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Abstract—Two widely studied models of multiple-node repair
in distributed storage systems are centralized repair and coop-
erative repair. The centralized model assumes that all the failed
nodes are recreated in one location, while the cooperative one
stipulates that the failed nodes may communicate but are distinct,
and the amount of data exchanged between them is included in
the repair bandwidth.

As our first result, we prove a lower bound on the minimum
bandwidth of cooperative repair. We also show that the coopera-
tive model is stronger than the centralized one, in the sense that
any MDS code with optimal repair bandwidth under the former
model also has optimal bandwidth under the latter one. These
results were previously known under the additional ‘‘uniform
download” assumption, which is removed in our proofs.

As our main result, we give explicit constructions of MDS
codes with optimal cooperative repair for all possible parameters.
More precisely, given any n,k, h,d such that 2 < h <n —d <
n — k we construct (n,k) MDS codes over the field F' of size
|F| = (d+1—k)n that can optimally repair any h erasures from
any d helper nodes. The repair scheme of our codes involves
two rounds of communication. In the first round, each failed
node downloads information from the helper nodes, and in the
second one, each failed node downloads additional information
from the other failed nodes. This implies that our codes achieve
the optimal repair bandwidth using the smallest possible number
of rounds.

Index Terms—Distributed storage, MDS codes, MSR codes,
Multiple-node repair, Regenerating codes.

I. INTRODUCTION
A. Centralized and cooperative repair models

The problem considered in this paper is motivated by the
distributed nature of the system wherein the coded data is
distributed across a large number of physical storage nodes.
When some storage nodes fail, the repair task performed
by the system relies on communication between individual
nodes, which introduces new challenges in the code design.
Coding schemes that address these challenges are known under
the name of regenerating codes, a concept that was isolated
and studied in the work of Dimakis et. al. [1]. In paper
[1] the authors suggested a new metric that has a bearing
on the overall efficiency of the system, namely, the repair
bandwidth, i.e., the amount of data communicated between
the nodes in the process of repairing failed nodes. Most
works on this class of codes assume that the information is
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protected with Maximum Distance Separable (MDS) codes
which provide the optimal tradeoff between failure tolerance
and storage overhead. Paper [1] also gave a lower bound on the
minimum repair bandwidth of MDS codes, known as the cut-
set bound. Code families that achieve this bound with equality
are said to have the optimal repair property. Constructions of
optimal-repair MDS codes (also known as minimum storage
regenerating, or MSR codes) were proposed in [2]-[7].

To encode information with an MDS code, the original file
is divided into k information blocks viewed as vectors over a
finite field F'. The encoding procedure then finds r = n — k
parity blocks, also viewed as vectors over F', which together
with the information blocks form a codeword of a code of
length n. The n blocks of the codeword are stored on n
different storage nodes. Motivated by this model, we also refer
to the coordinates of the codeword as nodes. The task of node
repair therefore amounts to erasure correction with the chosen
code, and the special feature of the erasure correction problem
arising from the distributed data placement is the constraint on
the repair bandwidth involved in the repair procedure.

Most studies of MDS codes with optimal repair bandwidth
in the literature are concerned with a particular subclass of
codes known as MDS array codes [8]. An (n, k, 1) MDS array
code over a finite field F' is formed of k information nodes
and r = n — k parity nodes with the property that the contents
of any k out of n nodes suffices to recover the codeword.
Every node is a column vector in F' reflecting the fact that
the system views a large data block stored in one node as one
coordinate of the codeword. The parameter [ that determines
the dimension of each node is called sub-packetization.

While originally the repair problem was confined to a single
node failure, studies into regenerating codes have expanded
into the task of repairing multiple erasures. The problem of
repairing multiple erasures comes in two variations. One of
them is the centralized model, where a single data center is
responsible for the repair of all the failed nodes [4], [9]-[14],
and the other is the cooperative model, where the failed nodes
may communicate but are distinct, and the amount of data
exchanged between them is included in the repair bandwidth
[15]-[18]. The cut-set bounds on the repair bandwidth for
multiple erasures under these two models were derived in [9]
and [16] respectively.

Let 7 < [n],|F|] = hand R < [n]\F,|R|] = d be
the sets of indices of the failed nodes and the helper nodes,
respectively, where we use the notation [n] := {1,2,...,n}.
Informally speaking, under the centralized model, repair pro-
ceeds by downloading 3;,j € R symbols of F' from each of
the helper nodes C},j € R, and computing the values of the
failed nodes. It is assumed that the repair is performed by a



data center having access to all the downloaded information,
and so the repair bandwidth equals S7(R) = > ;% B;. The
variation introduced by the cooperative model does not include
the data center, and so the repair bandwidth includes not only
the information downloaded from the helper nodes but also the
information exchanged between the failed nodes in the repair
process. In other words, under the centralized model, each
failed node has access to all the data downloaded from the
helper nodes, while under the cooperative model, each failed
node only has access to its own downloaded data.

B. Formal statement of the problems

Consider an (n, k, 1) MDS array code C over a finite field F
and let C' € C be a codeword. We write C as (C1,Ca,...,Cy),
where C; = (Ci70,Ci,1, ey CiJ_l)T € Fl,i =1,...,nis the
ith coordinate of C. The node repair models can be formalized
as follows.

Definition 1 (Centralized model). Let F and R be the sets
of failed and helper nodes, and suppose that |F| = h < r
and |R| = d = k. We say that the failed nodes {C;,i €
F} can be repaired from the helper nodes {C;,j € R} by
downloading' Br(R) symbols of F if there are d numbers
Bj,j € R, d functions f; : F' - FPi jeR, and h functions
gi FXjerfi F' i e F such that

1) for every i € F and every C'e C
Ci = gi({£;(C5),5 € R}),

2)
> Bi = Br(R).

JER

Under the cooperative model, the repair process is divided
into two rounds. In the first round, each failed node downloads
data from the helper nodes, and in the second round, the failed
nodes exchange data among themselves (namely, each failed
node downloads data from the other failed nodes).

Definition 2 (Cooperative model). In the notation of the
previous definition, we assume two rounds of communica-
tion between the nodes. In the first round, each failed node
C;,i € F downloads a vector f;;(C;) from each helper node
Cj,j € R, and in the second round, each failed node C;,i € F
downloads a vector fi({fi;(C;),j € R}) from each of the
other failed nodes Cy,i' € F\{i}. We require that each failed
node C;,i € F can be recovered from its own downloaded data
fij(C5),5 € R and fiu({fv;(C)),j € R}),i" € F\{i}. The
amount of downloaded data in this two-round repair process

(X dime (£5(0))

ieF jJER
+ Y dimp (i {f5(C) 5 € RD)),
ireF\{i}
where dimp(-) is the dimension of the argument expressed as

a vector over F.

