
Capacity of dynamical storage systems
Ohad Elishco Alexander Barg

Abstract—We define a time-dependent model of erasure coding
for distributed storage and estimate the average capacity of the
network in the simple case of fixed link bandwidth that takes
one of two given values. We show that if k data blocks are
encoded into n blocks placed on n nodes of which n1 have links
with bandwidth greater than the remaining n − n1 nodes by γ
symbols, then the average capacity increases by Ω(γ(k − n1)2)
symbols compared to the static model.

I. INTRODUCTION

The problem of node repair based on erasure coding for
distributed storage aims at optimizing the tradeoff of network
traffic and storage overhead. In this form it was established
by [1] from the perspective of network coding. This model
was generalized in various ways such as concurrent failure
of several nodes [2], heterogeneous architecture [3], [4], co-
operative repair [5], and others. The existing body of works
focuses on the failure of a node (or several nodes) and the
ensuing reconstruction process, but puts less emphasis on the
time evolution of the entire network and the inherent stochastic
nature of the node failures. The static point of view of the
system and of node repair leads to schemes based on the
worst-case scenario in the sense that the amount of data to
be stored is known in advance, and the repair capacity is
determined by the least advantageous state of the network.
Switching to evolving networks makes it possible to define
and study the average amount of data moved through the
network to accomplish repair, or, equivalently, determining the
average file size that can be retrieved from the network once
the capacities of the links from each of the nodes to the data
collector are fixed to some values.

In this work we make first steps toward defining a dynamic
model of the network with random failures. We observe that
no gain is obtained if the links from each of the nodes
have the same capacity. Stepping away from this assumption,
we adopt a simple model of heterogeneous storage wherein
the network is formed of two disjoint groups of nodes with
unequal communication costs, which was proposed in the
static case in [3]. We show that, under the assumption of
uniform failure rates of the nodes, it is possible to increase
the average size of the file stored in the system.

In Section II we present the dynamical model and basic
definitions. In Section III we define the fixed-cost model and
prove a lower bound on the average capacity, which forms

The authors are with ISR/Dept. of ECE, University of Maryland, College
Park, MD 20817, USA, emails ohadeli@umd.edu and abarg@umd.edu. A.
Barg is also with Inst. Inform. Trans. Probl., Russian Academy of Sciences,
Moscow, Russia.

Research supported by NSF grants CCF1618603 and CCF1814487.

the main result of this paper. The evolution of the network’s
information flow graph is formalized as a Markov chain similar
to those occurring in card shuffling problems, and we make
use of the classic results about their mixing times.

II. MODEL DEFINITION
In this section we define a storage network that evolves

in time and describe the basic assumptions that characterize
this evolution. We also define a sequence of information flow
graphs, which enables us to define capacity of a randomly
evolving network.

A. Evolution of the network. A storage network is a triple
N = (V,DC,CU) where V = (v1, . . . , vn) is a set of n
nodes (storage units), DC is a node called data collector, and
CU is a centralized computing unit (repair center). Every node
vi, i ∈ [n] , {1, 2, . . . , n}, has the ability to store up to α
symbols over some finite field F . To store a set of M symbols
(a “file”), we divide it into k information blocks viewed as
vectors over F which are encoded with an (n, k) vector code
C. The coordinates of the codeword are vectors over F , and
each coordinate is stored in its own node in V. To read the file,
the DC accesses at least k nodes, obtaining the information
stored in them, and attempts to retrieve the file.

The storage network evolves in time, which we assume to
be discrete. At time t = 0, the encoded file is stored in the
network. The time units t = 1, 2, . . . indicate node failures
(only those times will be taken into account in our model).
Let s = (s1, s2, . . .) ∈ V∞ be the sequence of failed nodes,
where st is the node that fails at time t. When a failure
occurs, the CU corrects it (replacing the erased information
so that message retrieval still be possible) by downloading
information from d other (helper) nodes, finding the value
of the failed node and creating a new node to replace it. In
this work we assume that d = n − 1, i.e., the CU collects
information from all of the other nodes to perform the repair.

