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Cooperative repair: Constructions of optimal MDS
codes for all admissible parameters

Min Ye Alexander Barg, Fellow, IEEE

Abstract—Two widely studied models of multiple-node repair
in distributed storage systems are centralized repair and coop-
erative repair. The centralized model assumes that all the failed
nodes are recreated in one location, while the cooperative one
stipulates that the failed nodes may communicate but are distinct,
and the amount of data exchanged between them is included in
the repair bandwidth.

As our first result, we prove a lower bound on the minimum
bandwidth of cooperative repair. We also show that the coopera-
tive model is stronger than the centralized one, in the sense that
any MDS code with optimal repair bandwidth under the former
model also has optimal bandwidth under the latter one. These
results were previously known under the additional “uniform
download” assumption, which is removed in our proofs.

As our main result, we give explicit constructions of MDS
codes with optimal cooperative repair for all possible parameters.
More precisely, given any n, k, h, d such that 2 ď h ď n ´ d ď
n ´ k we construct pn, kq MDS codes over the field F of size
|F | ě pd`1´kqn that can optimally repair any h erasures from
any d helper nodes. The repair scheme of our codes involves
two rounds of communication. In the first round, each failed
node downloads information from the helper nodes, and in the
second one, each failed node downloads additional information
from the other failed nodes. This implies that our codes achieve
the optimal repair bandwidth using the smallest possible number
of rounds.

Index Terms—Distributed storage, MDS codes, MSR codes,
Multiple-node repair, Regenerating codes.

I. INTRODUCTION

A. Centralized and cooperative repair models

The problem considered in this paper is motivated by the
distributed nature of the system wherein the coded data is
distributed across a large number of physical storage nodes.
When some storage nodes fail, the repair task performed
by the system relies on communication between individual
nodes, which introduces new challenges in the code design.
Coding schemes that address these challenges are known under
the name of regenerating codes, a concept that was isolated
and studied in the work of Dimakis et. al. [1]. In paper
[1] the authors suggested a new metric that has a bearing
on the overall efficiency of the system, namely, the repair
bandwidth, i.e., the amount of data communicated between
the nodes in the process of repairing failed nodes. Most
works on this class of codes assume that the information is
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protected with Maximum Distance Separable (MDS) codes
which provide the optimal tradeoff between failure tolerance
and storage overhead. Paper [1] also gave a lower bound on the
minimum repair bandwidth of MDS codes, known as the cut-
set bound. Code families that achieve this bound with equality
are said to have the optimal repair property. Constructions of
optimal-repair MDS codes (also known as minimum storage
regenerating, or MSR codes) were proposed in [2]–[7].

To encode information with an MDS code, the original file
is divided into k information blocks viewed as vectors over a
finite field F . The encoding procedure then finds r “ n ´ k
parity blocks, also viewed as vectors over F , which together
with the information blocks form a codeword of a code of
length n. The n blocks of the codeword are stored on n
different storage nodes. Motivated by this model, we also refer
to the coordinates of the codeword as nodes. The task of node
repair therefore amounts to erasure correction with the chosen
code, and the special feature of the erasure correction problem
arising from the distributed data placement is the constraint on
the repair bandwidth involved in the repair procedure.

Most studies of MDS codes with optimal repair bandwidth
in the literature are concerned with a particular subclass of
codes known as MDS array codes [8]. An pn, k, lq MDS array
code over a finite field F is formed of k information nodes
and r “ n´k parity nodes with the property that the contents
of any k out of n nodes suffices to recover the codeword.
Every node is a column vector in F l, reflecting the fact that
the system views a large data block stored in one node as one
coordinate of the codeword. The parameter l that determines
the dimension of each node is called sub-packetization.

While originally the repair problem was confined to a single
node failure, studies into regenerating codes have expanded
into the task of repairing multiple erasures. The problem of
repairing multiple erasures comes in two variations. One of
them is the centralized model, where a single data center is
responsible for the repair of all the failed nodes [4], [9]–[14],
and the other is the cooperative model, where the failed nodes
may communicate but are distinct, and the amount of data
exchanged between them is included in the repair bandwidth
[15]–[18]. The cut-set bounds on the repair bandwidth for
multiple erasures under these two models were derived in [9]
and [16] respectively.

Let F Ă rns, |F | “ h and R Ď rnszF , |R| “ d be
the sets of indices of the failed nodes and the helper nodes,
respectively, where we use the notation rns :“ t1, 2, . . . , nu.
Informally speaking, under the centralized model, repair pro-
ceeds by downloading βj , j P R symbols of F from each of
the helper nodes Cj , j P R, and computing the values of the
failed nodes. It is assumed that the repair is performed by a
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data center having access to all the downloaded information,
and so the repair bandwidth equals βF pRq “

ř

jPR βj . The
variation introduced by the cooperative model does not include
the data center, and so the repair bandwidth includes not only
the information downloaded from the helper nodes but also the
information exchanged between the failed nodes in the repair
process. In other words, under the centralized model, each
failed node has access to all the data downloaded from the
helper nodes, while under the cooperative model, each failed
node only has access to its own downloaded data.

B. Formal statement of the problems

Consider an pn, k, lq MDS array code C over a finite field F
and let C P C be a codeword. We write C as pC1, C2, . . . , Cnq,
where Ci “ pci,0, ci,1, . . . , ci,l´1qT P F l, i “ 1, . . . , n is the
ith coordinate of C. The node repair models can be formalized
as follows.

Definition 1 (Centralized model). Let F and R be the sets
of failed and helper nodes, and suppose that |F | “ h ď r
and |R| “ d ě k. We say that the failed nodes tCi, i P

Fu can be repaired from the helper nodes tCj , j P Ru by
downloading1 βF pRq symbols of F if there are d numbers
βj , j P R, d functions fj : F l Ñ F βj , j P R, and h functions
gi : F

ř

jPR βj Ñ F l, i P F such that

1) for every i P F and every C P C

Ci “ giptfjpCjq, j P Ruq,

2)
ÿ

jPR
βj “ βF pRq.

Under the cooperative model, the repair process is divided
into two rounds. In the first round, each failed node downloads
data from the helper nodes, and in the second round, the failed
nodes exchange data among themselves (namely, each failed
node downloads data from the other failed nodes).

Definition 2 (Cooperative model). In the notation of the
previous definition, we assume two rounds of communica-
tion between the nodes. In the first round, each failed node
Ci, i P F downloads a vector fijpCjq from each helper node
Cj , j P R, and in the second round, each failed node Ci, i P F
downloads a vector fii1 ptfi1jpCjq, j P Ruq from each of the
other failed nodes Ci1 , i1 P Fztiu. We require that each failed
node Ci, i P F can be recovered from its own downloaded data
fijpCjq, j P R and fii1 ptfi1jpCjq, j P Ruq, i1 P Fztiu. The
amount of downloaded data in this two-round repair process
is

ÿ

iPF

´

ÿ

jPR
dimF

`

fijpCjq
˘

`
ÿ

i1PFztiu

dimF

`

fii1 ptfi1jpCjq, j P Ruq
˘

¯

,

where dimF p¨q is the dimension of the argument expressed as
a vector over F.

1We note the use of the application-inspired term “download” for evaluating
the functions fj and making their values available to the failed nodes. This
term is used extensively throughout the paper.

This definition may look somewhat restrictive in the part
where the communication is constrained to only two rounds.
Indeed, in the definition proposed in [16], the repair process
may include an arbitrary number T of communication rounds.
However, in this paper we show that it suffices to consider
T “ 2 to construct codes with optimal repair bandwidth for
all possible parameters, and therefore we rely on the above
definition, which also leads to simplified notation. At the same
time, it may be that for other problems of cooperative repair,
such as optimal-access repair or others, more than two rounds
are in fact necessary.
Given a code C, define NcepC,F ,Rq and NcopC,F ,Rq as

the smallest number of symbols of F one needs to download
in order to recover the failed nodes tCi, i P Fu from the
helper nodes tCj , j P Ru under the centralized model and the
cooperative model, respectively. The repair bandwidth of the
code is defined as follows.

Definition 3 (Repair bandwidth). Let C be an pn, k, lq MDS
array code over a finite field F . The ph, dq-repair bandwidth
of the code C under centralized/cooperative repair model is
given by

βceph, dq :“ max
|F |“h,|R|“d,F

Ş

R“H
NcepC,F ,Rq,

βcoph, dq :“ max
|F |“h,|R|“d,F

Ş

R“H
NcopC,F ,Rq.

(1)

As already mentioned, the quantity βph, dq satisfies a gen-
eral lower bound. In the next theorem we collect results from
several papers that establish different versions of this result.

Theorem 1 (Cut-set bound [1], [9], [16], this paper). Let C
be an pn, k, lq MDS array code. For any two disjoint subsets
F ,R Ď rns such that |F | ď r and |R| ě k, we have the
following inequalities:

NcepC,F ,Rq ě
|F ||R|l

|F | ` |R| ´ k
, (2)

NcopC,F ,Rq ě
|F |p|R| ` |F | ´ 1ql

|F | ` |R| ´ k
. (3)

We note that in [16], the bound (3) was proved under the
additional assumption that each failed node downloads the
same amount of data from each helper node, and each failed
node also downloads the same amount of data from each of the
other failed nodes (the uniform download assumption), while
our proof of (3) in this paper does not require any additional
assumptions. A self-contained rigorous proof of (3) is given
in Section II as a part of the proof of Theorem 2 below.
Inequality (2) gives the cut-set bound for the centralized

model, and (3) gives the cut-set bound under the cooperative
one. For the case of a single failed node, there is no difference
between the two repair models, and these bounds coincide.
Note that although in this paper we consider only two-round

cooperative repair schemes, bound (3) holds for cooperative
repair with any number of communication rounds. If βceph, dq

(resp., βcoph, dq) meets the bound (2) (resp., (3)) with equality,
i.e.,

βceph, dq “
hdl

h ` d ´ k
´

resp., βcoph, dq “
hph ` d ´ 1ql

h ` d ´ k

¯

,
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we say that the code C has the ph, dq-optimal repair property
under the centralized (resp., cooperative) model.

Let us give a heuristic argument in favor of (3) based on the
cut-set bound for repairing single erasure. Let i be one of the
indices of the failed nodes. Suppose that all the other failed
nodes Cj , j P Fztiu are functional, and we need to repair Ci.
Using either (2) or (3) with |F | “ 1, we see that Ci needs to
download at least l{p|F | ` |R| ´ kq field symbols from each
of the nodes Cj , j P R Y Fztiu. Therefore each failed node
Ci, i P F needs to download at least p|F | ` |R| ´ 1ql{p|F | `

|R| ´kq symbols of F in total. Thus, if (3) is achievable with
equality, then each failed node can be repaired as though all the
other failed nodes were functional and available. We note that
this argument is not rigorous because the single-erasure cut-
set bound is derived under a one-round repair process while
the repair process under the cooperative model is divided into
two rounds.

The argument in the previous paragraph also suggests that
optimality of a code under cooperative repair implies its
optimality under centralized repair. We formalize this idea in
the next theorem.

Theorem 2 (Cooperative model is stronger than centralized
model). Let C be an pn, k, lq MDS array code and let F ,R Ď

rns be two disjoint subsets such that |F | ď r and |R| ě k. If

NcopC,F ,Rq “
|F |p|R| ` |F | ´ 1ql

|F | ` |R| ´ k
, (4)

then

NcepC,F ,Rq “
|F ||R|l

|F | ` |R| ´ k
. (5)

The statement of the theorem holds for cooperative repair
schemes with any number T ě 2 of communication rounds.

The statement in Theorem 2 is trivially true under the
uniform download assumption and in this form it was stated
in [10]. In this paper we prove the theorem in Section II under
no additional assumptions. The following arguments provide
an intuitive explanation of its claim in the case of T “ 2,
and they can be easily extended to any T . As mentioned
above, for (4) to hold with equality, each failed node Ci, i P F
should download l{p|F | ` |R| ´ kq symbols of F from each
of the nodes Cj , j P R Y pFztiuq in the course of the two-
round repair process. Therefore, each failed node Ci, i P F
downloads only |R|l{p|F |`|R|´kq symbols of F in total from
all the helper nodes tCj , j P Ru. Switching to the centralized
model, we observe that once these symbols are made available
to one failed node, they are automatically available to all the
other failed nodes at no cost to the bandwidth, and so (5)
follows immediately.

