Duality Cache for Data Parallel Acceleration

Daichi Fujiki
dfujiki@umich.edu
University of Michigan

Abstract

Duality Cache is an in-cache computation architecture that
enables general purpose data parallel applications to run on
caches. This paper presents a holistic approach of building
Duality Cache system stack with techniques of performing in-
cache floating point arithmetic and transcendental functions,
enabling a data-parallel execution model, designing a com-
piler that accepts existing CUDA programs, and providing
flexibility in adopting for various workload characteristics.

Exposure to massive parallelism that exists in the Duality
Cache architecture improves performance of GPU bench-
marks by 3.6x and OpenACC benchmarks by 4.0x over a
server class GPU. Re-purposing existing caches provides
72.6X better performance for CPUs with only 3.5% of area
cost. Duality Cache reduces energy by 5.8x over GPUs and
21x over CPUs.

ACM Reference Format:

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality
Cache for Data Parallel Acceleration. In ISCA ’19: The 46th Inter-
national Symposium on Computer Architecture, June 22—26, 2019,
Phoenix, AZ. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3307650.3322257

1 Introduction

Modern general purpose processors and accelerators are in-
tegrated with large on-chip caches to fully exploit locality.
They are utilized as a low-latency temporary storage and
occupy a large fraction (over 70%) of the die area. For ex-
ample, the latest Intel’s server class Xeon processors devote
more than 30MB SRAM just for the last level cache (LLC).
Furthermore, data-movement over the cache hierarchy is
costly, both in terms of time and energy.

To tackle these inefficiencies, recent works re-purpose the
elements in cache structures and transform them into large
data-parallel compute units. Compute Caches [2] introduces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISCA 19, June 22-26, 2019, Phoenix, AZ

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6669-4/19/06...$15.00
https://doi.org/10.1145/3307650.3322257

Scott Mahlke
mahlke@umich.edu
University of Michigan

Reetuparna Das
reetudas@umich.edu
University of Michigan

an in-SRAM computing technique referred to as bit-line com-
puting, which activates multiple word lines and performs
logical operations. Neural Cache [10] further augments com-
pute capability to efficiently support fixed point arithmetic
operations. Neural Cache transforms a 35 MB Xeon Cache
into 1,146,880 bit-line ALUs with a die area overhead of 2%.
The proposed bit-line ALU operates on transposed or ver-
tically aligned data in a bit-serial manner. These additional
compute resources improve the efficiency of Convolutional
Neural Networks (CNNs) by 679x (speedup 18.3%, energy
savings 37.1X) over a CPU (Xeon E5) and 128X over a GPU
(Titan Xp). The source of the efficiency is the combined effect
of reduced data movement and massive parallelism.

While compute-capable caches offer significant benefits,
previous works have just provided low-level interface for
in-cache operation [2] or relied on a manual mapping of
convolution kernels to the cache arrays [10]. This paper pro-
poses the Duality Cache system stack that makes in-cache
computing accessible to general purpose data-parallel pro-
grams.

Our proposed system solves several challenges to make
caches capable of general purpose data processing. First, to
address a wide set of data-intensive applications, having a
rich set of computation primitives is essential. Prior work
is limited to logical and fixed-point arithmetic operations.
Most data-parallel workloads require floating point opera-
tions. Manipulation of mantissa based on exponents in an
in-cache vector architecture is a non-trivial challenge. We
devise techniques that support bit-serial floating point oper-
ations for applications with high precision or large dynamic
range demands. We present techniques that reduce the la-
tency of bit-serial operations based on the dynamic range of
operands. The proposed techniques can support 1,146,880
parallel floating-point operations at 3.5% processor die area
overhead for a Xeon E5-2697 with 35MB cache. CORDIC
algorithms [37, 38] are leveraged to support in-cache tran-
scendental functions.

Second, a critical challenge for in-cache computing is the
design of the interface between the CPU cores and compute
caches, execution model, and cache addressing structure.
Operands of in-cache operations need to be aligned on a bit-
line ALU (constraining them to specific locations in cache).
We address these problems by developing a single instruction
multiple thread (SIMT) architecture, where each thread is
mapped to bit-line ALUs. The data bit-cells on a bit-line ALU
become thread-local bit-serial registers which are directly ad-
dressable in the instruction set architecture (ISA). Compute

https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1145/3307650.3322257

ISCA 19, June 22-26, 2019, Phoenix, AZ

operations are allowed only on the thread-local registers.
Duality Cache threads are organized into control blocks and
mapped to cache ways. We design a micro-architecture that
orchestrates control block SIMT instructions. The proces-
sor can switch between cache mode and accelerator mode.
The SIMT Duality Cache architecture is activated only in
accelerator mode. Duality Cache extensions incur a modest
area overhead (3.5%) but do not affect the functionality or
performance of conventional cache mode operation.

Finally, compute capable caches require a programming
model and compiler that are capable of exposing parallelism
in applications to the underlying hardware and harnessing its
full potential. We adopt CUDA/OpenACC as a programming
model and develop a compiler which can translate arbitrary
CUDA/OpenACC programs to the Duality Cache ISA. The
compiler allocates resources, schedules VLIW instructions,
and conducts several optimizations exploiting unique op-
portunities in our in-cache architecture. We also develop
compiler assisted techniques to flexibly allocate a fraction of
cache to be used as SIMT compute units and regular cache
storage.

In summary, this paper offers the following contributions:

e We design Duality Cache architecture that re-purposes
caches on demand to data-parallel accelerators capable
of executing arbitrary programs. The proposed archi-
tecture adopts the SIMT execution model. Cache data
arrays act both as vector processing units and register
file. Each thread supports in-order VLIW instructions.

e Duality Cache features a Turing complete ISA simi-
lar to NVIDIA’s PTX [27]. We extend SRAM arrays to
support floating point operations and leverage the dy-
namic range of operands to reduce bit-serial operation
latency. In-SRAM transcendental functions (sin, cos,
etc.) are supported using CORDIC algorithms [37, 38].

e We develop a compiler that translates CUDA/OpenACC
programs to native Duality Cache ISA. The compiler
implements several optimizations to enhance paral-
lelism and efficiency within the constraints of in-cache
computation, exploiting the unique architectural fea-
tures.

o We observe some applications exploit locality through
on-chip storage such as shared memory in CUDA. To
respond to these demands, we develop a compiler-
assisted framework that adjusts the portion of cache
which is used as SIMT compute units. The remaining
operates as cache.

e We compare a Xeon server with Duality Cache exten-
sions to a Xeon server with a Titan Xp GPU. Our exper-
imental results show that Duality Cache can provide an
overall speedup of 3.6x for Rodinia benchmarks and
4.0x for OpenACC benchmarks over the GPU. Com-
pared to a CPU, Duality Cache provides 72.6x speedup

Fujiki et al.

for Rodinia benchmarks and 9.6x for OpenACC bench-
marks. The proposed architecture improves the energy
efficiency by 5.9x and reduces the average power by
1.6x compared to a GPU. Duality Cache extensions
incur an area of 15.8 mm? in 22 nm (resulting in a 3.5%
area cost over a CPU die), while the evaluated GPU
die area is 471 mm? in 16 nm.

2 Background and Motivation

2.1 Bit Serial In-Cache Computation

Compute Caches [2] introduces an in-cache computation
framework that supports copy, zeroing, xor, compare, and
search. Jeloka et al. [19] shows data corruption due to multi-
row access is prevented by lowering the word-line voltage to
bias against write of SRAM array. Their measurement across
20 test chips fabricated using 28 nm technology demonstrates
no data corruption even with activating 64 word-lines simul-
taneously for in-place computation. They also demonstrate
the stability of six sigma robustness, equivalent to indus-
try standard robustness against process variation, by Monte
Carlo simulation.

Neural Cache [10] expands on compute cache’s logical op-
eration capabilities to support arithmetic operations inside
the SRAM arrays for machine learning workloads. Neural
Cache chooses to implement a bit-serial architecture as op-
posed to bit-parallel. Bit-parallel requires communicating
data across bit-lines to propagate a carry. By using a bit-serial
format, carries can be stored in a latch along the bit-line, sav-
ing the complexity of communication across bit-lines and
also allowing configurable precision. A few hardware trans-
pose memory units (TMUs) are placed in the cache control
box and used to transpose the inputs to allow bit-serial com-
putations. TMU design is based on an 8T SRAM array.

Data is mapped to a transposed layout where different bit-
lines hold data from different elements in the operand vector.
Each n-bit element is stored across n word-lines, and thus
each word-line holds one bit-slice from 256 vector elements
as shown in Figure 1 (c). The bits in each bit-slice are of the
same bit position.

By activating two word-lines in the SRAM, we are able to
sense logical and at bit-line (BL) and logical nor at bit-
line complement (BLB). Note, a re-configurable differential
senseamp [2] is used to sense BL and BLB independently. A
1-bit full adder can be created by augmenting few gates to the
ends of the sense amps as shown in Figure 1 (d). Thus, when
activating two word-lines, we can add the values in each
word-line together with the carry in the latch and generate a
new sum and carry. The sum can be written to a new word-
line in the same cycle. By adding each bit iteratively, we
can perform the addition of two n bit numbers in n cycles.
Multiplication takes n® + 3n — 2 cycles and is performed as a
series of additions of partial products.