Given N and the sequence s, we define a sequence of
directed weighted graphs Xt, t > 0, called information flow
graphs, where Xt is a subgraph of Xt+1 for each t.
1: Let V0 = V ∪ ṽ, i.e., all the nodes in N and a source node

node ṽ, and define the graph X0 = (V0, E0) with edges

E0 = {(ṽ, vi) : i ∈ [n]}
where each edge has weight α. We will call the nodes in
the set A0 := V active nodes of the graph X0.

2: Suppose that s1 = vi1 , i1 ∈ [n] and define the new node
v1i1 . The graph X1 = (V1, E1) is formed as follows:

V1 = V0 ∪ {CU1, v
1
i1}

E1 = E0 ∪ {(vj , CU1), j ∈ [n]\{i1}} ∪ (CU1, v
1
i1).

1562978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

The set of active nodes of X1 is defined as A1 :=
(A0\{vi1}) ∪ {v1i1}.

3: Suppose we are given the graph Xt−1. Suppose that st = vt
′

it
for some t′ < t is the value of the failed node (st ∈ At−1
and it ∈ [n]). Define Xt(Vt, Et) as follows:

Vt = Vt−1 ∪ {CUt, vtit}
Et = Et−1 ∪ {(u,CUt) : u ∈ At−1\{vt

′

it}} ∪ (CUt, v
t
it).

The set of active nodes of Xt is defined as At =
(At−1\{vt

′

it
}) ∪ vtit .

For any t > 1 the weight of the edge (u,CUt) = βi, where
u corresponds to vi ∈ V , and the weight of (CUt, vtit) = α.

The graph Xt captures the connectivity structure and the
state of the network up to the time instant t. The weight
of an edge βi denotes the target average number of symbols
transmitted through the corresponding link over time.

B. Data retrieval and network capacity. Information ex-
change in the network is performed over the links between
the nodes. The Data Collector DC initiates the data retrieval
by contacting at least k nodes in the set V . In the information
flow graph Xt, this process amounts to introducing a new node,
DCt, and connecting it to a subset of active nodes St ⊆ At,
|St| > k. The links from St to DCt are assumed to have
infinite capacity.

Let N be a storage network with the corresponding in-
formation flow graphs Xt, t ∈ N and let s be a sequence
of failed nodes. Denote by Ct(St) the capacity at time t
for St. Informally, Ct(St) is the maximum file size that
can be retrieved by DCt at time t if it contacts the set St.
Formally, Ct(St) equals the edge weight of a minimum cut
in Xt between

(⋃t
i=−1Ai \ At

)
and DCt, where we define

A−1 = ṽ. Further, let Ct be the capacity at time t, i.e.,

Ct = Ct(At) , min
St⊆At, |St|>k

{Ct(St)} .

In this definition we assume that DC is not aware of the state
of the network, and the minimum accounts for the worst case.

Definition 1 Let N be a storage network and let s be a
sequence of failed nodes. Define the network capacity as

cap(N) , lim sup
t→∞

1

t

t∑
i=1

Ci.

The main assumption that we make is that at any given time
t, the failed node is chosen uniformly and independently from
the set of nodes V , and thus s is a sequence of RVs which
we henceforth denote by S. This makes the Ct’s and cap(N)
into random variables. In this work we analyze the expected
value of the capacity.

Definition 2 Let N be a storage network and let S be a
random sequence of failed nodes. The expected capacity is
defined as

cap(N) , E [cap(N)] .

It is clear that if βi = β for every i ∈ [n], the fact that S
is random will not affect the capacity which implies that the

cap(N) is equal to the minimum cut. Hence, both cap(N)
and its expectation in the case βi = β are given in [1].

At the same time, in many situations the links between the
nodes have different capacities, and below we study storage
networks with different βis.