'We note the use of the application-inspired term “download” for evaluating
the functions f; and making their values available to the failed nodes. This
term is used extensively throughout the paper.

This definition may look somewhat restrictive in the part
where the communication is constrained to only two rounds.
Indeed, in the definition proposed in [16], the repair process
may include an arbitrary number 7" of communication rounds.
However, in this paper we show that it suffices to consider
T = 2 to construct codes with optimal repair bandwidth for
all possible parameters, and therefore we rely on the above
definition, which also leads to simplified notation. At the same
time, it may be that for other problems of cooperative repair,
such as optimal-access repair or others, more than two rounds
are in fact necessary.

Given a code C, define N.o(C, F,R) and No(C,F,R) as
the smallest number of symbols of F' one needs to download
in order to recover the failed nodes {C;,i € F} from the
helper nodes {C;, j € R} under the centralized model and the
cooperative model, respectively. The repair bandwidth of the
code is defined as follows.

Definition 3 (Repair bandwidth). Let C be an (n,k,l) MDS
array code over a finite field F. The (h,d)-repair bandwidth
of the code C under centralized/cooperative repair model is
given by

Bee(h,d) :
Beo(h,d) :

= max Neo(C, F,R),
|Fl=h,|R|=d,F N\ R=2 "

= max Neo(C, F,R).
\Fl=h,|R|=d,F N\ R=2

As already mentioned, the quantity S(h,d) satisfies a gen-
eral lower bound. In the next theorem we collect results from
several papers that establish different versions of this result.

Theorem 1 (Cut-set bound [1], [9], [16], this paper). Let C
be an (n,k,l) MDS array code. For any two disjoint subsets
F,R < [n] such that |F| < r and |R| = k, we have the
following inequalities:

|FIIR|!
Neo(C, F,R) > —t 2
( ) F TRk (2)
|FI(IR] + |F] = 1)l
NCO C;faR > . 3

We note that in [16], the bound (3) was proved under the
additional assumption that each failed node downloads the
same amount of data from each helper node, and each failed
node also downloads the same amount of data from each of the
other failed nodes (the uniform download assumption), while
our proof of (3) in this paper does not require any additional
assumptions. A self-contained rigorous proof of (3) is given
in Section II as a part of the proof of Theorem 2 below.

Inequality (2) gives the cut-set bound for the centralized
model, and (3) gives the cut-set bound under the cooperative
one. For the case of a single failed node, there is no difference
between the two repair models, and these bounds coincide.

Note that although in this paper we consider only two-round
cooperative repair schemes, bound (3) holds for cooperative
repair with any number of communication rounds. If 5..(h, d)
(resp., Beo(h, d)) meets the bound (2) (resp., (3)) with equality,
ie.,

hdl
Bee(h,d) = rd—Fk
h(h+d—1)l
(rsp. o) = "),



we say that the code C has the (h, d)-optimal repair property
under the centralized (resp., cooperative) model.

Let us give a heuristic argument in favor of (3) based on the
cut-set bound for repairing single erasure. Let ¢ be one of the
indices of the failed nodes. Suppose that all the other failed
nodes C;, j € F\{¢} are functional, and we need to repair C;.
Using either (2) or (3) with |F| = 1, we see that C; needs to
download at least [/(|F| + |R| — k) field symbols from each
of the nodes Cj,j € R u F\{i}. Therefore each failed node
C;,1 € F needs to download at least (|F| + |R| — 1)I/(|F| +
|R|— k) symbols of F in total. Thus, if (3) is achievable with
equality, then each failed node can be repaired as though all the
other failed nodes were functional and available. We note that
this argument is not rigorous because the single-erasure cut-
set bound is derived under a one-round repair process while
the repair process under the cooperative model is divided into
two rounds.

The argument in the previous paragraph also suggests that
optimality of a code under cooperative repair implies its
optimality under centralized repair. We formalize this idea in
the next theorem.

Theorem 2 (Cooperative model is stronger than centralized
model). Let C be an (n, k,l) MDS array code and let F, R <
[n] be two disjoint subsets such that |F| < r and |R| = k. If

_ AR+ A = 1)

NCO C)‘FvR - ) 4
O @
then FIR)

Noo(C, F.R) = —1 0 5

The statement of the theorem holds for cooperative repair
schemes with any number T' = 2 of communication rounds.

The statement in Theorem 2 is trivially true under the
uniform download assumption and in this form it was stated
in [10]. In this paper we prove the theorem in Section II under
no additional assumptions. The following arguments provide
an intuitive explanation of its claim in the case of T = 2,
and they can be easily extended to any 7. As mentioned
above, for (4) to hold with equality, each failed node C;,i € F
should download I/(|F| + |R| — k) symbols of F' from each
of the nodes Cj,j € R u (F\{i}) in the course of the two-
round repair process. Therefore, each failed node C;,i € F
downloads only |R|l/(]F|+|R|—k) symbols of F in total from
all the helper nodes {C},j € R}. Switching to the centralized
model, we observe that once these symbols are made available
to one failed node, they are automatically available to all the
other failed nodes at no cost to the bandwidth, and so (5)
follows immediately.

According to Theorem 2, MDS codes with (h, d)-optimal
repair property under the cooperative model also have the
same property under the centralized model. At the same time,
it is not known how to transform optimal centralized-repair
codes into cooperative-repair codes. This might be the reason
why the latter are more difficult to construct. Indeed, while
general (h,d)-optimal repair MDS codes for the centralized
model are available in several variations [4], [13], [19], MDS
codes with the same property under the cooperative model are
known only for some special values of h and d. Specifically,

the following results appeared in the literature. Paper [16]
constructed optimal MDS codes for cooperative repair for the
(trivial) case d = k, and [17] presented a family of optimal
MDS codes for the repair of two erasures in the regime of low
rate k/n < 1/2 (more precisely, [17] constructed (n, k) MDS
codes with the (2, d)-optimal repair property for any n,k,d
such that 2k —3 < d<n—2).

Thus, prior to our work, even the existence problem of
cooperative MDS codes with the (h, d)-optimal repair property
for general values of h and d (apart from the two special cases
mentioned above) was an open question?.