According to Theorem 2, MDS codes with ph, dq-optimal
repair property under the cooperative model also have the
same property under the centralized model. At the same time,
it is not known how to transform optimal centralized-repair
codes into cooperative-repair codes. This might be the reason
why the latter are more difficult to construct. Indeed, while
general ph, dq-optimal repair MDS codes for the centralized
model are available in several variations [4], [13], [19], MDS
codes with the same property under the cooperative model are
known only for some special values of h and d. Specifically,

the following results appeared in the literature. Paper [16]
constructed optimal MDS codes for cooperative repair for the
(trivial) case d “ k, and [17] presented a family of optimal
MDS codes for the repair of two erasures in the regime of low
rate k{n ď 1{2 (more precisely, [17] constructed pn, kq MDS
codes with the p2, dq-optimal repair property for any n, k, d
such that 2k ´ 3 ď d ď n ´ 2).
Thus, prior to our work, even the existence problem of

cooperative MDS codes with the ph, dq-optimal repair property
for general values of h and d (apart from the two special cases
mentioned above) was an open question2.
In the rest of the paper we focus on the cooperative model,

and, unless stated otherwise, all the concepts and objects
mentioned below such as the repair bandwidth, the cut-set
bound, etc., implicitly assume this model.
Our results in this work are as follows:

1) We give a complete solution of repairing multiple erasures
for all possible parameters. More precisely, given any
n, k, h, d such that 2 ď h ď n´d ď n´k´ 1, we present
an explicit pn, kq MDS code with the ph, dq-optimal repair
property. We limit ourselves to the case of d ě k ` 1
because constructions for d “ k were already given in
[16].
The size of the underlying finite field is sn for all con-
structions, where s :“ d ` 1 ´ k. At the same time, the
sub-packetization l is rather large: for h “ 2 we need to
take approximately l “ snpn´1q, while for general d and h

it is approximately l “ shpn
hq. We do not know whether this

is necessary or is merely an artifact of our construction.
2) We prove the cut-set bound (3) for the most general case

without the uniform download assumption, and we also
show that the any MDS code that affords cooperative opti-
mal repair is also optimally repairable under the centralized
model (see Theorem 2).

C. Organization of this paper

In Section II, we prove the general versions of the cut-
set bound (3) and Theorem 2 without the uniform download
assumption.
In Section III we prove a technical lemma which forms

the core of the proposed repair schemes. Various versions of
this lemma will be used throughout the paper. Moving to the
code constructions, we start with the special case of h “ 2 and
d “ k`1 to illustrate the new ideas behind the proposed code
families. These results are presented in Section IV. Namely,
in Section IV-A we construct MDS codes Cp0q

2,k`1 that can
optimally repair the first two nodes (or any given pair of nodes)
from any d “ k ` 1 helper nodes. In Section IV-B, we use
this code as a building block to construct pn, kq MDS codes
C2,k`1 with the p2, d “ k ` 1q-optimal repair property.
In Section V, we deal with general values of d, k`1 ď d ď

n ´ 2. Similarly to the above, in Section V-A we construct a
code Cp0q

2,d that supports optimal repair of the first two nodes,

2In [16], the authors showed that the cut-set bound (3) is achievable under
the weaker “functional repair” requirement, which does not assume that the
repair scheme recovers the exact content of the failed nodes, as opposed to
the more prevalent exact repair requirement considered in this paper.
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Repairing the first h nodes Repairing any h nodes
Values of h “ |F |, d “ |R| |F | l |F | l

Sec. IV: h “ 2, d “ k ` 1 n ` 2 3 2n 3

´

n
2

¯

Sec. V: h “ 2, any d n ` 2ps ´ 1q s2 ´ 1 sn ps2 ´ 1q

´

n
2

¯

Sec. VI: any h, d “ k ` 1 n ` h h ` 1 2n ph ` 1q

´

n
h

¯

Sec. VII: any h, any d n ` hps ´ 1q ph ` d ´ kqps ´ 1qh´1 sn pph ` d ´ kqps ´ 1qh´1q

´

n
h

¯

TABLE I: We list the parameters (field size, sub-packetization) of the codes constructed in this paper, where s :“ d ` 1 ´ k. In the first of
the two pairs of columns the codes are constructed for optimal repair of the first h nodes only, while the second pair gives the parameters of
codes that can optimally repair any h failed nodes.

and in Section V-B we use it as a building block to construct
MDS codes C2,d with the p2, dq-optimal repair property for
general values of d, k ` 1 ď d ď n ´ 2.

Cp0q

2,k`1
Sec. IV-A

Cp0q

2,d
Sec. V-A

C2,k`1

Sec. IV-B

Cp0q

h,k`1
Sec. VI-A

C2,d
Sec. V-B

Ch,k`1

Sec. VI-BCp0q

h,d
Sec. VII-A

Ch,d
Sec. VII-B

Fig.1: Relations between the code families constructed in
the paper. Arrows point from more general code
families to their subfamilies. The superscript p0q

indicates that the code supports optimal repair of
the first two (or the first h) erasures only.

In Section VI we construct pn, kq MDS codes with ph, d “

k ` 1q-optimal repair property for general values of h, 2 ď

h ď r´1. Following the route chosen above, in Section VI-A
we handle the case of repairing the first h nodes while in
Section VI-B we extend the construction to repair any subset
of h failed nodes. The corresponding codes are labeled as
Cp0q

h,k`1 and Ch,k`1, respectively.
Finally, in Section VII, we present the main result of this

paper—the construction for general values of both h and d. In
Section VII-A we construct an MDS code Cp0q

h,d that supports
optimal repair of the first h nodes, and in Section VII-B we
use it as a building block to construct an pn, kq MDS codes
Ch,d with the ph, dq-optimal repair property for general values
of h and d, 2 ď h ď n ´ d ď r ´ 1.

The extension from repairing a fixed h-subset of nodes to
any subset of cardinality h relies on an idea that has already
appeared in the literature on regenerating codes [4], [19],
albeit in a somewhat veiled form. We isolate and illustrate
this idea in Section V-C. Apart from revealing the structure
behind our constructions, it also enables us to give a family
of pn, kq universal MSR codes with the ph, dq-optimal repair
property for all 1 ď h ď n ´ d ď n ´ k simultaneously, i.e.,
these codes can optimally repair any number of failed nodes
from any number of helper nodes. This construction forms a

simple extension of the main results, and is given in a brief
Section VII-C.

Note that Sections IV-VI serve as preparation for Sec-
tion VII, and all the constructions in Sections IV-VI are special
cases of the constructions in Section VII. Even though the
structure of the sections looks similar, each of the construc-
tions adds new elements to the basic idea, and without the
introductory sections it may be difficult to understand the
intuition behind the code constructions in later parts of the
paper. At the same time, we note that the codes in Sections VII
reduce to the codes in Section V and VI upon appropriate
adjustment of the parameters, such as taking d “ k ` 1 or
h “ 2, etc. (see Section VII-A3 below for more details). The
complete reduction scheme between the code families in this
paper is as shown in Fig. 1, and the parameters of the codes
are listed in Table I.

D. Future directions

1) In this paper we consider the problem of repairing multiple
erasures for MDS codes, which correspond to the minimum
storage regenerating (MSR) point on the trade-off curve
between storage and repair bandwidth in the regenerating
code literature [1], [20]. A natural future direction is to
extend our results to the whole trade-off curve, starting
with the minimum bandwidth regenerating (MBR) point.

2) The repair problem of Reed-Solomon (RS) codes has
attracted significant attention recently [7], [13], [21]–[27].
In particular, explicit RS code constructions with the ph, dq-
optimal repair property under the centralized model were
given in [13]. Can this result be extended to the cooperative
model (and are two rounds enough)? Note that cooperative
repair of (full-length) RS codes was previously considered
in [23], which gave schemes for repairing 2 and 3 erasures
with small repair bandwidth (since codes in [23] have small
l, the repair bandwidth ends up being rather far away from
the cut-set bound).

3) Let us consider the regime where we fix the number of par-
ity nodes r :“ n´k and let n grow. The sub-packetization
value of our MDS code construction with the ph, dq-optimal
repair property scales as exppΘpnhqq in this regime, which
is much larger than its counterpart under the centralized
model, where the sub-packetization value is exppOpnqq

(see [4]). One possible reason is that since the cooperative
model is more restrictive than the centralized model, the
larger sub-packetization is the penalty we have to pay. The
other possibility is that our construction can be improved
in terms of the sub-packetization value. This raises an
open question of either deriving a lower bound on sub-
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packetization for the cooperative model (cf. also Table I)
or constructing codes with smaller sub-packetization.

4) Several families of codes under centralized repair also have
the optimal access property, wherein the number of field
symbols accessed at the helper nodes equals the number
of symbols downloaded for the purposes of repair [5],
[6]. Is it possible to design optimal-repair codes for the
cooperative model that reduce or minimize the number of
symbols accessed during the repair process?

II. PROOF OF (3) AND THEOREM 2

Let C be an pn, k, lq MDS code over F . Our goal is to
prove that if (3) holds with equality, then so does (2). We
will argue by showing that inequality (2) implies (3) and then
observe that the equality in (3) implies the same for (2). The
first step of this argument also yields a self-contained proof
of the cooperative cut-set bound (3).

Recall that h :“ |F | and d :“ |R|. To shorten the
expressions, below we use the following notation

DipRq “
ÿ

jPR
dimF p

`

fijpCjq
˘

,

DipFq “
ÿ

i1PFztiu

dimF

`

fii1 ptfi1jpCjq, j P Ruq
˘

for the number of symbols of F downloaded by Ci P F from
the helper nodes (in the first round of repair) and from the
other failed nodes (in the second round of repair), respectively,
where the functions fi,¨ were introduced in Definition 2. For a
given node Ci there are d`h´1 such functions, and therefore,
in total there are hpd ` h ´ 1q of them for any given subsets
F ,R. Our goal is to show that

ÿ

iPF
pDipRq ` DipFqq ě

hph ` d ´ 1q

h ` d ´ k
l. (6)

Our proof relies on the following simple observation: in the
first round of the repair process, the data downloaded from
the helper nodes by all the failed nodes is the following set
of vectors:

tfijpCjq, i P F , j P Ru. (7)

After obtaining this set of vectors, the failed nodes can recover
their values by performing additional information exchange
during the second round of repair. Recalling the centralized
model, this means that all the information needed to col-
lectively repair the failed nodes is contained in the set (7).
Therefore, on account of the centralized version of the cut-set
bound (2) we have

ÿ

iPF
DipRq ě

hd

h ` d ´ k
l. (8)

To bound the second term on the left-hand side of (6),
we use the following basic fact about MDS code: for an
pn, kq MDS code, any subset of k´1 coordinates contains no
information about any other coordinate of the code. Assume a
uniform distribution on the codewords C “ pC1, . . . , Cnq P C
and (by a slight abuse of notation) use the same symbols
Ci, i “ 1, . . . , n for the associated random variables. For any

i P rns (in particular, for any i P F ) and any subset S Ď R
of the helper nodes of size |S| “ k ´ 1, we have

HpCiq “ HpCi|tCj , j P Suq “ l log2 |F |,

where HpX|Y q is the conditional entropy of X given Y ,
measured in bits. Applying a deterministic function to Y can
only increase the conditional entropy, and therefore for any
S Ď R, |S| “ k ´ 1 we have

HpCi|tfijpCjq, j P Suq “ l log2p|F |q. (9)

On the other hand, each Ci, i P F is uniquely determined by
tfijpCjq, j P Ru Y tfii1 ptfi1jpCjq, j P Ruq : i1 P Fztiuu, so

H
`

Ci

ˇ

ˇtfijpCjq, j P Ru

Y tfii1 ptfi1jpCjq, j P Ruq : i1 P Fztiuu
˘

“ 0.
(10)

Combining (9) and (10), and using Lemma 1 below, we obtain
that

H
`

tfijpCjq, j P RzSu

Y tfii1 ptfi1jpCjq, j P Ruq : i1 P Fztiuu
˘

ě l log2 |F |. (11)

Therefore, for any i P F and any S Ď R, |S| “ k ´ 1
ÿ

jPRzS

dimF

`

fijpCjq
˘

`
ÿ

i1PFztiu

dimF

`

fii1 ptfi1jpCjq, j P Ruq
˘

ě l (12)

(the left-hand side on the above line is the entropy of the
left-hand side of (11) under the uniform distribution on its
arguments. Since the entropy is maximized for the uniform
distribution, (12) is implied by (11). Note also the switching
of the base of logarithms from 2 to |F |.).