Duality Cache for Data Parallel Acceleration

(a) 18-core Xeon processor

(b) 2.5MB LLC slice

45 MB LLC
~ ///
way 1 TRV
way 2 [TIT]] [T N
N\
N way o[TITITITISSATITITITI '\
b B B \ Way 20 [TTTJTT] [T N

18 LLC slices 360 ways

Row
decoder

ISCA ’19, June 22-26, 2019, Phoenix, AZ

(c) 8kB SRAM array
— BL/BLB

(d) Bitline ALU

Column Peripheral

=}

WL

ORI OraNW

A+B ArrayB Array A

5760 arrays 1,474,560 ALUs

Figure 1. Neural Cache architecture [10].

Bit-serial computing in cache provides massive through-
put. In the above SRAM architecture, 256 bit-lines in one 8
KB SRAM array are turned into 256 bit-line ALUs in a vector
unit, and 5760 such 8 KB arrays in a 45MB LLC transform to
1,474,560 bit-serial ALUs (Figure 1) operating at frequency of
2.5 GHz when computing. Note, while a 45 MB LLC cache ac-
cess from core takes 20-30 ns, the smaller 8 KB SRAM arrays
can themselves operate at a frequency up to 4 GHz [16].

2.2 Motivation
Duality Cache can morph general purpose processors into
data-parallel accelerators. In this context, its compute re-

sources are comparable to GPGPU, a representative throughput-

oriented parallel accelerator. Although performance bot-
tlenecks of GPGPU are workload dependent, commonly
claimed causes include CPU-GPU communication through
PCle bus, load imbalance, on-chip storage size, bandwidth
utilization, and compute flops [6, 23, 40]. Duality Cache can
alleviate these bottlenecks.

Data movement between CPU host and accelerator de-
vice. Since disjoint address space of GPU and CPU neces-
sitates explicit data transfer through PCle, workloads with
fine-grained interleaving of serial and parallel phases are
difficult to achieve speedups due to communication over-
heads. Likewise, initial data transfer between the host and
device memory is costly especially when data reuse is not
high. Duality Cache has an advantage of tight integration
with the host memory hierarchy and can minimize these
overheads.

Cost. While tighter integration of GPU and CPU can allevi-
ate the above problems, the area of modern GPUs (e.g. Titan
Xp die area is 471 mm? in 16 nm) makes on-die integration
with CPU impractical. In contrast, Duality Cache extensions
require an area of 15.8 mm? in 22 nm, while providing nearly
9.3X more compute resources, making it a cost effective so-
lution. Besides area savings, cost manifests itself in terms
of power usage and maintenance. The TDP of a server with
Xeon E5 dual socket processor and Titan XP GPU is 640 W,
whereas TDP of a server with Xeon E5 processor extended
with Duality Cache is 296 W (Table 2).

Increased on-chip memory capacity. On-chip SRAM can
alleviate external memory bandwidth pressure and help re-
duce memory access latency. GPU’s cache size is limited

compared to CPU as its die area is dominated by compute
units. Duality Cache can provide flexible partitioning of com-
pute and cache allocation, which enables memory bounded
applications to benefit from a large cache allocation. GPU’s
memory bandwidth resources can potentially be underuti-
lized by not having enough kernels that request memory
accesses. In such case, Duality Cache can increase bandwidth
utilization by having enough active kernels exploiting its
higher compute resources.

3 System Stack

In this section, we present a system stack for Duality Cache
for accelerating data-parallel applications. This section dis-
cusses the proposed bit serial arithmetic primitives, execu-
tion model, microarchitecture, compiler, and programming
model.

3.1 ISA

Prior works support a limited set of logical and integer op-
erations. Compute caches [2] introduces basic bit-parallel
operations which perform logical operations to horizon-
tally aligned data in caches. Neural cache [10] proposes bit-
serial computation that enables several integer operations
of vertically aligned data. Our work proposes general ISA
for in-cache architecture, leveraging the bit-serial computa-
tion scheme. Proposed ISA adopts an early version of PTX
(SM2.x), an ISA for low-level parallel thread execution vir-
tual machine employed in NVIDIA’s compiler for Fermi GPU
family [27]. Our ISA is thus Turing complete. This design
choice is made to maximize portability of existing source
code while minimizing hardware complexity; any other op-
erations that are not natively supported by the ISA are dealt
with by compiler lowering and/or a software library.

Table 1 lists major arithmetic operations supported by our
ISA, their algorithm, and baseline latency. Machine learning
workloads, which Neural Cache targets, can provide reason-
able results using reduced precision datatypes (e.g. 8-bit fixed
point). However, a class of scientific applications requires
more precision in computation, which necessitates full 32-bit
integer or floating point support. In this work, we develop
in-cache floating point arithmetic. Since some operations
listed take latency that scales quadratic with the size of data,
native implementation of the algorithms presented in the

ISCA 19, June 22-26, 2019, Phoenix, AZ

Fujiki et al.

| Operation | Type | Algorithm [Latency | Algorithm 1 Floating Point Add (C=A+B)
add uint, int [10] n 1: procedure VECTOR_FPADD
sub uint, int Bit-serial* 2n 2: ArsHADD(X, Y, k) = X + (Y > k)
mul uint [10] n’ +3n -2 3 type float {.exp, .mnt}
mul int Bit-serial* n® +5n 4 vector <float> A, B,C
div, rem uint [10] 1.5n° 4+ 5.5n 5: vector ediff « A.exp — B.exp
div, rem int Bit-serial* 1.5n% + 9.5n 6 if ediff[i] < 0 then
and, or, xor | uint [2] n 7 Swapr(A[i], B[i])
shl, shr uint, int Bit-serial* n? 8 ediff[i] « Ali].exp — Bli].exp
add, sub float Bit-serial* O(n?) - variable 9 end if
mul float Bit-serial* O(n?) - variable 10: for each unique k in ediff do
div float Bit-serial* O(n?) - variable 11: if edci[ff][i] =: k then
sin, cos fixed point | CORDIC* (7Tk+Dn+7k+1 12 Homnk = .
exp fixed point | CORDIC* 4kn + 4k + 2 i endAilf(SHADD(A[l]'mm’ Blil.mnt, k)
log fixed point | CORDIC* 4kn + 4k 15; end for
sqrt fixed point | CORDIC* 4kn + 4k 16 if overflow; then
rsqrt float Fast HVETSE 5 (n2) - variable 17: Cli].exp = Ali].exp + 1; C[i].mnt > 1
square root 18: else
Table 1. Supported in-cache arithmetic operations. 19: Cli].exp = Ali].exp
= This work. n = #of bits of datatype. k = iteration count. 20: end if

past work may critically impact performance. Below we dis-
cuss our techniques to minimize the bit-serial latency for
these operations based on their dynamic range.

3.1.1 Floating Point Arithmetic

Prior in-cache architectures do not support floating point
(FP) arithmetic. Unlike integer and fixed-point arithmetic,
floating point needs normalization of exponents, which re-
quires shift operations of mantissa by an arbitrary value for
addition and subtraction.

The proposed algorithm for floating point addition is
shown in Algorithm 1. The algorithm leverages bit-serial
fixed point addition and subtraction operations discussed in
Neural Cache [10]. A floating point addition first requires
normalization or shifting of mantissa by the difference of ex-
ponents. Note a compute SRAM array is a SIMD unit which
does exactly same operation on 256 operands (vectors A and
B) at the same time (Figure 2). The proposed design first
computes the difference in exponents for all vector elements
(vector ediff).

The next step needs to shift second operands’ mantissa
(BLi].mnt) by the difference of exponents (ediff[i]) for all
isuchthatediff[i] > 0and then add it to the first operand’s
mantissa (ALi].mnt). We introduce arshadd (arithmetic right
shift and add) primitive to accomplish this in few cycles.
arshadd is equivalent to a + (b > d). For given d, shift opera-
tion is free for bit-serial architecture. For example, a+ (b > 1)
can be performed by activating correct bits (a; and b;,) and
adding them.

Since the vector architecture of compute SRAM arrays
forces all threads in an array to perform exactly the same
operation, arithmetic shift by the values in ediff vector may

21: end procedure

take in the worst case O(n?) cycles for n-bit data, since there
are 256 values in ediff vector and each element of vector
is shifted serially. We observe that the dynamic range of
exponents is small in real-world workloads and leverage this
to reduce the operation latency. The algorithm takes O(dn)
cycles by searching for all unique d ediff values instead of
the worst-case. Note that the worst case variation of d is
equal to the number of mantissa bits (23 for IEEE 754 FP32).
We do a leading zero search to find the upper-bound value
of ediff to be searched.

