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A B S T R A C T

This study assessed the application of airborne imaging spectroscopy to monitor α-diversity in restored grassland
plots. The study site was located within the Central Platte River ecosystem, south of Wood River in Central
Nebraska, USA, and consisted of two sets of plots (young and old). Exotic species had recently invaded the old
plots, confounding the original study design, while the young plots did not have significant invasion by weeds,
reflecting the original study design. We used spectral variation (i.e. spectral diversity, expressed as the coeffi-
cient of variation) as a proxy for α-diversity (expressed as species richness and Shannon index). Airborne data
collected at two flight altitudes and two flight directions tested the validity of “spectral diversity-α-diversity”
relationship at different sampling scales and flight directions. Our results showed a strong relationship between
spectral diversity and α-diversity in young, non-invaded plots exhibiting strong differences in α-diversity.
However, in the old, invaded plots, the spectral diversity-α-diversity relationship was non-significant. Factors
likely contributing to this failure in the old plots included the spatial mismatch between airborne and field-based
sampling, the convergence in diversity levels over time, and the unique reflectance signatures of the invasive
species related to their different structural and phenological properties. Unlike previous airborne studies in
manipulated experimental prairie plots, but similar to results in more natural settings, the strong spectral di-
versity-α-diversity relationship in the young plots remained even at the spatial resolution of 1m, demonstrating
the potential of airborne remote sensing to assess diversity patterns in prairie grasslands. These findings de-
monstrate the importance of experimental remote sensing in evaluating spectral diversity, and provide insight
for the development of operational airborne methods to assess biodiversity.

1. Introduction

Grasslands provide services vital for human well-being such as
biomass production, water storage, belowground carbon storage, and
nutrient cycling (Naeem et al., 2016; Wall et al., 2015). Unfortunately,
grasslands are threatened by climate change, overgrazing, and con-
version to agricultural use (Clark and Tilman, 2008; Oldeman, 1994;
Ramankutty et al., 2008). Loss of grasslands has resulted in the loss of
biodiversity with negative impacts on ecosystem function and eco-
system resistance to disturbances (Bevans, 2017; Chapin et al., 1998;
Hooper et al., 2012; Tilman et al., 2012; Villnäs et al., 2013). Native
grasslands, often called prairie in North America, once covered about

38% of United States land surface (Weaver, 1954). Since European
settlement began, however, most native grasslands have been lost
(Samson and Knopf, 1994). With the continuous destruction of grass-
lands and associated loss of biodiversity, ongoing monitoring and re-
storation of grasslands remains a high priority (Schramm, 1990; Suding,
2011).

Traditionally, biodiversity monitoring relies on field inventories
that usually cover small geographical regions. While the information
from such field campaigns is valuable, collecting species information
over a large geographical extent is challenging. Consequently, there is a
gap in our understanding of and ability to track changes in biodiversity
at global scales, and remote sensing is often invoked as a way to fill this
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gap (Cavender-Bares et al., 2017; Jetz et al., 2016). While remote
sensing is not able to provide the same level of detailed biodiversity
information as ground-based measurements, it may serve as a critical
source of biodiversity information at larger scales than can be provided
by traditional field methods, and offers the potential for continuous,
consistent monitoring over time (Turner, 2014). Remotely sensed data
coupled with and referenced to ground-based measurements may be the
best (and most cost efficient) solution for global biodiversity mon-
itoring (Buchanan et al., 2009; Gillespie et al., 2008; Kerr and
Ostrovsky, 2003; Turner et al., 2003).

Remote sensing (here focusing on passive optical remote sensing)
has been used to map species distribution and study the linkage be-
tween spectral data and biodiversity (Nagendra, 2001; Rocchini et al.,
2010) mainly by 1) detecting single species if high spatial resolution
data are available, or 2) classifying the habitat and studying the asso-
ciation between biodiversity and land cover (Gougeon, 1995; Schäfer
et al., 2016). These two approaches have been mainly applied to ve-
getation types with large canopies such as forests (Asner et al., 2008;
Schäfer et al., 2016).

Unlike forests, relatively little work has been done to study biodi-
versity in grasslands using remote sensing. In grasslands, remotely
sensed data have been mostly used for classifying grasslands and dis-
tinguishing them from other land cover types (Baldi et al., 2006; Tovar
et al., 2013; Wang et al., 2010), estimating quantities such as their
aboveground biomass and productivity (Seaquist et al., 2003), leaf area
index (Darvishzadeh et al., 2011), and evapotranspiration (Kustas and
Norman, 1996). The main challenge for remote sensing of biodiversity
in grasslands is the small size of plants, which leads to difficulty in
resolving individual species. Therefore, for mapping biodiversity in
grasslands, a third approach known as spectral diversity (or optical
diversity) has been proposed as a potential solution. The idea behind
spectral diversity is that spectral variation is driven in part by biodi-
versity, expressed as variation in leaf traits, canopy structure, and
phenology (Ustin and Gamon, 2010). This approach uses a subset or all
spectral bands to map biodiversity (Carter et al., 2005; Dahlin, 2016;
Oldeland et al., 2010; Ustin and Gamon, 2010). In this paper, instead of
direct identification of species, we focus on spectral diversity as an
abstract measure of biodiversity. Among the many dimensions of bio-
diversity (e.g. taxonomic, functional, phylogenetic, and genetic), this
study concentrated on local taxonomic diversity (α-diversity), mea-
sured as species richness (i.e. the number of species in a community)
and species evenness.

Spectral diversity can be applied to spectral data obtained from
spaceborne, airborne, and proximal platforms. Several studies have
used spaceborne remote sensing with coarse spatial resolutions for
capturing species diversity in grasslands. However, the coarse spatial
resolution of these spaceborne sensors means that each grain (i.e. pixel)
contains many grassland plants, species, or even more than one vege-
tation type (Jetz et al., 2016; Rocchini et al., 2010; Turner, 2014).
Therefore, such data represent the aggregate response from a large
group of species and cannot easily capture α-diversity within commu-
nities. In grasslands, most biodiversity research using spaceborne data
has focused on using spectral reflectance of individual bands or simple
spectral transformations such as vegetation indices (Gaitán et al., 2013;
Guo et al., 2015; Lauver, 1997), most of which can be considered as
proxies of productivity or greenness. Although these quantities have
shown to be linked with biodiversity in some cases, the mechanisms
that link these quantities to biodiversity are not fully understood
(Skidmore et al., 2015) and might be caused by factors linked to the
productivity-biodiversity relationship, which itself is an ongoing topic
of discussion (Waide et al., 1999). Currently, several spaceborne sensors
are in the planning or design phase (Guanter et al., 2015; Lee et al.,
2015); once these forthcoming hyperspectral sensors are launched and
their data are available, the applicability of spaceborne data for bio-
diversity mapping in grasslands can be more fully investigated.

Given the limitations of current spaceborne data for biodiversity

detection in grasslands, several studies have examined the application
of spectral diversity in grasslands using airborne and proximal hyper-
spectral data (Gholizadeh et al., 2018; Schweiger et al., 2018; Wang
et al., 2018; Wang et al., 2016). Although these studies all showed a
positive relationship between spectral diversity and α-diversity, most
were conducted at the Cedar Creek Ecosystem Science Reserve in
Central Minnesota, USA, where the strength of the relationship between
spectral diversity and α-diversity was shown to be influenced by con-
founding factors such as soil exposure and spatial resolution of remote
sensing data with respect to plot size (Gholizadeh et al., 2018). Due to
the particular design of biodiversity field experiments, many of which
involve small plots (< 10m size) maintained at specific species richness
levels, transferring the knowledge gained from experimental systems to
“real world” applications remains a challenge, particularly for grass-
lands.

To address this challenge in grasslands, as our first objective, we
tested the capability of airborne remote sensing to characterize the
spectral diversity-α-diversity relationship (considering both species
richness and evenness) using the coefficient of variation (CV) in spectral
reflectance. Our previous work at the Cedar Creek Ecosystem Science
Reserve in Central Minnesota, USA showed that spatial scale is a crucial
factor in remote sensing of biodiversity (Gholizadeh et al., 2018; Wang
et al., 2018). As our second objective, we investigated the scale de-
pendence of spectral diversity by flying our airborne sensor at two
different altitudes and generating several additional data sets with
coarser spatial resolutions through spatial resampling. Here, we limit
our discussion of scale to its spatial (not spectral) aspect, and specifi-
cally its grain (or pixel) size rather than the extent of the study area.
Finally, vegetation surfaces are non-Lambertian (non-isotropic), and
therefore, reflectance spectra change in accord with sun-target-sensor
geometry (Goodin et al., 2004; Ranson et al., 1985; Shibayama and
Wiegand, 1985) and are affected by shadows and hotspot effects
(Calleja et al., 2016; Camacho de Coca et al., 2001). Therefore, as our
third objective, we explored the effect of sampling geometry and tested
how flight direction affects the spectral diversity-α-diversity relation-
ship. Because of their potential influence on the detection of biodi-
versity, these technical issues must be considered in any operational
methods of routinely assessing biodiversity from airborne sensors.