Let us sum (12) over all subsets S Ď R of size |S| “ k´1.
Only the first term on the left-hand side depends on S , and
for every j P R, the term dimF

`

fijpCjq
˘

appears for
`

d´1
k´1

˘

different choices of S. Thus we have
ˆ

d ´ 1

k ´ 1

˙

DipRq `

ˆ

d

k ´ 1

˙

DipFq ě

ˆ

d

k ´ 1

˙

l, i P F .

Dividing both sides by
`

d
k´1

˘

, we obtain that for every i P F ,

d ´ k ` 1

d
DipRq ` DipFq ě l.

Let us sum these inequalities on all i P F . We obtain

d ´ k ` 1

d

ÿ

iPF
DipRq `

ÿ

iPF
DipFq ě hl. (13)

Multiplying (8) on both sides by k´1
d and then adding it to

(13), we obtain the desired inequality (6). This completes the
proof of (3).

We are left to prove the claim that for a given code C, (4)
implies (5). Assuming (4), we observe that there is a choice
of the functions ttfij , j P Ru, tfii1 , i1 P Fztiuu : i P Fu such
that (6) holds with equality. This means that (13) and all the
inequalities preceding it in the proof, including (8), hold with
equality, but equality in (8) means that (5) holds true.
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Lemma 1. Let X,Y, Z be arbitrary discrete random variables
such that HpX|Y Zq “ 0, then HpZq ě HpX|Y q.

Proof: By the assumption we have HpXY Zq “ HpY Zq.
Therefore,

HpZq ě HpZ|Y q “ HpY Zq ´ HpY q

“ HpXY Zq ´ HpY q

ě HpXY q ´ HpY q

“ HpX|Y q.

It remains to justify the final claim of the theorem, namely
that it holds for the general case of T ě 2 communication
rounds. Indeed the proof given above can be easily modified
to cover the general situation. To explain this, let us assume
that the repair process is divided into T rounds for some finite
integer T . In this case, for i P F and j P R, we view fijpCjq

as all the data downloaded by the failed node Ci from the
helper node Cj in all T rounds of communication. For i, i1 P

F , i ‰ i1, we view fii1 ptfi1jpCjq, j P Ruq as all the data
downloaded by the failed node Ci from another failed node
Ci1 in all T rounds of communication3. It is easy to check
that under this point of view, our proof applies directly to a
T -round repair process for any integer T .

III. A TECHNICAL LEMMA

In this section we prove a technical lemma which will be
frequently used throughout the paper. Let C P C be a codeword
of an pn, k “ n ´ r, lq MDS array code C. We write C as
pC1, C2, . . . , Cnq, where Ci “ pci,0, ci,1, . . . , ci,l´1qT P F l is
the ith coordinate of C.

Lemma 2. Let n, k, d be positive integers such that k ď

d ď n ´ 1. Let r :“ n ´ k and let s :“ d ` 1 ´ k.
Let F be a finite field with cardinality |F | ě n ` s ´ 1.
Let λ1,0, λ1,1, . . . , λ1,s´1, λ2, λ3, . . . , λn be n` s´ 1 distinct
elements of F . Define an pn, k, sq MDS array code C over the
field F by the following rs parity check equations:

λt
1,uc1,u `

n
ÿ

i“2

λt
ici,u “ 0, u “ 0, 1, . . . , s ´ 1,

t “ 0, 1, . . . , r ´ 1.

(14)

Let µi :“
řs´1

u“0 ci,u for all i P rns. Then for any subset
R Ď t2, 3, . . . , nu with cardinality |R| “ d, the values
tc1,0, c1,1, . . . , c1,s´1, µ2, µ3, . . . , µnu can be calculated from
tµi : i P Ru.

Proof: 4 Summing (14) over u P t0, 1, . . . , s ´ 1u, we
obtain

s´1
ÿ

u“0

λt
1,uc1,u `

n
ÿ

i“2

λt
iµi “ 0, t “ 0, 1, . . . , r ´ 1.

Writing these r equations in matrix form, we obtain equality
(15).

3Observe that the notation fii1 ptfi1jpCjq, j P Ruq is not accurate for
multiple-round repair because fii1 can also depend on the data fi1j , j P

Fzti1u downloaded in previous round(s). At the same time, this issue does
not affect our argument, so we prefer to keep the already established notation.

4This proof draws on the ideas in [4, Theorem 7].

Since λ1,0, λ1,1, . . . , λ1,s´1, λ2, λ3, λ4, . . . , λn are all
distinct, the vector pc1,0, c1,1, . . . , c1,s´1, µ2, µ3, . . . ,
µnq is a codeword in an pn ` s ´ 1, n ` s ´ 1 ´ r “ dq

generalized Reed-Solomon code. Therefore, for
any R Ď t2, 3, . . . , nu, |R| “ d, the values
tc1,0, c1,1, . . . , c1,s´1, µ2, µ3, . . . , µnu can be calculated
from tµi : i P Ru. This completes the proof of the lemma.

IV. COOPERATIVE p2, k ` 1q-OPTIMAL CODES

A. Repairing the first two nodes from any k ` 1 helper nodes

Let F be a finite field. For any k ă n ď |F |´2 we present a
construction of pn, k, 3q MDS array codes C “ Cp0q

2,k`1 over F
that support optimal repair of the first two nodes. Specifically,
when the first two nodes of C fail, the repair of each failed node
can be accomplished by connecting to any k` 1 helper nodes
and downloading a total of k ` 2 symbols of F from these
helper nodes as well as from the other failed node, achieving
the optimal repair bandwidth according to the cut-set bound
(3).
For i “ 1, 2, . . . , n, we write the ith node of C as Ci “

pci,0, ci,1, ci,2qT P F 3, which is a column vector of dimension
3 over F . Let λ1,0, λ1,1, λ2,0, λ2,1, λ3, λ4, . . . , λn be n ` 2
distinct elements of the field F . The code C is defined by the
following 3 sets of parity check equations:

λt
1,0c1,0 ` λt

2,0c2,0`

n
ÿ

i“3

λt
ici,0 “ 0, (16)

t “ 0, 1, . . . , r ´ 1,

λt
1,1c1,1 ` λt

2,0c2,1`

n
ÿ

i“3

λt
ici,1 “ 0, (17)

t “ 0, 1, . . . , r ´ 1,

λt
1,0c1,2 ` λt

2,1c2,2`

n
ÿ

i“3

λt
ici,2 “ 0, (18)

t “ 0, 1, . . . , r ´ 1.

For each a “ 0, 1, 2 the set of vectors tpc1,a, c2,a, . . . , cn,aqu

obviously forms an pn, k “ n ´ rq MDS code, and so C is
indeed an pn, k, 3q MDS array code.
The following lemma suggests a description of the repair

scheme for the first two nodes using the bandwidth that meets
the cut-set bound (3) with equality.

Lemma 3. For i “ 1, . . . , n let

µi,1 :“ ci,0 ` ci,1, µi,2 :“ ci,0 ` ci,2.

For any set of helper nodes R Ď t3, 4, . . . , nu, |R| “ k ` 1,
the values of c1,0, c1,1, and µ2,1 are uniquely determined by
tµi,1 : i P Ru. Similarly, the values of c2,0, c2,2, and µ1,2 are
uniquely determined by tµi,2 : i P Ru.

Proof: This lemma follows immediately from Lemma 2.
Indeed, take d “ k ` 1 and s “ 2, then there are only two
groups of equations in (14), namely those for u “ 0, 1. To
prove the first statement of Lemma 3, consider the equations
in (16) and (17). These two sets of equations have the
same structure as the equations in (14): namely, only the
coefficients of c1,u vary with u while the coefficients of ci,u
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»
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–

1 1 . . . 1 1 1 1 . . . 1
λ1,0 λ1,1 . . . λ1,s´1 λ2 λ3 λ4 . . . λn

λ2
1,0 λ2

1,1 . . . λ2
1,s´1 λ2

2 λ2
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4 . . . λ2
n

...
...

...
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...
...

...
...

...
λr´1
1,0 λr´1

1,1 . . . λr´1
1,s´1 λr´1

2 λr´1
3 λr´1

4 . . . λr´1
n

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

c1,0
c1,1
...

c1,s´1

µ2

µ3

µ4

...
µn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0. (15)

are independent of the value of u for all i P t2, 3, . . . , nu.
Therefore Lemma 2 applies directly, and we obtain the claimed
fact about c1,0, c1,1 and µ2,1.

Similarly, to prove the second statement, consider the equa-
tions in (16) and (18). These two sets of equations also have
the same structure as the equations in (14): namely, only the
coefficients of c2,u vary with u while the coefficients of ci,u
are independent of the value of u for all i P rnszt2u.

This lemma implies that the first two nodes of C can be
repaired with optimal bandwidth. As already mentioned, the
repair process is divided into two rounds. In the first round, the
node Cj , j “ 1, 2 downloads k`1 symbols µij from the helper
nodes Ci, i P R. According to Lemma 3, after the first round,
C1 knows the values of c1,0, c1,1 and c2,0`c2,1, and C2 knows
the values of c2,0, c2,2 and c1,0 ` c1,2. In the second round,
C1 downloads the sum c1,0`c1,2 from C2, and C2 downloads
the sum c2,0 ` c2,1 from C1. Clearly, after the second round,
both C1 and C2 can recover all their coordinates. Moreover, in
the whole repair process, C1 only downloads one symbol of F
from each of the nodes Ci, i P RYt2u, and C2 only downloads
one symbol of F from each of the nodes Ci, i P R Y t1u.
Therefore the total repair bandwidth is 2pk ` 1q ` 2, meeting
the cut-set bound (3) with equality.

B. Repairing any two erasures from any k ` 1 helper nodes

Here we develop the idea in the previous section to construct
explicit MDS array codes with the p2, k ` 1q-optimal repair
property. More specifically, given any n ě k ` 3 and a
finite field F, |F | ě 2n, we present an pn, k, l “ 3mq MDS
array code C “ C2,k`1 over F, where m “

`

n
2

˘

. When any
two nodes of C fail, the repair of each failed node can be
accomplished by connecting to any k ` 1 helper nodes and
downloading pk ` 2q3m´1 symbols of F in total from these
helper nodes as well as from the other failed node. Clearly, the
repair bandwidth meets the cut-set bound (3) with equality.

We will define C by its parity-check equations, and we
begin with some notation. Let tλi,juiPrns,jPt0,1u be 2n distinct
elements of the field F . Let g be a bijection between the set
of pairs tpi1, i2q : 1 ď i1 ă i2 ď nu and the set t1, 2, . . . ,mu.
For concreteness, let

g : pi1, i2q ÞÑ

ˆ

i2 ´ 1

2

˙

` i1 (19)

(g partitions the set rms into segments of length pi2´1q, where
i2 “ 2, 3, . . . , n). Given an integer a P t0, 1, . . . , l ´ 1u, let

pam, am´1, . . . , a1q be the digits of its ternary expansion, i.e.,
a “

řm´1
j“0 aj`13

j . Define the following function

f : rns ˆ t0, 1, . . . , l ´ 1u Ñ t0, 1u

pi, aq ÞÑ

´

i´1
ÿ

j“1

1tagpj,iq “ 2u

`

n
ÿ

j“i`1

1tagpi,jq “ 1u

¯

pmod 2q,

(20)

where 1 is the indicator function. We note that f computes
the parity of the count of 1’s and 2’s in a certain subset of the
digits of a. This subset is formed of all the digits with indices
in the set tgp1, iq, . . . , gpi ´ 1, iq, gpi, i ` 1q, . . . , gpi, nqu. To
give an example, let n “ 6, then m “ 15, and the function
g maps from tpi1, i2q : 1 ď i1 ă i2 ď 6u to t1, 2, . . . , 15u.
Let i “ 2 and let 0 ď a ď 315 ´ 1 “ 14348906 be an
integer. The function f isolates the digits au in the ternary
expansions of a such that u P tgp¨, 2q, gp2, ¨qu, i.e., u P

tgp1, 2q, gp2, 3q, gp2, 4q, gp2, 5q, gp2, 6qu “ t1, 3, 5, 8, 12u.
The value of the function fp2, aq equals the parity of 1ta1 “

2u ` 1ta3 “ 1u ` 1ta5 “ 1u ` 1ta8 “ 1u ` 1ta12 “ 1u.