The search operation for each unique value is executed
in two cycles as follows. In the first cycle, all word-lines that
correspond to bit 1s in the search value are activated and
logical AND of the bit-positions is sensed on each bit-line. In
the second cycle, all word-lines that correspond to bit 0s in
the search value are activated and NOR result is sensed on
each bit-line-bar. A logical AND of the results from these two
cycles produces the final search hit vector.

Additionally, we swap operands with negative ediff as
shown in Figure 2, to avoid divergent execution. Without this
swap, we have to repeat the for-block (Line 10 in Algorithm 1)
twice, which dominates the processing time of the naive
algorithm. Therefore, it is worth doing a swap.

Floating point addition and subtraction require conversion
of sign bit format to 2’s complement format, also unhiding
the implicit leading digit. The mantissa of input values to
Algorithm 1 is in 2’s complement format, and this conversion
is handled by an instruction that precedes. We also introduce
an instruction that does re-conversion to sign bit format
and mantissa normalization. We minimize the number of

Duality Cache for Data Parallel Acceleration

ISCA ’19, June 22-26, 2019, Phoenix, AZ

‘0 0!sen ‘@ @ msb X X (X

(i < (oo‘exp (oo‘exp 00 00 0 03

10 O} 10 0} 0 0 00 10 0%

A+B | Transposed data > 00! 0.0/ 00 00 ‘0.0
) BL/BLB 255 L e, e X °o0 [X
B——— < 060, e . (X o0 [X
e 00, 0@ [X] [() [X
o0 < XY XY o0 e oh X3
oo 7 00 X X) \ X
°o0 = o 0O 0 O suap 0 0 0 0 00
X < > 00 (S ST L 00 00 4 0 0
@ & 00 00 ’ 00 00 00
Row (X 2 - eo °0 X - 00 [(X4
decoders| oo @ < oo) o0 2 o0 /i o0
o0 = o0 o0 3 - [e el o0
°o0 < o0 00,1 X 2 Q90 | (N

e X 2 oo ! 88

m 10 O 00 o o0 ! ! i

o0 . @ ;OOJEdl'F'F 00 e 00 | 100;#

oo < + 100 =expa @01 o0 | 0.0/
*-¢ . <« —exp_b T o0 | [
" uniq_ediff [2 : :

- ® 0
o = {1} CXg o0
255
" sum[SSSS
l l 1. Convert into 2. Swap operands 3. Enumerate 4. ARSHADD 5. Normalize exp
Carry|0 000 | 2’s complement Calculate ediff unique ediff Foreach uniq_ediff If bit_overflow

If ediff[i] < @ Then uUsing search
swap(A[i], B[i])

A[i]+(B[i]>>ediff) Then exp_c=exp_a+1l
mnt_c>>=1

Figure 2. In-SRAM floating point addition overview. The mantissa (mnt) is normalized with the difference in exponents (exp)

using a search operation.

conversions by skipping re-conversions between operations.
This is helped by a compiler analysis, which scans through
the input code and inserts these conversion operators.

We also support efficient floating point multiplication and
division. Floating point multiplication (division) is a combi-
nation of addition (subtraction) of exponent bits and multi-
plication (division) of mantissa bits, where we can apply the
same technique as integer multiplication (division) which
we will discuss in the following section.

We do not support denormal floating point numbers (non-
zero numbers with magnitude smaller than the smallest nor-
mal number). Note that since denormal number handling
significantly reduces process speed in general, some systems
omit this hardware support. Intel’s SIMD instruction set han-
dles it by calling a software exception, also providing a knob
to disable the exception call [17].

3.1.2 Integer Arithmetic Optimization’s

We apply several optimizations to the baseline integer al-
gorithm to skip redundant cycles depending on the data.
For example, when performing multiplication, we can avoid
calculating partial sums if i-th bit are all zero across all the
data entry. Below lists other optimizations we introduce for
multiplication and division.

e We perform a leading zero search on multiplicands and
dividends to identify the effective data size. Leading k
zeros will reduce more than n X k cycles.

e We perform a leading zero search on divisors. Since
we know the number of digits of quotient Q of A/B is
at most x = [log A — log B| + 1, we can skip the first
n — x iterations, which saves more than Y7°(n + i)
cycles. Leading zeros of divisors can also contribute to
reducing cycles by interpreting it as data with a smaller
datatype. Note that the leading zero searches can be
done in parallel for both operands using search.

e We perform search on the partial residues to judge
whether they are zero. For example, 1001/10 will see
zero partial residue after calculating Q=01xx. We set 0
to the third MSB of Q without performing subtraction
in the iteration.

3.1.3 Transcendental Functions

In addition to floating point operations, we support tran-
scendental functions. Previous work on in-memory memris-
tive computing [15] utilizes look-up tables (LUTs) for those
functions to get initial guess and refines it by an iterative
process such as the Newton-Raphson method. However, this
approach not only requires a large area for LUTs for each
cache bank but also makes LUTs a serialization point which
ends up in limiting computation throughput.

For our in-cache architecture, we utilize a different al-
gorithm called COordinate Rotation DIgital Computer or
CORDIC [4, 24, 37, 38]. CORDIC does not require access-
ing LUTs for each operand value but calculates and refines
the result digit-by-digit using pre-calculated constant num-
bers that can be shared by any operand value. CORDIC does
not make any serialization point, which makes it highly
efficient for the Duality Cache ’s massively parallel vector
architecture. Furthermore, with using pre-calculated con-
stants, CORDIC only involves addition, subtraction, and
fixed-amount-bitshift, but not multiplication, thus being suit-
able for bit-serial computing, as their latency is O(n) (mul
is O(n?)). Further, our compiler exposes the ILP in CORDIC
algorithms with its VLIW instruction scheduling.

CORDIC approach can be applied to various operations
including exp, log, trigonometric / hyperbolic functions, and
square root. We set the iteration count to 17 to retain the
accuracy of FP32 format. While our CORDIC implementation
accept fixed point numbers with fixed region (e.g. [0°, 90°]),
it is trivial to normalize data to fit within the region (e.g.
sin(120°) = sin(120° — 90°), log 1234 = 3 X log 1.234). This

ISCA 19, June 22-26, 2019, Phoenix, AZ

normalization and type conversion to the fixed point are
handled by a software library.

3.2 Programming Model

Programming model creates a direct and significant impact
on programmability and architecture design. While simple
models (e.g. wide SIMD [10]) simplify the hardware, it limits
flexibility. On the other hand, guaranteeing too much free-
dom may result in over provisioning of hardware resources
in order to handle all communication patterns. To expose the
massive parallelism of Duality Cache to applications with
irregular (or data-dependent) memory access, we adopt a
SIMT programming model of CUDA (NVIDIA’s GPGPU pro-
gramming framework) and OpenACC.

CUDA describes kernels as multi-threaded programs and
groups threads into warps. In a warp, threads are executed
in a synchronized manner. Inter-thread synchronization and
sharing are allowed within a group of threads called thread
block or Cooperative Thread Array (CTA). In other words,
different CTAs are independent and can be scheduled and
executed in any order.

Proposed architecture benefits from this programming
model from two aspects. First, CUDA is a popular and widely
used framework across different fields spanning from sci-
entific computing to machine learning. Leveraging it for
Duality Cache architecture with direct translation or trivial
source code changes will archive portability and opportunity
to use the existing software. Second, having independent
CTAs entails minimum network resources for inter-thread
communications that happen locally within a CTA.

On top of CUDA, we support OpenACC. OpenACC pro-
vides OpenMP-like pragma to programmers, making it eas-
ier to convert existing serial programs to parallel programs.
Currently, commodity OpenACC compilers support multi-
thread, multi-core CPUs and NVIDIA GPUs. OpenACC is
characterized by its ability to describe fine-grained interleav-
ing of serial computation on the host and parallel kernels to
be executed on an accelerator (e.g. GPU) using pragma. While
GPUs tends to face communication bottleneck for those Ope-
nACC programs with frequent host-device communication,
Duality Cache enables seamless execution between host code
and kernel code, as caches share the same memory hierarchy
as the host.

3.3 Execution Model and Architecture

Our execution model reflects the programming model, but
when compared to GPUs it is simpler and coarser-grained.
The cache acts in two modes: accelerator mode and cache
mode. In accelerator mode a bit-line in a cache array becomes
one thread lane of a SIMT processor. In our architecture,
registers and compute units are identical. We assign registers
in a thread to the bit-line and perform computation in-place.
Operands are vertically aligned within the registers mapped
on the bit-line. In cache mode, the cache arrays are part of the

Fujiki et al.

processor’s traditional multi-level memory hierarchy. Note
that the accelerator mode does not change the functionality
or performance of the cache mode.

SIMT Architecture. Instruction issue is performed at the
Control Block (CB) granularity. Figure 3 shows the Duality
Cache architecture. A CB consists of a group of 1,024 threads
and is allocated to a single way of a cache slice. Each way
consists of 4 banks, each bank is capable of executing 256
threads referred to as Thread Block (TB). Hereafter, we use
TB to refer to this 256 thread group, and CTA to software
thread block of CUDA or a gang of OpenACC.

