Capacity of dynamical storage systems

Ohad Elishco

Abstract—We define a time-dependent model of erasure coding
for distributed storage and estimate the average capacity of the
network in the simple case of fixed link bandwidth that takes
one of two given values. We show that if & data blocks are
encoded into n blocks placed on n nodes of which n; have links
with bandwidth greater than the remaining n — n; nodes by ~
symbols, then the average capacity increases by Q(v(k — n1)?)
symbols compared to the static model.

I. INTRODUCTION

The problem of node repair based on erasure coding for
distributed storage aims at optimizing the tradeoff of network
traffic and storage overhead. In this form it was established
by [1] from the perspective of network coding. This model
was generalized in various ways such as concurrent failure
of several nodes [2], heterogeneous architecture [3], [4], co-
operative repair [5], and others. The existing body of works
focuses on the failure of a node (or several nodes) and the
ensuing reconstruction process, but puts less emphasis on the
time evolution of the entire network and the inherent stochastic
nature of the node failures. The static point of view of the
system and of node repair leads to schemes based on the
worst-case scenario in the sense that the amount of data to
be stored is known in advance, and the repair capacity is
determined by the least advantageous state of the network.
Switching to evolving networks makes it possible to define
and study the average amount of data moved through the
network to accomplish repair, or, equivalently, determining the
average file size that can be retrieved from the network once
the capacities of the links from each of the nodes to the data
collector are fixed to some values.

In this work we make first steps toward defining a dynamic
model of the network with random failures. We observe that
no gain is obtained if the links from each of the nodes
have the same capacity. Stepping away from this assumption,
we adopt a simple model of heterogeneous storage wherein
the network is formed of two disjoint groups of nodes with
unequal communication costs, which was proposed in the
static case in [3]. We show that, under the assumption of
uniform failure rates of the nodes, it is possible to increase
the average size of the file stored in the system.

In Section II we present the dynamical model and basic
definitions. In Section III we define the fixed-cost model and
prove a lower bound on the average capacity, which forms
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the main result of this paper. The evolution of the network’s
information flow graph is formalized as a Markov chain similar
to those occurring in card shuffling problems, and we make
use of the classic results about their mixing times.

II. MODEL DEFINITION

In this section we define a storage network that evolves
in time and describe the basic assumptions that characterize
this evolution. We also define a sequence of information flow
graphs, which enables us to define capacity of a randomly
evolving network.

A. Evolution of the network. A storage network is a triple
N = (V,DC,CU) where V = (v1,...,v,) is a set of n
nodes (storage units), DC' is a node called data collector, and
CU is a centralized computing unit (repair center). Every node
vi, i € [n] & {1,2,...,n}, has the ability to store up to
symbols over some finite field F'. To store a set of M symbols
(a “file”), we divide it into & information blocks viewed as
vectors over I’ which are encoded with an (n, k) vector code
C. The coordinates of the codeword are vectors over F', and
each coordinate is stored in its own node in V. To read the file,
the DC accesses at least k£ nodes, obtaining the information
stored in them, and attempts to retrieve the file.

The storage network evolves in time, which we assume to
be discrete. At time ¢t = 0, the encoded file is stored in the
network. The time units ¢ = 1,2,... indicate node failures
(only those times will be taken into account in our model).
Let s = (s1,52,...) € V> be the sequence of failed nodes,
where s; is the node that fails at time ¢. When a failure
occurs, the CU corrects it (replacing the erased information
so that message retrieval still be possible) by downloading
information from d other (helper) nodes, finding the value
of the failed node and creating a new node to replace it. In
this work we assume that d = n — 1, i.e., the CU collects
information from all of the other nodes to perform the repair.

Given N and the sequence s, we define a sequence of
directed weighted graphs X;,t > 0, called information flow
graphs, where X; is a subgraph of X;,; for each .

1: Let Vo = VU®, i.e., all the nodes in A/ and a source node
node ¥, and define the graph Xy = (Vo, Ep) with edges

Eo = {(0,v:)
where each edge has weight a. We will call the nodes in
the set Ay := V active nodes of the graph Xj.

2: Suppose that s; = v;,,i1 € [n] and define the new node
v},. The graph X1 = (Vy, Ey) is formed as follows:

‘/1 :‘/OU{CUhv}l}
Ey = EyU{(v;,CU),j € [n)\{i1}} U (CUL ;).