In the rest of the paper we focus on the cooperative model,
and, unless stated otherwise, all the concepts and objects
mentioned below such as the repair bandwidth, the cut-set
bound, etc., implicitly assume this model.

Our results in this work are as follows:

1) We give a complete solution of repairing multiple erasures
for all possible parameters. More precisely, given any
n,k,h,d such that 2 < h <n—d <n—k—1, we present
an explicit (n, k) MDS code with the (h, d)-optimal repair
property. We limit ourselves to the case of d > k + 1
because constructions for d = k were already given in
[16].

The size of the underlying finite field is sn for all con-
structions, where s := d + 1 — k. At the same time, the
sub-packetization [ is rather large: for h = 2 we need to
take approximately | = s™("~1)while for general d and h

it is approximately | = s"(). We do not know whether this
is necessary or is merely an artifact of our construction.

2) We prove the cut-set bound (3) for the most general case
without the uniform download assumption, and we also
show that the any MDS code that affords cooperative opti-
mal repair is also optimally repairable under the centralized
model (see Theorem 2).

C. Organization of this paper

In Section II, we prove the general versions of the cut-
set bound (3) and Theorem 2 without the uniform download
assumption.

In Section III we prove a technical lemma which forms
the core of the proposed repair schemes. Various versions of
this lemma will be used throughout the paper. Moving to the
code constructions, we start with the special case of h = 2 and
d = k+1 to illustrate the new ideas behind the proposed code
families. These results are presented in Section IV. Namely,
in Section IV-A we construct MDS codes C;% 41 that can
optimally repair the first two nodes (or any given pair of nodes)
from any d = k + 1 helper nodes. In Section IV-B, we use
this code as a building block to construct (n, k) MDS codes
Ca 41 with the (2,d = k + 1)-optimal repair property.

In Section V, we deal with general values of d, k+1 < d <
n — 2. Similarly to the above, in Section V-A we construct a
code Cé?g that supports optimal repair of the first two nodes,

2In [16], the authors showed that the cut-set bound (3) is achievable under
the weaker “functional repair” requirement, which does not assume that the
repair scheme recovers the exact content of the failed nodes, as opposed to
the more prevalent exact repair requirement considered in this paper.



Repairing the first h nodes Repairing any A nodes
Values of h = [F[,d = [R] [F] l [F
Sec. IV: h=2,d =k + 1 n+2 3 on 3(3)
Sec. V: h = 2, any d n+2(s—1) s2—-1 sn (s? — 1)(3)
Sec. VI: any h, d =k + 1 n+h h+1 2n (h+1)(2>
Sec. VII: any h, any d n+h(s—1) (h+d—k)(s—1)"1 sn ((h+d—k)(s— 1)”*1)(2)

TABLE I: We list the parameters (field size, sub-packetization) of the codes constructed in this paper, where s := d + 1 — k. In the first of
the two pairs of columns the codes are constructed for optimal repair of the first h nodes only, while the second pair gives the parameters of

codes that can optimally repair any h failed nodes.

and in Section V-B we use it as a building block to construct
MDS codes Ca 4 with the (2, d)-optimal repair property for

general values of d,k +1<d<n—2.
Ch.a
/ " VH\

Caa Ch.k+1
Sec V-B Sec. VI-B
(0) C(O)

Cok+1 h,k+1
Sec V A Sec. IV-B Sec. VI-A
(0)
Cz,k+1
Sec. IV-A

Fig.1: Relations between the code families constructed in
the paper. Arrows point from more general code
families to their subfamilies. The superscript (©)
indicates that the code supports optimal repair of
the first two (or the first h) erasures only.

In Section VI we construct (n, k) MDS codes with (h,d =
k + 1)-optimal repair property for general values of h,2 <
h < r—1. Following the route chosen above, in Section VI-A
we handle the case of repairing the first 2 nodes while in
Section VI-B we extend the construction to repair any subset
of h failed nodes. The corresponding codes are labeled as

Ci(L(,)l)chl and Cj, 41, respectively.

Finally, in Section VII, we present the main result of this
paper—the construction for general values of both h and d. In
Section VII-A we construct an MDS code C d that supports
optimal repair of the first h nodes, and in Section VII-B we
use it as a building block to construct an (n, k) MDS codes
Ch,q with the (h, d)-optimal repair property for general values
ofhand d,2<h<n—-d<r—1.

The extension from repairing a fixed h-subset of nodes to
any subset of cardinality h relies on an idea that has already
appeared in the literature on regenerating codes [4], [19],
albeit in a somewhat veiled form. We isolate and illustrate
this idea in Section V-C. Apart from revealing the structure
behind our constructions, it also enables us to give a family
of (n,k) universal MSR codes with the (h,d)-optimal repair
property for all 1 < h < n —d < n — k simultaneously, i.e.,
these codes can optimally repair any number of failed nodes
from any number of helper nodes. This construction forms a

simple extension of the main results, and is given in a brief
Section VII-C.

Note that Sections IV-VI serve as preparation for Sec-
tion VII, and all the constructions in Sections IV-VI are special
cases of the constructions in Section VII. Even though the
structure of the sections looks similar, each of the construc-
tions adds new elements to the basic idea, and without the
introductory sections it may be difficult to understand the
intuition behind the code constructions in later parts of the
paper. At the same time, we note that the codes in Sections VII
reduce to the codes in Section V and VI upon appropriate
adjustment of the parameters, such as taking d = k£ + 1 or
h = 2, etc. (see Section VII-A3 below for more details). The
complete reduction scheme between the code families in this
paper is as shown in Fig. 1, and the parameters of the codes
are listed in Table L.

D. Future directions

1) In this paper we consider the problem of repairing multiple
erasures for MDS codes, which correspond to the minimum
storage regenerating (MSR) point on the trade-off curve
between storage and repair bandwidth in the regenerating
code literature [1], [20]. A natural future direction is to
extend our results to the whole trade-off curve, starting
with the minimum bandwidth regenerating (MBR) point.

2) The repair problem of Reed-Solomon (RS) codes has
attracted significant attention recently [7], [13], [21]-[27].
In particular, explicit RS code constructions with the (h, d)-
optimal repair property under the centralized model were
given in [13]. Can this result be extended to the cooperative
model (and are two rounds enough)? Note that cooperative
repair of (full-length) RS codes was previously considered
in [23], which gave schemes for repairing 2 and 3 erasures
with small repair bandwidth (since codes in [23] have small
l, the repair bandwidth ends up being rather far away from
the cut-set bound).