We evaluated the capability of airborne remote sensing to capture
the spectral diversity-α-diversity relationship in a long-term grassland
restoration experiment conducted by The Nature Conservancy at Wood
River, NE. Unlike our previous experiment at Cedar Creek, our current
study site at Wood River consists of plots with larger dimensions, higher
species richness levels, and less manipulation (e.g. the plots were not
affected by regular weeding). Therefore, the current study site provides
a more “realistic” test of airborne biodiversity detection over
Midwestern prairie, providing a unique opportunity to develop opera-
tional methods for remote sensing of biodiversity in grassland ecosys-
tems.

2. Methods

2.1. Study area

The study area, maintained by The Nature Conservancy, is a prairie
restoration study, along the Platte River, 10 km south of Wood River,
NE (N 40°44′41″, W 98°35′11″; Fig. 1a). Prior to conversion to prairie
(starting in 2006), this site had been a farmland planted in a corn-
soybean rotation (Nemec et al., 2013). The study area consists of two
fields and 36 60×60m plots (some plots are slightly smaller than
60× 60m). One set of 24 plots, was seeded in 2006 (Fig. 1a, right), and
these plots are referred to as “old plots.” These plots were planted at
two diversity levels and two seeding rates: 1) high diversity plots with
low seeding rate (H) with measured species richness of 41.17 ± 2.48
(mean ± standard deviation), 2) high diversity plots with high seeding
rate (H2; species richness of these plots was not measured in this study),
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3) low diversity plots with low seeding rate (L) with measured species
richness of 37.83 ± 6.43, and 4) low diversity plots with high seeding
rate (L2; species richness of these plots was not measured in this study).
Another set of 12 plots (Fig. 1a, left) was seeded in 2010 at three di-
versity levels: low (L) with measured species richness of 16.75 ± 3.95,
medium (M) with measured species richness of 32.50 ± 1.00, and high
(H) with measured species richness of 44.25 ± 0.50. We refer to these
plots as “young plots.” Among these 36 plots, we chose 24 plots with
comparable seeding rates (shown by letters H, M, and L in Fig. 1a) for
analysis of the spectral diversity-α-diversity relationship. These include
high, medium, and low diversity plots in the young plots as well as plots
with high diversity/low seeding rate, and low diversity/low seeding
rate in the old plots. A summary of plot treatments is presented in
Table 1. Since conversion, the site has been managed with prescribed
fires, and was last burned in late March 2015, two years prior to our
study. A few noxious weeds (Carduus nutans in the old plots, Hypericum
perforatum and Lythrum salicaria in the young plots) have been peri-
odically removed via hand-pulling or spot-spraying as required by law,
but there were no other manipulations of plant communities.

The species in this experiment consist of C3 and C4 grasses as well as
forbs, and the most common species across all of the plots based on an
August 2017 inventory include: Andropogon gerardii, Poa pratensis*,
Panicum virgatum, Solidago gigantea, and Solidago canadensis (asterisk
indicates an exotic species based on the USDA Plants database, plant-
s.usda.gov). Inventories were conducted by running two full length
South-North transects (at 20m and 40m) through the plots, each 2m
wide (West-East). Within each transect, the presence or absence of each

species was documented, and was considered present in the plot if it
occurred within either transect. The percent cover of species used for
evenness calculations was also documented by placing 0.5 m2 (0.5m by
1m) quadrats at four points along each transect (at 12, 24, 36 and 48m
distance from the southern edge; eight quadrats per plot in total) and
recording the percent cover in each of these to estimate an average
value for the plot (see Fig. 1b for transect sampling design). The com-
plete list of the species from the 2017 inventory can be found in Table
A1 in Appendix 1.

Species composition of the plots within the old plots had sig-
nificantly shifted since the start of the study by the spread of species
between plots as shown by the number of planted species in the old
plots vs. the number of observed species in Table A2 in Appendix 1 (the
plot numbering scheme is shown in Fig. A1 in Appendix 1). In addition,
the old plots were heavily affected by invasive species external to the
study's seed mix, including poison hemlock (Conium maculatum), sweet
clover (Melilotus officinalis), and smooth brome (Bromus inermis; which
was intentionally added to the experiment in 2008) (Nemec et al.,
2013). Bull thistle (Cirsium vulgare), a biennial plant, was also found
previously to be invading the plots but was observed only infrequently
in 2017. Percent cover of these three primary invasive species (Conium
maculatum, Melilotus officinalis, and Bromus inermis) in each plot is
presented in Table A3 in Appendix 1.

2.2. Airborne data collection and pre-processing

Airborne remote sensing data collection started at 10:14 AM local

Fig. 1. (a) True color composite of the study area within the Central Platte River ecosystem, south of Wood River in Central Nebraska. H, M, and L indicate plots with
high, medium, and low planted diversity, respectively. H2 and L2 indicate plots with high diversity/high seeding rate and low diversity/high seeding rate, re-
spectively. We collected species data from the 24 plots shown by H, M, and L. Four calibration tarps can be seen in the yellow dashed box in the middle of the scene.
The large orange box shows the area covered by the West-East flight, and the large cyan box shows the area covered by the North-South flight, and (b) diagram of a
single plot showing the sampling design. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Data summary of the plots within the Central Platte River ecosystem, south of Wood River in Central Nebraska. Invasion level indicates cover of Conium maculatum,
Melilotus officinalis, and Bromus inermis where none= 0% cover, low=1–6% cover, medium=7–15% cover, and high= 16–50% cover. For seeding rates at the Old
plots see Nemec et al. (2013).

Experiment Planted diversity level Number of plots Ground measurement Invasion level

Conium maculatum Melilotus officinalis Bromus inermis

Young plots High diversity (“H”) 4 Yes None None to low None
Medium diversity (“M”) 4 Yes None None None
Low diversity (“L”) 4 Yes None None to high None

Old plots High diversity/low seeding rate (“H”) 6 Yes None to medium Low to high None to high
Low diversity/low seeding rate (“L”) 6 Yes None to medium Low to high None to high
High diversity/high seeding rate (“H2”) 6 No Not measured Not measured Not measured
Low diversity/high seeding rate (“L2”) 6 No Not measured Not measured Not measured
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time (15:14 PM GMT) on August 23, 2017 using “CHAMP” (the CALMIT
Hyperspectral Airborne Monitoring Platform), the University of
Nebraska's aircraft operated by the UNL's Center for Advanced Land
Management Information Technologies (CALMIT) equipped with a
pushbroom hyperspectral sensor (AISA Kestrel, Specim, Oulu, Finland).
This sensor covers 400–1000 nm with spectral resolution of 1.75 nm
and field of view (FOV) of 40° under nadir viewing conditions. To in-
crease the signal-to-noise ratio of the data, off-chip spectral binning
(Dell'Endice, 2008) was applied. The final data set had 178 bands at
approximately 3.5 nm intervals. We used bands between 427 and
914 nm (142 bands in total). To determine the impact of spatial scale on
spectral diversity, we collected two data sets with spatial resolution
(pixel sizes) of 0.5m and 1m by flying at two altitudes (698m and
1396m above ground level) in the near West-East direction (Table 2).
To test the sensitivity of our results to flight direction and sampling
geometry, we also repeated our flights over the young plots in the near
North-South direction (due to the reduced swath width, covering both
new and old plots in the North-South flight for the 0.5 m resolution
image was not possible; Table 2). The West-East flight was almost
parallel to the solar principal plane, and the direction of the North-
South flight was orthogonal to that of the West-East flight. Ground
control points collected in the field were used for georeferencing.
Geometric distortions differed among flight lines, but because the plots
in our experiment are large, with thousands of pixels within each plot,
the effect of any mis-registration was considered minor.