Definition 4. The code C “ C2,k`1 is defined by the following
rl parity check equations:

n
ÿ

i“1

λt
i,fpi,aqci,a “ 0,

t “ 0, 1, . . . , r ´ 1, a “ 0, 1, . . . , l ´ 1.

For all a “ 0, 1, . . . , l ´ 1, the set of vectors
tpc1,a, c2,a, . . . , cn,aqu forms an pn, kq MDS code, so C is
indeed an pn, k, lq MDS array code.

Next we show that C has optimal repair bandwidth for
repairing any two failed nodes from any k ` 1 helper nodes.
Let Ci1 and Ci2 , i1 ă i2 be the failed nodes. First let us
introduce some notation to describe the repair scheme. For
a “ 0, 1, . . . , l ´ 1, j P rms, and u “ 0, 1, 2, let

apj, uq :“ pam, . . . , aj`1, u, aj´1, . . . , a1q.

For a “ 0, 1, . . . , l ´ 1 and i P rns, let

µ
paq
i,1 :“ ci,apg12,0q ` ci,apg12,1q,

µ
paq
i,2 :“ ci,apg12,0q ` ci,apg12,2q,

where for brevity we write g12 instead of gpi1, i2q.
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The following lemma, which develops the ideas in
Lemma 3, accounts for the p2, k ` 1q optimal repair property
of the code C.

Lemma 4. Let Ci1 and Ci2 , i1 ă i2 be the failed nodes. For
any set of helper nodes R Ď rnszti1, i2u, |R| “ k`1 and any
a P t0, 1, . . . , l ´ 1u, the values ci1,apg12,0q, ci1,apg12,1q, µ

paq
i2,1

are uniquely determined by the set of values tµ
paq
i,1 : i P Ru.

Similarly, the values ci2,apg12,0q, ci2,apg12,2q, µ
paq
i1,2

are uniquely
determined by the set of values tµ

paq
i,2 : i P Ru.

Proof: Recall that a “ 0, 1, . . . , l ´ 1 numbers the
coordinates of the node, or the rows in the codeword array. For
a fixed value of a, the parity check equations corresponding
to the rows apg12, 0q, apg12, 1q, apg12, 2q are as follows:

n
ÿ

i“1

λt
i,fpi,apg12,uqqci,apg12,uq “ 0,

t “ 0, 1, 2, . . . , r ´ 1,u “ 0, 1, 2.

(21)

According to definition of the function f in (20) and the
remarks made after it, we have

fpi, apg12, 0qq “ fpi, apg12, 1qq “ fpi, apg12, 2qq,

i P rnszti1, i2u

fpi1, apg12, 0qq “ fpi1, apg12, 2qq ‰ fpi1, apg12, 1qq,

fpi2, apg12, 0qq “ fpi2, apg12, 1qq ‰ fpi2, apg12, 2qq.

This implies that for i P rnszti1, i2u the following notation is
well defined:

λi :“ λi,fpi,apg12,0qq “ λi,fpi,apg12,1qq “ λi,fpi,apg12,2qq. (22)

Note that λi depends on the value of a, though we omit this
dependence from the notation. Further, let

λ1
i1,0 :“ λi1,fpi1,apg12,0qq “ λi1,fpi1,apg12,2qq,

λ1
i1,1 :“ λi1,fpi1,apg12,1qq,

λ1
i2,0 :“ λi2,fpi2,apg12,0qq “ λi2,fpi2,apg12,1qq,

λ1
i2,1 :“ λi2,fpi2,apg12,2qq.

(23)

Notice that

λ1
i1,0 ‰ λ1

i1,1, λ
1
i2,0 ‰ λ1

i2,1

tλ1
i1,0, λ

1
i1,1u “ tλi1,0, λi1,1u

tλ1
i2,0, λ

1
i2,1u “ tλi2,0, λi2,1u

λi P tλi,0, λi,1u, i P rnszti1, i2u.

Therefore λ1
i1,0

, λ1
i1,1

, λ1
i2,0

, λ1
i2,1

, λi, i P rnszti1, i2u are all
distinct. Using the notation defined in (22)-(23), we can write
(21) as

pλ1
i1,0qtci1,apg12,0q ` pλ1

i2,0qtci2,apg12,0q

`
ÿ

iPrnszti1,i2u

λt
ici,apg12,0q “ 0,

pλ1
i1,1qtci1,apg12,1q ` pλ1

i2,0qtci2,apg12,1q

`
ÿ

iPrnszti1,i2u

λt
ici,apg12,1q “ 0,

pλ1
i1,0qtci1,apg12,2q ` pλ1

i2,1qtci2,apg12,2q

`
ÿ

iPrnszti1,i2u

λt
ici,apg12,2q “ 0,

t “ 0, 1, 2, . . . , r ´ 1.

Now notice that up to a notational change, these equations
have the same form as equations (16)-(18). Therefore, the
proof of Lemma 3 applies directly, completing the proof.
This lemma implies that the nodes Ci1 and Ci2 can be

repaired with optimal bandwidth. To see this, we parti-
tion the coordinates of a node into l{3 groups of size 3
where each group is formed of the coordinates with indices
apg12, 0q, apg12, 1q, apg12, 2q for a given a. By Lemma 4
above we know that each group can be repaired with optimal
bandwidth, so the entire contents of the failed nodes can also
be optimally recovered.
A more detailed description of the repair process is as

follows. In the first round of the repair process, Ci1 downloads
the values in the set tµ

paq
i,1 : ag12 “ 0u and Ci2 downloads the

values tµ
paq
i,2 : ag12 “ 0u from each helper node Ci, i P R.

This enables Ci1 to find the values

tci1,a : ag12 “ 0u Y tci1,apg12,1q : ag12 “ 0u

Y tµ
paq
i2,1

: ag12 “ 0u.

Similarly, Ci2 is able to find the values

tci2,a : ag12 “ 0u Y tci2,apg12,2q : ag12 “ 0u

Y tµ
paq
i1,2

: ag12 “ 0u.

In the second round, Ci1 downloads tµ
paq
i1,2

: ag12 “ 0u from
Ci2 , and Ci2 downloads tµ

paq
i2,1

: ag12 “ 0u from Ci1 . After
the second round, Ci1 knows the values of all the elements in
the set

tci1,apg12,uq : ag12 “ 0, u P t0, 1, 2uu

“tci1,a : a P t0, 1, 2, . . . , l ´ 1uu,

and Ci2 knows the values of all the elements in the set

tci2,apg12,uq : ag12 “ 0, u P t0, 1, 2uu

“tci2,a : a P t0, 1, 2, . . . , l ´ 1uu,

i.e., both Ci1 and Ci2 can recover all their coordinates.
Moreover, in the whole repair process, Ci1 downloads l{3
symbols of F from each of the nodes Ci, i P R Y ti2u, and
Ci2 downloads l{3 symbols of F from each of the nodes
Ci, i P R Y ti1u. Therefore the total repair bandwidth is
2pk ` 2ql{3, meeting the cut-set bound (3) with equality.

V. COOPERATIVE p2, dq-OPTIMAL CODES FOR GENERAL d

A. Optimal repair of the first two nodes

In this section we present an explicit MDS array code that
can optimally repair the first two nodes from any d helper
nodes for general values of d. Let n, k, d be such that k`1 ď

d ď n´2, let s :“ d`1´k, and let F be a finite field of size
at least n ´ 2 ` 2s. We will construct an pn, k, s2 ´ 1q MDS
array code C “ Cp0q

2,d over the field F that has the following
property. When the first two nodes of C fail, the repair of each
of them can be accomplished by connecting to any d surviving
(helper) nodes and downloading ps´ 1qpd` 1q symbols of F
in total from these helper nodes as well as from the other
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failed node. Clearly, the amount of downloaded data meets
the cut-set bound (3) with equality.

Let λ1,0, λ1,1, . . . , λ1,s´1, λ2,0, λ2,1, . . . , λ2,s´1, λ3, λ4, . . . ,
λn be n ´ 2 ` 2s distinct elements of the field F . Given an
integer a, 0 ď a ď s2 ´ 2, let b1paq, b2paq be the digits of its
expansion to the base s:

a “ pb2paq, b1paqq. (24)

The code C “ Cp0q

2,d is defined by the following rps2´1q parity
check equations.

λt
1,b1paqc1,a ` λt

2,b2paqc2,a `

n
ÿ

i“3

λt
ici,a “ 0. (25)

t “ 0, 1, . . . , r ´ 1, a “ 0, 1, 2, . . . , s2 ´ 2.

Clearly, for a given a the set of vectors tpc1,a, c2,a, . . . , cn,aqu

that satisfy the system (25) forms an MDS code of length n
and dimension k. Therefore C is indeed an pn, k, s2 ´1q MDS
array code. Note that for d “ k`1, the code C defined by (25)
is the same as the code defined by (16)-(18) in Section IV.

For every i P rns define the following elements of F :

µ
pv2q
i,1 :“

s´1
ÿ

v1“0

ci,sv2`v1 , v2 P t0, 1, . . . , s ´ 2u;

µ
pv1q
i,2 :“

s´1
ÿ

v2“0

ci,sv2`v1 , v1 P t0, 1, . . . , s ´ 2u.

Similarly to the previous sections, we have the following
lemma:

Lemma 5. Suppose that the failed nodes are C1, C2 and let
R Ď t3, 4, . . . , nu, |R| “ d be a set of d helper nodes. For any
v2 P t0, 1, . . . , s´2u, the values tc1,sv2`v1 , v1 “ 0, 1, . . . , s´

1u and µ
pv2q
2,1 are uniquely determined by the set of values

tµ
pv2q
i,1 : i P Ru. Similarly, for any v1 P t0, 1, . . . , s ´ 2u, the

values tc2,sv2`v1 , v2 “ 0, 1, . . . , s´1u and µ
pv1q
1,2 are uniquely

determined by the set of values tµ
pv1q
i,2 : i P Ru.

Proof: We again use Lemma 2 to prove this lemma. To
prove the first statement, we use definition (25) to write out
the parity-check equations that correspond to a “ sv2, sv2 `

1, . . . , sv2 ` s ´ 1 for a fixed v2 P t0, 1, . . . , s ´ 2u:

λt
1,v1

c1,sv2`v1 ` λt
2,v2

c2,sv2`v1 `

n
ÿ

i“3

λt
ici,sv2`v1 “ 0,

t “ 0, 1, . . . , r ´ 1, v1 “ 0, 1, . . . , s ´ 1.

These equations have the same structure as the equations in
(14): v1 here plays the role of u in (14). Only the coefficients
of c1,sv2`v1 vary with the value of v1 while the coefficients of
ci,sv2`v1 are independent of the value of v1 for all i P rnszt1u.
Therefore the proof of Lemma 2 can be directly applied here.

To prove the second statement, we use definition (25) to
write out the parity-check equations that correspond to a “

v1, v2 ` v1, 2v2 ` v1, . . . , ps ´ 1qv2 ` v1 for a fixed v1 P

t0, 1, . . . , s ´ 2u:

λt
1,v1

c1,sv2`v1 ` λt
2,v2

c2,sv2`v1 `

n
ÿ

i“3

λt
ici,sv2`v1 “ 0,

t “ 0, 1, . . . , r ´ 1, v2 “ 0, 1, . . . , s ´ 1.

These equations have the same structure as the equations in
(14): v2 here plays the role of u in (14). Only the coefficients
of c2,sv2`v1 vary with the value of v2 while the coefficients of
ci,sv2`v1 are independent of the value of v2 for all i P rnszt2u.
Therefore the proof of Lemma 2 can be directly applied here.