3) Let us consider the regime where we fix the number of par-
ity nodes r := n —k and let n grow. The sub-packetization
value of our MDS code construction with the (h, d)-optimal
repair property scales as exp(©(n”)) in this regime, which
is much larger than its counterpart under the centralized
model, where the sub-packetization value is exp(O(n))
(see [4]). One possible reason is that since the cooperative
model is more restrictive than the centralized model, the
larger sub-packetization is the penalty we have to pay. The
other possibility is that our construction can be improved
in terms of the sub-packetization value. This raises an
open question of either deriving a lower bound on sub-



packetization for the cooperative model (cf. also Table I)
or constructing codes with smaller sub-packetization.

4) Several families of codes under centralized repair also have
the optimal access property, wherein the number of field
symbols accessed at the helper nodes equals the number
of symbols downloaded for the purposes of repair [5],
[6]. Is it possible to design optimal-repair codes for the
cooperative model that reduce or minimize the number of
symbols accessed during the repair process?

II. PROOF OF (3) AND THEOREM 2

Let C be an (n,k,I) MDS code over F. Our goal is to
prove that if (3) holds with equality, then so does (2). We
will argue by showing that inequality (2) implies (3) and then
observe that the equality in (3) implies the same for (2). The
first step of this argument also yields a self-contained proof
of the cooperative cut-set bound (3).

Recall that h := |F| and d := |R|. To shorten the
expressions, below we use the following notation

Dy(R) = ), dimp((f3;(Cy)),
jeER
Di(F)= >, dimp (fir({fi;(C;),j € R}))

ireF\{i}

for the number of symbols of F' downloaded by C; € F from
the helper nodes (in the first round of repair) and from the
other failed nodes (in the second round of repair), respectively,
where the functions f; . were introduced in Definition 2. For a
given node C; there are d+h—1 such functions, and therefore,
in total there are h(d + h — 1) of them for any given subsets
F,R. Our goal is to show that

h(h +d—1)
;(Di(R) + Di(F)) = Thad—F

(6)

Our proof relies on the following simple observation: in the
first round of the repair process, the data downloaded from
the helper nodes by all the failed nodes is the following set
of vectors:

{fi;(C),ie F,jeR}. )

After obtaining this set of vectors, the failed nodes can recover
their values by performing additional information exchange
during the second round of repair. Recalling the centralized
model, this means that all the information needed to col-
lectively repair the failed nodes is contained in the set (7).
Therefore, on account of the centralized version of the cut-set
bound (2) we have

hd

2 DiR) = sl ®)
ieF

To bound the second term on the left-hand side of (6),
we use the following basic fact about MDS code: for an
(n, k) MDS code, any subset of £ — 1 coordinates contains no
information about any other coordinate of the code. Assume a
uniform distribution on the codewords C' = (C1,...,C,) €C
and (by a slight abuse of notation) use the same symbols
Ci,i=1,...,n for the associated random variables. For any

i € [n] (in particular, for any ¢ € F) and any subset S € R
of the helper nodes of size |S| = k — 1, we have

H(C;) = H(Ci|{C},j € S}) = llog, |F,

where H(X|Y) is the conditional entropy of X given Y,
measured in bits. Applying a deterministic function to Y can
only increase the conditional entropy, and therefore for any
S S R,|S| =k —1 we have

H(Cil{fi;(Cj),j € S}) = llogy(|F]). ©)
On the other hand, each C;,7 € F is uniquely determined by
{£i(C)),5 € R} {fir({fir;(C)),5 € RY) =i € F\{i}}, so
H(Ci|{fi;(Cy).5 € R}
U {fir ({fj(Cj). 5 € RY) i € F\{i}}) = 0.

Combining (9) and (10), and using Lemma 1 below, we obtain
that

H({fi;(Cj),j € R\S}
o {fir ({fi5(C)), 5 € RY) - i € F\{i}})

(10)

> llog, |F|. (11)
Therefore, for any ¢ € F and any S S R,|S| =k — 1
2, dimr (£5(C)
JER\S
+ Y. dimp (fir ({£;(C)),5 € RY)) =1 (12)

e F\{i}

(the left-hand side on the above line is the entropy of the
left-hand side of (11) under the uniform distribution on its
arguments. Since the entropy is maximized for the uniform
distribution, (12) is implied by (11). Note also the switching
of the base of logarithms from 2 to |F|.).

Let us sum (12) over all subsets S € R of size |S| = k—1.
Only the first term on the left-hand side depends on S, and

) . d—1

for every j € R, the term dimp (f;;(C;)) appears for (;,"))
different choices of S. Thus we have

(Z:DDi(RH (kfl)pi(f) > (kfl)l, -

Dividing both sides by (kil), we obtain that for every ¢ € F,

d—k+1
d

Let us sum these inequalities on all ¢ € 7. We obtain

D;(R) + D;(F) = .

¥ Y IDi(R)+ Y} Di(F) = hl. (13)

ieF ieF
Multiplying (8) on both sides by % and then adding it to
(13), we obtain the desired inequality (6). This completes the

proof of (3).

We are left to prove the claim that for a given code C, (4)
implies (5). Assuming (4), we observe that there is a choice
of the functions {{fi;,j € R},{fir,? € F\{i}} : i € F} such
that (6) holds with equality. This means that (13) and all the
inequalities preceding it in the proof, including (8), hold with
equality, but equality in (8) means that (5) holds true.



Lemma 1. Let X, Y, Z be arbitrary discrete random variables
such that H(X|YZ) =0, then H(Z) > H(X|Y).

Proof: By the assumption we have H(XY Z) = H(Y Z).
Therefore,

H(Z)> H(Z|Y)=H(YZ) - H(Y)
— H(XYZ)— H(Y)
> H(XY) - H(Y)
= H(X|Y).

It remains to justify the final claim of the theorem, namely
that it holds for the general case of 7' > 2 communication
rounds. Indeed the proof given above can be easily modified
to cover the general situation. To explain this, let us assume
that the repair process is divided into 7" rounds for some finite
integer T In this case, for i € F and j € R, we view f;;(C;)
as all the data downloaded by the failed node C; from the
helper node C; in all T' rounds of communication. For 7,4’ €
F,i # ¢, we view fi({fir;(C;),j € R}) as all the data
downloaded by the failed node C; from another failed node
Cy in all T rounds of communication®. It is easy to check
that under this point of view, our proof applies directly to a
T-round repair process for any integer 7.