Spectral reflectance signatures of four 10× 10m polyester cali-
bration tarps (white, silver gray, charcoal, and black; Odyssey™, Marlen
Textiles, New Haven, MO, USA) were measured using paired spectro-
radiometers (USB2000; Ocean Optics Inc., Dunedin, Florida, USA)
during the overpass time of the airplane. One detector was equipped
with a cosine corrector measuring downwelling irradiance to correct for
minor atmospheric variation during the sampling period, and the other
was equipped with a fiber optic (FOV of approximately 25°) measuring
upwelling radiation. The spectral resolution of these sensors were
~1.5 nm covering ~350–1000 nm range. We also used a white re-
ference panel (Spectralon, Labsphere, North Sutton, New Hampshire,
USA) to calculate reflectance of the tarps. After removing outliers, re-
flectance data from each tarp were averaged and then resampled to
match the wavelengths of the airborne sensor. The tarp reflectance data
were then used to convert airborne radiance to reflectance using the
empirical line correction method (Conel et al., 1987). To avoid edge
effects, we defined equal-sized ~42×42m regions inside all plots
(young plots+ old plots) and used these regions to calculate spectral
diversity.

2.2.1. Generating coarse spatial resolution data from airborne data
To further investigate the impact of spatial scale on spectral di-

versity-α-diversity relationship, we used the 0.5 m resolution data from
the West-East flight to generate data sets at coarser spatial resolutions
(2, 3, 4, 5, and 6m pixel sizes). This coarsened date set was simply
generated by resampling and averaging the pixels of the 0.5m resolu-
tion data. We refer to this data set as the “coarsened data set.”

2.3. Spectral diversity metric

There are many methods that can be used to objectively calculate
spectral diversity. Previous studies have shown that the performance of
these spectral diversity metrics can vary significantly depending on
factors such as spatial resolution, and there is no universally best metric
(Gholizadeh et al., 2018). We tested several metrics (results are not
shown here) including the coefficient of variation (CV), spectral angle
mapper (Kruse et al., 1993), standard deviation of normalized differ-
ence vegetation index (NDVI), convex hull volume (Dahlin, 2016),
convex hull area (Gholizadeh et al., 2018), and principal component
analysis (Oldeland et al., 2010). Among these metrics, CV and standard
deviation of NDVI showed the best performance, SAM was the second
best metric, and the remaining metrics showed poor or non-significant
relationships with field sampled α-diversity. We limited our analysis to
CV as our primary spectral diversity metric for airborne data and used
SAM to visualize spatial variability within the plots.

2.3.1. Plot-based analysis of spectral diversity-α-diversity
Using all pixels within a plot, we calculated CV for each band, and

then used the CV averaged across bands as the spectral diversity of that
plot. With this method, the spectral diversity of each plot is represented
with a single CV value. The values of spectral diversity obtained from
all pixels within plots were compared to species richness and Shannon
index (Shannon, 1948) obtained from transect-based field sampling
( = =Shannon index ln( )i

n
1 i i where α is the abundance of the ith

species within a plot, n is the number of species, and “ln” is the natural
logarithm).

2.3.2. Transect-based analysis of spectral diversity-α-diversity
To examine whether our species inventories (collected along

transects in the field) match the plot-based spectral diversity (i.e. CV
calculated using all pixels within plots in the airborne imagery) or
transects-based spectral diversity (i.e. CV calculated using pixels within
transects in the airborne imagery), we also ran a transect-based analysis
of the spectral diversity-α-diversity relationship by using the pixels
within each transect. For this analysis, we delineated the approximate
locations of the transects (2-meter wide transects in each plot; Fig. 1b)
in the airborne imagery and recalculated the spectral diversity-α-di-
versity relationship based on the pixels within the transects. Due to the
mismatch between the field quadrat size and the scale of our remote
sensing data (i.e. small size of these quadrats with respect to pixel size),
a quadrat-based analysis of spectral diversity-α-diversity relationship
was not feasible.

2.4. Mapping spatial variability within plots

Although CV was used as the spectral diversity metric in this study,
it represents each plot with one number; therefore, it cannot show the
within plot variation. To visualize the within-plot variability, we used
spectral angle mapper (SAM; Kruse et al., 1993). SAM calculates the
angle between two vectors:

=SAM arc cos
R R

R R
K,L L

K,L 2 L 2 (1)

Table 2
Flight details (August 23, 2017) over the biodiversity plots within the Central Platte River ecosystem, south of Wood River in Central Nebraska. Flight times are
provided in local (Central) time, i.e. GMT – 5 h and represent daylight savings time.

Flight number Flight direction Local time Spatial resolution (m) Flight altitude above ground level (m)

Flight 1 North-South 10:14 AM 1 1396
Flight 2 West-East 10:20 AM

Flight 3 North-South 10:28 AM 0.5 698
Flight 4 West-East 10:33 AM
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In this equation, “·” represents the inner product, ‖‖2 is the L2-norm
(a.k.a. Euclidean distance), RL is the mean reflectance of the Lth plot,
and RK, L is the reflectance of the Kth pixel (or observation) in the Lth

plot. The length of both RL and RK, L vectors is equal to the number of
bands (all spectral bands were used in the spectral angle calculation).
The output of this metric for every two input vectors is a scalar spectral
angle between two vectors. If the reflectance of a pixel in a plot is si-
milar to the mean reflectance of that plot, then the spectral angle values
for that pixel will be small. The more different the vectors are, the
larger the angle is. We calculated spectral angles for all pixels within a
plot to depict spatial patterns of diversity. Another reason for using
SAM to map spatial variation within each plot is its simplicity and in-
dependence from illumination variations (SAM uses the angles between
reflectance vectors rather than length of the vectors).

2.5. Statistical analysis

The small sample size of the data set did not warrant using goodness
of fit measures such as R2 or Pearson correlation (Cramer, 1987). Instead,
we used Kendall's rank correlation (τ) to assess the spectral diversity-α-
diversity relationship (Kendall, 1938), a non-parametric measure of
correlation, which is less sensitive to small sample sizes. To compare the
correlations between spectral diversity and α-diversity under different
conditions (spatial resolution and flight direction), instead of parametric
solutions such as analysis of covariance (ANCOVA), we applied a per-
mutation-based test (Legendre and Legendre, 1998) of the significance of
difference in Kendall's τ coefficients with 10,000 permutations.

3. Results

3.1. Relationship between spectral diversity and α-diversity in the young
plots

In our first analysis, we compared spectral diversity (CV calculated at
the 60m plot scale, Fig. 1a) to α-diversity (species richness and Shannon
index calculated from field transects, Fig. 1b) using two different flight al-
titudes and pixel sizes. At 1m spatial resolution, CV showed a strong re-
lationship with species richness in the young plots (Kendall's τ coefficient of
0.63; Fig. 2a). When the abundance of species was considered using
Shannon index, the relationship between α-diversity and CV improved
(Kendall's τ coefficient of 0.73; Fig. 2b). At 0.5m spatial resolution, CV was
strongly associated with species richness in the young plots (Kendall's τ
coefficient of 0.75; Fig. 2c). Similar to the coarser resolution image, when
the evenness of the species was considered using Shannon index, CV showed
a stronger relationship with α-diversity (Kendall's τ coefficient of 0.88;
Fig. 2d). Similar to the West-East flights, in the North-South flights, spectral
diversity showed strong relationships with α-diversity, and this relationship
was stronger when α-diversity was expressed as Shannon index. Detailed
results from the significant relationships (i.e. results from the young plots)
are summarized in Table 3 (summary statistics expressed as R2 are also
provided in Table A4 in Appendix 1).

(a) (b)

(c) (d)

Fig. 2. Relationship between airborne spectral diversity (CV) and field-sampled α-diversity measured as species richness or Shannon index: a) species richness vs. CV at a
spatial resolution of 1m, b) Shannon index vs. CV at a spatial resolution of 1m, (c) species richness vs. CV at a spatial resolution of 0.5m, and (d) Shannon index vs. CV at
a spatial resolution of 0.5m. Black symbols represent young plots; red symbols represent old plots; the black dashed lines are fitted linear regressions for young plots, and
the dark red solid lines are fitted lines to young and old plots combined. Spectral diversity-α-diversity relationships in the old plots (red symbols) are non-significant and
fitted lines are not shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Impact of spatial scale and flight direction on spectral diversity-α-
diversity relationship in the young plots

3.2.1. Spatial scale
While Kendall's τ coefficient of the spectral diversity-α-diversity

relationship in the West-East flights improved when using the data with
finer spatial resolution, the performance of spectral diversity metric in
the North-South flights slightly weakened at finer spatial resolutions for
both measures of α-diversity (i.e. species richness and Shannon index;
Table 3). However, for both flight directions, the permutation-based
test of significance showed that the difference between the spectral
diversity-α-diversity relationship at two spatial resolutions was non-
significant (the p-values of the test are presented in Table 4).