We choose to dedicate an entire bank with four SRAM
arrays to a TB to provide a sufficient number of registers
per thread and prevent frequent register spilling. One SRAM
array has 256 bit-cells along a bit-line, thus can afford only 8
32-bit bit-serial registers as shown in Figure 3 (b). By allocat-
ing 256 threads to a bank of four SRAM arrays we can afford
32 32-bit bit-serial registers per thread. Thus each thread in
a TB is virtually mapped to multiple arrays in a bank, and
each member array has a slice of registers. The proposed
architecture restricts the maximum number of threads in a
CTA to 1,024.

We only allow inter-thread communication within CB.
This design choice is made to balance programmability and
hardware complexity. We utilize a 256x256 local crossbar in
the C-Box to shuffle / broadcast CTA local data as shown
in Figure 3 (a). Although the throughput of the crossbar is
limited by the interconnect bandwidth, it can service arbi-
trary inter-thread communication within a CB in a fixed
time-frame. Kernels that do not require inter-thread commu-
nication can span across multiple CBs.

A CB and GPU’s Streaming Multiprocessor (SM) are sim-
ilar in the thread and register capacity. While latest GPUs
have large register files (64K 32-bit reg / SM) so that cores
can time multiplex different warps in blocks assigned to the
SM, we directly execute instructions in-situ in numerous
Duality Cache threads mapped within the registers.

In-Order VLIW Architecture. Mapping a TB to a bank of
four arrays opens up an interesting opportunity: each array
can execute a different operation in the same cycle. Thus
we can perform VLIW-like instruction scheduling, allowing
Duality Cache to exploit ILP in the program. All the banks
in a way (i.e. CB) process the same (VLIW) instructions.
Instructions are buffered in the tag array in each way which
is continuously fed entries by a host processor core. The
buffered instructions are then decoded and issued through
four issue windows where each instruction is broadcasted
to corresponding member arrays of all threads in the CB.
Duality Cache performs computation in a bit-serial manner.
Each bit-line acts as a computation unit, and all bit-lines in
an array perform the same operation as in a SIMD processor.

Instruction Sequencing. All threads in a Control Block
(CB) perform blocking execution, including memory accesses,

Duality Cache for Data Parallel Acceleration

256 Threads / TB

|| [|
EI Ea cBox EM

Figure 3. In-Cache SIMT execution model and architecture overview.

with implicit synchronization between threads. On the other
hand, different CBs can execute different instructions at a
time. This implements compute and memory access overlap
at a coarse level: while GPUs schedule for warps to overlap
compute and memory access within the block, we fire a lot
more CBs at one time using rich compute/register resources
(9.3x more than Titan Xp) and overlap memory accesses
with other CB’s computations.

This means each CB maintains its own programming
counter (PC). PC is incremented before fetching next instruc-
tion and points to an entry in the tag array, which works
as a ring buffer. The frontier PCs are monitored by the host
processor to prevent overwriting instructions that have not
been executed. While fixed length loops are unrolled by host
run-time or by the compiler, data-dependent loops in applica-
tions which iterate under a condition (e.g. convergence) are
handled inside CB. For these loops, we maintain entire loop
body block in the tag array, and a conditional jump (predi-
cated jump) instruction resets the PC to the loop entry. The
loop exits upon negative jump_en, which receives wired-OR
of predicate bits stored in the cache peripheral. A CPU core
can continue to fill successor instructions of the loop, but
it cannot overwrite the loop block until after PC exits the
loop.One CPU core is sufficient to launch and feed all CBs.
Control flow is handled by predication, and indirect jumps
(branches) are not supported, following the PTX language.

The control box in a cache slice is implemented with finite
state machines (FSMs) in hardware that can dispatch low-
level control signals to the cache banks for performing cycle-
by-cycle bit-serial operations based on issued instructions.

Load and Store Instructions. Duality Cache interfaces with

memory hierarchy through Transpose Memory Unit (TMU) [10].

TMUs have 8T transpose bit-cells which can read and write
data in both horizontal and vertical directions to enable the
conversion between regular bit-parallel layout and trans-
posed bit-serial format. TMUs are placed in cache control
box (CBox in Figure 3). When performing load instruction,

ISCA ’19, June 22-26, 2019, Phoenix, AZ

Window 0

Window 1

~
2
S
-]
=
H

47 bits

- gy

Window 3

Figure 4. Frontend architecture.

target addresses are first read out from an array that belongs
to one of the issue windows. Unlike other compute opera-
tions, only one memory instruction can be included in one
VLIW instruction because of the interconnect bandwidth.
The bit-serial addresses are transposed in TMU, registered
in Miss Status Handling Register (MSHR), and sent to the
memory. MSHR enables simple memory coalescing; dupli-
cated accesses to a cache line are treated as an MSHR hit and
suppressed. MSHR keeps track of source thread numbers.
When the target cache line arrives from the memory, it is
first sent to TMU. The destinations are set by configuring
the local crossbars so that it can rearrange or multicast data
into the data banks. The data is then read out from TMU in
bit-serial format and sent to awaiting threads through the
crossbar.

Data that can be accessed by Duality Cache has to be stored
in specially allocated pages (DC-pages) in the main memory
address space. A simple MMU placed at the memory con-
troller performs address translation. The address translation
is mainly aimed to balance the DRAM load by shuffling the
physical address allocation.

3.4 Compiler

We develop a backend compiler that transforms PTX, NVIDIA’s
low-level parallel thread execution virtual machine ISA, into
VLIW-style code for Duality Cache which we refer to as DC-
PTX. Opcodes of DC-PTX are a subset of PTX opcodes; some
instructions designed specifically to GPUs are eliminated.
On the other hand, DC-PTX adds several fields to PTX to
include operand locations.

Figure 5 shows the overall compilation flow. CUDA source
code is first compiled by NVIDIA’s CUDA compiler (nvcc).
The output CUDA executable includes three kinds of object
files (i.e. elf, PTX, and SASS). Our backend compiler extracts
and parses the PTX files, applies several optimization passes
to PTX IR, schedules instructions, allocates resources, and

ISCA 19, June 22-26, 2019, Phoenix, AZ

NvVCC
NVIDIA.
CUDA

CUDA BIN

me &

Cuda Runtime

Fujiki et al.

Duality Cache Compiler

DC Runtime

Figure 5. Compilation tool flow. CUDA source code is first compiled by NVIDIA CUDA compiler (nvcc). Duality Cache
compiler extracts PTX assembly from CUDA executable and generates DC-PTX code. OpenACC program is compiled by an
OpenACC compiler which generates GPU code that is then compiled by nvcc.

generates DC-PTX code. DC-PTX kernel is loaded and exe-
cuted by API calls to DC-Runtime library in a similar way
as CUDA runtime.

The compiler is currently built on top of GPU Ocelot dy-
namic compilation framework [9]. We choose PTX as IR since
most of the CUDA compilation tool flow is closed-source
(including ptxas which performs resource allocation and
scheduling). Currently, GPU Ocelot is the only compilation
framework academically available to work on GPU object
files. We also utilize Rose compilation framework [8] to per-
form source-to-source compilation to apply optimization
passes to the source code before nvce compilation.

OpenACC programs can also be compiled using the same
infrastructure, except that the source code is first compiled by
an OpenACC compiler which extracts the accelerator code
and generates GPU code that is then internally compiled by
nvce.

Duality Cache compiler framework translates a CUDA
code to VLIW SIMD ISA. Although VLIW is not as efficient as
out-of-order execution for exploiting ILP, it enables ILP to be
exploited with lower hardware complexity since complicated
ILP aware scheduling is handled by the compiler. Unlike
traditional VLIW architecture, the proposed Duality Cache
architecture has to take operand locality into account; all
operands need to reside in the member array where the
operation is executed, otherwise, we have to explicitly copy
the operands to the member array.

Following are the implemented features of our compiler:

Register Pressure Aware Instruction Scheduling

Register pressure and efficient VLIW instruction scheduling
are an inseparable problem. In our design, instruction sched-
uling is tightly coupled with resource allocation. While many
compilers for VLIW architecture schedule instructions first
before register allocation to maximize parallelism utilizing
abundant register resources shared by many execution units,
our execution model has limited number of private registers,
which may result in frequent register spilling. On the other
hand, resource-allocation-first approaches often introduce
many false dependencies in return for minimized register
usage, which can reduce available parallelism. We tackle
this problem by performing resource allocation and instruc-
tion scheduling at the same time. We use Bottom-Up Greedy

(BUG) [11] as the baseline scheduling algorithm, and linear
scan register allocation as the baseline resource allocation
algorithm. By taking register pressure into account while
performing instruction scheduling, the compiler can pick
better strategy to balance parallelism and register spilling.
In our design, we allocate computation units considering
register pressure as well as operand movement overhead.
This approach balances the register pressure of each mem-
ber array and maximizes parallelism as long as there are
available registers. When register pressure is too high for all
the member arrays, we start spilling a register according to
the spill policy of the linear scan algorithm. Parallelism can
be sacrificed due to high data movement cost.