: i€ [n]}
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The set of active nodes of X is defined as A; :=
(Ao\{vi, }) U {vi, }. ,

3: Suppose we are given the graph &;_;. Suppose that s; = vft
for some t' < t is the value of the failed node (s; € A;_1
and i; € [n]). Define X;(V;, E,) as follows:

=V;_1U {C’Ut,vi}
By = By U{(u,CUy) s u € A \{v! }} U (CU, L),

The set of active nodes of X, is defined as A, =

(Ac—1\{o}}) U o}

For any ¢ > 1 the weight of the edge (u, CU;) = (3;, where
u corresponds to v; € V, and the weight of (CUy,v},) = a.

The graph X, captures the connectivity structure and the
state of the network up to the time instant ¢{. The weight
of an edge 3; denotes the target average number of symbols
transmitted through the corresponding link over time.

B. Data retrieval and network capacity. Information ex-
change in the network is performed over the links between
the nodes. The Data Collector DC' initiates the data retrieval
by contacting at least k£ nodes in the set V. In the information
flow graph A%, this process amounts to introducing a new node,
DC;, and connecting it to a subset of active nodes S; C Ay,
|S:| > k. The links from S; to DC; are assumed to have
infinite capacity.

Let A be a storage network with the corresponding in-
formation flow graphs X;,t € N and let s be a sequence
of failed nodes. Denote by C}(S;) the capacity at time ¢
for S;. Informally, C:(S;) is the maximum file size that
can be retrieved by DC} at time t if it contacts the set S;.
Formally, C;(S;) equals the edge weight of a minimum cut

in X, between (Uf:_1 A; \ A:) and DC}, where we define
A_1 = 0. Further, let C; be the capacity at time t, i.e.,

Cy = Ci(A) 2 {C(Sh)}-

In this definition we assume that DC' is not aware of the state
of the network, and the minimum accounts for the worst case.

min
S:CAy, |St| 2k

Definition 1 Let N be a storage network and let s be a
sequence of failed nodes. Define the network capacity as

cap(NV) £ h?i sup - Z C;.
The main assumption that we make is that at any given time
t, the failed node is chosen uniformly and independently from
the set of nodes V, and thus s is a sequence of RVs which
we henceforth denote by S. This makes the C;’s and cap(/\)
into random variables. In this work we analyze the expected
value of the capacity.

Definition 2 Let N be a storage network and let S be a
random sequence of failed nodes. The expected capacity is
defined as

cap(V) = E [cap(NV)] .

It is clear that if 5, = /3 for every i € [n], the fact that .S
is random will not affect the capacity which implies that the

cap(N) is equal to the minimum cut. Hence, both cap(/\)
and its expectation in the case [3; = ( are given in [1].

At the same time, in many situations the links between the
nodes have different capacities, and below we study storage
networks with different [3;s.

Each node in A; is given by v ‘ for some t; < t and
may be identified with the node v; € V. Therefore, if at
some point ¢y all the nodes have failed at least once, then
for ¢t > t( the order in which the nodes in .A; have failed may
be identified with a permutation over the set V. For example,
it A, = {vl Sk vk ) with ¢; > 0 for all 4, then the cor-
respondlng permutation 7, is such that 7, (v;) < 7, ! (v;) iff
'uf , v € Ay with t; < t;. We summarize this observation by
saylng that the values of Ct are parametrized by permutations
of V' (the permutations are well defined because A;,t > ¢
does not contain two nodes v{, vf that correspond to the same
node in V).

Below we identify V' and [n] and consider 7, t > to as a
permutation of either of these sets as appropriate. It is possible
to obtain m;,t >ty from S} := {Sy,...,S;} by considering
only the last appearance of each node.

Example 1 Assume that |V| = 5 and assume that S =
(v1, V2, V3, V4, V5, V2,01, Vs, . .. ). Then m,..., 74 are not de-
fined and 75 = (v1,v2,vs,v4,Us5) since all the nodes had
failed int = 5. In t = 6 the node vo fails again, hence
the new order is given by g = (v1,v3,v4,Vs5,v3). This is
because the second node appears twice in S ? and we consider
only the last appearance. Following the same reasoning,
w7 = (v3, V4, V5, V2,v1) and g = (v3, V4, V2, V1, V5).