While there was no significant difference between the spectral di-
versity-α-diversity relationships obtained from the data with native
resolutions (0.5m and 1m), our coarsened data set revealed a clear
scale-dependence of this relationship (Fig. 3). When using species
richness, the relationship became non-significant at pixel sizes of 5m.
As expected, the relationship between spectral diversity and Shannon
index was stronger than that of the spectral diversity and species

richness across scales. The relationship between spectral diversity and
Shannon index became non-significant for pixels sizes of 6m.

3.2.2. Flight direction
The results demonstrated that the influence of flight direction on the

spectral diversity metric was small (Figs. 4–5). Although the Kendall's τ
coefficient values indicated that in general the spectral diversity metrics
obtained from the West-East flights (almost parallel to the solar prin-
cipal plane) performed slightly better than those obtained from the
North-South flights (column “Kendall's τ” in Table 3), the difference in
the spectral diversity-α-diversity relationship (i.e. difference in the
Kendall's τ coefficient) between the two flight directions was non-sig-
nificant (Table 5).

3.3. Relationship between spectral diversity and α-diversity in the old plots

Although the relationship between spectral diversity and α-diversity
(species richness and Shannon index) was strong in the young plots, in
the old plots, this relationship became non-significant (red symbols in
Fig. 2). When the data from both old and young plots were considered,
the spectral diversity-α-diversity relationship appeared to saturate at
high values of spectral diversity (instead of showing a continuous linear
relationship).

To investigate the cause of the seemingly poor results from the old
plots, we examined certain key assumptions of the study design relating
plot-based imagery to transect-based field sampling. Although wide
ranges of plot-based spectral diversity values were observed in the old
plots with four plots showing high values, the ranges of the transect-
based α-diversity values (species richness and Shannon index) were
narrow (see Fig. 2). Plot maps using the spectral angle mapper in-
dicated that while young plots were relatively homogeneous, the old
plots were visibly heterogeneous (Fig. 6). In addition, plots with the
highest spectral diversity in Fig. 2 are those yielding the highest spatial
variability (plot numbers 18, 21, 17, and 24 in Fig. 6). In such cases of
high spatial heterogeneity, the relationship between spectral diversity
and α-diversity can become confounded by the mismatches in sampling

Table 3
Summary statistics expressed as the Kendall's τ coefficient for the “spectral diversity-species richness” and “spectral diversity-Shannon index” relationships for West-
East and North-South flights at two spatial resolutions in the young plots. Summary statistics expressed as R2 are also provided in Table A4 in Appendix 1.

Spectral diversity Flight direction Spatial resolution (m) n Species richness Shannon index

Kendall's τ p-Val Kendall's τ p-Val

CV W-E 0.5 12 0.75 0.001 0.88 <0.001
N-S 12 0.66 0.005 0.70 0.002
W-E 1 12 0.63 0.008 0.73 0.001
N-S 12 0.72 0.002 0.73 0.001

Table 4
Permutation-based test (for N=10,000 permutations) of the significance of
difference in Kendall's τ coefficients at two spatial resolutions in the young
plots. In this table, both the “spectral diversity-species richness” and “spectral
diversity-Shannon index” relationships are presented.

Spectral
diversity

Flight
direction

Spatial
resolution (m)

Species richness Shannon index

Difference in
Kendall's τ

Difference in
Kendall's τ

CV W-E 0.5 Non-significant
(p-val= 0.57)

Non-significant
(p-val= 0.54)1

N-S 0.5 Non-significant
(p-val= 0.81)

Non-significant
(p-val= 0.95)1

of spectral diversity-species richness
of spectral diversity-Shannon index

R2 of spectral diversity-species richness
R2 of spectral diversity-Shannon index

(7155)

(1790)
(445)

(198)

(111)
(71)

(50)

Fig. 3. Multiscale analysis of spectral diversity-α-
diversity relationship in the young plots at different
spatial resolutions expressed as the Kendall's τ
coefficient (black lines and symbols) and proportion
of explained variance (R2, red lines and symbols). In
this figure, solid points represent measured airborne
data, and hollowed points represent resampled air-
borne data. Blue points indicate non-significant re-
lationships. The numbers inside parentheses are the
number of pixels within each plot at each resolution.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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geometry between plots and transects. To explore this possibility, we
conducted a transect-based analysis of spectral diversity-α-diversity
relationship (Fig. 7) where only the airborne pixels matching the ap-
proximate location of ground transects were sampled (and ignoring the
pixels from the rest of the plot). This transect-based analysis made the
spectral diversity values of the old plots become more aligned with

those of the young plots (Fig. 7). One plot (#18) still displayed a high
spectral diversity value in the transect-based analysis and did not align
with the other points. Plot 18, which also had the highest variability in
spectral angles among all plots (see Fig. 6), was detected as an outlier
based on the median absolute deviation test and excluded from further
transect-based analysis. The spectral diversity-α-diversity relationship
in the old plots by themselves was still non-significant, presumably due
to the small range of diversity values for these plots. However, the
improved alignment attained in this analysis suggested that the mis-
match between the field and airborne sampling can partly explain the
different results originally obtained between young and old plots
(Fig. 2).

4. Discussion

Altogether, the results obtained from the airborne data at two alti-
tudes and two flight directions showed 1) strong spectral diversity-α-
diversity relationship in the young plots, 2) an improved relationship
when the abundance-based metric (i.e. Shannon index) was used to
express α-diversity, confirming the findings of others (Oldeland et al.,
2010), 3) non-significant spectral diversity-α-diversity relationship in

)b()a(

H/W-E flight
M/W-E flight
L/W-E flight
H/N-S flight
M/N-S flight
L/N-S flight

Fig. 4. Relationship between spectral diversity and species richness in the young plots using airborne data collected at two altitudes and two flight directions (four
flights in total). (a) CV applied to airborne data with spatial resolution of 1m, and (b) CV applied to airborne data with spatial resolution of 0.5m. In these figures,
black symbols and lines represent the West-East flights, and dark green symbols and lines represent the North-South flights. H, M, and L indicate plots with high,
medium, and low planted diversity, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

(a) (b)

Fig. 5. Relationship between spectral diversity and Shannon index in the young plots using airborne data collected at two altitudes and two flight directions (four
flights in total). (a) CV applied to airborne data with spatial resolution of 1m, and (b) CV applied to airborne data with spatial resolution of 0.5m. In this figure, black
symbols and lines represent the West-East flights, and dark green symbols and lines represent the North-South flights. H, M, and L indicate plots with high, medium,
and low planted diversity, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Permutation-based test of the significance of difference in Kendall's τ coeffi-
cients (for N=10,000 permutations) at two flight directions in the young plots.
In this table, both the “spectral diversity-species richness” and “spectral di-
versity-Shannon index” relationships are presented.

Spectral
diversity

Flight
direction

Spatial
resolution

(m)

Species richness Shannon Index

Difference in
Kendall's τ

Difference in
Kendall's τ

CV W-E 0.5 Non-significant
(p-val= 0.47)

Non-significant
(p-val= 0.27)N-S

W-E 1 Non-significant
(p-val= 0.56)

Non-significant
(p-val= 0.93)N-S
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the old plots, 4) non-significant scale dependence of spectral diversity
at 0.5m and 1m resolutions, but strong scale dependence in the coar-
sened data set over a wider range of spatial resolutions, and 5) slight
impact of flight direction on the performance of spectral diversity me-
tric.

4.1. Impact of spatial scale and flight direction on spectral diversity-α-
diversity relationship

The scale-dependence of the spectral diversity-α-diversity relation-
ship obtained from the airborne and coarsened data sets can guide fu-
ture efforts to select appropriate pixel sizes in the design of airborne
and spaceborne hyperspectral sensors for mapping biodiversity. Results
of this study indicate that the spatial resolution provided by forth-
coming satellite sensors (typically tens of meters) might be too coarse
for capturing α-diversity in grasslands where each pixel can contain
several species. To further investigate this, we would need to repeat
similar studies to generate pixels with sizes comparable to those of
spaceborne sensors, which would require collecting species inventories
from much larger regions.

