in this paper requires syncing of the complete local block-

tree, which is redundant and unnecessarily wastes network re-

sources. For efficient bandwidth usage, we propose (�,b)-polling,
where the polled nodes only send the blocks that were generated

between times t − 1 and t − b. Secondly, to ensure timely response

from polled nodes, we propose appropriate incentive mechanism,

motivated by the reputation systems used in BitTorrent. Finally,

a fraction of the participants may deviate from the proposed pro-

tocol with explicit malicious intent (of causing harm to the key

performance metrics). It is natural to explore potential security

vulnerabilities exposed by the �-Barracuda protocol proposed in

this paper. All these practical issues are expanded in detail with

numerical experiments to support them, in the longer version of

this paper available at [11].

6 PROOFS OF THE MAIN RESULTS

6.1 Proof of Theorem 3

We apply Theorem 4 with general � ≥ 1 and then specialize it

to � = 1 to obtain the theorem statement. Denote the chain as д,
and ej,i,r [1],r [2] as ej,r [1] since here k = 1. The event EC,t,д can be

written as

EC,t,д = 1(e2,1 = 1) · 1(e3,1 = 1, e3,2 = 1)·
. . . · 1(et,1 = 1, et,2 = 1, . . . , et,t−1 = 1). (10)

Let Ẽ denote the event that every node has proposed or been

polled at most once. Conditioned on Ẽ, and defining α � e ∆̃l/∆:

E[1(EC,t,д)|Ẽ] =
t∏
j=2

E[1(ej,1 = 1, ej,2 = 1, . . . , ej, j−1 = 1)|Ẽ]

=

t∏
j=2

j−1∏
m=1

(1 − e
∆̃l
∆ e−

m�
∆ ) =

t−1∏
j=1

(1 − αe−
j�
∆ )t−j ≤ (1 − αe−

�
∆ )t−1.

Wenow claim that if � ≥ ∆(ln t−ln ln 1
δ )

1−∆̃ , we haveE[1(EC,t,д)|Ẽ] ≥
δ − o(1). Let c = ln 1

δ
. Indeed, in this case, we have αe−�/∆ ≤

ln(1/δ )/t . Hence,

E[1(EC,t,д)|Ẽ] ≥
t−1∏
j=1

(
1 − c j

t j

)t−j

=
(
1 − c

t

)t t−1
t

t−1∏
j=2

(
1 − c j

t j

)t−j (a)≥ e−c − o(1) = δ − o(1),

where (a) follows from Lemma 1 and the fact that limt→∞(1 −
c/t)t−1 = e−c . Conversely, we show that if � ≤ ∆(ln t−ln ln 1

δ )
1−∆̃ , then

E[1(EC,t,д)|Ẽ] ≤ δ + o(1). Indeed, in this case we have αe−�/∆ ≥
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ln(1/δ )/t , and
E[1(EC,t,д)|Ẽ] ≤ (1 − c/t)t−1 = e−c + o(1) = δ + o(1).

Lemma 1. Let c > 0 be fixed. Then we have that limn→∞
∑n−1
k=2

(n−
k) log(1 − ck/nk ) = 0.

The proof is included in the extended version [11]. Note that the

distribution of {m1,m2,m3, . . . ,mt } is independent of {Rt i : t ≥
1, i ∈ [n]}, hence we could condition on a specific realization of

{m2,m3, . . . ,mT } and compute the conditional expectation of the

event that leads to the final global tree as a chain. We claim:

Lemma 2. For any T ≥ 1, letting x = e−λ , we have ∏T−1
j=1 (1 −

x j )T−j ≤ E[ET |{mi : 2 ≤ i ≤ T }] ≤ (1 − x)T−1.
The full proof is included in [11]. The upper bound uses the

independence of the propagation delays, whereas the lower bound

relies on the fact that all the T − 1 events in the T − 1 indicators

functions of ET are nonnegatively correlated.

