
–

www.osc.edu

Scaling R Shiny Apps to Multiple Concurrent Users in a Secured HPC Environment Using Open OnDemand
Ohio Supercomputer Center: Eric Franz (efranz@osc.edu), Morgan Rodgers, Trey Dockendorf, Alan Chalker, Doug Johnson, David E. Hudak

Biomedical Informatics Shared Resource, The Ohio State University: Venkat S. Gadepalli, Maciej Pietrzak, Hatice G. Ozer, Amy Webb

Introduction Solution Implementation Future Work

Status
We are in the evaluation phase of this project. The admin tool, 
Shiny launcher and Shiny app RNASeq (screenshot below), an 
interactive genomics data analysis report, are all deployed and 
in use by the six members of the BISR team with 8 projects, 
where each project may contain multiple datasets. BISR is 
continuing to refine the RNASeq app. In the next 18 months 
BISR will be developing a second Shiny app to support around 
18 projects with 21-33 end users targeted.

Related Work
The RStudio company provides several commercial offerings 
to support deploying Shiny apps in self hosted production 
environments:

• Shiny Server Pro provides a dashboard for launching Shiny 
apps and the ability to authorize users for access to specific 
apps. BISR first considered self hosting Shiny Server or 
Shiny Server Pro but were concerned about the cost of 
setting up authentication and authorization properly for their 
needs. Authorizing dataset access is a problem Shiny 
Server does not address. OSC also considered utilizing the 
open source version of Shiny Server in OnDemand to 
launch and proxy to the Shiny apps. However, the 
availability of Singularity on OSC systems made using 
NGINX as a reverse proxy to the Shiny library’s basic web 
server easier to implement and likely more performant.

• The new RStudio Connect enables multiple users to use 
RStudio IDE to publish apps, R Markdown documents 
along with other document formats and may be a viable 
commercial alternative to this solution.

• Kubernetes or other container orchestration software could 
be a viable alternative to OnDemand for supporting 
launching multiple Shiny R applications.

Future Scalability Work

Improving the performance of OnDemand on a single web 
node and adding support for horizontal scaling of OnDemand 
across multiple web nodes would address these problems:

• The number of users that can concurrently attempt to start 
a Shiny app are restricted by the number of users that can 
concurrently submit a job through the OnDemand 
dashboard. 

• The number of concurrent users submitting jobs through a 
single OnDemand instance is limited to the order of 100s 
because each user is provided their own dedicated NGINX 
web server. 

• The OnDemand PUN is configured to shut down 
Passenger apps after 5 minutes of inactivity, so this can 
help to work around this constraint by enabling more users 
to start Shiny apps while others are currently using them. 

Future Scheduler Work
OnDemand’s dependence on an HPC batch scheduler and OS 
accounts for each user introduce some challenges:

• It can be problematic if Shiny app batch jobs exceed the 
HPC resources available as jobs will be queued and access 
to a Shiny app visualization session may not be immediate.

• Without dedicated hardware, Shiny jobs may compete for 
compute time with other jobs on the same node

• Installing this Shiny visualization service in a non-HPC 
environment may not be straightforward as it would require 
the installation of a batch scheduler such as Slurm.

Enabling interactive work without the need for an HPC batch 
scheduler in OnDemand will address these problems and is 
the subject of future work.

Other Potential Future Work
The OnDemand platform is lacking a few features that would 
have made this work easier:

• An integrated DSL or app with a declarative approach to 
specifying permissions, including access control lists, may 
have reduced the cost to building the custom admin tool. 

• A fast and reliable abstraction for securing TCP 
communication between the web node and servers 
running on the compute nodes would eliminate the need to 
provide the OpenResty custom middleware solution.

This solution does not provide the ability to offer public 
anonymous access to running Shiny apps. Since user isolation 
is the primary feature of OnDemand the development roadmap 
does not include adding support for anonymous public access 
to data and apps at this time.

Acknowledgments

This work is supported by the National Science Foundation of 
the United States under the awards NSF SI2-SSE-1534949 
and CSSI-Frameworks-1835725.

Ohio Supercomputer Center. 1987. Ohio Supercomputer 
Center. Columbus OH: Ohio Supercomputer Center. 
http://osc.edu/ark:/19495/f5s1ph73.