Another finding of this study was that the influence of flight di-
rection (and hence sampling geometry) on the spectral diversity-α-di-
versity relationship was small (Figs. 4–5 and Table 5). The non-Lam-
bertian property of vegetation surfaces has often been attributed to the
structural properties of the canopy (Calleja et al., 2016), and can be-
come quite striking for vegetation stands having clearly visible vertical
structure (e.g. in the case of conifers or row crops). However, in our

grassland plots, there was no significant bare soil exposure, neither
were there a discernible row structure (a phenomenon common in
croplands), presumably reducing the influence of canopy structure and
flight direction on the measured signals. These observations may help
explain why there were no significant differences in the results obtained
from two different flight directions. However, it should be noted that
modelling the impact of sun-target-sensor geometry on spectral re-
flectance is complicated and depends on issues such as viewing angle
(nadir or off-nadir), solar angles, stage of development, canopy density,
and subsequent soil exposure (Camacho de Coca et al., 2001; Kimes
et al., 1980; Ranson et al., 1985). Our results were based on images
acquired under similar solar angles and from identical grassland plots,
and we suggest repeating similar experiments under different condi-
tions (e.g. different vegetation types, different viewing and solar angles,
and different seasons). However, the relatively small influence of flight
direction suggests that sampling geometry may not be a major con-
straint for operational remote sensing of biodiversity in grassland eco-
systems.

4.2. Spectral diversity-α-diversity in invaded plots

The shift in species composition and diversity over time in the old
plots resulted from a combination of species spreading between plots
and invasion by exotic weeds not intended to be part of the study de-
sign, both of which tended to even out the species richness differences
across plots. To the degree that we are observing ecological succession –
the replacement of one community type by another – our original study

Fig. 6. Maps illustrating spatial heterogeneity within each plot using spectral angle mapper applied to the 1m resolution data captured at the West-East flight
direction. The approximate locations of species inventory transects (field sampling) are overlaid on the maps. These 2-meter wide transects are approximately 20m
and 40m from the western edge of each plot. The numbers below the plots show the plot numbering scheme, and the numbers within parentheses show the standard
deviation of spectral angles within each plot. To clearly show the patterns of spectral diversity, we applied histogram equalization to this map. The 0.5m resolution
map showed similar spatial patterns; therefore, only the 1m resolution map is displayed here.
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goal of sampling α-diversity may have become undermined. Instead, in
the old plots undergoing succession (invasion by exotic weeds), the
metrics designed for α-diversity may have been confounded to some
degree by β-diversity, reflecting a mismatch between idealized ecolo-
gical concepts of diversity and actual dynamics of diversity observed
across scales.

In addition, the difference in the spectral diversity-α-diversity re-
lationships obtained from plot-based (Fig. 2) and transect-based (Fig. 7)
analyses indicates a mismatch between our remote sensing analysis
(based on pixels within a plot) and our field sampling (based on
transects). A common limitation of species inventories is that they are
typically collected from limited number of sampling points; therefore,
not all taxa present in the community are measured. This under-
sampling (incompleteness or non-representativeness of species in-
ventories) in field surveys introduces a potential error in measures of
species diversity (e.g. species richness or Shannon index) (Beck et al.,
2013; Beck and Schwanghart, 2010; Chao and Shen, 2003).

The old plots (but not the young plots) contained poison hemlock
(Conium maculatum), which grew in large patches, and was visibly dry
and non-photosynthetic at the time of data collection (showing early
senescence, determined by browning of the foliage). The four old plots
with the highest spectral diversity values (plot numbers 18, 21, 17, and
24) also contained sweet clover (Melilotus officinalis), which was taller
than other species and found abundantly in the old plots (see Fig. A3 in
Appendix for the contribution of different species to spectral diversity
values). These phenological and structural features surely affected

spectral properties of these invasive species and most likely contributed
to spectral heterogeneity (shown in Fig. 6) in the old plots during the
time of our overpass.

4.3. Remote sensing of biodiversity and design of the experimental plots

In this study, we were able to remotely detect biodiversity in a
grassland experiment with different levels of diversity and large plots as
part of a prairie restoration project. Comparable airborne data (e.g.
spatial resolution of 0.75m at the Cedar Creek Ecosystem Science
Reserve's BioDIV experiment in Central Minnesota) showed much
weaker spectral diversity-α-diversity relationships (Gholizadeh et al.,
2018; Wang et al., 2018). On the other hand, a significant spectral di-
versity-species richness relationship (R2= 0.34) has been found using
comparable airborne data (spatial resolution of 1.1m) in a natural
prairie grassland in southern Alberta, Canada (Wang et al., 2016).
These notable differences between studies suggest several possible
factors affecting the strength of the spectral diversity-biodiversity re-
lationship for prairies including the spatial resolution of the data (as
was discussed in Section 4.1), role of invasion (as was discussed in
Section 4.2), degree of manipulation through management regimes
(e.g. weeding or other disturbances), and plot design including the size
of the plot (or uniform landscape patch) and number of species within
the plots.

Frequent manipulation in biodiversity experiments (e.g. weeding as
was the case at the Cedar Creek's BioDIV experiment) can lead to

(a) (b)

(c) (d)

Fig. 7. The relationship between airborne spectral diversity (CV) and field-sampled α-diversity, obtained from the two transects within each plot. a) Species richness
vs. CV at a spatial resolution of 1 m, b) Shannon index vs. CV at a spatial resolution of 1m, (c) species richness vs. CV at a spatial resolution of 0.5m, and (d) Shannon
index vs. CV at a spatial resolution of 0.5m. Black symbols represent young plots; red symbols represent old plots; the dark red diamond symbol shows plot 18, which
was excluded from the analysis; the black dashed lines are fitted linear regressions to young plots, and the dark red solid lines are fitted lines to young and old plots
combined. Spectral diversity-α-diversity relationships in the old plots (red symbols) are non-significant, and a fitted line is not given. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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challenges in remote sensing of biodiversity. With heavy manipulation,
measures of spectral diversity can become more sensitive to factors such
as productivity and plant cover (density) rather than biodiversity per se.
Degree of soil exposure (which can be influenced by weeding) also
influences the observed remote sensing reflectance such that spectral
diversity does not reliably represent species diversity (Gholizadeh et al.,
2018) because it is affected by the high spectral variation between
green plants and soil. In the Wood River experiment, despite minor
weed removal, all plots (low and high diversity) had comparable
seeding density, and no significant soil cover was observed within the
plots, providing a more favorable and possibly more realistic test of the
effect of α-diversity on spectral diversity.

Plot size is another significant factor in remote sensing of biodi-
versity, especially in experimental plots, many of which involve small
plots that do not match the scale of remote sensing observations. The
declining spectral diversity-α-diversity relationship at coarser spatial
resolutions in our multiscale analysis (Fig. 3) can be partly attributed to
the sample size (number of pixels), where the sample size is limited by
the size of our plots. When the plot size is large enough to easily exceed
the scale (pixel size) of remote sensing observations, more spectral
observations (i.e. pixels) are available (larger sample size) and there-
fore more reliable estimates of α-diversity can presumably be obtained.
Increasing the plot area, also increases the number of species, via the
species-area relationship (Preston, 1960), leading to a larger range of
spectral diversity (spectral diversity-area relationship; Dahlin, 2016).

In addition to plot size, the species composition within plots is also
important and ideally should represent naturally assembled grasslands.
Plots at the Wood River site are approximately 60×60m with species
richness between 11 and 46 [35.33 ± 9.92; mean ± standard devia-
tion]. The seed mixes in this site were collected within 100-mile radius
of the restoration site, representing the species in the nearby prairies
(Steinauer et al., 2003). Clearly, developing operational remote sensing
methods for assessing biodiversity benefits from such experiments that
closely resemble naturally assembled grasslands.

It is likely that differences in experimental design can influence the
spectral diversity-α-diversity relationship. To achieve operational bio-
diversity monitoring systems based on remote sensing, we suggest es-
tablishing well-designed experiments from a remote sensing perspec-
tive. Such experiments should be designed to more closely resemble
natural landscapes by minimizing human-caused manipulations, con-
sider the mismatch between the remote sensing sampling and ground
sampling, and have widely varying levels of species diversity.