Each node in At is given by vtii for some ti 6 t and
may be identified with the node vi ∈ V . Therefore, if at
some point t0 all the nodes have failed at least once, then
for t > t0 the order in which the nodes in At have failed may
be identified with a permutation over the set V . For example,
if At =

{
vt11 , v

t2
2 , . . . , v

tn
n

}
with ti > 0 for all i, then the cor-

responding permutation πt is such that π−1t (vi) 6 π−1t (vj) iff
vtii , v

tj
j ∈ At with ti 6 tj . We summarize this observation by

saying that the values of Ct are parametrized by permutations
of V (the permutations are well defined because At, t > t0
does not contain two nodes vti , v

t′

i that correspond to the same
node in V).

Below we identify V and [n] and consider πt, t > t0 as a
permutation of either of these sets as appropriate. It is possible
to obtain πt, t > t0 from St1 := {S1, . . . ,St} by considering
only the last appearance of each node.

Example 1 Assume that |V | = 5 and assume that S =
(v1, v2, v3, v4, v5, v2, v1, v5, . . .). Then π1, . . . , π4 are not de-
fined and π5 = (v1, v2, v3, v4, v5) since all the nodes had
failed in t = 5. In t = 6 the node v2 fails again, hence
the new order is given by π6 = (v1, v3, v4, v5, v2). This is
because the second node appears twice in S6

1 and we consider
only the last appearance. Following the same reasoning,
π7 = (v3, v4, v5, v2, v1) and π8 = (v3, v4, v2, v1, v5).

Since At is a function of St1, for t > t0 the permutation
πt itself is random, and is a function of St1. Since for t > t0
we may identify πt and At, we sometimes use the notation
Ct(πt) and C(πt).

Lemma 1 Let S = (Si, i > 1) be a sequence of independent
RVs uniformly distributed on [n]. Then

cap(N)
a.s.
= lim

t→∞

1

t

t∑
i=1

E[Ci].

Proof: Let t0 be the first time instance when all the ver-
tices have failed at least once. Note that t0 is a stopping time
and each failed node is chosen uniformly and independently.
Referring to the Coupon collector’s problem [6, p.210], we
obtain Pr(t0 > cn log n) 6 n1−c, c > 1. Thus, t0 is finite
almost surely.

By symmetry, πt0 is distributed uniformly on the set of
all permutations. Moreover, since Si is chosen uniformly
and independently, for t > t0 we have that Pr(πt =
π|πt−10) = Pr(πt = π|πt−1), so πt is a Markov chain,
which is irreducible and aperiodic. Because of this, a limiting
distribution µ exists, and is unique and positive. Hence, as
t grows, Pr(πt) → µ(πt). Together with the fact that Ct is
uniformly bounded from above for all t, we obtain that the
limit limn→∞

1
n

∑n
t=1 E[Ct] exists.

1563

Now define Xt =
1
t

∑t
i=1 Ci and note that Xt is a function

of S. Following the previous discussion, for almost every S,
the sequence Xt converges. Since Xt is non-negative and
upper bounded for every t, by the dominated convergence
theorem we have limt→∞ E[Xt] = E[limt→∞Xt] (the limit
exists a.s.), which is the desired result.

The proof of Lemma 1 relies on the stopping time t0 since
the permutation πt is not defined for t < t0. Since t0 is almost
surely finite and since πt is a Markov chain with limiting
distribution, defining a starting permutation π0 = id will not
affect the expected capacity. Hence, from now on we assume
π0 = id. Our problem is similar to the Top in at random shuffle
mixing time, and we use the following result from [7, Thm.1].

Theorem 1 (ALDOUS AND DIACONIS) Consider a deck of n
cards. At time t = 1, 2, . . . take the top card and insert it in
the deck at a random position. Let Qt denote the distribution
after t such shuffles and let U be the uniform distribution on
the set of all permutations Sn. Then for all c > 0 and n > 2,
the total variation distance satisfies

‖Qn logn+cn − U‖TV 6 e−c. (1)

To connect this result to our problem, we note that random
choice of the next failed node corresponds to selecting a
random card from the deck and putting in at the bottom. The
mixing time of this chain is stochastically equivalent to the
mixing time of the Top in at random shuffle, and we obtain
the following lemma.