Since Lemma 2 does not depend on the values of {mi }Ti=2, we
know that the bounds apply to E[ET ] as well. For the d-polling
strategy, it can be verified that both the upper and lower bound

computations in Lemma 2 are still valid, if we replace x with xd .
Indeed, for the upper bound, each block contributes at least d inde-

pendent random variables; for the lower bound, we can show that

the T − 1 events are positively correlated. Now we claim that in

order to ensure that E[ET ] ≥ δ , the required number of d is at least

approximately d ≥ lnT−ln ln 1
δ

λ
for T large. Let c = ln 1

δ
. We claim

that if x ≤ c
T , then the probability lower bound is satisfied. Indeed,

in this case,

E[ET ] ≥
T−1∏
j=1

(
1 − c j

T j

)T−j
=
(
1 − c

T

)T ·T−1
T

T−1∏
j=2

(
1 − c j

T j

) T j
c j

c j (T−j )
T j

≥ e−c − o(1) = δ − o(1)
as T → ∞. We also claim that if x > c

T , then the probability lower

bound is asymptotically not satisfied. Indeed, in this case

E[ET ] ≤ (1 − x)T−1 <
(
1 − c

T

)T−1
= e−c + o(1) = δ + o(1)

as T → ∞. Hence, the threshold we aim for should be precisely

x = c
T . Replacing it with e−λd = ln 1

δ

T , we get d =
lnT−ln ln 1

δ

λ
.

6.2 Proof of Theorem 4

Part (1). One key observation is that, if every node has only been

polled or proposed at most once, i.e„ the set {m(l )
(j,i) : j ∈ [t], i ∈

[k], l ∈ [�]} contains tk� distinct nodes, then conditioned on this

specific sequence {m(l )
(j,i) : j ∈ [t], i ∈ [k], l ∈ [�]}, all the random

variables {ej,i,l,r : j ∈ [t], i ∈ [k], l ∈ [�], r [1] ∈ [j − 1], r [2] ∈ [k]}
aremutually independent. Furthermore, conditioned on this specific

sequence, we have

E[ej,i,l,r |{m(l )
(j,i) : j ∈ [t], i ∈ [k], l ∈ [�]}, {γ (i)}ti=1] (11)

= 1 − e−(γ (j)−γ (r [1])−∆̃)/∆ , (12)

for all r such that r [1] ∈ [j−1], r [2] ∈ [k]. Let Ẽ denote the event that

{m(l )
(j,i) : j ∈ [t], i ∈ [k], l ∈ [�]} are distinct. It follows from the defi-

nition of local attachment protocol C that E[ej,i,l,r |Ẽ, , {γ (i)}ti=1] =
1 − e−(γ (j)−γ (r [1])−∆̃)/∆ for all r such that r [1] ∈ [j − 1], r [2] ∈ [k].
Note that the event EC,t,д = {Gt = д} only depends on {m(l )

(j,i) :
j ∈ [t], i ∈ [k], l ∈ [�]} and {ej,i,r : j ∈ [t], i ∈ [k], r [1] ∈
[j − 1], r [2] ∈ [k]} plus some additional outside randomness. Since

ej,i,r = 1 ⇔ ∑
l ∈[�] ej,i,l,r ≥ 1, it follows from the independence

of ej,i,l,r and equation (11) that

E[ej,i,r |Ẽ, {γ (i)}ti=1] = 1 − e−(γ (j)−γ (r [1])−∆̃)�/∆ (13)

all r such that r [1] ∈ [j − 1], r [2] ∈ [k]. Hence, we have

P(G̃t = д) = E
[
1(EC,t,д)|Ẽ, {γ (i)}ti=1

]
= F ({γ (i)}ti=1,

∆

�
, ∆̃,д,C).

Now we show the second part of Theorem 4. Denote by A =
{д1,д2, . . . ,дA} any collection of distinct tree structures that Gt

may take values in. Then, we have

P(Gt ∈ A|{γ (i)}ti=1) = E
[
A∑
i=1

1(EC,t,дi )





{γ (i)}ti=1

]
(14)

= P(G̃t ∈ A) + (1 − P(Ẽ |{γ (i)}ti=1))

×
(
E[

A∑
i=1

1(EC,t,дi )|Ẽc , {γ (i)}ti=1] − E[
A∑
i=1

1(EC,t,дi )|Ẽ, {γ (i)}ti=1]
)
.