Let us show that this lemma implies that the first two nodes
of C can be repaired with optimal bandwidth. In the first
round, the first node C1 downloads the values tµ

pv2q
i,1 , v2 “

0, 1, . . . , s ´ 2u from each helper node Ci, i P R, and the
second node C2 downloads tµ

pv1q
i,2 , v1 “ 0, 1, . . . , s´ 2u from

each helper node Ci, i P R. From Lemma 5 we conclude that
after the first round, C1 knows the values

c1,sv2`v1 , v2 “ 0, 1, . . . , s ´ 2, v1 “ 0, 1, . . . , s ´ 1

and µ
pv2q
2,1 , v2 “ 0, 1, . . . , s ´ 2.

In the same way, C2 knows the values

c2,sv2`v1
, v1 “ 0, 1, . . . , s ´ 2, v2 “ 0, 1, . . . , s ´ 1

and µ
pv1q
1,2 , v1 “ 0, 1, . . . , s ´ 2.

In the second round, C1 downloads the sums µ
pv1q
1,2 , v1 “

0, 1, . . . , s ´ 2 from C2, and C2 downloads the sums
µ

pv2q
2,1 , v2 “ 0, 1, . . . , s ´ 2 from C1. It is easy to verify that

after the second round, both C1 and C2 can recover all of
their coordinates. Moreover, over the course of the entire repair
process, C1 downloads ps´1q symbols of F from each of the
nodes Ci, i P R Y t2u, and C2 downloads ps ´ 1q symbols
of F from each of the nodes Ci, i P R Y t1u. Therefore the
total repair bandwidth is 2ps ´ 1qpd ` 1q, meeting the cut-set
bound (3) with equality.

B. Optimal repair of any two erasures

In this section we present a construction of MDS array codes
with the p2, dq-optimal repair property, relying on the ideas of
the previous section. Let n, k, d be such that k ` 1 ď d ď

n ´ 2, let s :“ d ` 1 ´ k and let F be a finite field such
that |F | ě sn. We present an pn, k, l “ ps2 ´ 1qmq MDS
array code C “ C2,d over the field F , where m :“

`

n
2

˘

. When
any two nodes of C fail, the repair of each failed node can
be accomplished by connecting to any d helper nodes and
downloading pd`1ql{ps`1q symbols of F in total from these
helper nodes as well as from the other failed node. Clearly, the
repair bandwidth meets the cut-set bound (3) with equality.
We will define C by its parity-check equations, and we begin

with some notation. Let tλijuiPrns,jPt0,1,...,s´1u be sn distinct
elements of the field F . Let g be a bijection between the set of
pairs tpi1, i2q : i1, i2 P rns, i1 ă i2u and the set t1, 2, . . . ,mu

defined in (19). For every a “ 0, 1, 2, . . . , l ´ 1, we write its
expansion in the base ps2 ´ 1q as a “ pam, am´1, . . . , a1q,
i.e., a “

řm´1
j“0 aj`1ps2 ´ 1qj . Define the following function

f : rns ˆ t0, 1, . . . , l ´ 1u Ñ t0, 1, . . . , s ´ 1u

pi, aq ÞÑ

´

i´1
ÿ

j“1

b2pagpj,iqq `

n
ÿ

j“i`1

b1pagpi,jqq

¯

pmod sq,

(26)
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where b1pxq and b2pxq form the digits of the expansion of x in
the base s; see definition (24). Note that when d “ k ` 1, the
function f defined in (26) is the same as the function defined
in (20) in Section IV-B.

Definition 5. The code C “ C2,d is defined by the following
rl parity check equations.

n
ÿ

i“1

λt
i,fpi,aqci,a “ 0, t “ 0, 1, 2, . . . , r ´ 1,

a “ 0, 1, 2, . . . , l ´ 1.

For a given a “ 0, 1, . . . , l ´ 1 the set of vectors
tpc1,a, c2,a, . . . , cn,aqu forms an MDS code of length n and
dimension k. Therefore C is indeed an pn, k, lq MDS array
code. Also note that when d “ k ` 1, the code C is the same
as the code defined in Section IV-B.

Next we show that C has optimal repair bandwidth for
repairing any two failed nodes from any d helper nodes. We
need several elements of notation which are similar to the
notation used in the previous sections. For a “ 0, 1, . . . , l´1,
j P rms, and u P t0, 1, 2, . . . , s2 ´ 2u, let apj, uq :“
pam, . . . , aj`1, u, aj´1, . . . , a1q. For a “ 0, 1, . . . , l ´ 1 and
i P rns, we define

µ
pa,v2q
i,i1

:“
s´1
ÿ

v1“0

ci,apg12,sv2`v1q, v2 “ 0, 1, . . . , s ´ 2,

µ
pa,v1q
i,i2

:“
s´1
ÿ

v2“0

ci,apg12,sv2`v1q, v1 “ 0, 1, . . . , s ´ 2,

where for brevity we again write g12 instead of gpi1, i2q. The
following lemma implies that C is an MDS code with the p2, dq

optimal repair property.

Lemma 6. Let the failed nodes be Ci1 and Ci2 , 1 ď i1 ă

i2 ď n and let R Ă rns, |R| “ d be a set of d helper nodes.
For any a P t0, 1, . . . , l ´ 1u and any v2 P t0, 1, . . . , s ´ 2u,
the values tci1,apg12,sv2`v1q, v1 “ 0, 1, . . . , s ´ 1u and µ

pa,v2q
i2,i1

are uniquely determined by the set of values tµ
pa,v2q
i,i1

:
i P Ru. Similarly, for any v1 P t0, 1, . . . , s ´ 2u, the
values tci2,apg12,sv2`v1q, v2 “ 0, 1, . . . , s ´ 1u and µ

pa,v1q
i1,i2

are
uniquely determined by the set of values tµ

pa,v1q
i,i2

: i P Ru.

Proof: The parity-check equations that
correspond to the row indices apg12, 0q, apg12, 1q,
. . . , apg12, s

2 ´ 2q are as follows:

n
ÿ

i“1

λt
i,fpi,apg12,uqqci,apg12,uq “ 0,

t “ 0, 1, 2, . . . , r ´ 1, u “ 0, 1, . . . , s2 ´ 2.

(27)

According to definition of the function f in (26), if i ‰ i1, i2
then the value of f does not depend on the value of the digit
ag12 . Thus, we have

fpi, apg12, 0qq “ fpi, apg12, 1qq “ . . .

“ fpi, apg12, s
2 ´ 2qq, i P rnszti1, i2u.

Again according to (26), for all u “ 0, 1, 2, . . . , s2 ´ 2, we
have

fpi1, apg12, uqq “
`

fpi1, apg12, 0qq ` b1puq
˘

pmod sq,

fpi2, apg12, uqq “
`

fpi2, apg12, 0qq ` b2puq
˘

pmod sq.
(28)

Therefore, we are justified in using the following notation:

λi :“ λi,fpi,apgpi1,i2q,0qq “ λi,fpi,apgpi1,i2q,1qq

“ λi,fpi,apgpi1,i2q,2qq, i R ti1, i2u, (29)
λ1
i1,v :“ λi1,v‘fpi1,apg12,0qq,

λ1
i2,v :“ λi2,v‘fpi2,apg12,0qq, v P t0, 1, . . . , s ´ 1u,

where ‘ is addition modulo s. By (28), for every u “

0, 1, 2, . . . , s2 ´ 2, we have

λi1,fpi1,apg12,uqq “ λi1,b1puq‘fpi1,apg12,0qq “ λ1
i1,b1puq;

λi2,fpi2,apg12,uqq “ λi2,b2puq‘fpi2,apg12,0qq “ λ1
i2,b2puq.

(30)

Notice that

tλ1
i,0, λ

1
i,1, . . . , λ

1
i,s´1u “ tλi,0, λi,1, . . . , λi,s´1u

for i P ti1, i2u,

and that

λi P tλi,0, λi,1, . . . , λi,s´1u for all i P rnszti1, i2u.

Therefore λ1
i1,0

, λ1
i1,1

, . . . , λ1
i1,s´1, λ

1
i2,0

, λ1
i2,1

, . . . , λ1
i2,s´1, λi,

i P rnszti1, i2u are all distinct. Using (29) and (30), we can
write (27) as

pλ1
i1,b1puqqtci1,apg12,uq`pλ1

i2,b2puqqtci2,apg12,uq

`
ÿ

iPrnszti1,i2u

λt
ici,apg12,uq “ 0,

t “ 0, 1,2, . . . , r ´ 1, u “ 0, 1, . . . , s2 ´ 2.

These equations have exactly the same form as the equations
in (25). Therefore the remainder of the proof of this lemma
follows the steps in the proof of Lemma 5, and there is no
need to reproduce them here.

This lemma enables us to set up a repair procedure for the
nodes Ci1 and Ci2 . In the first round of repair, Ci1 downloads
the set of elements

s´2
ď

v2“0

tµ
pa,v2q
i,i1

: ag12 “ 0u (31)

from each helper node Ci, i P R. In the same way, Ci2

downloads the set of elements
s´2
ď

v1“0

tµ
pa,v1q
i,i2

: ag12 “ 0u

from each helper node Ci, i P R. For future use, let us
calculate the number of symbols that Ci1 downloads from
Ci, i P R, i.e., the cardinality of the set in (31). Since each
digit of a in its ps2 ´ 1q-ary expansion can take s2 ´ 1

possible values, |tµ
pa,v2q
i,i1

: ag12 “ 0u| “ l{ps2 ´ 1q. The
set in (31) is the union of s´ 1 such sets, so its cardinality is
ps ´ 1ql{ps2 ´ 1q “ l{ps ` 1q.
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According to Lemma 6, after the first round, Ci1 knows the
values of

´

s´2
ď

v2“0

s´1
ď

v1“0

tci1,apg12,sv2`v1q : ag12 “ 0u

¯

ď

´

s´2
ď

v2“0

tµ
pa,v2q
i2,i1

: ag12 “ 0u

¯

,

(32)

and Ci2 knows the values of

´

s´2
ď

v1“0

s´1
ď

v2“0

tci2,apg12,sv2`v1q : ag12 “ 0u

¯

ď

´

s´2
ď

v1“0

tµ
pa,v1q
i1,i2

: ag12 “ 0u

¯

. (33)

In the second round of the repair process, the nodes Ci1 , Ci2

exchange the second terms in (32)-(33): namely, Ci1 down-
loads the elements in the set Ys´2

v1“0tµ
pa,v1q
i1,i2

: ag12 “

0u from Ci2 , and Ci2 downloads the elements in the set
Ys´2

v2“0tµ
pa,v2q
i2,i1

: ag12 “ 0u from Ci1 . After the second round,
Ci1 knows the values of all the elements in the set

tci1,apg12,uq : ag12 “ 0, u P t0, 1, 2, . . . , s2 ´ 2uu

“tci1,a : a P t0, 1, 2, . . . , l ´ 1uu,

and Ci2 knows the values of all the elements in the set

tci2,apg12,uq : ag12 “ 0, u P t0, 1, 2, . . . , s2 ´ 2uu

“tci2,a : a P t0, 1, 2, . . . , l ´ 1uu,

i.e., both Ci1 and Ci2 have recovered all their coordinates.
Moreover, in the course of the repair process, Ci1 downloads
l{ps`1q symbols of F from each of the nodes Ci, i P RYti2u,
and Ci2 downloads l{ps ` 1q symbols of F from each of the
nodes Ci, i P RYti1u. Therefore the total repair bandwidth is
2pd`1ql{ps`1q, meeting the cut-set bound (3) with equality.

C. Optimal repair of two erasures from arbitrary number of
helper nodes

In this section, we point out a technique which has been
used extensively but somewhat implicitly in the literature,
and we use it to construct pn, kq MDS array codes with the
universal p2, dq-optimal repair property for all k ď d ď n ´ 2
simultaneously. We only aim to convey the main ideas under-
lying the universal constructions, and we will not discuss all
the details in a rigorous way which would require developing
new notation, and would lead to tedious and redundant presen-
tation. The initial idea to use the expansion of the row index
is due to [3], [28], and it was used in [4] to construct explicit
universal families of regenerating codes for centralized repair.

