

Research Article

www.acsami.org

Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability

4 Bing Xu, [†] Ian Pelse, [†] Shruti Agarkar, [†] Shunichiro Ito, [†], [‡] Junxiang Zhang, [†] Xueping Yi, [§] Yoshiki Chujo, [‡] 5 Seth Marder, ^{||} Franky So, [§] and John R. Reynolds*, ^{||}

- 6 [†]School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, and ^{||}School of Chemistry and Biochemistry and School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, 8 Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- ⁹ Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
 ¹⁰ Japan
- 11 SDepartment of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Supporting Information

13

14

1.5

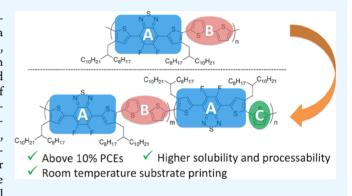
16

17

18

19

20


21 22

23

24

2.5

ABSTRACT: Three structurally disordered terpolymer derivatives of PffBT4T-2OD (PCE11), prepared by replacing a varied amount of bithiophene linkers with single thiophenes, were found to exhibit reduced aggregation in solution with increasing thiophene content, while important redox and optoelectronic properties remained similar to those of PffBT4T-2OD. Solar cells based on random terpolymer-PC₇₁BM blends exhibited average power conversion efficiencies of over 9.5% when processed with preheated substrates, with fill factors above 70%, exceeding those from PffBT4T-2OD. Thanks to increased solubility, random terpolymer devices were able to be fabricated on room-temperature substrates, reaching virtually identical performance among all

three polymers despite remarkable thicknesses of ~400 nm. Thus, we show that the random terpolymer approach is successful in improving processability while maintaining device performance.

KEYWORDS: conjugated polymers, organic photovoltaics, random terpolymers, bulk heterojunction solar cells, organic electronics

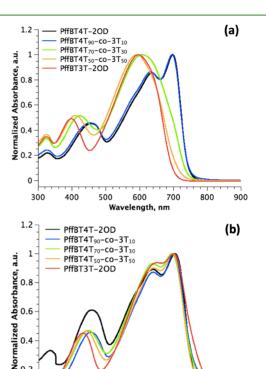
ver the past decade, polymer-based organic photovoltaic 29 (OPV) bulk heterojunction (BHJ) devices have 31 advanced to the point that power conversion efficiencies (PCEs), now exceed 14% for single-junction cells. 1-5 The donor polymer PffBT4T-2OD [poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3"'-di(2-octyldodecyl)-35 2,2';5',2";5",2"'-quaterthiophen-5,5-diyl)] (so called PCE11) 36 has been reported to provide one of the highest PCEs in the 37 field (>10% with multiple fullerene derivatives), and variants 38 on it can be synthesized readily by varying the structure of the 39 two monomers copolymerized to yield the active material. On the composition of two monomers copolymerized to yield the active material. 40 A major challenge encountered when processing PCE11 is its 41 observed strongly temperature-dependent aggregation, which 42 can complicate the process of forming BHJ films with 43 morphologies that lead to high PCEs. This has inspired 44 studies aimed at either controlling the polymer molecular 45 weight or modifying the polymer structure in order to enhance 46 solubility and processability. 10-13

Employing random polymerization in the preparation of 48 well-performing donor—acceptor (DA) conjugated polymers as 49 OPV materials has proven to be a practical and convenient

approach for polymer structural modification. Using this 50 approach, the resulting polymers can exhibit a broader 51 absorption band across the visible and near IR region of the 52 spectrum relative to a simple DA alternating polymer because 53 of the presence of a variety of chromophores, which can lead to 54 higher short-circuit current (I_{sc}) values in devices. ^{14–19} 55 Further, random polymers may have higher solubility and a 56 lower tendency to aggregate in comparison to parent polymers 57 with more regular repeat units. In addition, the degree of 58 crystallinity can be tuned based on polymer composition, thus 59 allowing a modicum of control of the blend morphology in 60 BHI solar cells. 12,20-29 These physical aspects motivated our 61 interest to introduce randomness into the backbone of 62 PffBT4T-2OD as a means of improving polymer solubility 63 and processability, while retaining straightforward monomer 64 synthesis with only one side-chain functionalized unit.