PTX Optimizations

AST balancing: To maximize ILP, it is better to distribute
operands of a chain of associative binary operations evenly
to available VLIW slots. Generally compiler frontend left-
folds an expression of binary operation chain if it does not
have parentheses when constructing Abstract Syntax Tree
(AST) (eg.a+ b+ c+d= (+ (+ (+ ab) ¢) d)), making a
true dependency between the temporary value (partial sum)
and the next operand. One of the optimizations we apply
reconstructs the AST to form a balanced tree (e.g.a +b + ¢
+d = (+ (+ ab) (+ c d))) so that unnecessary dependencies
will not hinder exploring ILP when scheduling instructions
for our in-order VLIW architecture.

Thread independent variable isolation: We further include
an optimization to reduce register pressure by not storing
thread independent variables. For example, a fixed length
loop is unrolled by Duality Cache runtime and the induction
variable is provided as a constant if necessary. DC compiler
identifies thread independent variables by conducting de-
pendency analysis and affixes metadata as a marker for the
instruction that only processes thread independent variables.

3.5 Cache Partitioning

Duality Cache architecture can utilize memory arrays in LLC
for both computing and caching. Generally, CUDA programs
are optimized for GPUs, which typically have 88-144KB
SRAM storage in SM for L1+texture cache and shared mem-
ory (Pascal GPUs). Therefore, reserving one way (128KB)
per CB provides a similar configuration as GPUs. However,

Duality Cache for Data Parallel Acceleration

cache utilization is highly dependent on applications, and
our architecture is able to flexibly adjust the cache resource
allocation based on reuse patterns. Prior works [20, 39] have
shown that some classes of GPU applications are known to
receive small benefits from caches because of less locality.
Also, compute intensive kernels can underutilize memory
bandwidth. In those cases, we can increase the compute al-
location in the cache. On the other hand, we observe many
applications with irregular memory access patterns benefit
from caches if the working set fits in the caches. Here we can
increase the cache allocation to reduce memory bandwidth
pressure.

Our compiler can analyze kernel dimension and shared
memory usage to determine the cache allocation so that
we can leverage the locality of the applications which is
explicitly specified by programmer in the form of shared,
constant, or texture memory (Note that these local memories
are remapped to global memory by the compiler.) We also an-
alyze memory access patterns, and estimate memory traffic
and data reuse through static kernel code instrumentation.

4 Methodology

Benchmarks: We use applications from Rodinia GPU bench-
mark suite [6] and PathScale OpenACC benchmark [30] as
listed in Table 3. We compile the CUDA applications using
nvcc 4.2 using default compile options of the benchmark suite
(except for the target architecture which we set to sm_20
to make CUDA binary compatible with GPU Ocelot [9]).
The OpenACC applications are compiled using Omni Com-
piler [36], an open-source academic OpenACC compiler,
which is internally linked with CUDA Toolkit. We modify the
source code of Omni Compiler to disable the automatic inser-
tion of cache configuration API calls which are not supported
by CUDA Toolkit 4.2. While we use the old CUDA version to
work with GPU Ocelot dynamic compilation tool [9], we use
latest CUDA Toolkit 9.2 [26] and community standard PGI
OpenACC compiler 18.10 [28] for the native run on GPU.

We mostly use the dataset preset by the benchmark suite.
For some benchmarks, such as gaussian, lud, nn from Rodinia,
we use the OpenMP dataset or a data-generator generated
large dataset to augment the utilization of computation unit.
Moreover, we modify the source code of some benchmarks
to further expose the parallelism of Duality Cache . These
custom optimizations are discussed in detail in Section 5.4.

Area and Power Model: Area and power parameters
are summarized in Table 4. The energy and power model of
Duality Cache peripherals and Transpose Memory Unit is
from Neural Cache [10]. We synthesize the controller and
state machine using Synopsis Design Compiler in a 45nm
process. We assume average ILP 1.25 and 10% activity factor
for TDP. We employ the energy and power model in [1]
for the local crossbar and assume an activity factor of 5%
for TDP. We use CACTI [25] to model energy and area for
scratch SRAM used in MSHR.

ISCA ’19, June 22-26, 2019, Phoenix, AZ

Power and energy for CPU and DRAM activity are mea-
sured by profiling microbenchmarks using Intel Rapl inter-
face. We use NVIDIA nvprof to measure GPU power.

Performance Model: We develop a Duality Cache tim-
ing model and functional model on GPU Ocelot’s tracer
framework and PTX emulator. Since some of the in-cache
operations are data dependent, the timing model interacts
with the functional model in the emulator. Target applica-
tions are executed on the DC-PTX emulator in GPU Ocelot
and we obtain front-end and back-end traces using our tracer
for each CTA. We then rerun the traces using our simula-
tor and feed the trace files to Ramulator [22]. We perform
CPU-trace driven DRAM simulation on Ramulator with a
modified processor model.

5 Results

5.1 Configurations Studied

In this section, we evaluate the proposed Duality Cache and
compare it to two baselines. The first baseline (CPU) uses In-
tel Xeon E5-2697 v3 multi-socket server. The second baseline
(GPU) is a server with host Xeon E5 and NVIDIA Titan Xp
GPU. The details of both configurations are shown in Table 2.
We assume Duality Cache to be implemented in the 2-socket
Xeon server system. When entire LLC geometry is allocated
for computation, Duality Cache has 150X more threads than
GPU. The massive parallelism comes at the cost of larger
operation latency of the bit-serial algorithms (Section 5.5).

5.2 Performance
In this section, we study the application performance. The
execution time for the GPU server and Duality Cache server
is shown in Figure 6 (normalized to GPU, lower is better). It
shows the breakdown of memcpy time and kernel execution
time for GPU. We consider the memory transfer (cudaMem-
Copy) time, but time spent on GPU initialization, CUDA API
calls (including CUDA malloc), and OpenACC API calls is
not included. GPU’s kernel time includes memory access
time. For Duality Cache , we show compute and memory
access time. The compute time of Duality Cache is the aggre-
gate latency of issued instructions on the critical path, and
the memory access time is total time — compute time.

Duality Cache provides a 3.6X average speedup for the
Rodinia benchmarks and 4.0x speedup for the OpenACC
benchmarks, compared to GPU. Figure 10 shows the average
system speedup of Duality Cache compared with CPU. Du-
ality Cache provides a 72.6x speedup compared to CPU for
the Rodinia benchmarks, and 9.6x for the OpenACC bench-
marks. The OpenACC benchmarks can have fine-grain serial
and parallel interleaving making their GPU acceleration less
effective compared to Rodinia benchmarks.

We discuss the key factors that contribute to the Duality
Cache performance below:
A.Reduced Memcpy Time: Memcpy time takes a substan-
tial portion of the GPU execution time for some applications.

ISCA 19, June 22-26, 2019, Phoenix, AZ Fujiki et al.
Model Die Benchmark Servers
mm? | nm | GHz | TDP | On-Chip Memory Dies DRAM Size | mm? | TDP
Xeon E5-2697 v3 456 22 2.6 145 W | 35 MB Shared LLC 2 64 GB DDR4 912 290 W
] 12 GB GDDR5
NVIDIA Titan Xp | 471 16 1.6 | 250 W | 3MB Shared LLC | 1 + 2 (host) + 64 GB DDRA4 1,383 | 640 W
Duality Cache 471 22 | 2.6 | 148 W | 35MB Shared LLC 2 64 GB DDR4 942 | 296 W
Table 2. Benchmark server configuration.
Avplicati D Custom Area (mm?) | Power (W) Area
pplications ataset Optimization Overhead
backprop, bfs, b+tree, dwt2d, hotspot, default None CPU 456 145 -
.E hotspot3D, hybridsort, nw, streamcluster Duality Cache 3.15 2.96 0.69 %
5 | gaussian omp_default | Increased CTA size Peripheral
& | heartwall, leukocyte default Loop unrolling TMU 5.32 0.06 117 %
Iud, nn large (1k, 2k) | CPU hybrid (lud) Controller / FSM 6.16 0.33 135 %
divergence, gradient, lapgsrb, laplacian, . MSHR 0.86 0.05 0.19 %
. . . . 256 128 1024 | I d CTA
§ tricubic, tricubic2, uxx1, vecadd, wavel3pt nerease size Local Crossbar 0.28 0.01 0.06 %
gameoflife, gaussblur, matvec, whispering 256 1024 Increased CTA size Total 471.77 148.40 35%
Table 3. Evaluated workloads. (acc = OpenACC Benchmark) Table 4. Duality Cache parameters.
v 2.0
§1.5*- GPU:Memcpy GPU:Kernel EEE DC:Memory wzm DC:Compute E GPU:Kernel BN DC:Memory @zt DC:Compute
3 515
3 5
[%] 10 4 1o
é :’% 1.0 4
°
£ ©
2 o0 €00 'lIIIII-'III
o ” LA e NI NS o z o UTE=8Q0L0YTERy S QY5ELCYLVNTITE
SEETETERE03 28 BLAEESE8YTEA § SRECRE50835° 588 25288208850 8
§ 533558882 ¢ EE $8%83528233°8% § ¥ 5535085 E EE podso52EE3 ¢¢ s
[582583 £8 peExHT2EEL >3 8 @ gec28-73 5§ gEzo-m-"E & @
Q < oz = 8z o™ = = z O < < 2z 2 85 %gm - = 0O
Figure 6. System performance. GPU:GDDR5+memcpy, DC:DDR4. Figure 7. Kernel performance. GPU:GDDR5, DC:GDDR5.
1.20
> 1 00 BN DC:CPU+DRAM EEE DC:loadStore 2 DC:Compute 51000 2000
o L. 1 S
£ 0.801 '_E“ 800
% 0.60 2 600 2 sockets (560 CBs)
T 1 @]
g 0.40 ! i g, 400 1 socket (280 CBs)
o ©
[11il gyl
0.00 ,-H,I‘HHHH",-,HI,I,',IHI,',"],',HI EO
BEYIETEREOLBEEES BEOEREERUYRE § 55335TERES U328 BEIIGSEEYIIEE
£ F3aE885392¢ EE $88%88823°87 E 8 F582288%§ E5 595 ®8E335583%
B ° 38<85°3 58 GERo"REPE & 8 8 “CgE2gssEs £5 SEZRTBEEL 3
< oc 22 2 gﬁ % g o - * 2 O Q - g v) ko) 5 g _;