(15)

It follows from the birthday paradox compution [24, Pg. 92] that

1−P(Ẽ |{γ (i)}ti=1) ≤ kt�(kt� − 1)/2n. Hence, we have shown that for
any measurable setA thatGt or G̃t take values in, we have |P(Gt ∈
A|{γ (i)}ti=1) − P(G̃t ∈ A)| ≤ 1 − P(Ẽ |{γ (i)}ti=1) ≤ kt �(kt �−1)

2n . The

result follows from the definition of the total variation distance

TV(PGt | {γ (i)}ti=1 , PG̃t
) = supA |P(Gt ∈ A|{γ (i)}ti=1) − P(G̃t ∈ A)|.

Part (2).Wenote that there exists some functionL({γ (i)}ti=1, ∆� , ∆̃,C)
independent of all the parameters in the model such that the expec-

tation of the longest chain of G̃t is equal to L({γ (i)}ti=1, ∆� , ∆̃,C). To
obtain the final result, it suffices to use the variational representa-

tion of total variation distance, TV(P ,Q) = supf : |f | ≤ 1
2
EP f − EQ f ,

and taking f = 1
t · (LChain(Gt ) − t/2), upon noticing that the length

of the longest chain in the tree Gt is at most t .

7 RELATEDWORK

Four main approaches exist for reducing forking.

(1) Reducing proposer diversity. A natural approach is to make the

same node propose consecutive blocks; for instance, Bitcoin-NG

[9] proposers use the longest-chain fork choice rule, but within

a given time epoch, only a single proposer can propose blocks.

This allows the proposer to quickly produce blocks without forking

effects. Although Bitcoin-NG has high throughput, it exhibits a few

problems. When a single node is in charge of block proposal for an

extended period of time, attackers may be able to learn that node’s

IP address and take it down. The idea of fixing the proposer is also

used in other protocols, such as Thunderella [27] and ByzCoin [18].

(2) Embracing forking. Other protocols use forking to contribute

to throughput. Examples include GHOST [31], PHANTOM [30],
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SPECTRE [29], and Inclusive/Conflux [20, 21]. GHOST describes

a fork choice rule that tolerates honest forking by building on

the heaviest subtree of the blocktree. SPECTRE, PHANTOM, and

Conflux instead use existing fork choice rules, but build a directed

acyclic graph (DAG) over the produced blocks to define a transac-

tion ordering. A formal understanding of such DAG-based protocols

is evolving; their security properties are not yet well-understood.

(3) Structured DAGs. A related approach is to allow structured

forking. The Prism consensus mechanism explicitly co-designs a

consensus protocol and fork choice rule to securely deal with con-

current blocks, thereby achieving optimal throughput and latency

[2]. The key intuition is to run many concurrent blocktrees, where

a single proposer tree is in charge of ordering transactions, and

the remaining voter trees are in charge of confirming blocks in the

proposer tree. Barracuda is designed to be integrated into existing

consensus protocols, whereas [2] is a new consensus protocol.

(4) Fork-free consensus. Consensus protocols like Algorand [14],

Ripple, and Stellar [22] prevent forking entirely by conducting a full

round of consensus for every block. Although voting-based consen-

sus protocols consume additional time for each block, they may im-

prove overall efficiency by removing the need to resolve forks later;

this hypothesis remains untested. A challenge in such protocols

is that BFT voting protocols can be communication-intensive, and

require a known set of participants. Although some work addresses

these challenges [18, 26], many industrial blockchain systems run-

ning on BFT voting protocols require some centralization.

Our approach can be viewed as a partial execution of a polling-

based consensus protocol. Polling has long been used in consensus

protocols [1, 7, 12, 28]. Our approach differs in part because we

do not use polling to reach complete consensus, but to reduce the

number of inputs to a (separate) consensus protocol.

8 CONCLUSION

In this paper, we propose �-polling as a technique for improving

block throughput in proof-of-stake cryptocurrencies. We show that

for small �, �-polling has the same effect on block throughput as if

the mean network delay were reduced by a factor of �. This simple,

lightweight method improves throughput without substantially

altering either the underlying consensus protocol or the network.

Several open questions remain, particularly with regards to ana-

lyzing adversarial behavior in �-polling. We have avoided them

in this paper by proposing a symmetric version of the protocol

(cf. Section 5.3), but even within the original �-polling protocol, it

is unclear how much an adversary could affect block throughput

and/or chain quality by responding untruthfully to poll requests.
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