Received: September 6, 2018 Accepted: November 29, 2018

900


800

Scheme 1. Structures of the Alternating and Random PCE11-Based Copolymers Studied in This Work

$$\begin{array}{c} C_{10}H_{21} - C_{8}H_{17} \\ C_{8}H_{17} \\ C_{8}H_{17} \\ C_{8}H_{17} \\ C_{10}H_{21} \\ C_{8}H_{17} \\ C_{10}H_{21} \\ C_{1$$

Here, we report our work on a set of random terpolymer 67 derivatives of PffBT4T-2OD by replacing a fraction of the 68 bithiophene linkers with single thiophenes, which led to a 69 family of polymers with (1) a reduced tendency to aggregate 70 and increased solubility of up to 50 mg/mL at room 71 temperature, (2) facile monomer access similar to PffBT4T-72 2OD itself, (3) average PCEs approaching 10% in devices, 73 exceeding those based on PffBT4T-2OD, and (4) less 74 demanding processing requirements in device fabrication. 75 Three random terpolymers with a varied bithiophene content 76 were synthesized by Migita-Kosugi-Stille polymerization as 77 shown in Schemes 1 and S1. The two alternating parent 78 copolymers, PffBT4T-2OD and PffBT3T-2OD, were prepared 79 as well for comparison. The polymer structures were verified 80 by elemental analysis (see Supporting Information) and ¹H 81 NMR spectroscopy. The peaks at δ 7.34 and 7.28 ppm in 1 H 82 NMR spectra (Figures S1-S6) are characteristic of the 83 aromatic protons on the mono- and bi-thiophenes, respectively, whose integrations were used to calculate the random 85 terpolymer compositions. As summarized in Table S1, the 86 calculated compositions of the synthesized terpolymers match 87 their feed ratios with no more than 2 mol % deviation. As 88 determined by high-temperature gel permeation chromatog-89 raphy at 140 °C in 1,2,4-trichlorobenzene, the polymers have 90 similar-number average molecular weights (M_n) estimated to 91 be ~45 kDa with monomodal chromatograms, except for 92 PffBT3T-2OD having a slightly higher M_n of 60.4 kDa (see 93 Figure S7 in Supporting Information for chromatograms). This 94 minimizes the possible influence of molecular weight differ-95 ences on the polymer solubility, molecular packing, and blend 96 morphology.

The strong temperature dependence of PffBT4T-2OD to 98 aggregate is manifested by its remarkable thermochromic 99 behavior in dilute solution illustrated in Figures 1 and S8, 100 where the maximum absorption wavelength (λ_{max}) shifts from ~700 nm at 25 °C associated with the aggregated polymers to $_{102}$ \sim 550 nm at 85 °C, as aggregates break up to molecularly $_{103}$ dissolved species. A similar thermochromic behavior was 104 observed for the other polymers as well, as shown in Figure S8. 105 In general, the thermochromic behavior becomes less 106 pronounced as the monothiophene content is increased at 107 the expense of the bithiophene content in the polymers. This 108 phenomenon can be easily visualized by the comparison of 109 normalized UV-vis absorption profiles of the five polymer 110 solutions at 25 °C, as shown in Figure 1a. As the thiophene 111 content in the polymer increases, the absorption intensity at 112 around 700 nm reduces; the peak at 700 nm disappears 113 completely for PffBT4T50-co-3T50 and PffBT3T-2OD, with 114 their λ_{max} found below 600 nm. This phenomenon is indicative 115 of a reduction in aggregation of the polymer chains as the 116 bithiophene linkers are replaced by single thiophenes. UV-vis 117 absorption spectra of the annealed spin-coated thin films are 118 shown in Figure 1b. All samples exhibit similar λ_{max} values 119 around 700 nm and absorption peak shapes, suggesting that 120 replacing the bithiophene units with thiophenes does not

Figure 1. Normalized UV—vis absorption profiles of the polymers (a) in dilute o-dichlorobenzene solution (0.02 mg/mL) at 25 °C and (b) as spin-coated thin films annealed at 150 °C for 15 min.

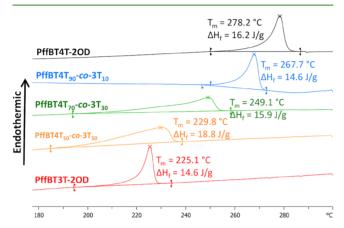
600

Wavelength, nm

700

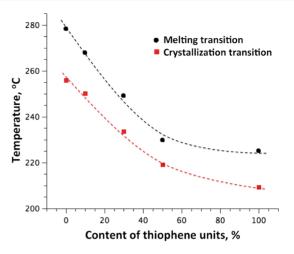
500

300


400

significantly alter the polymer optoelectronic properties in the 121 solid state. The absorption onset wavelength of PffBT3T-2OD 122 is slightly longer than that of the other polymers, 123 corresponding to a slightly lower optical gap (determined by 124 the onset wavelength of UV—vis absorption profiles) of 1.59 125 eV, compared to 1.65 eV for all the other polymers.