Figure 8. Energy efficiency (system).

This can be explained by the fact that some applications have
very small reuse factor of data, which can make inter-DRAM
data movement cost prominent as shown in Figure 6. Dual-
ity Cache is integrated into the same memory hierarchy as
the host, and thus this data movement cost does not exist,
resulting in higher performance.

Some CPU models [18] using integrated on-chip GPU
could possibly reduce the data movement cost. However,
they have typically 10x smaller compute resources than our
baseline server GPU (Titan Xp), while taking more than the
half of CPU die area. Duality Cache is clearly distinguishable
from them by the ability to provide the orders of magnitude
higher compute resources with only 3.5% of area cost.

B. Massively Parallel Execution: Compute-intensive ker-
nels enjoy Duality Cache ’s massive parallelism. Figure 9

Figure 9. Control Block utilization.

shows the average number of active Control Blocks (CBs)
in the kernels. A CB has 1024 threads and can map several
CTAs. Since CBs are independent of each other, this chart
indicates the available parallelism of the applications. Each
Xeon socket can execute 280 CBs (yellow dash line), thus
we have 560 CBs (dark orange line) in total in the baseline
dual-socket system. Our GPU has 30 SMs, each can have up
to 2 CTAs (Note that this is a register size based calculation;
threads in CTAs use GPU cores in a time-multiplexed way).

We can see kernels with a high level of parallelism (e.g.
backprop, b+tree, nn, gaussian, gausblur, etc.) significantly re-
duces execution time in Figure 6 as they can harness Duality
Cache resources. On the other hand, other benchmarks such
as lud, nw and streamcluster have limited parallelism avail-
able, resulting in large critical compute time in the kernel

Duality Cache for Data Parallel Acceleration

performance. In Section 5.4 we discuss several optimizations
we applied to enhance the parallelism beyond the original
CUDA programs.

C. Compute / Memory Access Overlap: Some applica-
tions show a large compute time portion in the kernel per-
formance, despite enough parallelism (e.g. LlavaMD). These
kernels can successfully hide memory latency with compu-
tation. Note few benchmarks show a slowdown (hotspot3D
and streamcluster) with Duality Cache because they are
memory bandwidth bound. For those, newer memory tech-
nology (GDDR5) could help improving performance, as ex-
plained shortly (Figure 7),

D. Flexible Cache Allocation: While GPU may under-
utilize / overutilize its memory bandwidth, Duality Cache
can adjust parallelism and cache allocation size to balance
memory bandwidth (Section 3.5). Many of the evaluated ap-
plications benefit from the cache partitioning. By default,
we assign the unused Control Block units as cache, but we
changed the allocation size based on the applications’ behav-
ior. We will discuss it in Section 5.5.

5.3 Performance without Host-Device Transfer
Figure 7 presents kernel execution time for Duality Cache
and GPU. This experimental setup eliminates memcpy time
from GPU and provides a GDDR5 memory to both Duality
Cache and GPU. The goal is to compare the raw compute
power of both architectures in a bandwidth neutral fash-
ion. The execution time is normalized to that of GPU. We
observe a 1.92x average speedup for Rodinia kernels and
2.39x speedup for OpenACC kernels. This speedup comes
at a fraction of area cost of the CPU (3.5%), while the GPU
server adds a new die of size 471 mm?.

5.4 Deep Dive of Applications

Harnessing Full Potential of Duality Cache : Applica-
tions can fully exploit Duality Cache by exposing large par-
allelism and reusing data. We notice that many CUDA ap-
plications are optimized to GPU architectures, being aware
of warp size and CTA size. Generally, programmers write
a tiled program where each tile owns its sub-problem as-
signed to a CTA. Internally they use for-loops to iterate over
the data for the sub-problem, often incrementing induction
variable of a thread by warp size (32) to make warps sweep
on the data. This creates a dependency between iterations,
despite the absence of actual dependency. This is also driven
by the fact that CTA size is limited to 1,024 threads due to
the maximum register size of an SM. Although our CB can
own 1,024 threads, we can expand CTA size beyond this limit
provided there is no local communication between threads,
as we discussed in section 3. Eliminating local communica-
tion is trivial by using atomic operations etc., so we modify
some of the source code to unroll the outer for-loops and/or
increase the CTA size, as shown in Table 3. OpenACC pro-
grams can also easily change the CTA size by setting the

ISCA ’19, June 22-26, 2019, Phoenix, AZ

vector and worker size option in pragma. This optimization
provides significant improvement in performance (e.g. 8.5x
for leukocyte and 10.2x for heartwall).

Another important factor is data reuse. Given enough
threads to fill CBs and existence of shared data, it is rec-
ommended to load the data and reuse it using fixed-length
for-loops after launching CTAs to fill CBs. By this, we can
avoid multiple fetches of shared data by different CTAs, and
also take advantage of thread independent variable isolation.

Fine Interleaving of Serial and Parallel Code Using CPU:
Since host-device communication cost is non-trivial for GPUs,
CUDA programs tend to incorporate serial or nearly se-
rial code with parallel code. Figure 11(left) illustrates ker-
nel launch patterns of bf's and lud by showing number of
launched CTAs (x-axis) vs. time (y-axis, advances from top
to bottom). Ideal truly parallel kernels have a pattern simi-
lar to bf's, however, as can be seen, lud iteratively launches
three kinds of kernels, one of which only contains 32 threads.
Taking advantage of Duality Cache ’s tight integration with
CPU, we optimize lud to execute these small kernels on the
host CPU using OpenMP. Figure 11(right) shows the execu-
tion time breakdown (normalized to the original version).
We observe the optimized version of lud achieves a 2.26x
speedup. Since the single operation latency of Duality Cache
is much higher than CPU, we study CPU is more efficient
to execute those small kernels. The same idea applies to
OpenACC benchmarks as well.

5.5 Impact of Optimizations
Arithmetic Operation Latency: Figure 12 shows average
arithmetic operation latency before (base) and after (opt) op-
timizations we present in Section 3.1. The operation latency
is measured using Rodinia benchmarks. Integer multiplica-
tion observes the highest reduction in latency (13X better
than the baseline). This is because, in many practical cases,
integer multiplication is used to calculate address or some
variables based on induction variables, and thus contains
many leading zeros which we can skip by our optimization.
Floating point addition in many applications has a small
dynamic range. The number of unique ediff found usually
has its peak at 1 in the distribution (Section 3.1). Overall,
optimized fpadd is 6.1X faster than the baseline. The pro-
posed optimizations are not as effective for floating point
multiplication and division compared to the correspondent
integer operations. This is because the floating point is nor-
malized and has implicit leading 1, which disables the leading
zero optimization. However, Duality Cache still benefits from
skipping iterations of bit 0s.
Cache Allocation: By default, we use unassigned CBs as
cache. However, depending on the workload, allocating more
cache can improve performance despite sacrificing paral-
lelism. We analyze the source code through static analysis
and identify some kernels that can possibly benefit from

ISCA 19, June 22-26, 2019, Phoenix, AZ
m CPU

50 GPU i
l [
Duality Cache g é
40 4.0¢ F s
3.6x f 3
23.0 kS
5 512 1024 El
[=
22.0 t =
20x 2.4x g S

IS

4 7

[!

0.0 4 32 256

Rodinia OpenACC

Figure 10. Average speedup.