4.4. Future work

The sensor used in this study had fine spectral resolution but cov-
ered only the visible and near-infrared (VNIR) region from ~400 nm to
1000 nm. However, some of the current and forthcoming airborne hy-
perspectral sensors such as AVIRIS (Green et al., 1998), HYMAP (Cocks
et al., 1998), AVIRIS-NG (Hamlin et al., 2011), and AisaDUAL (Specim
Ltd) operate over broader wavelength ranges from 400 nm to 2500 nm
with spectral sampling between ~5 nm–20 nm. In principle, full-range
imagers are sensitive to additional vegetation traits (Serbin et al., 2014;
Ustin et al., 2004), which have been shown to affect spectral diversity
measured via remote sensing (Asner and Martin, 2009; Carlson et al.,
2007). Therefore, although the VNIR sensors are more accessible due to
their low cost and smaller payload, using full range imaging sensors to
examine the impact of broader ranges of biochemical and structural
traits may be warranted.

Our experiment at Wood River contained both warm-season and
cool-season grasses. However, natural grasslands of North America can
have different species composition with different phenology. While
warm-season (C4) grasses dominate some of the North American prai-
ries, cool-season (C3) species or a mixture of both can dominate others
(Anderson, 2006; Samson and Knopf, 1994; Wang et al., 2013). Further
studies should test how well our study findings can be generalized to

other prairie types (e.g. tallgrass, shortgrass, and mixed-grass) with
different functional group composition (C3 and C4 species). In addition,
although studies like this are expanding our knowledge of remotely
detecting prairie diversity, further studies of other short-statured ve-
getation (e.g. shrublands and tundra) are also needed to develop sui-
table methods for routine operational assessment of spectral diversity.

Reflectance data are an amalgamation of biochemical properties of
vegetation and vegetation structure, all of which change over time
(Asner and Martin, 2009; Chavana-Bryant et al., 2017; Ustin et al.,
2009). We did not quantify the variation of each component over time,
nor did we estimate the scale dependence of each component in-
dividually. Therefore, further experiments at this and other sites ex-
amining the changes in spectral diversity-α-diversity relationship over
the growing season at different spatial scales remain necessary if we are
to develop robust, operational remote sensing methods of assessing
biodiversity.

5. Conclusions

We examined the relationship between spectral diversity (expressed
as coefficient of variation) and α-diversity (expressed as species rich-
ness and Shannon index) in a large-scale prairie restoration experiment
in Wood River, Central Nebraska, USA. A strong spectral diversity-α-
diversity relationship was evident for young plots where the original
study design remained intact, and this relationship became stronger
when species abundance was taken into account. However, the re-
lationship was non-significant in the old plots, which had been affected
by the spread of species between plots and invasion of exotic species.
This non-significant relationship was partly attributable to the different
spectral and structural properties of invasive species, the contrasting
phenology of planted and invasive species, and the convergence of all
plots towards similar levels of diversity. Differences in spectral di-
versity-α-diversity relationships at 0.5m and 1m resolutions were
negligible, but results obtained from a coarsened data set simulating a
wider range of spatial resolutions displayed a declining spectral di-
versity-α-diversity relationship at coarser spatial resolutions and non-
significant relationships at pixel sizes above 4–5m. This result sug-
gested that direct assessment of plot-scale α-diversity via spectral di-
versity in grasslands, while clearly possible with airborne platforms,
may not be possible with most satellite sensors. Results obtained from
two flight directions were not significantly different, suggesting that
sampling geometry had only minor influence on spectral diversity.

The observation that airborne spectral diversity can provide a good
proxy for α-diversity in grasslands provides a strong foundation for the
ongoing development of operational airborne methods for assessing
biodiversity and demonstrate the value of an experimental remote
sensing approach. We recommend more attention to sampling design
that explicitly considers the relationship between field sampling and
airborne sampling, the degree and nature of experimental manipula-
tion, and temporal effects (phenology and succession). Future work
should repeat experiments such as this at a range of natural and re-
stored prairies across a wider range of seasons and conditions. Careful
coupling to field sampling design and knowledge of plot successional
stage remain important to proper interpretation of the results.

Acknowledgements

Many thanks to two anonymous reviewers and the associate editor
for providing feedback and insightful comments on this manuscript. We
acknowledge The Nature Conservancy, its staff, and all the people who
helped us during our field campaign. We specifically thank Nelson
Winkel (TNC) who provided valuable information about the study area
at the early stages of this experiment and assisted us during field data
collection. We express our sincere gratitude to Rick Perk (Center for
Advanced Land Management Information Technologies at UNL) for
collecting the airborne data. We thank Kim Helzer for providing the

H. Gholizadeh et al. Remote Sensing of Environment 221 (2019) 38–49

47



plant diversity inventory, Bryan Leavitt (UNL) and Katherine Hogan
(TNC) for their invaluable field assistance. We also express our grati-
tude to Dr. Zheng Xu (UNL) for his advice on statistical analysis. Special
thanks to Dr. Craig Allen (UNL) for helping us to improve the design of
our experiment. We also thank Donnette Thayer for assistance in pre-
paring the spectral diversity maps. This work was supported by NSF/
NASA Dimensions of Biodiversity Program grant DEB-1342823 to
J.A.G. and A.I.Z., DEB-1342872 to J.C.B., and DEB-1342778 to P.A.T.
Mention of trade names does not imply endorsement by the authors.

Author contributions

H.G. and J.A.G. designed and conceived the study. H.G., J.A.G.,
J.C.B., P.A.T, G.Y.H., R.Y., and R.M.M. contributed to the fieldwork.
J.C.B. and A.K.S. designed the plant diversity sampling. J.C.B. managed
the plant diversity sampling and calculated plant diversity from field
data. H.G. analyzed the data. H.G., J.A.G., J.C.B., P.A.T., A.I.Z., and
C.J.H. contributed to writing the manuscript. All authors read and ap-
proved the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2018.10.037.

References

Anderson, R.C., 2006. Evolution and origin of the Central Grassland of North America:
climate, fire, and mammalian grazers. J. Torrey Bot. Soc. 133, 626–647.

Asner, G.P., Martin, R.E., 2009. Airborne spectranomics: mapping canopy chemical and
taxonomic diversity in tropical forests. Front. Ecol. Environ. 7, 269–276.

Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, T., Jones, M.O., Martin, R.E., Boardman, J.,
Hughes, R.F., 2008. Invasive species detection in Hawaiian rainforests using airborne
imaging spectroscopy and LiDAR. Remote Sens. Environ. 112, 1942–1955.

Baldi, G., Guerschman, J.P., Paruelo, J.M., 2006. Characterizing fragmentation in tem-
perate South America grasslands. Agric. Ecosyst. Environ. 116, 197–208.

Beck, J., Schwanghart, W., 2010. Comparing measures of species diversity from in-
complete inventories: an update. Methods Ecol. Evol. 1, 38–44.

Beck, J., Holloway, J.D., Schwanghart, W., 2013. Undersampling and the measurement of
beta diversity. Methods Ecol. Evol. 4, 370–382.

Bevans, R.A., 2017. Plant Diversity Influences the Structure and Function of a Restored
Prairie and its Responses to Added Disturbances. School of Natural Resources,
Lincoln, Nebraska: University of Nebraska.

Buchanan, G.M., Nelson, A., Mayaux, P., Hartley, A., Donald, P.F., 2009. Delivering a
global, terrestrial, biodiversity observation system through remote sensing. Conserv.
Biol. 23, 499–502.

Calleja, J.F., Recondo, C., Peón, J., Fernández, S., de la Cruz, F., González-Piqueras, J.,
2016. A new method for the estimation of broadband apparent albedo using hyper-
spectral airborne hemispherical directional reflectance factor values. Remote Sens. 8,
183.

Camacho de Coca, F., Gilabert, M., Meliá, J., 2001. Bidirectional reflectance factor ana-
lysis from field radiometry and HyMap data. In: The Final Results Workshop on
DAISEX (Digital AIrborne Spectrometer EXperiment), pp. 163–175 (Noordwijk, The
Netherlands).

Carlson, K.M., Asner, G.P., Hughes, R.F., Ostertag, R., Martin, R.E., 2007. Hyperspectral
remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems
10, 536–549.

Carter, G.A., Knapp, A.K., Anderson, J.E., Hoch, G.A., Smith, M.D., 2005. Indicators of
plant species richness in AVIRIS spectra of a mesic grassland. Remote Sens. Environ.
98, 304–316.