Lemma 2 Let N be a storage network with |V | = n > 2
nodes and let S be a random sequence of failed nodes. Con-
sider the corresponding sequence of permutations (πt, t > 0)
where π0 = id. Then for any c > 0, n > 2 and π ∈ Sn,

|Pr(πn logn+cn = π)− 1

n!
| 6 e−c.

Proof: Let T > 1 be a value of the time. Consider the time-
reversed sequence π̃t = πT−t, t 6 T. The evolution of the
sequence π̃t is described as follows: for any t take the last
symbol πt(n) and insert it randomly in the middle. Observe
that Pr(πT = π) = Pr(π̃T = id|π̃1 = π). Now use (1) and the
definition of ‖ · ‖TV to claim that for T = n log n+ cn, c > 0,∣∣Pr(π̃T = id|π̃0 = π)− 1

n!

∣∣ 6 e−c.

III. THE FIXED COST MODEL

In this section we define a fixed-cost model and present a
lower bound on its expected capacity. Suppose that the set of
nodes has the form V = U ∪L, where U = (v1, . . . , vn1

) and
L = (vn1+1 . . . , vn1+n2) are disjoint non-empty subsets. Let
β1 > β2 be such that

βi =

{
β1 if vi ∈ U
β2 if vi ∈ L

,

This model is a dynamical equivalent of the model presented
in [3].

Let a , k − n1. We have the following lemma.

Lemma 3 Let N be a fixed-cost storage network and let

C , min
π∈Sn

{C(π)} = min
t>0,

S∈V∞
{Ct} .

Then

C =

min{n1−1,k−1}∑
i=1

min {n1β1 + n2β2 − iβ1, α}

+ 1{k>n1}

max{0,a}∑
j=0

min {n2β2 − jβ2, α} . (2)

The proof can be obtained from Lemma 4 below, and will be
omitted.

We assume throughout that a > 0 because otherwise the
file reconstruction problem is trivially solved by contacting k
nodes in U . Expression (2) gives a lower bound for the cut Ct
for all t and S in our storage network model. We note that by
the definition of C, (2) also gives the value of the minimum
cut for the static models of [3], [1].

In the next lemma we show that for t > t0 the minimum
cut will be obtained when DCt chooses a set of k nodes that
contains all nodes of U and some nodes from L.

Lemma 4 If α > (n1−1)β1+n2β2 then Ct is obtained when
DCt selects k nodes which include the set U .

The proof is set in terms of a dynamic programming problem,
and is given in the Appendix.

Remark 1 The proof of Lemma 4 also implies that, once we
have chosen all the n1 nodes from U and there are a more
nodes to select, the optimum is obtained by choosing the a
most recently failed nodes from L.

Using Lemma 3, in the next example we show that the average
total bandwidth in the dynamical model can be made lower
than in the static case.

Example 2 Let n = 10, k = 7, U = (v1, . . . , v5), L =
(v6, . . . , v10), and β1 = 2β2. Let α = 4β1+5β2 = 13β2 (this
assumption corresponds to the minimum bandwidth constraint,
and is known as the MBR point of the storage-bandwidth
tradeoff curve of [1]). By Lemma 3, the value of the minimum
cut is 52β2, and thus M = 52β2. The task of node repair is
accomplished by contacting d = 9 nodes, and in the worst
case uses the bandwidth 13β2 = 13M52 .

Now we will show that under the dynamic model, it is
possible to increase the file size from 52β2. Suppose that at
time t a node vi ∈ U has failed. Assume that all the nodes in
L transmit 8

7β2 information to CUt and the nodes in U \{vi}
transmit β1 − β2

7 amount of information to CUt. Note that
the total amount of information received by CUt is α+ 1

7β2.
If at time t a node vi ∈ L fails, all the nodes in U transmit
β1 +

1
7β2 symbols to CUt and the nodes in L \ {vi} transmit

6
7β2 symbols to CUt. Note that the total amount of information
received by CUt is again greater than α. A straightforward
calculation of the minimum cut yields that

min
π∈S10

{C(π)} = 52β2 + 8 · 1
7
β2 > 53β2

1564

and it is obtained when π = id. If the nodes fail with equal
probability, it is clear that on average, the nodes from U,L
will use a bandwidth of β1, β2, respectively.