Additional Information
OSC maintains a program website at 

https://openondemand.org

Authorization
OnDemand maps authenticated requests to system accounts, 
requiring each authenticated user to have their own unique 
account. To handle an incoming request, OnDemand launches 
a per user NGINX web server on the OnDemand web node 
and reverse-proxies the request to that server. Each Per User 
NGINX (PUN) web server provides a secure per-user endpoint 
for communication with the browser. The PUN is configured 
using the Passenger application server to serve web 
applications in Ruby, Node, and Python running on the web 
node. Two OnDemand Passenger apps facilitate the Shiny 
visualization service for BISR. 
The first is the OnDemand dashboard app, which provides a 
launch interface for accessing other apps. BISR admins use 
the launch interface to access the admin tool for managing 
access to Shiny apps and datasets, and BISR users use the 
launch interface to start a Shiny visualization session through 
OnDemand’s interactive app plugin feature. 
The second OnDemand passenger app that facilitates the 
Shiny visualization service is the admin tool. Manually 
ensuring that the permissions of the apps and the datasets are 
properly set is prone to error. The admin tool addresses this 
problem by providing admins a web interface to correctly set 
permissions to the Shiny apps and datasets deployed to 
BISR’s project space directory.

Scalability
A user starts a Shiny app by submitting a batch job using the 
OnDemand dashboard. The HPC batch scheduler is 
responsible for ensuring the resources available for the Shiny 
apps are not overloaded. If too many users attempt to launch a 
Shiny app, some jobs may be queued till resources become 
available. Thus, the number of concurrent running Shiny apps 
scales with the number of jobs the HPC batch scheduler can 
concurrently run. Utilizing the HPC batch scheduler means that 
Shiny app jobs will still compete with other jobs for limited 
system resources. Queue times introduced by this competition 
are undesirable for interactive apps like the Shiny apps, where 
there is a need for deterministic and immediate start time. 
To address this problem OSC has allocated resources for 
interactive apps by creating a dedicated batch environment 
called “Quick batch” that has a small number of compute 
nodes that execute interactive app jobs exclusively. 
Characteristics of the Quick batch environment include 
extremely short scheduler execution intervals, oversubscription 
of processors, but dedicated access to memory. The end result 
is users can get access to running dedicated instances of the 
Shiny apps in under a minute.

Middleware

We introduced a custom middleware server to start alongside 
the R Shiny app (as shown at right). The custom middleware 
server is an OpenResty NGINX server that has custom Lua 
code to provide basic authentication and location blocks to 
handle reverse proxying HTTP and WebSocket requests to the 
Shiny app. The OpenResty NGINX package is installed in a 
Singularity image which made it easy to test and deploy this 
middleware solution without installing the OpenResty NGINX 
package on OSC’s compute nodes. One of the benefits of 
using Singularity to package this middleware solution is we 
have the freedom to replace this with a better middleware 
solution for handling authentication for these types of apps.

Shiny Launcher
The Shiny Launcher allows users to specify the job’s walltime 
limit in number of hours and a project to bill against, a 
requirement for some users at OSC to provide when 
submitting jobs. The app fetches from the admin tool’s 
mappings database the path to the dataset shared with the 
user that is intended to be loaded by this app. If multiple 
datasets can be loaded, a dropdown appears allowing users to 
select which dataset to load. When the user clicks the launch 
button a batch job is submitted, with the dataset specified as 
an environment variable in the job so that when the Shiny app 
starts it can determine what dataset to load by inspecting this 
environment variable. When the job starts it 
(1) starts the Shiny app listening on a Unix domain socket 

owned by the user,
(2) generates an NGINX config for the custom middleware,
(3) starts the NGINX middleware with this config using a 

Singularity image that contains an installation of the 
OpenResty NGINX package, listening on an open port. 

Once the NGINX server starts, the job writes a connection.yml 
file with host, port, and password of the NGINX server to the 
job’s working directory which is mounted via NFS on both the 
compute node and the web node. This enables the OnDemand 
dashboard to build the connection button so the user can 
connect to the server. 

Analyst Workflow
The analyst workflow enables a user to launch a Shiny app 
through OnDemand: 
(1) The user logs into OnDemand and selects the “Shiny 

launcher” app from the dashboard menu that the user 
wants to start (there is one launcher app per Shiny app). 

(2) The user is presented a web form (seen below) to 
configure the launcher by specifying the wall time of the 
session or batch job which defaults to an hour, and selects 
the dataset to load if multiple datasets are available to 
load. Then the user submits the form. 

(3) A batch job is submitted and rapidly starts on OSC’s 
“Quick batch” cluster. The status and id of the job are 
presented to the user on a job card. 

(4) When the job start the server, a connect button appears in 
the OnDemand when connection information is available.

(5) The user clicks the connect button and a new browser 
window opens, connecting the user to the Shiny app, 
running on a compute node.

(6) The user performs the analysis using the app.

Admin Workflow
The admin workflow enables a user to grant another user 
access to datasets and Shiny apps. By selecting a user, 
dataset, and app, the admin user can create a mapping 
between the three, with the goals to enable user access to the 
specified dataset and app, and to specify that the dataset 
should be loadable by the chosen app. 
(1) The admin user logs into OnDemand
(2) Selects the “Shiny Admin” app from the dashboard
(3) Clicks the “Add new mapping” button
(4) The admin user is presented with a list of users (analysts), 

datasets, and Shiny launcher apps to choose from. The 
admin user clicks Save to save the mapping

(5) Clicks the “Fix Permissions” button to modify the 
permissions of the apps and datasets to reflect the 
modified mappings list. 