To illustrate this technique, let us start from the simplest
case of repairing single erasure. Returning to the pn, k, s “

d ` 1 ´ kq MDS code defined by the parity-check equations
in (14), we observe that the proof of Lemma 3 gives a repair
scheme of the first node relying on downloading a 1

s proportion
of symbols from each of the d helper nodes (it also gives
the µi’s which at this point we ignore). Moreover, as already
remarked, with straightforward changes to the construction we

can obtain a code with optimal repair of the ith node for any
given i “ 1, . . . , n. Denote this code by Ci.
The next step is to show how two codes of this kind can

be combined to construct an pn, k, l “ s2q MDS code that
supports optimal repair of each of the first two nodes from
any d helper nodes. For instance, take the codes C1, C2 defined
over a field F of size at least n`2s´2, and let λ1,0, λ1,1, . . . ,
λ1,s´1, λ2,0, λ2,1, . . . , λ2,s´1, λ3, λ4, . . . , λn be distinct ele-
ments of F . Define an pn, k, s2q MDS array code C “ C1 dC2
over F by the following rs2 parity-check equations:

λt
1,a1

c1,a ` λt
2,a2

c2,a `

n
ÿ

i“3

λt
ici,a “ 0,

a “ 0, 1, . . . , s2 ´ 1, t “ 0, 1, . . . , r ´ 1,

(34)

where pa1, a2q is the two-digit s-ary expansion of the row
index a P t0, 1, . . . , s2´1u. For the repair of the first node, we
fix a2 and let a1 take all the values in the set t0, 1, . . . , s´1u.
In this way we divide the coordinates of each node into s
groups according to the value of a2, and the parity check
equations that correspond to each group have exactly the same
structure as (14). Therefore we can optimally repair the first
node from any d helper nodes. At the same time, fixing a1
and varying a2, we can optimally repair the second node in
the same way.

It is clear that the code C defined by (34) is obtained by a
combination of the codes C1 and C2 which is similar to the
so-called serial concatenation [29]. Now it is easily seen that
the code C1,d :“ C1 d C2 d ¨ ¨ ¨ d Cn has the p1, dq-optimal
repair property. In fact, this code family already appeared in
the literature; see Construction 2 in [4].

Now let us consider cooperative repair of two erasures. For
F Ď rns, |F | “ 2 and k ď d ď n ´ 2, let CF,d be the
pn, k, l “ s2 ´ 1q MDS array code that can optimally repair
the failed nodes Ci, i P F from any d helper nodes. Note that
Ct1,2u,d is the code defined by (25), and we previously denoted
it as Cp0q

2,d . As before, the specific choice of F is not important,
and we can construct a code CF,d with the same structure and
parameters as Ct1,2u,d for any 2-subset F Ă rns. Now it is
clear that the code C2,d in Definition 5 is the concatenation of
all CF,d such that F Ď rns, |F | “ 2, i.e.,

C2,d “
ä

FĎrns,|F |“2

CF,d.

Following this line of thought, we can easily construct an
pn, kq MDS array code CU

2 with the universal p2, dq-optimal
repair property for all k ď d ď n´2 simultaneously. Namely,
the concatenated code5

CU
2 :“

ä

k`1ďdďn´2

C2,d

can optimally repair any two failed nodes from any subset of
d helper nodes as long as d ě k. The size of the finite field is
determined by the code C2,n´2 and is at least pr ´ 1qn, and
the sub-packetization of the code CU

2 equals
śn´2

d“k`1

`

pd ´

k ` 1q2 ´ 1
˘pn

2q
.

5It is easy to see that the code C2,n´2 has the p2, dq-optimal repair property
not only for d “ n ´ 2, but also for d “ k. Therefore in the concatenation
we do not need to include C2,k .
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VI. COOPERATIVE ph, k ` 1q OPTIMAL CODES FOR
GENERAL h

A. Repairing the first h nodes from any d “ k ` 1 helper
nodes

In this section we present a construction of MDS array codes
that can optimally repair the first h nodes from any d “ k`1
helper nodes for any given h “ 2, . . . , r´1. More specifically,
given any k ă n, any h ď r ´ 1, and a finite field F of
cardinality |F | ě n ` h, we present an pn, k, h ` 1q MDS
array code C “ Cp0q

h,k`1 over the field F that has the following
property. When the first h nodes of C fail, the repair of each
failed node can be accomplished by connecting to any k ` 1
helper nodes and downloading k`h symbols of F in total from
these helper nodes as well as from other failed nodes. Clearly,
the amount of downloaded data meets the cut-set bound (3)
with equality.

Let pλij , i “ 1, . . . , h, j “ 0, 1q, λh`1, λh`2, . . . , λn be n`

h distinct elements of the field F . The code C is defined by
the following parity check equations.

h
ÿ

i“1

λt
i,0ci,0 `

n
ÿ

i“h`1

λt
ici,0 “ 0, t “ 0, 1, . . . , r ´ 1;

λt
a,1ca,a `

ÿ

iPrhsztau

λt
i,0ci,a `

n
ÿ

i“h`1

λt
ici,a “ 0,

t “ 0, 1, . . . , r ´ 1, a “ 1, 2, . . . , h.

(35)

For every a “ 0, 1, . . . , h, the set of vectors
tpc1,a, c2,a, . . . , cn,aqu forms an pn, kq MDS code, therefore
C is indeed an pn, k, h ` 1q MDS array code. When h “ 2,
this code is the same as the code defined in Section IV.

For i P rns and j P rhs, define

µij :“ ci,0 ` cij .

Similarly to the previous sections, we have the following
lemma:

Lemma 7. Let C1, . . . , Ch be the failed nodes. For any set of
helper nodes R Ď th` 1, h` 2, . . . , nu, |R| “ k ` 1 and any
j P rhs, the values of cj,0, cj,j and the sums tµij , i P rhsztjuu

are uniquely determined by tµij : i P Ru.

The proof of this lemma is the same as that of Lemma 3,
and we do not repeat it here. This lemma implies that the
first h nodes of C can be repaired with optimal bandwidth.
In the first round, every failed node Cj , j P rhs downloads
µij from each helper node Ci, i P R. According to Lemma 7,
after the first round, for every j P rhs, the node Cj knows
the values of cj,0, cj,j and tµij , i P rhsztjuu. In the second
round, every failed node Cj , j P rhs downloads the sum µji

from each of the other failed nodes Ci, i P rhsztju. After the
second round, every failed node Cj , j P rhs knows the values
of cj,0, cj,j and the sums cj,0 ` cj,i, i P rhsztju. Therefore Cj

can recover all its coordinates. Moreover, in the whole repair
process, every failed node Cj , j P rhs downloads only one
symbol of F from each of the nodes Ci, i P R Y rhsztju.
Therefore the total repair bandwidth is hpk ` hq, meeting the
cut-set bound (3) with equality.

B. Repairing arbitrary h nodes

In this section we construct explicit MDS array codes that
support ph, k`1q-optimal repair of any h-tuple of failed nodes.
More specifically, given any k ă n, any h ď r ´ 1, and a
finite field F of cardinality |F | ě 2n, we present an pn, k, l “

ph ` 1qmq MDS array code C “ Ch,k`1 over the field F ,
where m :“

`

n
h

˘

. The code C has the property that for any
h-subset F of rns, the repair of each failed node Ci, i P F
can be accomplished by connecting to any k` 1 helper nodes
and downloading pk`hql{ph`1q symbols of F in total from
these helper nodes as well as from other failed nodes. Clearly,
the amount of downloaded data meets the cut-set bound (3)
with equality.

As in the previous sections, we will define C by its
parity-check equations, and we begin with some notation. Let
tλijuiPrns,jPt0,1u be 2n distinct elements of the field F . Let
g be a bijection between the set of h-subsets tF : F Ď

rns, |F | “ hu and the numbers t1, 2, . . . ,mu. As in (19), the
particular choice of g does not matter; for instance, we can
take

gptih, ih´1, . . . , i1uq “

h´1
ÿ

j“0

ˆ

ih´j ´ 1

h ´ j

˙

` 1

for all n ě ih ą ih´1 ą ¨ ¨ ¨ ą i1 ě 1,

(36)

where we use the convention that
`

n1

n2

˘

“ 0 if n1 ă n2. For a
given a “ 0, 1, 2, . . . , l´1, let am, am´1, . . . , a1 be the digits
of its expansion in the base h`1, i.e., a “

řm´1
j“0 aj`1ph`1qj .

For a set F Ď rns and an element i P F , let zpF , iq “ |tj :
j P F , j ď iu| be the number of elements in F that are no
larger than i. Define the following function:

f : rns ˆ t0, 1, . . . , l ´ 1u Ñ t0, 1u

pi, aq ÞÑ

´

ÿ

FĎrns,|F |“h
FQ i

1tagpFq “ zpF , iqu

¯

pmod 2q, (37)

where 1p¨q is the indicator function. Finally, given a “

0, 1, . . . , l ´ 1, i P rms and u “ 0, 1, 2, . . . , h, let api, uq :“
pam, . . . , ai`1, u, ai´1, . . . , a1q.

Definition 6. The code C “ Ch,k`1 is defined by the following
rl parity-check equations:

n
ÿ

i“1

λt
i,fpi,aqci,a “ 0,

t “ 0, 1, 2, . . . , r ´ 1; a “ 0, 1, 2, . . . , l ´ 1.

For a given a “ 0, 1, 2, . . . , l ´ 1 the vectors pc1,a, c2,a,
. . . , cn,aq form an pn, kq MDS code. Therefore C is indeed an
pn, k, lq MDS array code.

Let us show that C has the ph, k`1q-optimal repair property.
As before, we define sums of particular entries of the ith node.
Namely, let F “ ti1, i2, . . . , ihu, where i1 ă i2 ă ¨ ¨ ¨ ă ih,
be an h-subset of rns. Given a “ 0, 1, . . . , l ´ 1, j P rhs and
i P rns, let

µ
paq
i,ij

:“ ci,apgpFq,0q ` ci,apgpFq,jq.

The following lemma implies the optimal bandwidth of C for
repairing h failed nodes.
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Lemma 8. Let F “ ti1, i2, . . . , ihu be the set of failed nodes.
For any set of helper nodes R Ď rnszF , |R| “ k ` 1,
any j P rhs, and any a P t0, 1, . . . , l ´ 1u, the values of
cij ,apgpFq,0q, cij ,apgpFq,jq and tµ

paq
i,ij

: i P Fztijuu are uniquely

determined by tµ
paq
i,ij

: i P Ru.

The proof of this lemma relies on the same ideas as the
proofs of Lemmas 4 and 6. For completeness we outline it at
the end of this section.

Let us explain why Lemma 8 implies that Ci, i P F can
be repaired with optimal bandwidth. In the first round of
the repair process, every failed node Cij , j P rhs downloads
tµ

paq
i,ij

: agpFq “ 0u from each helper node Ci, i P R.
According to Lemma 8, after the first round, Cij knows the
values of

tcij ,a :agpFq “ 0u Y tcij ,apgpFq,jq : agpFq “ 0u

Y tci,a ` ci,apgpFq,jq : agpFq “ 0, i P Fztijuu.

In the second round of the repair process, every failed node
Cij , j P rhs downloads tcij ,a`cij ,apgpFq,j1q : agpFq “ 0u from
each of the other failed nodes Cij1 , j

1 P rhsztju. As a result,
Cij knows the values of all the elements in the set

tcij ,apgpFq,uq :agpFq “ 0, u “ 0, 1, . . . , hu

“tcij ,a : a P t0, 1, 2, . . . , l ´ 1uu,

or, in other words, Cij can recover all its coordinates. In
regards to the repair bandwidth expended during the two
rounds of communication, every failed node Cij , j P rhs

downloads l{ph ` 1q symbols of F from each of the nodes
Ci, i P R Y Fztiju. Therefore the total repair bandwidth is
hpk`hql{ph`1q, meeting the cut-set bound (3) with equality.

Proof of Lemma 8: The parity-check equations
that correspond to the rows labeled by apgpFq, 0q,
apgpFq, 1q, . . . , apgpFq, hq are as follows:

n
ÿ

i“1

λt
i,fpi,apgpFq,uqqci,apgpFq,uq “ 0,

t “ 0, 1, 2, . . . , r ´ 1, u “ 0, 1, 2, . . . , h.