The above simple procedure is in fact not optimal in terms
of the file size M . Namely, according to Theorem 2, we can
attain the value M > β2(52 + 31/18), although the analysis
becomes more complicated.

In the general case we obtain the following theorem which
forms the main result of this paper.

Theorem 2 LetN be a storage network with Si, i > 1 chosen
uniformly and independently. If the node size satisfies α >
(n1 − 1)β1 + n2β2 then

cap(N) > C + β1−β2

2
an1

n

(
a+ 1 + n1−1

n−1 (a− 1)
)
.

The proof uses three lemmas which are stated next.
Let π ∈ Sn and let S ⊂ V, |S| = k. Define a function

fπ : S → N as follows. For a node v ∈ S, fπ(v) is the
number of nodes in S ∩ L that appear before v in π, i.e.,

fπ(v) ,
n∑
i=1

1S∩L(vi) · 1[1,π−1(v)](π
−1(vi)).

Let Tj , j = 1, . . . , n − 1 be the adjacent transposition on
π, which permutes π(j) and π(j + 1).

Lemma 5 Let πt be a permutation obtained at time t and let
S be a set of k active nodes selected by the DCt. Then

Ct(πt) = C +
∑

v∈S∩U
fπ(v)(β1 − β2),

where C is given in Lemma 3.

Proof: First, recall that the identity permutation attains
the minimum cut, i.e., if πt = id then Ct = C. Let π ∈ Sn

and let C(π) be the corresponding capacity. We claim that
C(Tj(π)) ∈ {C(π) + β1 − β2, C(π), C(π)− β1 + β2}.

Now we note that if π = (i1, . . . , in) ∈ Sn is a permutation
and S is a selection of k nodes with cut C(π) such that
vij ∈ U and that vij+1

∈ L and both are in S, then after
applying Tij (π), there is only one new node in the sum∑
v∈S∩U fπ(v)(β1 − β2), namely vij+1

.
In the next lemma we bound the capacity Ct below by fixing

the last a places in the permutation πt.

Lemma 6 For a fixed t and 0 6 ` 6 min(n1, a), let P `t be
the probability that πt contains ` nodes from U in the last
a = k − n1 positions. As t→∞, we have

P `t →
(
n1
`

)(
n2
a− `

)(
n

a

)−1
.

Proof outline: Lemma 2 states that convergence of πt to
the uniform distribution is exponentially fast (after a certain
time, the TV distance decreases by a factor of 1/e every n
time units). Assuming the uniform distribution, we obtain the
claim of the lemma.

For the next lemma we need the following notation. Let S `
n

be the set of all permutations over [n] with exactly ` numbers
from U in the last a positions, i.e.,

S `
n , {π ∈ Sn : |{π(n− a+ 1), . . . , π(n)} ∩ U | = `} .

Given π = (i1, . . . , in−a, in−a+1, . . . , in) ∈ Sn, let πc :=
(i1, . . . , in−a, in, . . . , in−a+1) be the symmetric permutation.

Lemma 7 Let πt be the permutation at time t and assume that
πt is distributed uniformly over S `

n . Let C be the minimum
cut as in Lemma 3, then

E[Ct] > C +
1

2
`(a+ `)(β1 − β2).

Proof: First note that the probability in Lemma 6 is
determined by `, n1, n2 and depends only on the number
of the nodes from U in the last a places of πt. We have∑
π∈S `

n
Pr(π|S `

n)C(π) =
1
|S `

n|
∑
π∈S `

n
C(π). To bound this

sum below we fix the last a entries of the permutation.
Then by Lemma 4, C(π) is the smallest if n1 − ` entries
from U appear in the first n1 − ` positions, followed by
n2 − a + ` entries from L (in any order). Fix the first n − a
entries. Again according to Lemma 4, the minimum cut will
be obtained when all the ` nodes from U are in positions
n−a+1, n−a+2, . . . , n−a+ `, and according to Lemma 5
it is equal to Cmin := C + `2(β1 − β2). Also, the maximum
cut will be obtained when all the ` nodes from U are located
in the last positions. This yields Cmax := C + `a(β1 − β2).