III. A TECHNICAL LEMMA

In this section we prove a technical lemma which will be
frequently used throughout the paper. Let C' € C be a codeword
of an (n,k = n — r,l) MDS array code C. We write C as
(C1,Cy,...,Cp), where C; = (¢i0,Ci1y---,Cip—1)" € Flis
the ith coordinate of C'.

Lemma 2. Let n,k,d be positive integers such that k <
d <n—1Letr :=n—%kandlet s :=d+1-—k.
Let F be a finite field with cardinality |F| = n + s — 1.
Let M0, A1,1,-- -, A1,5-1, A2, A3,..., Ay be n+ s —1 distinct
elements of F. Define an (n, k, s) MDS array code C over the
field F' by the following rs parity check equations:

)\tucu—f— Xfciuzo7 u=0,1,...,s—1,
1,u®1, 1222 ) (14)

t=0,1,...,r—1.

Let p; := ZZ;B Ciw for all i € [n]. Then for any subset
R < {2,3,...,n} with cardinality |R| = d, the values
{c10.¢11,---,C1,5-1, 2, 3, - - -, thn } can be calculated from

Proof: * Summing (14) over u € {0,1,...,s — 1}, we
obtain

s—1 n
SN vera+ Y N =0, t=0,1,...,r 1
u=0 i=2

Writing these r equations in matrix form, we obtain equality
(15).

30bserve that the notation f;/ ({f;7;(C;),j € R}) is not accurate for
multiple-round repair because f;;; can also depend on the data f;/;,j €
F\{#'} downloaded in previous round(s). At the same time, this issue does
not affect our argument, so we prefer to keep the already established notation.
4This proof draws on the ideas in [4, Theorem 7].

Since /\1’0,)\1717...,/\11571,/\2,>\3,)\4,...,)\n are all
distinct, the  vector  (c1,0,C1,1,---,Cls—1, 2, 43, - - - »
Un) is a codeword in an (n + s —1,n+s—1—1r = d)

generalized Reed-Solomon code. Therefore, for
any R < {2,3,...,n},|R| = d, the values
{c10,€1,1,---,C16—1, 42, 43, -, b} can be calculated

from {p; : i € R}. This completes the proof of the lemma. W

IV. COOPERATIVE (2, k + 1)-OPTIMAL CODES
A. Repairing the first two nodes from any k + 1 helper nodes

Let F be a finite field. For any k < n < |F'|—2 we present a
construction of (n, k,3) MDS array codes C = Cé% 41 over F
that support optimal repair of the first two nodes. Specifically,
when the first two nodes of C fail, the repair of each failed node
can be accomplished by connecting to any k + 1 helper nodes
and downloading a total of k£ + 2 symbols of F' from these
helper nodes as well as from the other failed node, achieving
the optimal repair bandwidth according to the cut-set bound
(3).

For i = 1,2,...,n, we write the ith node of C as C; =
(¢io,ci1,ci2)T € F3, which is a column vector of dimension
3 over F. Let )\1,0, /\171, )\2707 )\2,1, A3, A, A De o+ 2
distinct elements of the field F'. The code C is defined by the
following 3 sets of parity check equations:

n
t t t
A1,0€1,0 + AgpC2,0+ Z Aicio =0,

(16)
=3
t=0,1,...,r—1,
>\t17101,1 + )\57002’14- Z )\Eci,l =0, an
=3
t=0,1,...,7r—1,
A ger2 + Mg jeant Y Meip =0, (18)
=3
t=0,1,...,r—1.

For each a = 0, 1,2 the set of vectors {(c1,4,¢2,4;---5Cn,a)}
obviously forms an (n,k = n —r) MDS code, and so C is
indeed an (n, k,3) MDS array code.

The following lemma suggests a description of the repair
scheme for the first two nodes using the bandwidth that meets
the cut-set bound (3) with equality.

Lemma 3. Fori=1,...,n let
i1 i= Cio + Cit,

For any set of helper nodes R < {3,4,...,n},|R| =k + 1,
the values of c1,0,c1,1, and (121 are uniquely determined by
{piq1 1 € R}. Similarly, the values of ca, 2,2, and i o are
uniquely determined by {; 2 : i € R}.

Hi2 = Ci0 + Ci2.

Proof: This lemma follows immediately from Lemma 2.
Indeed, take d = k + 1 and s = 2, then there are only two
groups of equations in (14), namely those for v = 0,1. To
prove the first statement of Lemma 3, consider the equations
in (16) and (17). These two sets of equations have the
same structure as the equations in (14): namely, only the
coefficients of c;, vary with u while the coefficients of ¢; ,,



1 1 1 1 1
Ao A Als—1 A2 Az

2 2 2
Also1 A3 A3

are independent of the value of w for all i € {2,3,...,n}.
Therefore Lemma 2 applies directly, and we obtain the claimed
fact about ¢; 0,c1,1 and pa 1.

Similarly, to prove the second statement, consider the equa-
tions in (16) and (18). These two sets of equations also have
the same structure as the equations in (14): namely, only the
coefficients of ¢, vary with v while the coefficients of ¢; ,,
are independent of the value of u for all ¢ € [n]\{2}. [ |

This lemma implies that the first two nodes of C can be
repaired with optimal bandwidth. As already mentioned, the
repair process is divided into two rounds. In the first round, the
node C}, j = 1,2 downloads k41 symbols j1;; from the helper
nodes C;,7 € R. According to Lemma 3, after the first round,
C'1 knows the values of ¢y ¢, ¢1,1 and cg,0+c2,1, and Cy knows
the values of ¢y ,c22 and c¢; 9 + ¢1,2. In the second round,
C'1 downloads the sum c; o + ¢ ,2 from Cy, and C5 downloads
the sum cy ¢ + c2,1 from Cy. Clearly, after the second round,
both C and C5 can recover all their coordinates. Moreover, in
the whole repair process, C; only downloads one symbol of F’
from each of the nodes C;, i € Ru{2}, and C3 only downloads
one symbol of F' from each of the nodes C;,i € R u {1}.
Therefore the total repair bandwidth is 2(k + 1) + 2, meeting
the cut-set bound (3) with equality.