(38)

According to definition of the function f in (37), if i R F ,
then the value of fpi, aq does not depend on the digit of a in
position gpFq. Thus we have

fpi, apgpFq, 0qq “ fpi, apgpFq, 1qq

“ ¨ ¨ ¨ “ fpi, apgpFq, hqq, i P rnszF .

Likewise we have for any j P rhs

fpij , apgpFq, 0qq ‰ fpij , apgpFq, jqq,

fpij , apgpFq, 0qq “ fpij , apgpFq, j1qq, j1 P rhsztju.

Thus we are justified in using the following notation:

λi :“ λi,fpi,apgpFq,0qq “ λi,fpi,apgpFq,1qq

“ ¨ ¨ ¨ “ λi,fpi,apgpFq,hqq, i P rnszF ; (39)
λ1
ij ,0

:“ λij ,fpij ,apgpFq,0qq “ λij ,fpij ,apgpFq,j1qq,

j P rhs, j1 P rhsztju;

λ1
ij ,1

:“ λij ,fpij ,apgpFq,jqq, j P rhs.

(40)

Notice that

λ1
ij ,0 ‰ λ1

ij ,1

and

tλ1
ij ,0, λ

1
ij ,1u “ tλij ,0, λij ,1u for all j P rhs,

λi P tλi,0, λi,1u, i P rnszF .

Therefore the elements λ1
i1,0

, λ1
i2,0

, . . . , λ1
ih,0

, λ1
i1,1

, λ1
i2,1

, . . . ,
λ1
ih,1

, λi, i P rnszF are all distinct. Now we can write (38) as

h
ÿ

j“1

pλ1
ij ,0qtcij ,apgpFq,0q `

ÿ

iPrnszF

λt
ici,apgpFq,0q “ 0,

t “ 0, 1, . . . , r ´ 1;

pλ1
iu,1qtciu,apgpFq,uq `

ÿ

jPrhsztuu

pλ1
ij ,0qtcij ,apgpFq,uq

`
ÿ

iPrnszF

λt
ici,apgpFq,uq “ 0,

t “ 0, 1, . . . , r ´ 1, u “ 1, 2, . . . , h.

These equations have exactly the same form as the equations
in (35). Therefore the remainder of the proof of Lemma 8
follows the steps in the proof of Lemma 7 (or Lemma 3), and
we do not repeat them here.

VII. COOPERATIVE ph, dq-OPTIMAL CODES FOR GENERAL
h AND GENERAL d

A. Repairing the first h nodes from any d helper nodes

In this section we present a construction of MDS array codes
that can optimally repair the first h nodes from any d ě k` 1
helper nodes for any given 2 ď h ď n ´ d ď r ´ 1. (We
do not consider the case of d “ k because codes for it were
constructed earlier in [16].) Let s :“ d` 1´ k. Given a finite
field F of cardinality |F | ě n ` hps ´ 1q, we present an
pn, k, l “ ph ` s ´ 1qps ´ 1qh´1q MDS array code C “ Cp0q

h,d
over the field F that has the following property: When the
first h nodes of C fail, the repair of each failed node can
be accomplished by connecting to any d helper nodes and
downloading

pd ` h ´ 1q
l

d ` h ´ k
“ pd ` h ´ 1qps ´ 1qh´1

symbols of F in total from these helper nodes as well as from
the other failed nodes. Clearly, the amount of downloaded data
meets the cut-set bound (3) with equality.
Let pλij , i “ 1, . . . , h, j “ 0, 1, . . . , s ´

1q, λh`1, λh`2, . . . , λn be hs ` n ´ h distinct elements
of the field F . Define

A :“
!

a “ pa1, a2, . . . ,ahq : a P t0, 1, . . . , s ´ 1uh,

h
ÿ

i“1

1tai “ s ´ 1u ď 1
)

,
(41)

i.e., A is the subset of t0, 1, . . . , s ´ 1uh consisting of all the
a such that at most one of its coordinates is s ´ 1. It is easy
to verify that

|A| “ ph ` s ´ 1qps ´ 1qh´1 “ l. (42)
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Let C “ pC1, C2, . . . , Cnq P C be a codeword of the code
C. In this section, we use a multi-index (vector) notation a “

pa1, a2, . . . , ahq to label the entries of each node Ci, so the
node has the form Ci “ pci,a, a P Aq. In previous sections
we opted for numbering the entries of Ci with integers even
though on several occasions (e.g., in Sections IV-B, V-B) we
have essentially relied on the multi-index notation. We could
follow this pattern in this section as well, however the integer
numbering would not be consecutive, and we find the vector
notation much more convenient for the presentation. We note
that, according to (42), the dimension of Ci over F is indeed
l.

Definition 7. The code C is defined by the following parity
check equations:

h
ÿ

i“1

λt
i,ai

ci,a `

n
ÿ

i“h`1

λt
ici,a “ 0, t “ 0, 1, . . . , r ´ 1, a P A.

(43)

Since for each a P A, the set of vectors
tpc1,a, c2,a, . . . , cn,aqu forms an pn, kq MDS code, C is
indeed an pn, k, lq MDS array code.

1) Intuition behind the repair scheme: We begin with an
informal discussion of the code construction and the accom-
panying repair scheme. According to the cut-set bound (3),
if we assume that the amount of communication between
any two nodes is the same (uniform download), which is
the case for our repair scheme, then this amount is equal to

l
h`d´k “ ps ´ 1qh´1 symbols of F . More precisely, in the
first round of repair process, each failed node should download
ps ´ 1qh´1 symbols of F from each helper node, and in the
second round, each failed node should download ps ´ 1qh´1

symbols of F from each of the other failed nodes.
For i P rhs and u P t0, 1, . . . , s ´ 1u, define api, uq :“

pa1, a2, . . . , ai´1, u, ai`1, ai`2, . . . , ahq. For i P rhs, define
the set of indices

Bi :“
␣

a “ pa1, a2, . . . ,ahq : ai P r0, s ´ 1s,

aj P r0, s ´ 2s for all j ‰ i
(

,

where r0, ts :“ t0, 1, . . . , tu for an integer t. Define A0 :“
t0, 1, . . . , s ´ 2uh. It is easy to see that

h
ď

i“1

Bi “ A,
h
č

i“1

Bi “ A0.

In the first round of repair, each failed node Ci, i P rhs

connects to d helper nodes Cj , j P R and downloads
ps´1qh´1 symbols from each of them, so altogether it acquires
dps´1qh´1 symbols of F . This enables Ci to recover a certain
portion of its entries, which we can quantify relying on the
cut-set bound. For this, we observe that this bound gives a
lower estimate on the repair bandwidth for a given size of each
node l. At the same time, given the repair bandwidth, it gives
an upper estimate on the node size, including in particular a
bound on the maximum number of entires of the node that can
be recovered from a certain amount of the downloaded data.
Using this observation, let us take |F | “ 1 and |R| “ d in (2)
(or in (3)), and replace the left-hand side with dps ´ 1qh´1.
Solving for l, we see that each failed node can recover at most
sps ´ 1qh´1 coordinates. At the same time, the cardinality of

the set Bi is exactly sps ´ 1qh´1, and this is the subset of
the entries of Ci that will be repaired after the first round of
communication. Namely, according to Lemma 2, the set of
values tci,a : a P Biu can be found relying on the values

!´

s´1
ÿ

u“0

cj,api,uq : a P Bi, ai “ 0
¯

, j P R
)

(see Lemma 9 below), and therefore, the node Ci downloads
the set t

řs´1
u“0 cj,api,uq : a P Bi, ai “ 0u from each of the

helper nodes Cj , j P R. Since for every a P Bi the coor-
dinate ai can take s possible values, the number of symbols
downloaded from each of them is exactly |Bi|

s “ ps ´ 1qh´1.
To move forward, we note that Lemma 2 gives us more:

namely, apart from the values tci,a : a P Biu, each Ci, i P rhs

can also compute ps´ 1qh´1 sums of coordinates of the other
failed nodes. Namely, after the first round, Ci can find the
values
!

s´1
ÿ

u“0

cj,api,uq : a P Bi, ai “ 0
)

for all j P rhsztiu. (44)

This is the information that will be exchanged between the
failed nodes Ci, i P rhs in the second round.
To describe the second part of the repair scheme, we note

that the number of coordinates still not available at the node
Ci equals

|AzBi| “ l ´ sps ´ 1qh´1 “ ph ´ 1qps ´ 1qh´1.

As noted above (again assuming uniform download), in the
second round each failed node should download ps ´ 1qh´1

symbols of F from each of the other ph ´ 1q failed nodes.
Therefore, in the second round, each failed node should
acquire ph ´ 1qps ´ 1qh´1 symbols of F, which matches the
number of the still missing symbols of the node. To decide
what to download we turn to (44), noting that each failed
node Ci knows the sums in (44) for all the other failed nodes
Cj , j P rhsztiu. For a fixed j, there are ps ´ 1qh´1 symbols
in the set (44), so a natural thing to do in the second round is
to let Ci transmit the sums in (44) to each of the remaining
failed nodes Cj , j P rhsztiu.
Since every failed node Cj knows tcj,a : a P Bju after

the first round and A0 Ă Bj for all j P rhs, every failed
node Cj knows tcj,a : a P A0u. We observe that each sum in
(44) has s terms and that the indices of s ´ 1 of them belong
to the set A0, so Cj can calculate the single remaining term
from each of these sums. Upon completing this calculation, the
node Cj knows the values of all the summands of all the sums
in the set (44), i.e., Cj knows all the coordinates in the set
tcj,a : a P Biu. Since Cj downloads these sums from all the
other failed nodes Ci, i P rhsztju, the downloaded symbols in
the second round enable Cj to calculate the coordinates

ď

iPrhsztju

tcj,a : a P Bi

(

.

Recall that after the first round, Cj already knows the values
of coordinates tcj,a : a P Bju. Thus after the whole repair
process, Cj can find the entries

!

cj,a : a P

h
ď

i“1

Bi

(

“ tcj,a : a P Au.
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This concludes the repair procedure because Cj has found all
the missing l entries.

2) Formal description and validity proof of the repair
scheme: The discussion in the previous subsection contains
most of what is needed to justify the repair scheme. The
omitted step is a connection with Lemma 2 which we include
next.

Lemma 9. Let Ci, i P rhs be one of the failed nodes, and let
R Ď rnszrhs be the indices of helper nodes, where |R| “ d.
For any a P Bi, the elements ci,api,0q, ci,api,1q, . . . , ci,api,s´1q

and the values of t
řs´1

u“0 cj,api,uq : j P rhsztiuu can be
calculated from the values in the set t

řs´1
u“0 cj,api,uq : j P Ru.

Proof: We again use Lemma 2. Let us write out the
parity-check equations (43) that correspond to the indices
api, 0q, api, 1q, . . . , api, s ´ 1q:

λt
i,uci,api,uq `

ÿ

jPrhsztiu

λt
j,aj

cj,api,uq `

n
ÿ

j“h`1

λt
jcj,api,uq “ 0,

t “ 0, 1, . . . , r ´ 1, u “ 0, 1, . . . , s ´ 1. (45)

We can see that this set of equations has the same form as (14):
In (45) only the coefficients of ci,api,uq vary with u while the
coefficients of cj,api,uq are independent of u for all j P rnsztiu;
in (14) only the coefficients of c1,u vary with u while the
coefficients of cj,u are independent of u for all j P rnszt1u.
Therefore Lemma 2 applies directly, and the proof is complete.

In the first round, each failed node Ci, i P rhs downloads
!

s´1
ÿ

u“0

cj,api,uq : a P Bi, ai “ 0
)

(46)

from each helper node Cj , j P R. As already explained, the
cardinality of the set in (46) is ps ´ 1qh´1.

According to Lemma 9, after the first round, each failed
node Ci, i P rhs knows the following field elements:

tci,a : a P Biu
ď

´

ď

jPrhsztiu

!

s´1
ÿ

u“0

cj,api,uq : a P Bi, ai “ 0
)¯

.

In the second round, each failed node Cj , j P rhs downloads

!

s´1
ÿ

u“0

cj,api,uq : a P Bi, ai “ 0
)

from each of the other failed nodes Ci, i P rhsztju. According
to the arguments above, after the second round each failed
node can recover all its coordinates, and the repair bandwidth
achieves the cut-set bound (3) with equality.