As the aggregation in solution becomes weaker with a higher 127 monothiophene content in the polymer, the solubility in 128 typical organic solvents increases remarkably. For example, 129 where PffBT4T-2OD does not effectively dissolve in 130 chlorobenzene at room temperature, the polymers that have 131 30% monothiophene content and above can be processed from 132 6 mg/mL chlorobenzene solutions at room temperature to 133 form uniform films. The room-temperature solubilities of both 134 $PffBT4T_{50}\mbox{-}co\mbox{-}3T_{50}$ and $PffBT3T\mbox{-}2OD$ in chlorobenzene are as $_{135}$ high as 50 mg/mL. At the same time, the monothiophene 136 content has a minimal effect of ~50 mV on the onset of the 137 differential pulse voltammetry (DPV) oxidation curves (see 138 Figure S9 and Table S2 in Supporting Information), indicating 139 that only a small change in the ionization energy is to be 140 expected. In addition, hole mobilities of the alternating and 141 random copolymers, measured by the space-charge limited 142 current method, are all comparable in magnitude to that of 143


144 PffBT4T-2OD on the order of 10^{-3} cm²/V s (see Table S2), 145 which is consistent with the value reported in previous 146 literature.⁹

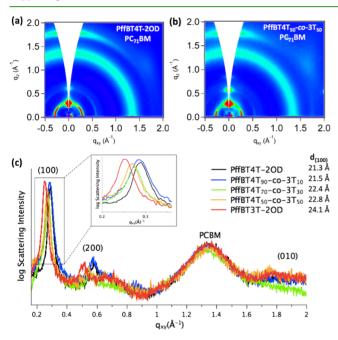
Thermogravimetric analysis (TGA) of the random terpol-148 ymers and PfBT3T-2OD shows that each polymer has high 149 thermal stability as no weight loss can be observed until ~350 150 °C, and temperatures above 400 °C are needed to achieve 5% 151 weight loss of each sample (see Figure S10 in Supporting 152 Information). Differential scanning calorimetry (DSC) was 153 used to monitor the thermal properties of the polymers in the 154 solid-state. Figure 2 shows the melting transitions of the

Figure 2. Second heating cycles of DSC curves of all five polymers. PffBT4T-2OD ($T_{\rm m}=278.2~^{\circ}\text{C}$, $\Delta H_{\rm f}=16.2~\text{J/g}$); PffBT4T $_{90}$ -co-3T $_{10}$ ($T_{\rm m}=267.7~^{\circ}\text{C}$, $\Delta H_{\rm f}=14.6~\text{J/g}$); PffBT4T $_{70}$ -co-3T $_{30}$ ($T_{\rm m}=249.1~^{\circ}\text{C}$, $\Delta H_{\rm f}=15.9~\text{J/g}$); PffBT4T $_{50}$ -co-3T $_{50}$ ($T_{\rm m}=229.8~^{\circ}\text{C}$, $\Delta H_{\rm f}=18.8~\text{J/g}$); PffBT3T-2OD ($T_{\rm m}=225.1~^{\circ}\text{C}$, $\Delta H_{\rm f}=14.6~\text{J/g}$).

155 second heating/cooling cycles for each polymer. The melt-156 transition temperatures $(T_{\rm m})$ of the random terpolymers fall in 157 between those of the two alternating copolymers, PffBT4T-158 2OD and PffBT3T-2OD, and follow a trend that the transition 159 temperatures decrease as more monothiophene repeat units 160 are present in the terpolymer backbones. Similar phenomena 161 can be seen for the crystallization temperatures (T_c) as well in 162 Figure S11, where the full curves for the second heating/ 163 cooling cycles are shown. Such changes in $T_{\rm m}$ and $T_{\rm c}$ are in 164 agreement with previous reports on random conjugated 165 terpolymers, 12,27,29 and are highlighted in Figure 3, where 166 the relationship of $T_{\rm m}$ and $T_{\rm c}$ to the monothiophene content is 167 shown. In addition, compared to the alternating copolymers, 168 the random terpolymers show a broader temperature range for 169 both melting and crystallization transitions, which is a typical 170 behavior for random copolymers.³⁰ The heat of fusion (ΔH_t) 171 and heat of crystallization (ΔH_c) for all polymers were 172 calculated and can be seen in Figures 2 and S11. Interestingly, 173 the values are found to be quite similar between 14 and 19 J/g 174 independent of the copolymer composition, in contrast to the 175 previous findings that particular random terpolymers had lower 176 melting enthalpies than the parent alternating copolymers.²⁹ This suggests that the random terpolymer derivatives of PffBT4T-2OD and PffBT3T-2OD do not necessarily have less 179 crystallinity in the solid state, although their aggregation in 180 solution is suppressed compared to PffBT4T-2OD. This 181 observation is similar to what was previously reported for 182 another random PffBT4T-2OD system, 12 where the DSC 183 curves of all five random copolymers showed strong tendency 184 to form highly crystalline domains.