Cavender-Bares, J., Gamon, J.A., Hobbie, S.E., Madritch, M.D., Meireles, J.E., Schweiger,
A.K., Townsend, P.A., 2017. Harnessing plant spectra to integrate the biodiversity
sciences across biological and spatial scales. Am. J. Bot. 104, 966–969.

Chao, A., Shen, T.-J., 2003. Nonparametric estimation of Shannon's index of diversity
when there are unseen species in sample. Environ. Ecol. Stat. 10, 429–443.

Chapin, F.S., Sala, O.E., Burke, I.C., Grime, J.P., Hooper, D.U., Lauenroth, W.K., Lombard,
A., Mooney, H.A., Mosier, A.R., Naeem, S., Pacala, S.W., Roy, J., Steffen, W.L.,
Tilman, D., 1998. Ecosystem consequences of changing biodiversity. Bioscience 48,
45–52.

Chavana-Bryant, C., Malhi, Y., Wu, J., Asner, G.P., Anastasiou, A., Enquist, B.J., Caravasi,
E.G.C., Doughty, C.E., Saleska, S.R., Martin, R.E., Gerard, F.F., 2017. Leaf aging of
Amazonian canopy trees as revealed by spectral and physiochemical measurements.
New Phytol. 214, 1049–1063.

Clark, C.M., Tilman, D., 2008. Loss of plant species after chronic low-level nitrogen de-
position to prairie grasslands. Nature 451, 712.

Cocks, T., Jenssen, R., Stewart, A., Wilson, I., Shields, T., 1998. The HyMapTM airborne
hyperspectral sensor: the system, calibration and performance. In: Proceedings of the

1st EARSeL Workshop on Imaging Spectroscopy. EARSeL, pp. 37–42.
Conel, J.E., Green, R.O., Vane, G., Bruegge, C.J., Alley, R.E., 1987. AIS-2 radiometry and a

comparison of methods for the recovery of ground reflectance. In: Vane, G. (Ed.),
Third Airborne Imaging Spectrometer Data Analysis Workshop. JPL Publication,
Pasadena, CA, pp. 18–47.

Cramer, J.S., 1987. Mean and variance of R2 in small and moderate samples. J. Econ. 35,
253–266.

Dahlin, K.M., 2016. Spectral diversity area relationships for assessing biodiversity in a
wildland–agriculture matrix. Ecol. Appl. 26, 2758–2768.

Darvishzadeh, R., Atzberger, C., Skidmore, A., Schlerf, M., 2011. Mapping grassland leaf
area index with airborne hyperspectral imagery: a comparison study of statistical
approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote
Sens. 66, 894–906.

Dell'Endice, F., 2008. Improving the performance of hyperspectral pushbroom imaging
spectrometers for specific science applications. In: ISPRS 2008: Proceedings of the
XXI Congress: Silk Road for Information from Imagery: The International Society for
Photogrammetry and Remote Sensing, pp. 215–220 (Beijing, China).

Gaitán, J.J., Bran, D., Oliva, G., Ciari, G., Nakamatsu, V., Salomone, J., Ferrante, D.,
Buono, G., Massara, V., Humano, G., 2013. Evaluating the performance of multiple
remote sensing indices to predict the spatial variability of ecosystem structure and
functioning in Patagonian steppes. Ecol. Indic. 34, 181–191.

Gholizadeh, H., Gamon, J.A., Zygielbaum, A.I., Wang, R., Schweiger, A.K., Cavender-
Bares, J., 2018. Remote sensing of biodiversity: soil correction and data dimension
reduction methods improve assessment of α-diversity (species richness) in prairie
ecosystems. Remote Sens. Environ. 206, 240–253.

Gillespie, T.W., Foody, G.M., Rocchini, D., Giorgi, A.P., Saatchi, S., 2008. Measuring and
modelling biodiversity from space. Prog. Phys. Geogr. 32, 203–221.

Goodin, D.G., Gao, J., Henebry, G.M., 2004. The effect of solar illumination angle and
sensor view angle on observed patterns of spatial structure in tallgrass prairie. IEEE
Trans. Geosci. Remote Sens. 42, 154–165.

Gougeon, F.A., 1995. Comparison of possible multispectral classification schemes for tree
crowns individually delineated on high spatial resolution MEIS images. Can. J.
Remote. Sens. 21, 1–9.

Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J.,
Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., 1998. Imaging spectroscopy and the
airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65,
227–248.

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T.,
Hollstein, A., Rossner, G., Chlebek, C., 2015. The EnMAP spaceborne imaging spec-
troscopy mission for earth observation. Remote Sens. 7, 8830–8857.

Guo, X., Wilmshurst, J., McCanny, S., Fargey, P., Richard, P., 2015. Measuring spatial and
vertical heterogeneity of grasslands using remote sensing techniques. J. Environ. Inf.
3, 24–32.

Hamlin, L., Green, R., Mouroulis, P., Eastwood, M., Wilson, D., Dudik, M., Paine, C., 2011.
Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new
developments. In: Aerospace Conference, 2011 IEEE. IEEE, pp. 1–7.

Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E., Hungate, B.A., Matulich, K.L.,
Gonzalez, A., Duffy, J.E., Gamfeldt, L., O'Connor, M.I., 2012. A global synthesis re-
veals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108.

Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., Guralnick,
R., Kattge, J., Latimer, A.M., Moorcroft, P., Schaepman, M.E., Schildhauer, M.P.,
Schneider, F.D., Schrodt, F., Stahl, U., Ustin, S.L., 2016. Monitoring plant functional
diversity from space. Nat. Plants 2, 193.

Kendall, M.G., 1938. A new measure of rank correlation. Biometrika 30, 81–93.
Kerr, J.T., Ostrovsky, M., 2003. From space to species: ecological applications for remote

sensing. Trends Ecol. Evol. 18, 299–305.
Kimes, D.S., Smith, J.A., Ranson, K.J., 1980. Vegetation reflectance measurements as a

flmction of solar zenith angle. Photogramm. Eng. Remote. Sens. 46, 1563–1573.
Kruse, F.A., Lefkoff, A., Boardman, J., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J.,

Goetz, A.F.H., 1993. The spectral image processing system (SIPS)—interactive vi-
sualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44,
145–163.

Kustas, W., Norman, J., 1996. Use of remote sensing for evapotranspiration monitoring
over land surfaces. Hydrol. Sci. J. 41, 495–516.

Lauver, C.L., 1997. Mapping species diversity patterns in the Kansas shortgrass region by
integrating remote sensing and vegetation analysis. J. Veg. Sci. 8, 387–394.

Lee, C.M., Cable, M.L., Hook, S.J., Green, R.O., Ustin, S.L., Mandl, D.J., Middleton, E.M.,
2015. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission
and preparatory activities. Remote Sens. Environ. 167, 6–19.

Legendre, P., Legendre, L., 1998. Numerical Ecology. Elsevier Science, Amsterdam.
Naeem, S., Chazdon, R., Duffy, J.E., Prager, C., Worm, B., 2016. Biodiversity and human

well-being: an essential link for sustainable development. Proc. R. Soc. B 283,
20162091.

Nagendra, H., 2001. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22,
2377–2400.

Nemec, K.T., Allen, C.R., Helzer, C.J., Wedin, D.A., 2013. Influence of richness and
seeding density on invasion resistance in experimental tallgrass prairie restorations.
Ecol. Restor. 31, 168–185.

Oldeland, J., Wesuls, D., Rocchini, D., Schmidt, M., Jürgens, N., 2010. Does using species
abundance data improve estimates of species diversity from remotely sensed spectral
heterogeneity? Ecol. Indic. 10, 390–396.

Oldeman, L., 1994. The global extent of soil degradation. In: Soil Resilience and
Sustainable Land Use. 9.

Preston, F., 1960. Time and space and the variation of species. Ecology 41, 611–627.
Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1.

Geographic distribution of global agricultural lands in the year 2000. Glob.