Let π ∈ S `
n be any permutation with π(i) ∈ U for i ∈

[n1 − `]. We claim that

C(π) + C(πc) = 2C + `(a+ `)(β1 − β2) = Cmin + Cmax.

Indeed, assume πt = π and let S be a selection of k active
nodes that minimizes the cut. By Lemma 4 if there is at least
one node from U in the last a places, the minimum cut will be
obtained by selecting the last a places as a part of S. Moreover,
if vi ∈ U with π−1(i) = n − a + m for some m ∈ [a],
and fπ(vi) = b then |{π(1), . . . , π(n− a+m)} ∩ (S ∩ L)| =
b. Together with the fact that |S ∩ L| = a, this implies
that |{π(n− a+ 1), . . . , π(n− a+m)} ∩ (S ∩ L)| = b − `.
For πc, we obtain that (πc)−1(i) = n − m + 1 and
|{πc(n−m+ 1), . . . , πc(n)} ∩ L| = b− ` which means that
|{πc(1), . . . , πc(n−m+ 1)} ∩ (S ∩ L)| = a− (b− `).

By Lemma 5 we have

C(π) = C +
∑

v∈S∩U
fπ(v)(β1 − β2)

> C +
∑

v∈S∩U
π−1(v)∈{n−a+1,...,n}

fπ(v)(β1 − β2).

For πc we obtain

C(πc) > C +
∑

v∈S∩U
(πc)−1(v)∈{n−a+1,...,n}

fπc(v)(β1 − β2)

= C +
∑

v∈S∩U
(πc)−1(v)∈{n−a+1,...,n}

(a− (fπ(v)− `))(β1 − β2).

1565

This implies that C(π) + C(πc) > 2C + `(a+ `)(β1 − β2).
Note that for every π ∈ S `

n , the symmetric permutation
πc ∈ S `

n and that (πc)c = π. Thus, we have∑
π∈S `

n

Pr(π)C(π) =
1

|S `
n|

1

2

∑
π∈S `

n

C(π) + C(πc)

> C +
1

2
`(a+ `)(β1 − β2),

which concludes the proof.
We can now complete the proof of Theorem 2.

Proof of Theorem 2: By Lemma 4 we can assume k >
n1. Consider E[Ct] for t large enough. Since (S `

n)` partition
the set Sn we have

E[Ct] =
∑

πt∈Sn

Pr(πt)Ct(πt)

=

min{a,n1}∑
`=0

∑
πt∈S `

n

Pr(πt|S `
n) Pr(S

`
n)Ct(πt)

=

min{a,n1}∑
`=0

Pr(S `
n)

∑
πt∈S `

n

Pr(πt|S `
n)Ct(πt)

(a)

>
min{a,n1}∑

`=0

Pr(S `
n)

(
C +

1

2
`(a+ `)(β1 − β2)

)
(b)
= C +

n1∑
`=0

(
n1
`

)(
n2
a− `

)(
n

a

)−1
`(a+ `)(β1 − β2)

2
,

where (a) follows from Lemma 7 and (b) follows from Lemma
6. The final expression is obtained by repeated use of the
Vandermonde convolution formula.

APPENDIX: PROOF OF LEMMA 4
Proof: If k 6 n1 the result follows immediately from [3].

Indeed, for any permutation πt, choosing k nodes from U will
yield the minimum possible cut.

In the case k > n1, we formulate our question as a
dynamic programming problem. Assume that πt is a fixed
permutation that represents the order of the failed nodes. We
will consider the information flow graph Xt and show that the
cut is minimized when all the nodes from U are selected.