Since A; is a function of S'i, for t > ty the permutation
7 itself is random, and is a function of S’i. Since for t > ¢
we may identify m; and A;, we sometimes use the notation
Ct(ﬂ't) and C(?Tt).

Lemma 1 Ler S = (S;,i > 1) be a sequence of independent
RVs uniformly distributed on [n]. Then

a.s.
- thjgonE

Proof: Let tg be the first time instance when all the ver-
tices have failed at least once. Note that ¢y is a stopping time
and each failed node is chosen uniformly and independently.
Referring to the Coupon collector’s problem [6, p.210], we
obtain Pr(ty > enlogn) < n'=¢ ¢ > 1. Thus, t( is finite
almost surely.

By symmetry, m;, is distributed uniformly on the set of
all permutations. Moreover, since S; is chosen uniformly
and independently, for ¢ > ty we have that Pr(m =
7r|7r371) = Pr(m = m|m—1), so m is a Markov chain,
which is irreducible and aperiodic. Because of this, a limiting
distribution g exists, and is unique and positive. Hence, as
t grows, Pr(m;) — p(m). Together with the fact that Cy is
uniformly bounded from above for all ¢, we obtain that the
limit lim,, o0 + E[C] exists.

capV

t 1
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Now define X; = % 22:1 C; and note that X; is a function
of S. Following the previous discussion, for almost every S,
the sequence X; converges. Since X; is non-negative and
upper bounded for every ¢, by the dominated convergence
theorem we have lim; oo E[X;] = E[lim;— o X;] (the limit
exists a.s.), which is the desired result. [ |

The proof of Lemma 1 relies on the stopping time ¢, since
the permutation 7, is not defined for ¢ < ty. Since t( is almost
surely finite and since m; is a Markov chain with limiting
distribution, defining a starting permutation 7y = id will not
affect the expected capacity. Hence, from now on we assume
7o = id. Our problem is similar to the Top in at random shuffle
mixing time, and we use the following result from [7, Thm.1].

Theorem 1 (ALDOUS AND DIACONIS) Consider a deck of n
cards. At time t = 1,2, ... take the top card and insert it in
the deck at a random position. Let Q; denote the distribution
after t such shuffles and let U be the uniform distribution on
the set of all permutations .%,,. Then for all ¢ > 0 and n > 2,
the total variation distance satisfies

”inogn+cn - UHTV <e " €))]

To connect this result to our problem, we note that random
choice of the next failed node corresponds to selecting a
random card from the deck and putting in at the bottom. The
mixing time of this chain is stochastically equivalent to the
mixing time of the Top in at random shuffle, and we obtain
the following lemma.

Lemma 2 Let N be a storage network with |V| = n > 2
nodes and let S be a random sequence of failed nodes. Con-
sider the corresponding sequence of permutations (s, t > 0)
where o = id. Then for any ¢ > 0, n > 2 and w € .7,

1 _
|Pr(7rnlogn+cn = 77) - E‘ <e ‘.

Proof: Let T' > 1 be a value of the time. Consider the time-
reversed sequence 7; = mpr_¢,t < 1. The evolution of the
sequence 7; is described as follows: for any ¢ take the last
symbol 7;(n) and insert it randomly in the middle. Observe
that Pr(np = w) = Pr(7rr = id|7; = 7). Now use (1) and the
definition of || - ||y to claim that for T = nlogn+cn,c > 0,

| Pr(fr =id|fy = 7) — 5| <e @

III. THE FIXED COST MODEL

In this section we define a fixed-cost model and present a
lower bound on its expected capacity. Suppose that the set of

nodes has the form V' = U UL, where U = (v1,...,v,,) and
L= (Un,41---,Vn,+n,) are disjoint non-empty subsets. Let
(81 > 2 be such that
py ifv,eU
ﬁi = . )
Bo ifv;, €L

This model is a dynamical equivalent of the model presented
in [3].
Let a £ k — ny. We have the following lemma.

Lemma 3 Let N be a fixed-cost storage network and let

A . _ .
C= min {C(r)} = min {C,}.

Sev™>
Then
min{n;—1,k—1}
C = Z min {n1 81 + nofBe — if1, a}
i=1
max{0,a}
+1gzn,y Y, min{ngfy —jbs,al. (2
§=0

The proof can be obtained from Lemma 4 below, and will be
omitted.