H. Gholizadeh et al. Remote Sensing of Environment 221 (2019) 38–49

48

https://doi.org/10.1016/j.rse.2018.10.037
https://doi.org/10.1016/j.rse.2018.10.037
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0010
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0010
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0015
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0015
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0020
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0020
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0020
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0025
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0025
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0030
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0030
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0035
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0035
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0040
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0040
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0040
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0045
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0045
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0045
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0050
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0050
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0050
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0050
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0055
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0055
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0055
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0055
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0060
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0060
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0060
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0065
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0065
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0065
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0070
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0070
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0070
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0075
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0075
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0080
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0080
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0080
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0080
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0085
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0085
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0085
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0085
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0090
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0090
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0095
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0095
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0095
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0100
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0100
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0100
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0100
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0105
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0105
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0110
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0110
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0115
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0115
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0115
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0115
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0120
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0120
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0120
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0120
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0125
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0125
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0125
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0125
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0130
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0130
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0130
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0130
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0135
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0135
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0140
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0140
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0140
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0145
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0145
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0145
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0150
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0150
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0150
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0150
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0155
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0155
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0155
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0160
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0160
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0160
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0165
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0165
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0165
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0170
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0170
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0170
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0175
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0175
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0175
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0175
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0180
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0185
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0185
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0190
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0190
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0195
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0195
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0195
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0195
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0200
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0200
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0205
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0205
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0210
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0210
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0210
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0215
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0220
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0220
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0220
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0225
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0225
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0230
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0230
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0230
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0235
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0235
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0235
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0240
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0240
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0245
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0250
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0250


Biogeochem. Cycles 22.
Ranson, K.J., Daughtry, C.S.T., L.B.L., Bauer, M.E., 1985. Sun-view angle effects on re-

flectance factors of corn canopies. Remote Sens. Environ. 18, 147–161.
Rocchini, D., Balkenhol, N., Carter, G.A., Foody, G.M., Gillespie, T.W., He, K.S., Kark, S.,

Levin, N., Lucas, K., Luoto, M., 2010. Remotely sensed spectral heterogeneity as a
proxy of species diversity: recent advances and open challenges. Eco. Inform. 5,
318–329.

Samson, F., Knopf, F., 1994. Prairie conservation in North America. Bioscience 44,
418–421.

Schäfer, E., Heiskanen, J., Heikinheimo, V., Pellikka, P., 2016. Mapping tree species di-
versity of a tropical montane forest by unsupervised clustering of airborne imaging
spectroscopy data. Ecol. Indic. 64, 49–58.

Schramm, P., 1990. Prairie restoration: a twenty-five year perspective on establishment
and management. In: Smith, D.D., Jacob, C.A. (Eds.), Proceedings of the Twelfth
North American Prairie Conference. University of Northern Iowa, Cedar Fall, Iowa,
pp. 169–177.

Schweiger, A.K., Cavender-Bares, J., Townsend, P.A., Hobbie, S.E., Madritch, M.D., Wang,
R., Tilman, D., Gamon, J.A., 2018. Plant spectral diversity integrates functional and
phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol.
Evol. 2, 976–982.

Seaquist, J., Olsson, L., Ardö, J., 2003. A remote sensing-based primary production model
for grassland biomes. Ecol. Model. 169, 131–155.

Serbin, S.P., Singh, A., McNeil, B.E., Kingdon, C.C., Townsend, P.A., 2014. Spectroscopic
determination of leaf morphological and biochemical traits for northern temperate
and boreal tree species. Ecol. Appl. 24, 1651–1669.

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27,
379–423.

Shibayama, M., Wiegand, C., 1985. View azimuth and zenith, and solar angle effects on
wheat canopy reflectance. Remote Sens. Environ. 18, 91–103.

Skidmore, A.K., Pettorelli, N., Coops, N.C., Geller, G.N., Hansen, M., Lucas, R., Mücher,
C.A., O'Connor, B., Paganini, M., Pereira, H.M., Schaepman, M.E., Turner, W., Wang,
T., Wegmann, M., 2015. Agree on biodiversity metrics to track from space: ecologists
and space agencies must forge a global monitoring strategy. Nature 523, 403–405.

Steinauer, G., Whitney, B., Adams, K., Bullerman, M., Helzer, C., 2003. A Guide to Prairie
and Wetland Restoration in Eastern Nebraska. Prairie Plains Resource Institute and
the Nebraska Game and Parks Commission, Aurora.

Suding, K.N., 2011. Toward an era of restoration in ecology: successes, failures, and
opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42.

Tilman, D., Reich, P.B., Isbell, F., 2012. Biodiversity impacts ecosystem productivity as
much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109,
10394–10397.

Tovar, C., Seijmonsbergen, A.C., Duivenvoorden, J.F., 2013. Monitoring land use and
land cover change in mountain regions: an example in the Jalca grasslands of the
Peruvian Andes. Landsc. Urban Plan. 112, 40–49.

Turner, W., 2014. Sensing biodiversity. Science 346, 301–302.
Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003.

Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18,
306–314.

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol.
186, 795–816.

Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., Green, R.O., 2004. Using imaging
spectroscopy to study ecosystem processes and properties. AIBS Bull. 54, 523–534.

Ustin, S.L., Gitelson, A.A., Jacquemoud, S., Schaepman, M., Asner, G.P., Gamon, J.A.,
Zarco-Tejada, P., 2009. Retrieval of foliar information about plant pigment systems
from high resolution spectroscopy. Remote Sens. Environ. 113, S67–S77.

Villnäs, A., Norkko, J., Hietanen, S., Josefson, A.B., Lukkari, K., Norkko, A., 2013. The
role of recurrent disturbances for ecosystem multifunctionality. Ecology 94,
2275–2287.

Waide, R., Willig, M., Steiner, C., Mittelbach, G., Gough, L., Dodson, S., Juday, G.,
Parmenter, R., 1999. The relationship between productivity and species richness.
Annu. Rev. Ecol. Syst. 30, 257–300.

Wall, D.H., Nielsen, U.N., Six, J., 2015. Soil biodiversity and human health. Nature
528, 69.

Wang, C., Jamison, B.E., Spicci, A.A., 2010. Trajectory-based warm season grassland
mapping in Missouri prairies with multi-temporal ASTER imagery. Remote Sens.
Environ. 114, 531–539.

Wang, C., Hunt Jr., E.R., Zhang, L., Guo, H., 2013. Phenology-assisted classification of C3
and C4 grasses in the US Great Plains and their climate dependency with MODIS time
series. Remote Sens. Environ. 138, 90–101.

Wang, R., Gamon, J.A., Emmerton, C.A., Li, H., Nestola, E., Pastorello, G.Z., Menzer, O.,
2016. Integrated analysis of productivity and biodiversity in a southern Alberta
prairie. Remote Sens. 8, 214.

Wang, R., Gamon, J.A., Cavender-Bares, J., Townsend, P.A., Zygielbaum, A.I., 2018. The
spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental
test in a prairie grassland. Ecol. Appl. 28, 541–556.

Weaver, J.E., 1954. North American Prairie. Johnson Publishing Co, Lincoln, NE.

H. Gholizadeh et al. Remote Sensing of Environment 221 (2019) 38–49

49

http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0250
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0255
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0255
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0260
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0260
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0260
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0260
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0265
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0265
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0270
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0270
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0270
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0275
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0275
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0275
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0275
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0280
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0280
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0280
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0280
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0285
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0285
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0290
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0290
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0290
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0295
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0295
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0300
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0300
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0305
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0305
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0305
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0305
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0310
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0310
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0310
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0315
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0315
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0320
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0320
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0320
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0325
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0325
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0325
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0330
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0335
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0335
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0335
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0340
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0340
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0345
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0345
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0350
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0350
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0350
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0355
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0355
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0355
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0360
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0360
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0360
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0365
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0365
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0370
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0370
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0370
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0375
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0375
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0375
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0380
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0380
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0380
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0385
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0385
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0385
http://refhub.elsevier.com/S0034-4257(18)30499-1/rf0390

	Detecting prairie biodiversity with airborne remote sensing
	Introduction
	Methods
	Study area
	Airborne data collection and pre-processing
	Generating coarse spatial resolution data from airborne data

	Spectral diversity metric
	Plot-based analysis of spectral diversity-α-diversity
	Transect-based analysis of spectral diversity-α-diversity

	Mapping spatial variability within plots
	Statistical analysis

	Results
	Relationship between spectral diversity and α-diversity in the young plots
	Impact of spatial scale and flight direction on spectral diversity-α-diversity relationship in the young plots
	Spatial scale
	Flight direction

	Relationship between spectral diversity and α-diversity in the old plots

	Discussion
	Impact of spatial scale and flight direction on spectral diversity-α-diversity relationship
	Spectral diversity-α-diversity in invaded plots
	Remote sensing of biodiversity and design of the experimental plots
	Future work

	Conclusions
	Acknowledgements
	Author contributions
	Supplementary data
	References