CPU Hyvbrid execution.
2.50
2.00
1.50
1.00 o o b » b P
PRFPRITEEPRET LEIPELN n
0.50
0.00
S2YTSBOOLTEEE YL5E25989YTa
PP anzs>2 o] c=E30022888Tm
S *;'E&gomg £ wo§%$%5330‘*
g 0T :827x £ PfScesEs %
8 ®wTST 9 E z2gH% 2 g
T W

Compute Speedup Overall Speedup @ Memory Access Reduction

Figure 13. Effect of compiler optimizations.

larger cache size, and adjust the cache allocation. Figure 14
illustrates the system performance of different cache alloca-
tion size for some representative applications. As in Figure 9,
these applications have a high level of parallelism and can
fill more than half of total CBs. The blue bars show compute
cycles, and the orange lines present overall performance in-
cluding memory access. The largest cache size we allocate is
32MB, which is equivalent to the half of the total CBs in our
2-socket baseline. We normalize the cycle count to that of
0-cache configuration. Although augmented cache allocation
roughly doubles the computation due to reduced compute
units, overall execution cycles decrease substantially because
of improved memory performance contributed by the large
caches. This optimization provides 3.54X performance im-
provement on average for applications with a high level of
parallelism (CB utilization > 512).

Compiler Optimization: To assess the effect of our com-
piler optimization, we compare the execution time of appli-
cations using two compilers: our compiler and a simple ISA
translator. The simple ISA translator replaces PTX with DC-
PTX without any scheduling and PTX optimizations. Since
kernels cannot use multiple arrays without appropriate han-
dling of operands between arrays, simple ISA translator uses
one array per TB. This, on the other hand, provides 4x more
available threads, thus each CB maintains 4K threads, each
with 8 32-bit registers. For both compilers, we apply our
arithmetic operation latency optimizations.

Figure 13 presents the application speedup of our compiler.
Compute speedup shows the speedup of the critical com-
putation path, and overall speedup includes memory access
latency. The green dots show the reduction in the number of
memory access saved by the parallel instruction scheduling.

Geomean

Fujiki et al.
B DC: Compute
DC: Memory 2000
mCPU ’amj
< 1500
>
2
= 1000
2
[| g 500 I I
©
4
| S EEERERE
TR~ TR~ TR~ TR~ TR
Duality Cache Duality Cache 3 8— 3 g— 4 % 4 8— P4 8‘
+CPU o o Qo o o
lud mul div fpadd fpmul fpdiv

Figure 11. Kernel launch patterns (time vs.
#CTAs) of bfs(top) and lud(bottom) and

Figure 12. Average operation latency.

o 25

S Compute Cycles Overall Cycles

320

o

w 1.5

o

g 1.0

o

g 0.5

® 0.0

g 0o omnomom [saeal-aly.a] 0o oo oo om Mmoo oo

o S22 =222z =Z=2=2 =S==2=2
hotspot bfs b+tree gaussblur

Cache Size

Figure 14. Effect of different cache allocation size.

PTX optimizations and our instruction scheduler’s efforts to
maximize parallelism and to reduce register spilling achieve
1.52x faster computation and 14.3% less memory access. This
translates into 1.14X better overall performance.

5.6 Energy

Figure 8 shows the energy breakdown of the benchmarks.
This is a system-to-system comparison; GPU includes en-
ergy for both memcpy and kernel. Duality Cache energy
is normalized to the GPU energy and has a breakdown of
CPU+DRAM (including memory controller), load/store in-
structions, and computation in Duality Cache . Because of
the reduced execution time, we achieve 5.85X energy effi-
ciency compared to GPU system. One core is active during
execution to serve instructions. This makes CPU and DRAM
access dominant in energy consumption. The only exception
is tricubic, one of compute-intensive kernels, where compute
energy accounts for 30.7% of total energy consumption.

6 Related Work

To the best of our knowledge, this is the first work that
demonstrates the feasibility of in-cache general purpose
SIMT computing, leveraging an existing parallel program-
ming framework. In this section, we discuss some of the
closely related work.

For decades, processing-in-memory (PIM) has been an
attractive idea that has the potential to break the memory
wall. PIM solutions move compute near memory [3, 5, 12, 14,
21, 29, 31-33, 41, 42] , and thereby reduce the gap between
memory and compute. In contrast, in-memory computing
architectures can morph themselves into compute engines

Duality Cache for Data Parallel Acceleration

by exploiting the physical properties of the memory array,
which makes them intrinsically more efficient then PIM.

In-SRAM computing has been envisioned to provide dis-
ruptive technology that can enhance commodity processors
with massively parallel compute engines for almost free of
cost [2, 10, 19]. On the other hand, in-place DRAM compu-
tation faces several challenges to attain true in-place oper-
ations. First, since DRAM performs destructive access, in-
place computation inevitably corrupts stored data, and thus
needs to clone it paying its cost. Also, the small margin for
sensing DRAM capacitor makes analog domain computation
error prone. Despite several approaches proposed for better
DRAM cells, it comes at the cost of non-trivial area overhead
(2-3x%). Further, the peripheral logic needed to accomplish
in-place arithmetic operation is difficult to be integrated with
DRAM because of the technology difference. Likewise, vari-
ous scrambling approaches in address and data employed in
commodity DRAM make it challenging to re-purpose it for
an in-memory computing device.

Recent works have leveraged compute capability of Non-
Volatile Memories (NVMs) such as memristors to perform
in-place bit-line computing for domain-specific accelera-
tion [7, 34, 35]. They leverage the dot-product analog compu-
tation capability of memristors mainly for machine learning
workloads. IMP [15] explores general purpose computing
in memristors and proposes a compute stack using Tensor-
Flow frontend. Duality Cache supports CUDA programming
model, which is widely used for data-parallel applications,
is more expressive than TensorFlow, and can be used for
applications with irregular memory access patterns.

Floating point is difficult for memristive analog in-memory
computing [7, 13, 15, 34], because the resolution of memory
cells and ADC is quite limited. It is not realistic to repre-
sent a FP value using a single cell. In addition, exponent
normalization takes many cycles, which is disadvantageous
for memristors with low frequency and low durability. Prior
work [13] thus supports fixed-point arithmetic that has the
equivalent precision to floating point. They express 64 bit
double numbers using 128 memristor cells (1 bit/cell). The
extra 64 padding bits are included to normalize and to align
numbers with different exponents with respect to a com-
mon exponent value of the array. The results are converted
to floating points outside the array. In comparison, our bit-
serial digital in-SRAM computing supports in-place floating
point computation.

While computing in memristors is promising, they remain
an emerging technology waiting for large scale production.
They are also significantly slower than SRAM and are en-
cumbered with limited endurance.

7 Conclusion

The Duality Cache system stack that runs general purpose
GPU programs on caches is presented. Enabling in-situ float-
ing point and transcendental functions brings computation

ISCA ’19, June 22-26, 2019, Phoenix, AZ

capability that can execute SIMT programs. Our compiler
introduces optimizations to enhance parallelism and effi-
ciency within the constraints of in-cache computation, and
compiles CUDA and OpenACC programs for Duality Cache .
Our experimental results show the Duality Cache architec-
ture improves performance of GPU benchmarks by 3.6x and
OpenACC benchmarks by 4.0 over a server class GPU. Re-
purposing existing caches provides 72.6x better performance
for CPU with only 3.5% of area cost.

Acknowledgments

We thank members of M-Bits research group and the anony-
mous reviewers for their feedback. This work was supported
in part by the NSF under the CAREER-1652294 award, the
XPS-1628991 award, the SHF-1763918 award and Applica-
tions Driving Architectures (ADA) Research Center, a JUMP
Center co-sponsored by SRC and DARPA.

References

[1] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski,
D. Blaauw, and T. Mudge. 2013. Scaling towards kilo-core processors
with asymmetric high-radix topologies. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA). 496—
507. https://doi.org/10.1109/HPCA.2013.6522344
S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das. 2017. Compute Caches. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 481-492. https:
//doi.org/10.1109/HPCA.2017.21
[3] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-
enabled Instructions: A Low-overhead, Locality-aware Processing-in-
memory Architecture. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (ISCA ’15).
Ray Andraka. 1998. A survey of CORDIC algorithms for FPGA based
computers. In Proceedings of the 1998 ACM/SIGDA sixth international
symposium on Field programmable gate arrays. ACM, 191-200.
[5] Jay B. Brockman, Shyamkumar Thoziyoor, Shannon K. Kuntz, and
Peter M. Kogge. 2004. A Low Cost, Multithreaded Processing-in-
memory System. In Proceedings of the 3rd Workshop on Memory Perfor-
mance Issues: In Conjunction with the 31st International Symposium on
Computer Architecture (WMPI "04). ACM, New York, NY, USA, 16-22.
https://doi.org/10.1145/1054943.1054946
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K.
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous com-
puting. In 2009 IEEE International Symposium on Workload Characteri-
zation (IISWC). 44-54. https://doi.org/10.1109/IISWC.2009.5306797
Ping Chi, Shuangchen Li, and Cong Xu. 2016. PRIME : A Novel
Processing-in-memory Architecture for Neural Network Computation
in ReRAM-based Main Memory. In IEEE International Symposium on
Computer Architecture. IEEE, 27-39. https://doi.org/10.1109/ISCA.
2016.13
ROSE compiler infrastructure. 2018.
rosecompiler.org/.
Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalaman-
chili, and Nathan Clark. 2010. Ocelot: A Dynamic Optimization Frame-
work for Bulk-synchronous Applications in Heterogeneous Systems.
In Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT ’10). ACM, New York, NY,
USA, 353-364. https://doi.org/10.1145/1854273.1854318
[10] C.Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das. 2018. Neural Cache: Bit-Serial In-Cache
Acceleration of Deep Neural Networks. In 2018 ACM/IEEE 45th Annual