3) Connections with Cp0q

2,d and Cp0q

h,k`1: Let us look back
at the codes Cp0q

2,d and Cp0q

h,k`1 which are special cases of the
above construction (although this may be not immediate to
see, which justifies their independent description earlier in the
paper). Namely, the code Cp0q

h,d with h “ 2 becomes the same
as Cp0q

2,d, albeit with a different way of indexing the entries of
each node Ci, and similarly, letting d “ k ` 1 in Cp0q

h,d, we
obtain the code Cp0q

h,k`1 with a different way of indexing.

First, using Table I, it is immediate to see that the sub-
packetization values match. Now let us verify the easier of
the two specializations, checking the case of h “ 2. Indeed,
in this case the set A defined in (41) becomes

A “
␣

a “ pa1, a2q : a1, a2 P t0, 1, . . . , s ´ 1u,

pa1, a2q ‰ ps ´ 1, s ´ 1q
(

.

A natural way to transform the multi-index a “ pa1, a2q into
an integer index is to use the mapping a “ a1`sa2. It is clear
that the image of A under this mapping is t0, 1, 2, . . . , s2 ´

2u, which is exactly the same as the set of integer indices in
Section V-A. One can further check that when h “ 2, the
parity check equations of Cp0q

h,d given in (43) are the same as
the parity check equations (25) of Cp0q

2,d .
Let us now explain that using d “ k ` 1 in the description

of the code Cp0q

h,d, we obtain Cp0q

h,k`1. When d “ k ` 1, the set
A defined in (41) becomes

A “ t0, e1, e2, . . . , ehu,

where 0 is an all-zero vector of length h, and for i P rhs, ei
is the h-dimensional vector whose only nonzero coordinate is
located at the ith position, and this coordinate is 1. We map
0 to 0 and ei to i for all i P rhs. It is easy to check that under
this mapping the parity-check equations (43) of the code Cp0q

h,d

are the same as the parity-check equations (35) of Cp0q

h,k`1.

B. Repairing any h nodes from any d helper nodes

Finally, in this section we present the codes C “ Ch,d that
address the most general case of the repair problem. As above,
we let s :“ d` 1´ k and suppose that F, |F | ě sn is a finite
field. We present an pn, k, l “ pph`s´1qps´1qh´1qmq MDS
array code C “ Ch,d over F , where m :“

`

n
h

˘

. The code C has
the property that for any h-subset F of rns, the repair of each
failed node Ci, i P F can be accomplished by connecting to
any d helper nodes and downloading pd`h´ 1ql{ph` s´ 1q

symbols of F in total from these helper nodes as well as from
the other failed nodes. Clearly, the amount of downloaded data
meets the cut-set bound (3) with equality, and so the code C
supports optimal repair.
Let tλij , i “ 1, . . . , n, j “ 0, 1, . . . , s ´ 1u be sn distinct

elements of the field F . We will rely on the definition of the
set A in (41). To remind ourselves, this is the set of h-tuples
of integers between 0 and s ´ 1 that contain at most one
entry equal to s ´ 1. We use the shorthand notation r0, is :“
t0, 1, . . . , iu for an integer i, and define a set of integer vectors
Arms Ă r0, s ´ 1shm such that each of the m subvectors is
contained in A. More specifically, in this section we use a to
denote an integer vector of length hm:

a “ pap1q, ap2q, . . . , apmqq, (47)

where apiq “ pa
piq
1 , . . . , a

piq
h q P r0, s ´ 1sh. Define the set

Arms :“ ta P r0, s ´ 1shm : apiq P A, i “ 1, . . . ,mu.

According to (42), each apiq can take ph ` s ´ 1qps ´ 1qh´1

possible values, so
ˇ

ˇArms
ˇ

ˇ “
`

ph ` s ´ 1qps ´ 1qh´1
˘m

“ l. (48)
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Let g be the bijection between the set of h-subsets tF : F Ď

rns, |F | “ hu and the numbers t1, 2, . . . ,mu defined in (36).
For a set F Ď rns and an element i P F , let zpF , iq “ |tj :
j P F , j ď iu| be the number of elements in F that are not
greater than i. Define the following function:

f : rns ˆ Arms Ñ t0, 1, . . . , s ´ 1u

pi, aq ÞÑ

ˆ

ÿ

FĎrns,|F |“h
FQ i

a
pgpFqq

zpF,iq

˙

pmod sq, (49)

Let C “ pC1, C2, . . . , Cnq P C be a codeword of the code C.
We index the entries of the code Ci using the multi-index
a defined above in (47), writing Ci “ pci,a, a P Armsq.
According to (48), the dimension of Ci over F is indeed l.
The last element of notation is as follows: for every a P Arms,
i P rms and b P A, let

api, bq :“ pap1q, ap2q, . . . , api´1q, b, api`1q, . . . apmqq.

Definition 8. The code C “ Ch,d is defined by the following
rl parity-check equations:

n
ÿ

i“1

λt
i,fpi,aqci,a “ 0, t “ 0, 1, 2, . . . , r ´ 1; a P Arms. (50)

For every a P Arms, the vectors pc1,a, c2,a, . . . , cn,aq form
an pn, kq MDS code. Therefore C is indeed an pn, k, lq MDS
array code.

Let us show that C has the ph, dq-optimal repair property.
Let F “ ti1, i2, . . . , ihu, where 1 ď i1 ă i2 ă ¨ ¨ ¨ ă ih ď n,
be the set of indices of h failed nodes. For every codeword
C “ pC1, C2, . . . , Cnq P C and every a P Arms, we form a
vector Cpaq by taking a subset of coordinates from each node
Ci, i P rns:

Cpaq :“ pC
paq
1 , C

paq
2 , . . . , Cpaq

n q,

where

C
paq
i :“ pci,apgpFq,bq : b P Aq, i “ 1, . . . , n. (51)

By definition the set Cpaq
i contains ph ` s ´ 1qps ´ 1qh´1

coordinates of Ci. Since the indices of these coordinates are
obtained by replacing the subvector apgpFqq with all the vectors
of the set A, the vectors Cpaq and C

paq
i do not depend on the

original value of apgpFqq, i.e.,

Cpaq “ CpapgpFq,bqq and C
paq
i “ C

papgpFq,bqq
i

for all C P C, i P rns and b P A.
(52)

Moreover, consider the following pph`s´1qps´1qh´1qm´1

sets of coordinates of Ci:

tC
paq
i : a P Arms, apgpFqq “ 0u, (53)

where we view each vector Cpaq
i defined in (51) as a set. Since

we are limiting the subvector apgpFqq to 0 while originally it
can take |A| “ ph ` s ´ 1qps ´ 1qh´1 values, the vector a in
(53) takes

l

ph ` s ´ 1qps ´ 1qh´1
“ pph ` s ´ 1qps ´ 1qh´1qm´1

possible values. Therefore (53) contains pph ` s ´ 1qps ´

1qh´1qm´1 distinct sets of coordinates of Ci. This amounts to
saying that the sets in (53) form a partition of the coordinates
of Ci.
For every a P Arms, we define an pn, k, ph`s´1qps´1qh´1q

MDS array code Cpaq as follows:

Cpaq :“ tpC
paq
1 , C

paq
2 , . . . , Cpaq

n q : C P Cu,

where the MDS property and the dimension of Cpaq follow
directly from the definition of the code C; see (50), (51). To
better understand the connection between the code C and its
subcodes Cpaq, a P Arms, we can view each codeword of C
as a two-dimensional array of size l ˆ n. We use multi-index
a P Arms to index each row and i P rns to index each column
of the codeword. Each subcode Cpaq, a P Arms contains ph `

s´ 1qps´ 1qh´1 rows of the codewords in C, and the indices
of these ph`s´1qps´1qh´1 rows are in the set tapgpFq, bq :
b P Au. From (52) it is clear that

Cpaq “ CpapgpFq,bqq for all b P A.

Thus, the code C can be partitioned into pph ` s ´ 1qps ´

1qh´1qm´1 subcodes

tCpaq : a P Arms, apgpFqq “ 0u,

and each subcode contains ph` s´ 1qps´ 1qh´1 rows of the
code C. We will show that each of these subcodes has the
same structure as the code Cp0q

h,d defined in Section VII-A, and
can therefore be optimally repaired.

Lemma 10. For every a P Arms, the pn, k, ph ` s ´ 1qps ´

1qh´1q MDS array code Cpaq can optimally repair the failed
nodes Cpaq

i , i P F from any d helper nodes, i.e., the bandwidth
of repairing C

paq
i , i P F from any d helper nodes achieves (3)

with equality.

Proof: Our goal is to show that the code Cpaq has the
same structure as the code Cp0q

h,d. Then we can apply the optimal
repair scheme for the first h nodes of Cp0q

h,d to the repair of the
failed nodes of Cpaq whose indices are in F .
By definition (49), the function f has the following prop-

erty: For any a P Arms and any b “ pb1, b2, . . . , bhq P A,

fpi, apgpFq, bqq “ fpi, aq for all i P rnszF ,

fpiu, apgpFq, bqq “ fpiu, apgpFq, 0qq ‘ bu for all u P rhs,
(54)

where 0 is the all-zero vector of length h, and ‘ is addition
modulo s. From now on we fix an a P Arms and prove the
claim for this fixed a. According to (54), we are justified in
using the following notation:

λi :“ λi,fpi,aq “λi,fpi,apgpFq,bqq

for all i P rnszF and all b P A.
(55)

We further define

λ1
iu,j :“λiu,fpiu,apgpFq,0qq‘j

for all u P rhs and all j P t0, 1, . . . , s ´ 1u.

Again by (54), we have

λ1
iu,bu “ λiu,fpiu,apgpFq,0qq‘bu “ λiu,fpiu,apgpFq,bqq

for all u P rhs and all b P A.
(56)
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By (51), Cpaq
i consists of the coordinates pci,apgpFq,bq : b P Aq.

Using (50), (55) and (56), we can write out the parity check
equations of Cpaq as follows:

h
ÿ

u“1

pλ1
iu,buqtciu,apgpFq,bq `

ÿ

iPrnszF

λt
ici,apgpFq,bq “ 0,

t “ 0, 1, . . . , r ´ 1, b P A.

(57)

We can check that (57) has the same form as (43). Indeed, b in
(57) plays the role of a in (43); the first sum in both equations
consists of coordinates of the h failed nodes, and the second
sum in both equations consists of coordinates of the other
available nodes; in both equations, only the coefficients of the
coordinates of the failed nodes vary with the indices, and they
vary in exactly the same way. Therefore the repair scheme of
code Cp0q

h,d can be directly applied to the repair of Cpaq
i , i P F

from any d helper nodes, and the repair bandwidth of this
scheme achieves the bound (3). This completes the proof of
Lemma 10.

Since every subcode can optimally repair the failed nodes
whose indices are in the set F , the same is true for the code C:
namely it is capable of repairing Ci, i P F from any d helper
nodes with optimal repair bandwidth.

Remark: Expanding the discussion in Section VII-A3, we
can see that both the codes C2,d and Ch,k`1 are special cases
of the code Ch,d : taking h “ 2 in the definition of Ch,d, we
obtain the code C2,d with a different indexing of the node’s
coordinates, and in the same way, taking d “ k ` 1 in Ch,d,
we obtain the code Ch,k`1, with a different way of indexing.

C. A family of universal codes

Using the construction in the previous subsection as a
building block and exploiting the concatenation operation
defined in Section V-C, we can easily construct an pn, kq MDS
array code CU with universal ph, dq-optimal repair property for
all 1 ď h ď n ´ d ď n ´ k simultaneously. In other words,
the codes that we construct can optimally repair any number
of erasures from any number of helper nodes.

Indeed, let

CU :“
ä

1ďhďn´dďn´k

Ch,d.

The code CU is simply a concatenation of all Ch,d for 1 ď

h ď n ´ d ď n ´ k, where the codes Ch,d for h ě 2 are
defined in the previous subsection, and the code C1,d is given
in Sec. V-C [4]. It can be constructed over a field F with size
|F | ě rn, and it supports optimal repair of any single node,
and optimal cooperative repair of any h ě 2 nodes.
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