B. Repairing any two erasures from any k + 1 helper nodes

Here we develop the idea in the previous section to construct
explicit MDS array codes with the (2, % + 1)-optimal repair
property. More specifically, given any n > k + 3 and a
finite field F,|F| > 2n, we present an (n,k,l = 3™) MDS
array code C = Cg ;41 over F, where m = (g) When any
two nodes of C fail, the repair of each failed node can be
accomplished by connecting to any k + 1 helper nodes and
downloading (k + 2)3™~1 symbols of F in total from these
helper nodes as well as from the other failed node. Clearly, the
repair bandwidth meets the cut-set bound (3) with equality.

We will define C by its parity-check equations, and we
begin with some notation. Let {\; j }ie[n],je(0,1} e 27 distinct
elements of the field F'. Let g be a bijection between the set
of pairs {(i1,i2) : 1 <41 < iy < n} and the set {1,2,...,m}.
For concreteness, let

. i — 1 )
g:(zl,ZQ)r—»(QQ >+11

(g partitions the set [m] into segments of length (i —1), where
1o = 2,3,...,n). Given an integer a € {0,1,...,1 — 1}, let

19)

r—1 r—1 r—1 r—1
/\175—1 /\2 /\3 >‘4

C1,0
C1,1
1 . 1
A An
/\g 22 C1,5—1
4 n H2 =0. (15)
: : 3
/\:;1 Ha
L HMn

(ams @m—1, .. .,a1) be the digits of its ternary expansion, i.e.,
a= ZT:_O aj413’. Define the following function

Fin] % {01,011} — {0,1}
i—1
,a) — Wag(j,iy = 2
(i,a) (72_1 {agy. =2} 0)
+ Z Haga ) = 1}) (mod 2),
=il

where 1 is the indicator function. We note that f computes
the parity of the count of 1°s and 2’s in a certain subset of the
digits of a. This subset is formed of all the digits with indices
in the set {g(1,4),...,9(i — 1,7),g9(i,i + 1),...,9(i,n)}. To
give an example, let n = 6, then m = 15, and the function
g maps from {(i1,i2) : 1 < i1 < iy < 6} to {1,2,...,15}.
Let i = 2 and let 0 < a < 3% — 1 = 14348906 be an
integer. The function f isolates the digits a, in the ternary
expansions of a such that v € {g(-,2),9(2,-)}, ie., u €
{9(1,2),9(2,3),9(2,4),9(2,5),9(2,6)} {1,3,5,8,12}.
The value of the function f(2,a) equals the parity of 1{a; =
2} + ]1{a3 = 1} + ]1{0,5 = 1} + ]1{0,8 = ].} + ]1{a12 = ].}

Definition 4. The code C = C3 .11 is defined by the following
rl parity check equations:

n
t
2 M iy Cia
=1
t=01,....r—1,a=0,1,....0—1.

=0,

For all « = 0,1,...,1 — 1, the set of vectors
{(c1,4;¢2,0s---,Cn,a)} forms an (n,k) MDS code, so C is
indeed an (n, k,l) MDS array code.

Next we show that C has optimal repair bandwidth for
repairing any two failed nodes from any k£ + 1 helper nodes.
Let C;, and C,,i; < iy be the failed nodes. First let us
introduce some notation to describe the repair scheme. For
a=0,1,...,0—1, e [m], and u = 0,1, 2, let
., a1 ) .

a(ja ’LL) = (a’ma s A1, Uy G, -

Fora=0,1,...,01—1 and i € [n], let
(@) ._ .. )
Hi1 = Cia(g12,0) T Ci,a(giz,1)
(a) .
Hi3 = Cia(g1,0) T Ciralgia,2):

where for brevity we write g1o instead of g(i,2).



The following lemma, which develops the ideas in
Lemma 3, accounts for the (2, % + 1) optimal repair property
of the code C.

Lemma 4. Let C;, and C,,, i1 < ig be the failed nodes. For

any set ofhelper nodes R < [n|\{i1,i2}, |R| = k+1 and any
a € {0,1,...,1 — 1}, the values c;, a(g12,0)> Ci1,a (91271),/”;1
are uniquely determined by the set of values {Nm (i e R}
Similarly, the values c;, q(g,5,0)> Cis,a(g12,2) ME?,)Q are uniquely

determined by the set of values {MEGQ) (1€ R}

Proof: Recall that a = 0,1,...,1 — 1 numbers the
coordinates of the node, or the rows in the codeword array. For
a fixed value of a, the parity check equations corresponding
to the rows a(gi2,0),a(g12,1),a(gi2,2) are as follows:

DA i w =0

i, f(i,a(g12,u))“i,a(g12,u) )

= ’ 2D
t=0,1,2,...,r—1u=0,1,2.

According to definition of the function f in (20) and the

remarks made after it, we have

fi; alg12,0)) = f(i,a(g12,1)) = f(i,a(g12,2)),
€ [n]\{i1, iz}
flir,a(g12,0)) = f(i1, ag12,2)) # f(i1, a(g12,1)),
f(iz,a(g12,0)) = f(iz, a(g12,1)) # f(i2, a(g12,2)).
This implies that for i € [n]\{i1,i2} the following notation is
well defined:

Ai 7= Aif(i,a(912,0) = A flialgin,1) = Aif(ialgiz,2): (22)

Note that \; depends on the value of a, though we omit this
dependence from the notation. Further, let

)‘;1,0 = )‘ihf(ih@(glz,o)) = )\ilaf(ilva(91272))7
Nygo= iy flir,a 1))
i1,1 1,f(i1,a(g12,1)) 23
A=\ ; =\ ; 23)
i2,0 * T Mg, f(i2,a(912,0)) = Nz, f(i2,a(g12,1))
Nia1 7= iy f(iz,a(g12.2)

Notice that
N0 # Xy Nipo # Ay
Mo At = ios A1
{Na00 At = {Nis0s Nig 1}
Ai € {0, Aix}s i€ [n\{i1,92}.
Therefore N, o, Al 1, AL o, AL 1, Aiy i € [n]\{i1,i2} are all

11,00 Yiq,10 e, 00 Mg, 10

distinct. Usmg the notation defined in (22)-(23), we can write
(21) as

(Xi1.0) €1 a(g12,0) T (Mi 0) Cin.a(g12,0)
+ Z )\ ¢
i€[n]\{i1,i2}
()\;1,1) Ciy,a(gr2,1) T ()\12 0)" Ciy,a(gi2,1)
+ 2
i€[n]\{i1,i2}
(N1 0) Ciraginz) T (Mg 1) Cinna(grn2)

+ Z )\c

1€ [n]\{zl ,i2 }

0,

1,a(912,0) —

t _
)‘ici,a(g1271) - 07

0,

1,a(912,2) —

t=0,1,2,...,7— L.