We assume throughout that a > 0 because otherwise the
file reconstruction problem is trivially solved by contacting &
nodes in U. Expression (2) gives a lower bound for the cut C}
for all ¢t and S in our storage network model. We note that by
the definition of C, (2) also gives the value of the minimum
cut for the static models of [3], [1].

In the next lemma we show that for ¢t > ¢y the minimum
cut will be obtained when DC; chooses a set of k& nodes that
contains all nodes of U and some nodes from L.

Lemma 4 [f o > (n1—1)51+n2fs then Cy is obtained when
DC; selects k nodes which include the set U.

The proof is set in terms of a dynamic programming problem,
and is given in the Appendix.

Remark 1 The proof of Lemma 4 also implies that, once we
have chosen all the ny nodes from U and there are a more
nodes to select, the optimum is obtained by choosing the a
most recently failed nodes from L.

Using Lemma 3, in the next example we show that the average
total bandwidth in the dynamical model can be made lower
than in the static case.

Example 2 Let n = 10,k = 7, U = (v1,...,v5), L =
(1]6, Cey Ul[)), and B; = 285. Let a = 481 + 582 = 1355 (this
assumption corresponds to the minimum bandwidth constraint,
and is known as the MBR point of the storage-bandwidth
tradeoff curve of [1]). By Lemma 3, the value of the minimum
cut is 52039, and thus M = 52035. The task of node repair is
accomplished by contacting d = 9 nodes, and in the worst
case uses the bandwidth 135, = 135%.

Now we will show that under the dynamic model, it is
possible to increase the file size from 523>. Suppose that at
time ¢ a node v; € U has failed. Assume that all the nodes in
L transmit £, information to CU; and the nodes in U \ {v;}
transmit 37 — 572 amount of information to C'U;. Note that
the total amount of information received by CU; is a + % Ba.
If at time ¢ a node v; € L fails, all the nodes in U transmit
1+ %832 symbols to CU; and the nodes in L\ {v;} transmit
g (B2 symbols to CU;. Note that the total amount of information
received by CU, is again greater than a. A straightforward
calculation of the minimum cut yields that

. 1
min {C(m)} =526, + 8- §52 > 530
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and it is obtained when 7 = id. If the nodes fail with equal
probability, it is clear that on average, the nodes from U, L
will use a bandwidth of (1, 82, respectively.

The above simple procedure is in fact not optimal in terms
of the file size M. Namely, according to Theorem 2, we can
attain the value M > $2(52 + 31/18), although the analysis
becomes more complicated.

In the general case we obtain the following theorem which
forms the main result of this paper.

Theorem 2 Let N be a storage network with S;,i > 1 chosen
uniformly and independently. If the node size satisfies o >
(n1 —1)B1 + naBa then

cap(N) > O+ B2 am (g 414 m=l(a—1)).

The proof uses three lemmas which are stated next.

Let 7 € ., and let S C V,|S| = k. Define a function
fr + S — N as follows. For a node v € S, fr(v) is the
number of nodes in S N L that appear before v in 7, i.e.,

Fo(0) 23 Tsnn(vi) - T m oy (77 (v3).
=1

Let Tj,7 = 1,...,n — 1 be the adjacent transposition on
m, which permutes 7 () and 7(j + 1).

Lemma 5 Let w; be a permutation obtained at time t and let
S be a set of k active nodes selected by the DCYy. Then

Ci(m) =C+ > fx(v)(B1 — B2),

veSNU

where C' is given in Lemma 3.

Proof: First, recall that the identity permutation attains
the minimum cut, i.e., if 7; = id then C; = C. Let w € .,
and let C(m) be the corresponding capacity. We claim that
C(T;(m)) € {C(m) + B1 = B2,C(m),C(m) — Br + Ba}.

Now we note that if 7 = (i1,...,4,) € %, is a permutation
and S is a selection of k nodes with cut C(w) such that
v;; € U and that vy, , € L and both are in S, then after
applying T, (), there is only one new node in the sum
ZUGSQU fw(v)(ﬁl - 62)’ namely Vijyq- u

In the next lemma we bound the capacity C; below by fixing
the last a places in the permutation 7.