Consider a k-step procedure which in each step selects one
node from At. Each step entails a cost. If a node vtit was
chosen, the cost is defined as the added capacity values of the
in-edges of CUt that were not cut-off bu previously selected
nodes. Our goal is to choose k nodes that minimize the total
cost and hence minimize the cut between

⋃t
j=−1Aj \At and

DCt.
Now consider the sub-problem at step k−1, where the DCt

has already chosen k − 1 nodes (vt1i1 , . . . , v
tk−1

ik−1
) and we are

to choose the last node. Assume that the chosen nodes are
ordered according to their appearance in the permutation, i.e.,
t1 6 t2 6 . . . 6 tk−1. Let vt

′
1
j1
, . . . , v

t′m
jm
∈ U be nodes that

were not selected up to step k − 1, i.e.,

{vt
′
1
j1
, . . . , v

t′m
jm
} ∩ {vt1i1 , . . . , v

tk−1

ik−1
} = ∅.

Assume also that t′1 6 t′2 6 . . . 6 t′m. We show that
choosing v

t′1
j1

accounts for the minimum cut. First, we show

that choosing vt
′
1
j1

minimizes the cut over all other nodes from
U . Denote by Ck−1 the total cost (or the cut) in step k − 1.
Fix 2 6 ` ∈ [m] and note that since t′1 6 t′` we may write
t1 6 . . . 6 tr1 6 t′1 6 tr1+1 6 . . . 6 tr` 6 t′` 6 t`+1 6
. . . 6 tk. Let C(j1), C(j`) be the cut values if we choose
v
t′1
j1
, v
t′`
j`

, respectively. Choosing vt
′
1
j1

by the DCt changes Ck−1
as follows. First, due to its location, it will add n1β1+n2β2−∑r1
d=1 βid . Next, it will reduce by β1 the contribution of each

of the nodes vtr1+1

ir1+1
, . . . , vtkik to the cost. Therefore, we obtain

C(j1) = Ck−1+(n1−1)β1+n2β2−
∑r1
d=1 βid−(k−1−r1)β1.

Following the same steps for C(j`), ` > 2 we obtain C(j`) =
Ck−1+(n1−1)β1+n2β2−

∑r`
d=1 βid−(k−1−r`)β1. Hence,

we have C(j1)−C(j`) =
∑r`−r1
d=1 βir1+d

− (r`− r1)β1 which

is non-positive. Now we show that vt
′
1
j1

minimizes the cut over
a selection of any node v` from L. We divide the argument
into 2 cases:

1) Assume that π−1t (`) 6 π−1t (j1). Again, let C(`), C(j1)
be the cut values if we choose v`, v

t′1
j1

, respectively. Then
C(j1) − C(`) = (k − πt(j1))(β2 − β1) + (πt(j1) −
πt(`))β2 −

∑πt(j1)−πt(`)
d=1 βi`+d

, which is non-positive.
2) Assume π−1t (`) > π−1t (j1). This case follows immedi-

ately by noticing that choosing vt
′
1
j1

minimizes the cut even
if v` ∈ U .

Following the principle of optimality [8, Ch. 1.3], it is clear
that we first need to choose all the nodes from U and then
choose nodes from L.

REFERENCES

[1] A. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of mds codes in
distributed storage.” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2974–
2987, 2013.

[3] S. Akhlaghi, A. Kiani, and M. R. Ghanavati, “Cost-bandwidth tradeoff in
distributed storage systems,” Computer Communications, vol. 33, no. 17,
pp. 2105–2115, 2010.

[4] J. Y. Sohn, B. Choi, S. W. Yoon, and J. Moon, “Capacity of clustered
distributed storage,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 81–107,
2019.

[5] A. M. Kermarrec, N. L. Scouarnec, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Int. Symp.
on Network Coding (NetCod). IEEE, 2011, pp. 1–6.

[6] G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed.
Oxford Univ. Press, 2001.

[7] D. Aldous and P. Diaconis, “Shuffling cards and stopping times,” The
American Mathematical Monthly, vol. 93, no. 5, pp. 333–348, 1986.

[8] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 2005, vol. 1.

1566