Now notice that up to a notational change, these equations
have the same form as equations (16)-(18). Therefore, the
proof of Lemma 3 applies directly, completing the proof. W

This lemma implies that the nodes C;, and C;, can be
repaired with optimal bandwidth. To see this, we parti-
tion the coordinates of a node into [/3 groups of size 3
where each group is formed of the coordinates with indices
a(g12,0),a(g12,1),a(g12,2) for a given a. By Lemma 4
above we know that each group can be repaired with optimal
bandwidth, so the entire contents of the failed nodes can also
be optimally recovered.

A more detailed description of the repair process is as
follows. In the first round of the repair process, C;, downloads
the values in the set {uﬁ"f :ag,, = 0} and C, downloads the

values {,u 5 ¢ ag, = 0} from each helper node Cj,i € R.
This enables C;, to find the values

{Ci17a PQg, = 0} v {Cil,a(gm,l) Qg = 0}

o {ul

Similarly, C;, is able to find the values

1°Qg1p = 0}

{Ci27¢l PQgy, = 0} o {ciz,a(glzz) tlgy, = 0}

{M“Q : 12 :0}

In the second round, C;, downloads {Hi?,z :ag,, = 0} from
C;,, and C;, downloads {N§:)1 : ag,, = 0} from C;,. After
the second round, C;, knows the values of all the elements in
the set

{Cilva(glmu) tag,, =0,ueE {07 L, 2}}

={cia:0€{0,1,2,...,1 —1}},

and C;, knows the values of all the elements in the set

{Cizva(glmu) tag, = 0,u€ {07 L, 2}}

={cipa:0€{0,1,2,...,1 —1}},

e., both C;; and C;, can recover all their coordinates.
Moreover, in the whole repair process, C;, downloads [/3
symbols of F' from each of the nodes C;,i € R u {is}, and
C;, downloads [/3 symbols of F' from each of the nodes
Ci,i € R u {i1}. Therefore the total repair bandwidth is
2(k + 2)1/3, meeting the cut-set bound (3) with equality.

V. COOPERATIVE (2, d)-OPTIMAL CODES FOR GENERAL d
A. Optimal repair of the first two nodes

In this section we present an explicit MDS array code that
can optimally repair the first two nodes from any d helper
nodes for general values of d. Let n, k, d be such that k+1 <
d<n-—2,lets:=d+1—k, and let I be a finite ﬁeld of size
at least n — 2 + 25 We will construct an (n, k, s> — 1) MDS
array code C = C2 .q over the field F' that has the following
property. When the first two nodes of C fail, the repair of each
of them can be accomplished by connecting to any d surviving
(helper) nodes and downloading (s — 1)(d + 1) symbols of F’
in total from these helper nodes as well as from the other



failed node. Clearly, the amount of downloaded data meets
the cut-set bound (3) with equality.

Let Ay o, Af1s- 3 Als—1, 22,0, A2, 15+ -5 A2,6-1, A3, Ad,y o - o
An be n — 2 4+ 2s distinct elements of the field F. Given an
integer a,0 < a < s? — 2, let by(a),bz(a) be the digits of its
expansion to the base s:

a = (bs(a), b (a)).

The code C = Cé?; is defined by the following (s —1) parity
check equations.

(24)

Atl,bl(a)cl;a + )\;,bg(a)c270« + Z Aicia = 0. (25)
=3

t=0,1,....,r—1,a=0,1,2,...,s> — 2.

Clearly, for a given a the set of vectors {(c1,4,¢2,4,---5Cn,a)}
that satisfy the system (25) forms an MDS code of length n
and dimension k. Therefore C is indeed an (n, k, s —1) MDS
array code. Note that for d = £+ 1, the code C defined by (25)
is the same as the code defined by (16)-(18) in Section IV.

For every i € [n] define the following elements of F':
s—1

Z Ci sva+uvyy V2 € {0,1,,5*2}7
v1=0

s—1

Z Ci svotvys VU1 E {0,1,,8—2}

v2=0

nitt) =

nis) =

Similarly to
lemma:

the previous sections, we have the following

Lemma 5. Suppose that the failed nodes are Cy,Cy and let
R < {3,4,...,n},|R| = d be a set of d helper nodes. For any

ve €{0,1,...,5—2}, the values {c1 sp,+v,,v1 = 0,1,...,5—
1} and ngf) are uniquely determined by the set of values
{uE?f) i € R}. Similarly, for any v € {0,1,...,s — 2}, the

(01
values {2 svy+v,,v2 = 0,1,...,5—1} and p1y 5

determined by the set of values {pgg) 11 € R}

) are uniquely

Proof: We again use Lemma 2 to prove this lemma. To
prove the first statement, we use definition (25) to write out
the parity-check equations that correspond to a = svg, svy +
1,...,8v3 +s—1 fora fixed vy € {0,1,...,s — 2}:

n
Aivlcl,svg-‘rvl + Ag,ych,svg-Hjl + Z )\ECi,s’Uz-‘r’Ul = 07
i=3

t=0,1,...,r—1, v1=0,1,...,5— 1.

These equations have the same structure as the equations in
(14): v1 here plays the role of w in (14). Only the coefficients
of ¢1,¢v,+v, vary with the value of v; while the coefficients of
Ci sva+v, are independent of the value of vy for all ¢ € [n]\{1}.
Therefore the proof of Lemma 2 can be directly applied here.

To prove the second statement, we use definition (25) to
write out the parity-check equations that correspond to a =
v1,v2 + v1,202 + v1,...,(s — 1)vg + vy for a fixed v; €
{0,1,...,s — 2}

n

t t t
/\1,1;1 Cl,sva+v; T+ >‘2,v202751}2+7f1 + 2 >\iC7;1s'U2+'U1 =0,
=3

t=0,1,...,r—1, vo=0,1,...,s — 1.