Lemma 6 For a fixed t and 0 < ¢ < min(nq,a), let Pf be
the probability that m; contains { nodes from U in the last
a = k — ny positions. As t — 0o, we have

o (00

Proof outline: Lemma 2 states that convergence of 7; to
the uniform distribution is exponentially fast (after a certain
time, the TV distance decreases by a factor of 1/e every n
time units). Assuming the uniform distribution, we obtain the
claim of the lemma. u

For the next lemma we need the following notation. Let .7
be the set of all permutations over [n]| with exactly £ numbers
from U in the last a positions, i.e.,

St e Sy {nn—a+1),...,7(n)}NU|=(}.

ln—astn—atls--- azn) € S, let m¢ 1=
< yin—a+1) be the symmetric permutation.

Given 7 = (i1, ..
(i1, ..
Lemma 7 Let m; be the permutation at time t and assume that

7y is distributed uniformly over /*. Let C be the minimum
cut as in Lemma 3, then

. :anthz’ru .

EWA>C+%aa+QWr—@)

Proof: First note that the probability in Lemma 6 is
determined by /¢,m1,no and depends only on the number
of the nodes from U in the last a places of 7. We have
Zwey’,{ Pr(r|#5C(n) = ﬁ Zweyg C (7). To bound this
sum below we fix the last a entries of the permutation.
Then by Lemma 4, C(7) is the smallest if ny — £ entries
from U appear in the first n; — ¢ positions, followed by
ny — a + ¢ entries from L (in any order). Fix the first n — a
entries. Again according to Lemma 4, the minimum cut will
be obtained when all the ¢ nodes from U are in positions
n—a+1l,n—a+2,...,n—a+¥, and according to Lemma 5
it is equal to Chyip := C + £2(B; — B2). Also, the maximum
cut will be obtained when all the ¢ nodes from U are located
in the last positions. This yields Cpax := C + £a(B1 — B2).

Let 7 € . be any permutation with 7 (i) € U for i €
[n1 — £]. We claim that

C(ﬂ-) + C(ﬂ—c) = 20 + é(a‘ + g)(ﬂl - ﬂ?) - Cmin + Cmax~

Indeed, assume 7, = 7 and let S be a selection of k& active
nodes that minimizes the cut. By Lemma 4 if there is at least
one node from U in the last a places, the minimum cut will be
obtained by selecting the last a places as a part of S. Moreover,
if v; € U with 77'(i) = n — a + m for some m € [a,
and fr(v;) = bthen |[{w(1),...,7(n —a+m)}N(SNL)| =

b. Together with the fact that |[SNL| = a, this implies
that [{mr(n—a+1),...,7(n—a+m)}N(SNL)| =b— L
For 7°, we obtain that (7¢)~1(i) = n — m + 1 and

{m¢(n —m+1),...,7¢(n)} N L| = b — ¢ which means that
H{mc(1),...,m*(n—m+1)}N(SNL)=a—(b—1).
By Lemma 5 we have

C(m) =C+ Y fx(v)(B1 = Ba)
veSNU

>C + >

veSNU
r(v)e{n—a+1,...,n}

fx(W)(B1 — B2).

For 7¢ we obtain

C(n%) > C +

>

veSNU
(7))t (v)e{n—a+1,..,n}

D (a—(fx(v) = 0)(Br — B2).
veSNU
()" t(w)e{n—a+1,...,n}

fre (V) (B = B2)

=C+
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This implies that C(7) + C (7€)
Note that for every m € yf,
7¢ € ¢ and that (7°

> 2C + (a+£)(B1 — Ba).
the symmetric permutation
)¢ = 7. Thus, we have

> Pr(m)C(m) = W'QZC )
TESLL TESLL
1
>C+ §€(a +0)(B1 — B2),
which concludes the proof. |

We can now complete the proof of Theorem 2.
Proof of Theorem 2: By Lemma 4 we can assume k >
ny. Consider E[Cy] for ¢ large enough. Since (.#), partition
the set ., we have

]E[Ct}: Z Pr(m)Ct(ﬂ't)
T ES n

min{a,n1}

Z Z Pr(m|.#) Pr(.7,

=0 mest

)Ct(Wt)

min{a,n1}

Yo P D Pr(ml)Ci(m)

£=0 Tt Gy,l;

(a) min{a,nq}

1
> P (O ytlat 05 - o)

= O

® e, Z (n) ( n2£) <Z>1é<a+z)(2ﬁl —8)

where (a) follows from Lemma 7 and (b) follows from Lemma
6. The final expression is obtained by repeated use of the
Vandermonde convolution formula. |

APPENDIX: PROOF OF LEMMA 4
Proof: If k < n the result follows immediately from [3].
Indeed, for any permutation 7, choosing k nodes from U will
yield the minimum possible cut.