Figure 3. Temperatures of melting and crystallization transitions (peak values) vs polymer backbone compositions (the content of thiophene units). Dashed lines are to guide the eyes.

The performance of the DA copolymers and terpolymers as 185 donor-phase materials in BHJ solar cells were investigated with 186 PC₇₁BM as the electron acceptor-phase material. Devices were 187 fabricated by preheating both the blend solution and indium 188 tin oxide (ITO) substrate at 110 °C and by using a custom 189 fabricated chuck for the spin coater with elevated edges to 190 prevent heat dissipation from the hot substrate, which was 191 optimized for processing PffBT4T-2OD (experimental details 192 available in Supporting Information). The average device 193 parameters are summarized in Table 1, and the current 194 tl density-voltage (J-V) characteristics of the best performing 195 devices are shown in Figure S12. We find the three random 196 terpolymers to exhibit average PCEs over 9%, exceeding those 197 based on either of the two alternating copolymers. Such an 198 enhancement in PCE is mostly owing to the high fill factors 199 (FFs) above 70%, while the $J_{\rm sc}$ and open circuit voltage ($V_{\rm oc}$) 200 values remain similar to those based on PffBT4T-2OD. The 201 external quantum efficiency (EQE) results shown in Figure 202 S13 in Supporting Information have verified the J_{sc} values 203 achieved from I-V curves, with discrepancies within 10%, as 204 shown in Table S3. In particular, the random terpolymers have 205 led to high incident photon to current conversion efficiencies 206 approaching 80% from 370 to 730 nm.


Grazing-incidence wide-angle X-ray scattering (GIWAXS) 208 images of the pristine polymers are shown in Figure S14 in 209 Supporting Information, and those of the blends are shown in 210 Figures 4a,b and S15. For these measurements, hot solutions at 211 f4 110 °C were spin-coated onto silicon substrates that were 212 roughly 75 °C. The one-dimensional (1D) line-cuts in the in- 213 plane and out-of-plane directions for all blend samples can be 214 seen in Figures 4c and S16, respectively. Overall, the 215 morphology among all polymers is very similar. In the two- 216 dimensional (2D) images of the blends (see Figures 4 and 217 S15), both lamellar packing and π - π stacking signals can be 218 observed for all five samples, suggesting that each of these 219 copolymers exhibit semicrystalline features in the blends with 220 PC₇₁BM despite their varied tendency to aggregate in solution. 221 The diffraction signal associated with $\pi-\pi$ stacking of the 222 polymer backbone appears in the out-of-plane direction, 223 indicating that each of the polymers mainly adopts a face-on 224 orientation relative to the substrate. This is consistent with 225 previous reports of PffBT4T-2OD deposited via blade coating 226 at slightly cooler temperatures than the optimum substrate 227

ACS Applied Materials & Interfaces

Table 1. Summary of Average Device Characteristics for Solar Cells

polymer/PC ₇₁ BM	substrate temperature ^a	$J_{\rm sc} ({\rm mA/cm^2})$	$V_{\rm oc}$ (V)	FF (%)	PCE (%)
PffBT4T-2OD	preheated	18.2 ± 1.2	0.70 ± 0.01	69 ± 2	8.7 ± 0.6
PffBT4T 90 -co-3T $_{10}$	preheated	18.5 ± 0.6	0.72 ± 0.01	73 ± 1	9.6 ± 0.6
$PffBT4T_{70}\text{-}co\text{-}3T_{30}$	preheated	17.7 ± 1.0	0.73 ± 0.01	74 ± 1	9.6 ± 0.6
PffBT4T $_{50}$ -co-3T $_{50}$	preheated	17.6 ± 0.8	0.72 ± 0.01	72 ± 1	9.1 ± 0.6
PffBT3T-2OD	preheated	12.0 ± 0.4	0.74 ± 0.01	69 ± 2	5.1 ± 0.7
PffBT4T $_{90}$ -co-3T $_{10}$	rt	19.9 ± 0.8	0.73 ± 0.01	65 ± 4	9.6 ± 0.5
$PffBT4T_{70}\text{-}co\text{-}3T_{30}$	rt	17.5 ± 0.5	0.75 ± 0.01	72 ± 1	9.5 ± 0.3
$PffBT4T_{50}-co-3T_{50}$	rt	16.6 ± 1.2	0.74 ± 0.01	74 ± 1	9.1 ± 0.6
PffBT3T-2OD	rt	14.0 ± 0.4	0.74 ± 0.01	58 ± 5	6.0 ± 0.9