[2

—

[4

—

(6

—

[7

—

8

—

Rose Compiler. http://

[9

—

https://doi.org/10.1109/HPCA.2013.6522344
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1145/1054943.1054946
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
http://rosecompiler.org/
http://rosecompiler.org/
https://doi.org/10.1145/1854273.1854318

ISCA 19, June 22-26, 2019, Phoenix, AZ

[11

—

(12]

(13

—

[15

—

(16]

[17

—

[18

—

[19

—

[20

—

[21]

[22

—

[23

=

[24]

[25]

[26]

International Symposium on Computer Architecture (ISCA). 383-396.
https://doi.org/10.1109/ISCA.2018.00040

John R. Ellis. 1986. Bulldog: A Compiler for VLSI Architectures. MIT
Press, Cambridge, MA, USA.

A. Farmahini-Farahani, Jung Ho Ahn, K. Morrow, and Nam Sung
Kim. 2015. NDA: Near-DRAM acceleration architecture leveraging
commodity DRAM devices and standard memory modules. In High
Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on.

Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo
Wang, and Engin Ipek. 2018. Enabling scientific computing on mem-
ristive accelerators. In 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 367-382.

Basilio B. Fraguela, Jose Renau, Paul Feautrier, David Padua, and
Josep Torrellas. 2003. Programming the FlexRAM Parallel Intel-
ligent Memory System. SIGPLAN Not. 38, 10 (June 2003), 49-60.
https://doi.org/10.1145/966049.781505

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory
Data Parallel Processor. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 1-14.
https://doi.org/10.1145/3173162.3173171

Min Huang, Moty Mehalel, Ramesh Arvapalli, and Songnian He. 2013.
An Energy Efficient 32-nm 20-MB Shared On-Die L3 Cache for Intel®
Xeon® Processor E5 Family. 7. Solid-State Circuits (2013).

Intel. 2008. x87 and SSE Floating Point Assists in IA-32: Flush-To-Zero
(FTZ) and Denormals-Are-Zero (DAZ). https://software.intel.com/en-
us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-
zero-ftz-and-denormals-are-zero-daz/.

Intel. 2018. Intel Processor Graphics. https://software.intel.com/en-
us/articles/intel-graphics-developers-guides.

S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. 2016. A 28 nm
Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit
Cell Enabling Logic-in-Memory. IEEE Journal of Solid-State Circuits 51,
4 (April 2016), 1009-1021. https://doi.org/10.1109/JSSC.2016.2515510
Wenbhao Jia, Kelly A Shaw, and Margaret Martonosi. 2012. Character-
izing and improving the use of demand-fetched caches in GPUs. In
Proceedings of the 26th ACM international conference on Supercomputing.
ACM, 15-24.

Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and
Saibal Mukhopadhyay. 2016. Neurocube: A Programmable Digital Neu-
romorphic Architecture with High-Density 3D Memory. In Proceedings
of ISCA, Vol. 43.

Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast
and Extensible DRAM Simulator. Computer Architecture Letters 15, 1
(2016), 45-49.

Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,
Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep
Dubey. 2010. Debunking the 100X GPU vs. CPU Myth: An Evaluation
of Throughput Computing on CPU and GPU. SIGARCH Comput. Ar-
chit. News 38, 3 (June 2010), 451-460. https://doi.org/10.1145/1816038.
1816021

MathWorks. 2018. Compute Square Root Using CORDIC.
https://www.mathworks.com/help/fixedpoint/examples/compute-
square-root-using-cordic.html.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. 2009. CACTI 6.0: A tool to model large caches. HP laboratories
(2009), 22-31.

NVIDIA. 2018. CUDA Toolkit. https://developer.nvidia.com/cuda-
toolkit.

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Fujiki et al.

NVIDIA. 2018. Parallel Thread Execution ISA. https://docs.nvidia.
com/cuda/parallel-thread-execution/index.html.

NVIDIA. 2018. PGI Compilers & Tools. https://www.pgroup.com/.
Mark Oskin, Frederic T Chong, Timothy Sherwood, Mark Oskin, Fred-

eric T Chong, and Timothy Sherwood. 1998. Active Pages: A Computa-
tion Model for Intelligent Memory. ACM SIGARCH Computer Architec-
ture News 26, 3 (1998), 192-203. https://doi.org/10.1145/279358.279387
PathScale. 2013. Performance test suite for openacc compiler, intel mic,
patus and single-core cpu. https://github.com/pathscale/OpenACC-
benchmarks.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.
Kozyrakis, R. Thomas, and K. Yelick. 1997. A case for intelligent
RAM. Micro, IEEE (1997).

S.H. Pugsley, J. Jestes, Huihui Zhang, R. Balasubramonian, V. Srini-
vasan, A. Buyuktosunoglu, A. Davis, and Feifei Li. 2014. NDC: Analyz-
ing the impact of 3D-stacked memory-+logic devices on MapReduce
workloads. In Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on.

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. [n.d.].
RowClone: Fast and Energy-efficient in-DRAM Bulk Data Copy and
Initialization. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46).

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, and Rajeev Balasub-
ramonian. 2016. ISAAC : A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars. 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA) (jun
2016), 14-26. https://doi.org/10.1109/ISCA.2016.12

Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A
Pipelined ReRAM-Based Accelerator for Deep Learning. In Proceedings
- International Symposium on High-Performance Computer Architecture.
541-552. https://doi.org/10.1109/HPCA.2017.55

Akihiro Tabuchi, Masahiro Nakao, and Mitsuhisa Sato. 2014. A Source-
to-Source OpenACC Compiler for CUDA. In Euro-Par 2013: Parallel
Processing Workshops, Dieter an Mey, Michael Alexander, Paolo Bien-
tinesi, Mario Cannataro, Carsten Clauss, Alexandru Costan, Gabor
Kecskemeti, Christine Morin, Laura Ricci, Julio Sahuquillo, Martin
Schulz, Vittorio Scarano, Stephen L Scott, and Josef Weidendorfer
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 178-187.

J. E. Volder. 1959. The CORDIC Trigonometric Computing Technique.
IRE Transactions on Electronic Computers EC-8, 3 (Sept 1959), 330-334.
https://doi.org/10.1109/TEC.1959.5222693

John S Walther. 1971. A unified algorithm for elementary functions.
In Proceedings of the May 18-20, 1971, spring joint computer conference.
ACM, 379-385.

Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An
efficient compiler framework for cache bypassing on GPUs. In 2013
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 516-523. https://doi.org/10.1109/ICCAD.2013.6691165

Q. Xu, H. Jeon, and M. Annavaram. 2014. Graph processing on GPUs:
Where are the bottlenecks?. In 2014 IEEE International Symposium on
Workload Characterization (IISWC). 140-149. https://doi.org/10.1109/
11SWC.2014.6983053

Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.
Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM:
Throughput-oriented Programmable Processing in Memory. In Pro-
ceedings of the 23rd International Symposium on High-performance
Parallel and Distributed Computing (HPDC ’14).

Qiuling Zhu, B. Akin, HE. Sumbul, F. Sadi, J.C. Hoe, L. Pileggi, and
F. Franchetti. 2013. A 3D-stacked logic-in-memory accelerator for
application-specific data intensive computing. In 3D Systems Integra-
tion Conference (3DIC), 2013 IEEE International.

https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1145/966049.781505
https://doi.org/10.1145/3173162.3173171
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/intel-graphics-developers-guides
https://software.intel.com/en-us/articles/intel-graphics-developers-guides
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1145/1816038.1816021
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.pgroup.com/
https://doi.org/10.1145/279358.279387
https://github.com/pathscale/OpenACC-benchmarks
https://github.com/pathscale/OpenACC-benchmarks
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/ICCAD.2013.6691165
https://doi.org/10.1109/IISWC.2014.6983053
https://doi.org/10.1109/IISWC.2014.6983053

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Bit Serial In-Cache Computation
	2.2 Motivation

	3 System Stack
	3.1 ISA
	3.2 Programming Model
	3.3 Execution Model and Architecture
	3.4 Compiler
	3.5 Cache Partitioning

	4 Methodology
	5 Results
	5.1 Configurations Studied
	5.2 Performance
	5.3 Performance without Host-Device Transfer
	5.4 Deep Dive of Applications
	5.5 Impact of Optimizations
	5.6 Energy

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