In the case £k > mny, we formulate our question as a
dynamic programming problem. Assume that 7; is a fixed
permutation that represents the order of the failed nodes. We
will consider the information flow graph &} and show that the
cut is minimized when all the nodes from U are selected.

Consider a k-step procedure which in each step selects one
node from A;. Each step entails a cost. If a node v}, was
chosen, the cost is defined as the added capacity values of the
in-edges of C'U; that were not cut-off bu previously selected
nodes. Our goal is to choose k nodes that minimize the total
cost and hence minimize the cut between U;:_l Aj\ Ay and
DCt.

Now consider the sub-problem at step k— 1, where the DC,
has already chosen k — 1 nodes (vj*,...,v tk ~!) and we are
to choose the last node. Assume that the chosen nodes are
ordered according to their appearance irll the permutation, i.e.,
t1 <to < ... < tp—q. Let v;i,...,vg’; € U be nodes that
were not selected up to step k — 1, i.e.,

tkl =0

{Ujl""’ Jm}m{vn"" k1

Assume also that t{ < tj < ... < t/,. We show that
!

choosing v;i accounts for the minimum cut. First, we show
’

that choosing vx minimizes the cut over all other nodes from

U. Denote by C,_; the total cost (or the cut) in step k — 1.

Fix 2 <l € [m] and note that since ¢; < ¢, we may write

t < oo Sty St < tpygr < oo Sty < < gy <
- <tk Let C(j1), C(je) be the cut Values if we choose

vfl, v, respectively. Choosing U]l by the DC} changes Cj_1
as follows. First, due to its location, it will add nq 31 +no 82 —

Z a1 Big- Next it will reduce by [(; the contribution of each

frit vf: to the cost. Therefore, we obtain

of the nodes v, ROSERREY

C(j1) = Cr- 1+(”1— )Brtnafa—> 0Ly Biy—(k=1—r1)B1.
Following the same steps for C'(j¢),¢ > 2 we obtain C(j;) =
Cr—1+(n1—1)B1+n2f2— EZZ 1 Big—(k—1—7;)B1. Hence,
we have C(j1) — C(j¢) = >_p," BZTﬁd — (¢ —r1)B1 which

is non-positive. Now we show that v minimizes the cut over
a selection of any node v, from L. We divide the argument
into 2 cases:

1) Assume that 7, ' (¢) < 77! (j1). Again let C(¢),
be the cut values if we choose vy, v
Clh) —C) = (k- T (G0)(B — 1) + (mi(ir) —

T (0)) By — X5 5, which is non-positive.

2) Assume 7 1(E) > 77 (51). ThlS case follows immedi-

C(h)

1, respectively. Then

ately by noticing that choosing v minimizes the cut even
if vp e U.

Following the principle of optimality [8, Ch. 1.3], it is clear
that we first need to choose all the nodes from U and then
choose nodes from L. |

REFERENCES

[1] A. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 56, no. 9, pp. 4539-4551, 2010.

[2] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of mds codes in
distributed storage.” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2974—
2987, 2013.

[3] S. Akhlaghi, A. Kiani, and M. R. Ghanavati, “Cost-bandwidth tradeoff in
distributed storage systems,” Computer Communications, vol. 33, no. 17,
pp. 2105-2115, 2010.

[4] J. Y. Sohn, B. Choi, S. W. Yoon, and J. Moon, “Capacity of clustered
distributed storage,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 81-107,
2019.

[S] A. M. Kermarrec, N. L. Scouarnec, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Int. Symp.
on Network Coding (NetCod). IEEE, 2011, pp. 1-6.

[6] G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed.
Oxford Univ. Press, 2001.

[7] D. Aldous and P. Diaconis, “Shuffling cards and stopping times,” The
American Mathematical Monthly, vol. 93, no. 5, pp. 333-348, 1986.

[8] D. P. Bertsekas, Dynamic programming and optimal control. — Athena
scientific Belmont, MA, 2005, vol. 1.

1566