"For processing with preheated substrates, prior to spin coating, both the blend solution and ITO substrates were preheated on a hot plate at 110 °C; a custom fabricated chuck for the spin coater with elevated edges was used to prevent heat dissipation from the hot substrate to the spin coater to ensure good coverage of the solution. For processing with rt substrates, the substrates were kept at room temperature using a regular substrate holder instead of the custom chuck with elevated edges, and the solution was heated at 90 °C for 2 h. Experimental details can be found in the Supporting Information.

Figure 4. 2D GIWAXS patterns of (a) PffBT4T-2OD:PC $_{71}$ BM blends, (b) PffBT4T $_{50}$ -co-3T $_{50}$:PC $_{71}$ BM blends, and (c) 1D line-cut profiles in in-plane direction (right images).

228 temperature of 110 °C.⁷ The signals corresponding to the 229 lamellar packing are present in both in-plane and out-of-plane 230 directions, which suggests that there is a certain degree of 231 isotropic distribution of the packed polymer chain orientations. 232 Such observations are also seen in the GIWAXS results of the 233 pristine polymer films, as shown in Figure S14 in Supporting 234 Information.

Minimal yet observable differences can be found in the in-236 plane lamellar packing distances, which are annotated for each 237 polymer/PC₇₁BM film as $d_{(100)}$ in Figure 4c. As the 238 monothiophene linkers are introduced into the polymer 239 backbones, the d-spacings attributed to lamellar packing 240 gradually increase from 21.3 nm for PffBT4T-2OD to 24.1 241 nm for PffBT3T-2OD. This can be attributed to the closer 242 proximity between the solubilizing side chains along the 243 polymer backbone when thiophene linkers are present, 244 interrupting the interdigitation of side chains. A higher volume 245 percentage of side chain may additionally induce order and 246 could explain why the backbones are driven farther apart.

As the random terpolymers and PffBT3T-2OD are more 247 soluble and have less of a tendency to aggregate in solution 248 relative to PffBT4T-2OD, we surmised they might be easier to 249 process than the parent PffBT4T-2OD. To test this hypothesis, 250 devices were prepared with warm processing solutions (90 °C) 251 deposited on room-temperature substrates (experimental 252 details available in Supporting Information) and the results 253 are presented in Figure S17 and Table 1. Because of the strong 254 aggregation of PffBT4T-2OD, its blend with PC71BM becomes 255 a gel immediately after being transferred onto the room- 256 temperature substrate (illustrated by the photograph in Figure 257 S18), preventing it from forming a uniform film and 258 subsequently making a functional device. In sharp contrast, 259 all random terpolymers lead to devices that perform similar to 260 their hot-substrate processed counterparts. Generally, when 261 building devices on room-temperature substrates, current 262 increases while FF decreases, which is an indication of a 263 thicker active layer film being formed. Indeed, film thicknesses 264 for the three random terpolymer active layers increased from 265 ~250 to ~400 nm as we moved from heated to room- 266 temperature substrates (see Table S4), the latter of which is 267 significantly thicker than active layers typically found in OPV 268 devices. These results confirm that the random terpolymer 269 approach is successful in improving the solubility and 270 processability of conjugated polymers, which can provide 271 practical implications in ease of device fabrication.

In summary, we have demonstrated that random terpol- 273 ymers based on the PffBT4T-2OD parent copolymer with 274 varied amounts of monothiophene linkers replacing bithio- 275 phene had reduced aggregation in solution with an increasing 276 monothiophene content, and due to the favorable blend 277 morphology and high hole mobility on the order of 10^{-3} cm²/ $_{278}$ V s, the resulting fullerene-based solar cells could reach PCEs 279 averaging above 9.5% with especially high FFs of over 70%. 280 Importantly, as the polymers aggregated less and exhibited 281 higher solubility at room temperature, devices based on the 282 random terpolymers could be prepared on room-temperature 283 substrates and achieve a very similar performance, even at 284 remarkably thick films of ~400 nm. This latter point is 285 especially important as one considers the future of coating and 286 printing organic solar cells where the use of room-temperature 287 substrates will make practical processing more facile.