Shiny Report App
• We used packrat as a dependency manager to handle the 

many libraries and dependencies required to facilitate 
deployment of Shiny apps across different operating 
systems (Windows, MacOS, Linux) to avoid conflicts. 

• We used the concepts of Shiny modules and Shiny reactive 
programming to modularize app functionality which made 
our code more manageable and extendable to other apps. 

• We incorporated a JSON-based configuration file to 
customize the Shiny user-interface (UI) contents. This 
allows an admin or analyst to customize their Shiny UI 
without expertise in Shiny programming.

What is Open OnDemand?

What is R Shiny?

Client Need
Staff at the Biomedical Informatics Shared Resources (BISR) 
at The Ohio State University work with researchers and 
clinicians at the Wexner Medical Center supporting high 
throughput high dimensional biological data analysis needs 
such as Next Generation Sequencing (NGS) data. However, 
the gigabytes of data from this technique offers challenges in 
storage, computational resources, analysis and interpretation. 
Moreover, the solutions and advances in information 
technology working towards solving big data challenges are 
not widely adopted by the research and clinical community. 
Hence it is important to leverage existing open source tools 
and build customized tools for specific researcher to view and 
interact with genomics data and analysis results.

Project Requirements
BISR’s RNA sequencing analysis pipelines run on OSC 
clusters involves:
(1) Assessing the raw RNA sequencing data for their quality 

using software’s tools such as FASTQC, MULTIQC. 
(2) Cleaning the data as required using tools such as 

Cutadapt or Trimmomatic. 
(3) Aligning the tidy data to Ensembl’s GRCh38 reference 

genome using HISAT2 program.
(4) Assessing the quality of alignment RSeQC and picard. 
(5) Generating a single .Rdata object using custom shell and 

R scripts from multiple data files produced by the pipeline 
for use in a web based interactive report using Shiny.

As a result of running these pipelines, BISR has multiple 
datasets that are already at OSC and new datasets are 
produced. BISR plans to build multiple interactive report apps 
using Shiny to enable research analysts to analyze the 
datasets. Hence, it made sense to build a visualization solution 
hosted at OSC. The requirements for the Shiny visualization 
solution are:
(1) Provide a high-level interface for users (both the BISR 

admin user and the analyst user).
(2) Analysts only see datasets they are granted access to.
(3) Analysts only see apps they are granted access to.
(4) Analysts can launch a Shiny app with one of several 

approved datasets.

Solution Overview
The Shiny visualization service for BISR at OSC supports two 
workflows: the analyst workflow and the admin workflow.
• Analyst workflow enables a user to launch and connect to 

a Shiny app through OnDemand.
• Admin workflow enables a user to grant another user 

access to datasets and Shiny apps using a custom admin 
tool through OnDemand.

• Shiny apps run in the context of an HPC batch job.

Benefits
The cost of supporting this service using OnDemand is lower 
than building or managing a stand-alone solution: 
• An existing OnDemand installation at an HPC center will 

already have built solutions for authentication, 
authorization, accounting, and monitoring that can be 
leveraged by any OnDemand app. 

• This approach leverages the HPC batch scheduler and its 
use of containerization in batch jobs to isolate and control 
the Shiny processes and OS file system permissions to 
control access to apps and data. 

• This approach succeeds in shifting the responsibility for 
ensuring the production availability of the service from 
BISR to OSC, which enables BISR to focus more on its 
domain of work.

• BISR can keep all of the data produced by their NGS 
pipelines at OSC, deploying visualization options 
alongside datasets.

Open OnDemand is an open source project to provide web 
based access to HPC resources. OnDemand’s “Interactive 
Apps” support launching web applications like Jupyter and 
RStudio on cluster compute nodes, proxying HTTP requests 
to those apps, and secure user separation of both app and 
data access enforced at the OS level.

R is a programming language for statistical computing and 
graphics. Many libraries contributed by users have 
transformed R into an ideal tool for data wrangling, analysis, 
and as well visualization. 
Shiny is a web application R package which empowers 
research and data scientists to deploy their analysis results 
in an interactive environment without requiring the expertise 
of a software developer.

OnDemand provides a reverse proxy 
to web and VNC servers running on 
compute nodes. The OnDemand 
reverse proxy is only accessible by 
authenticated OnDemand users, but 
OnDemand does not enforce any extra 
authorization to ensure only the user 
who started the Shiny app’s web 
server can connect to it. As a result, 
each server started on a compute 
node by a batch job needs to provide 
authentication to ensure that the 
server only accepts requests from the 
user that started it.

mailto:efranz@osc.edu
http://osc.edu/ark:/19495/f5s1ph73
https://openondemand.org/

	Slide Number 1