289 ASSOCIATED CONTENT

290 Supporting Information

291 The Supporting Information is available free of charge on the 292 ACS Publications website at DOI: 10.1021/acsami.8b15522.

Experimental details including materials, polymer syntheses, characterization methods, and device fabrication and measurements, 1H spectra of synthesized polymers, polymerization result summary, UV-vis absorption profiles, cyclic voltammetry, and DPV curves, TGA and DSC heating and cooling curves, summary of the polymer optoelectronic, thermal and redox properties and hole mobilities, I-V and EQE characteristics of devices, short circuit current density from devices built on preheated substrates as measured from the solar data and integrated from the EQE data, 2D GIWAXS figures for pristine polymers and polymer/PC71BM blends, GIWAXS 1D line-cuts in the out-of-plane direction for polymer/PC71BM blends, device active layer film thicknesses, photo of the PffBT4T-2OD:PC71BM blend spin-coated on room-temperature substrate (PDF)

10 AUTHOR INFORMATION

311 Corresponding Author

312 *E-mail: reynolds@chemistry.gatech.edu.

313 ORCID @

293

2.94

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

314 Bing Xu: 0000-0001-7138-8936 315 Seth Marder: 0000-0001-6921-2536 316 Franky So: 0000-0002-8310-677X 317 John R. Reynolds: 0000-0002-7417-4869

318 Author Contributions

319 The manuscript was written through contributions of all 320 authors. All authors have given approval to the final version of 321 the manuscript.

322 Notes

323 The authors declare no competing financial interest.

324 ACKNOWLEDGMENTS

325 This work was supported by the Department of the Navy, 326 Office of Naval Research Multidisciplinary University Research 327 Initiative award no. N00014-16-1-2520 (S.M. and J.R.R.) and 328 grants N00014-17-1-2243 (J.R.R.) and N00014-17-1-2242 329 (F.S.). Use of the Stanford Synchrotron Radiation Lightsource, 330 SLAC National Accelerator Laboratory, is supported by the 331 U.S. Department of Energy, Office of Science, Office of Basic 332 Energy Sciences, under contract no. DE-AC02-76SF00515. I.P. 333 was supported by the Department of Defense (DoD) through 334 the National Defense Science & Engineering Graduate 335 Fellowship (NDSEG) Program. S.M. and J.Z. acknowledge 336 the support by the NSF under the CCI Center for Selective 337 C—H Functionalization, CHE-1700982.

338 REFERENCES

345 Adv. Mater. 2017, 29, 1700144.

339 (1) Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. 340 Molecular Optimization Enables over 13% Efficiency in Organic Solar 341 Cells. *J. Am. Chem. Soc.* 2017, 139, 7148–7151. 342 (2) Zhao, F.; Dai, S.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, 343 Q.; Wei, Z.; Ma, W.; You, W.; Wang, C.; Zhan, X. Single-Junction 344 Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency.

- (3) Luo, Z.; Bin, H.; Liu, T.; Zhang, Z.-G.; Yang, Y.; Zhong, C.; Qiu, 346 B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C. 347 Fine-Tuning of Molecular Packing and Energy Level through Methyl 348 Substitution Enabling Excellent Small Molecule Acceptors for 349 Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. 350 Adv. Mater. 2018, 30, 1706124.
- (4) Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% Efficiency in 352 Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. *Adv.* 353 *Mater.* **2018**, *30*, 1800868.
- (5) Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.; Ade, 355 H.; Hou, J. A Wide Band Gap Polymer with a Deep Highest 356 Occupied Molecular Orbital Level Enables 14.2% Efficiency in 357 Polymer Solar Cells. J. Am. Chem. Soc. 2018, 140, 7159–7167.
- (6) Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, 359 H.; Ade, H.; Yan, H. Aggregation and Morphology Control Enables 360 Multiple Cases of High-Efficiency Polymer Solar Cells. *Nat. Commun.* 361 **2014**, *5*, 5293.
- (7) Ro, H. W.; Downing, J. M.; Engmann, S.; Herzing, A. A.; 363 DeLongchamp, D. M.; Richter, L. J.; Mukherjee, S.; Ade, H.; 364 Abdelsamie, M.; Jagadamma, L. K.; Amassian, A.; Liu, Y.; Yan, H. 365 Morphology Changes upon Scaling a High-Efficiency, Solution- 366 Processed Solar Cell. *Energy Environ. Sci.* 2016, 9, 2835–2846.
- (8) Hu, H.; Chow, P. C. Y.; Zhang, G.; Ma, T.; Liu, J.; Yang, G.; 368 Yan, H. Design of Donor Polymers with Strong Temperature- 369 Dependent Aggregation Property for Efficient Organic Photovoltaics. 370 Acc. Chem. Res. 2017, 50, 2519–2528.
- (9) Ma, W.; Yang, G.; Jiang, K.; Carpenter, J. H.; Wu, Y.; Meng, X.; 372 McAfee, T.; Zhao, J.; Zhu, C.; Wang, C.; Ade, H.; Yan, H. Influence 373 of Processing Parameters and Molecular Weight on the Morphology 374 and Properties of High-Performance PffBT4T-2OD:PC71BM Organ-375 ic Solar Cells. *Adv. Energy Mater.* 2015, *5*, 1501400.
- (10) Pirotte, G.; Agarkar, S.; Xu, B.; Zhang, J.; Lutsen, L.; 377 Vanderzande, D.; Yan, H.; Pollet, P.; Reynolds, J. R.; Maes, W.; 378 Marder, S. R. Molecular Weight Tuning of Low Bandgap Polymers by 379 Continuous Flow Chemistry: Increasing the Applicability of PffBT4T 380 for Organic Photovoltaics. J. Mater. Chem. A 2017, 5, 18166–18175. 381
- (11) Zhao, J.; Li, Y.; Lin, H.; Liu, Y.; Jiang, K.; Mu, C.; Ma, T.; Lin 382 Lai, J. Y.; Hu, H.; Yu, D.; Yan, H. High-efficiency Non-Fullerene 383 Organic Solar Cells Enabled by a Difluorobenzothiadiazole-Based 384 Donor Polymer Combined with a Properly Matched Small Molecule 385 Acceptor. *Energy Environ. Sci.* 2015, 8, 520–525.
- (12) Yao, H.; Li, Y.; Hu, H.; Chow, P. C. Y.; Chen, S.; Zhao, J.; Li, 387 Z.; Carpenter, J. H.; Lai, J. Y. L.; Yang, G.; Liu, Y.; Lin, H.; Ade, H.; 388 Yan, H. A Facile Method to Fine-Tune Polymer Aggregation 389 Properties and Blend Morphology of Polymer Solar Cells Using 390 Donor Polymers with Randomly Distributed Alkyl Chains. Adv. 391 Energy Mater. 2017, 8, 1701895.
- (13) Li, M.; An, C.; Marszalek, T.; Baumgarten, M.; Yan, H.; Müllen, 393 K.; Pisula, W. Controlling the Surface Organization of Conjugated 394 Donor-Acceptor Polymers by their Aggregation in Solution. *Adv.* 395 *Mater.* **2016**, 28, 9430–9438.
- (14) Beaupré, S.; Shaker-Sepasgozar, S.; Najari, A.; Leclerc, M. 397 Random D-A1-D-A2 Terpolymers Based on Benzodithiophene, 398 Thiadiazole[3,4-e]isoindole-5,7-dione and Thieno[3,4-c]pyrrole-4,6- 399 dione for Efficient Polymer Solar Cells. *J. Mater. Chem. A* **2017**, *5*, 400 6638–6647.
- (15) Jung, J. W.; Liu, F.; Russell, T. P.; Jo, W. H. Semi-Crystalline 402 Random Conjugated Copolymers with Panchromatic Absorption for 403 Highly Efficient Polymer Solar Cells. *Energy Environ. Sci.* **2013**, *6*, 404 3301–3307.
- (16) Kang, T. E.; Cho, H.-H.; Kim, H. j.; Lee, W.; Kang, H.; Kim, B. 406 J. Importance of Optimal Composition in Random Terpolymer-Based 407 Polymer Solar Cells. *Macromolecules* **2013**, *46*, 6806–6813.
- (17) Kang, T. E.; Choi, J.; Cho, H.-H.; Yoon, S. C.; Kim, B. J. 409 Donor-Acceptor Random versus Alternating Copolymers for Efficient 410 Polymer Solar Cells: Importance of Optimal Composition in Random 411 Copolymers. *Macromolecules* **2016**, 49, 2096–2105.
- (18) Lee, J. W.; Ahn, H.; Jo, W. H. Conjugated Random 413 Copolymers Consisting of Pyridine- and Thiophene-Capped 414

- 415 Diketopyrrolopyrrole as Co-Electron Accepting Units To Enhance 416 both JSC and VOC of Polymer Solar Cells. *Macromolecules* **2015**, 48, 417 7836–7842.
- 418 (19) Zhu, X.; Lu, K.; Xia, B.; Fang, J.; Zhao, Y.; Zhao, T.; Wei, Z.; 419 Jiang, L. Improving the Performances of Random Copolymer Based 420 Organic Solar Cells by Adjusting the Film Features of Active Layers 421 Using Mixed Solvents. *Polymers* **2016**, *8*, 4.
- 422 (20) Chen, S.; Cho, H. J.; Lee, J.; Yang, Y.; Zhang, Z.-G.; Li, Y.; 423 Yang, C. Modulating the Molecular Packing and Nanophase Blending 424 via a Random Terpolymerization Strategy toward 11% Efficiency 425 Nonfullerene Polymer Solar Cells. *Adv. Energy Mater.* **2017**, 7, 426 1701125.
- 427 (21) Cho, H. J.; Kim, Y. J.; Chen, S.; Lee, J.; Shin, T. J.; Park, C. E.; 428 Yang, C. Over 10% Efficiency in Single-Junction Polymer Solar Cells 429 Developed from Easily Accessible Random Terpolymers. *Nano Energy* 430 **2017**, 39, 229–237.
- 431 (22) Duan, C.; Gao, K.; van Franeker, J. J.; Liu, F.; Wienk, M. M.; 432 Janssen, R. A. J. Toward Practical Useful Polymers for Highly Efficient 433 Solar Cells via a Random Copolymer Approach. *J. Am. Chem. Soc.* 434 **2016**, *138*, 10782–10785.
- 435 (23) Gross, Y. M.; Trefz, D.; Tkachov, R.; Untilova, V.; Brinkmann, 436 M.; Schulz, G. L.; Ludwigs, S. Tuning Aggregation by Regioregularity 437 for High-Performance n-Type P(NDI2OD-T2) Donor-Acceptor 438 Copolymers. *Macromolecules* **201**7, *50*, 5353–5366.
- 439 (24) Hwang, Y.-J.; Earmme, T.; Courtright, B. A. E.; Eberle, F. N.; 440 Jenekhe, S. A. n-Type Semiconducting Naphthalene Diimide-Perylene 441 Diimide Copolymers: Controlling Crystallinity, Blend Morphology, 442 and Compatibility Toward High-Performance All-Polymer Solar 443 Cells. J. Am. Chem. Soc. 2015, 137, 4424–4434.
- 444 (25) Jeong, M.; Chen, S.; Lee, S. M.; Wang, Z.; Yang, Y.; Zhang, Z.-445 G.; Zhang, C.; Xiao, M.; Li, Y.; Yang, C. Feasible D1-A-D2-A Random 446 Copolymers for Simultaneous High-Performance Fullerene and 447 Nonfullerene Solar Cells. *Adv. Energy Mater.* **2017**, *8*, 1702166.
- 448 (26) Kang, T. E.; Kim, K.-H.; Kim, B. J. Design of Terpolymers as 449 Electron Donors for Highly Efficient Polymer Solar Cells. *J. Mater.* 450 *Chem. A* **2014**, *2*, 15252–15267.
- 451 (27) Kim, K.-H.; Park, S.; Yu, H.; Kang, H.; Song, I.; Oh, J. H.; Kim, 452 B. J. Determining Optimal Crystallinity of Diketopyrrolopyrrole-453 Based Terpolymers for Highly Efficient Polymer Solar Cells and 454 Transistors. *Chem. Mater.* **2014**, *26*, 6963–6970.
- 455 (28) Wang, Q.; Wang, Y.; Zheng, W.; Shahid, B.; Qiu, M.; Wang, D.; 456 Zhu, D.; Yang, R. Regulating Molecular Aggregations of Polymers via 457 Ternary Copolymerization Strategy for Efficient Solar Cells. ACS 458 Appl. Mater. Interfaces 2017, 9, 32126–32134.
- 459 (29) Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; 460 Inganäs, O.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. High 461 Performance All-Polymer Solar Cells by Synergistic Effects of Fine-462 Tuned Crystallinity and Solvent Annealing. *J. Am. Chem. Soc.* 2016, 463 138, 10935–10944.
- 464 (30) Sanchez, I. C.; Eby, R. K. Crystallization of Random 465 Copolymers. J. Res. Natl. Bur. Stand., Sect. A 1973, 77, 353–358.