These equations have the same structure as the equations in
(14): v here plays the role of w in (14). Only the coefficients
of ¢3 ¢y, +v, vary with the value of v, while the coefficients of
Ci sup4v; are independent of the value of vy for all i € [n]\{2}.
Therefore the proof of Lemma 2 can be directly applied here.

|

Let us show that this lemma implies that the first two nodes
of C can be repaired with optimal bandwidth. In the first
round, the first node C; downloads the values {pz(.vf),w =
0,1,...,8 — 2} from each helper node C;,i € R. and the
second node Cy downloads {ul(-?;l),vl =0,1,...,5—2} from
each helper node C;,i € R. From Lemma 5 we conclude that
after the first round, C; knows the values

C1,sv2+v1> 1}2:0717"'78_27/01:0717"'78_1

and p$), vy = 0,1,...,5 — 2.

In the same way, Co knows the values

C2,5v04v1, V1 =0,1,...,8—=2,09=0,1,...,s -1

and ﬂﬁ”g), v =0,1,...,5—2.

In the second round, C; downloads the sums ugg),vl =
0,1,...,s — 2 from C5, and C5 downloads the sums
ug’f),vg =0,1,...,5 — 2 from Cj. It is easy to verify that
after the second round, both C; and C5 can recover all of
their coordinates. Moreover, over the course of the entire repair
process, C7 downloads (s — 1) symbols of F' from each of the
nodes C;,i € R u {2}, and C2 downloads (s — 1) symbols
of F from each of the nodes C;,i € R u {1}. Therefore the
total repair bandwidth is 2(s — 1)(d + 1), meeting the cut-set
bound (3) with equality.

B. Optimal repair of any two erasures

In this section we present a construction of MDS array codes
with the (2, d)-optimal repair property, relying on the ideas of
the previous section. Let n, k,d be such that £ + 1 < d <
n—2 lets:=d+1—k and let F be a finite field such
that |F| > sn. We present an (n,k,l = (s> —1)™) MDS
array code C = Cy q over the field F', where m := (g) When
any two nodes of C fail, the repair of each failed node can
be accomplished by connecting to any d helper nodes and
downloading (d+1){/(s+1) symbols of F in total from these
helper nodes as well as from the other failed node. Clearly, the
repair bandwidth meets the cut-set bound (3) with equality.

We will define C by its parity-check equations, and we begin
with some notation. Let {)i;}ie[n],jef0,1,....s—1} be sn distinct
elements of the field F'. Let g be a bijection between the set of
pairs {(i1,42) : 91,42 € [n],i1 < iz} and the set {1,2,...,m}
defined in (19). For every a = 0,1,2,...,] — 1, we write its
expansion in the base (s> — 1) as a = (am,@m_1,---,01),
ie,a= Z;”:_Ol aj41(s? — 1)7. Define the following function

f:[n] x{0,1,...,01-1} - {0,1,...,s — 1}
1—1 n
(i,a) — (Zbg(ag(mH 3 bl(ag(i,j))) (mod ),
j=1 G=it1

(26)



where by (z) and by (z) form the digits of the expansion of « in
the base s; see definition (24). Note that when d = k + 1, the
function f defined in (26) is the same as the function defined
in (20) in Section IV-B.

Definition 5. The code C = Cy 4 is defined by the following
rl parity check equations.

t=0,1,2,...,r— 1,

n
DAt Cina = 0
i=1

a=0,1,2,....,01—1.

For a given a = 0,1,...,1 — 1 the set of vectors
{(c1,a,¢2,as - - +Cn,q)} forms an MDS code of length n and
dimension k. Therefore C is indeed an (n,k,l) MDS array
code. Also note that when d = k + 1, the code C is the same
as the code defined in Section IV-B.

Next we show that C has optimal repair bandwidth for
repairing any two failed nodes from any d helper nodes. We
need several elements of notation which are similar to the

notation used in the previous sections. Fora = 0,1,...,l—1,
j € [m], and u € {0,1,2,...,8% — 2}, let a(j,u) :=
(@m,- -5 Qj41,U,05-1,...,a1). For a = 0,1,...,1 —1 and
i € [n], we define
(aws) _ 3
a,v
lui,il Y= Z ci,a(g12,81)2+'l)1)7 V2 = 07 17 ey S — 27
’L)1=0
( ) s—1
:U/za;,;jl = Z Ci,a(gi2,sv2+v1)s V1 = 07 17 ceey ST 27
'U2=0

where for brevity we again write g1o instead of g(i1,42). The
following lemma implies that C is an MDS code with the (2, d)
optimal repair property.

Lemma 6. Let the failed nodes be C;, and C;,, 1 < i1 <
io < nandlet R < [n],|R| = d be a set of d helper nodes.
For any a € {0,1,...,1 — 1} and any vy € {0,1,...,s — 2},
the values {021 ,a(gi2,8v2+v1)s v = 0) 17 ey S 1} and NE;I ;Uf)
are uniquely determined by the set of values {,LLZO; w2)

i € R}. Similarly, for any v; € {07 1,...,s 2}
values {Ciy a(g1s,sv54+v1):V2 = 0,1,..., 8 — 1} and u(a 1) e
uniquely determined by the set of values {uii2 Ve R}.

01,12

Proof: The parity-check equations that
correspond to the row indices a(gi2,0),a(g12,1),
a(gi2, 8% — 2) are as follows:
2/\1 f(i,a(g12,u) C%a(glmu) = 07 (27)
t=0,1,2,....,r—1L,u=0,1,...,s>—2.

According to definition of the function f in (26), if ¢ # i1, 4o
then the value of f does not depend on the value of the digit

ag,,. Thus, we have

f(i7a(912v 0)) = f(la
= f(la

Cl(g127 1)) = ...

a(gl2a s% — 2))7 i€ [n]\{llle}

Again according to (26), for all u = 0,1,2,...,5% — 2, we
have
fin, algr2,w)) = (f(i1, a(g12,0)) + b1 (u)) (mods), 28)

fliz, a(gr2,u)) = (f(i2, a(g12,0)) + ba(u)) (mod s).

Therefore, we are justified in using the following notation:

Ai 1= i fi,a(g(i1,i2),0)) = i, f(i,algliniia)1)
= Ni,f(ira(g(irsia),2))s & 191,12},
)‘21 v = /\irﬂ@f(iha(glzxo))’
A=A ,ve{0,1,...,s—1},

12,V

(29)

i2,v®f (i2,a(g12,0))
where @ is addition modulo s. By (28), for every u =

0,1,2,...,s2 —2, we have

Nir f(insa(grz) = Nia by (W@F (in,a(g12,0)) = My by ()

Nio fiz.a(grzm) = i ba (W@F (i2.0(912.0)) = Vi b (u)- o
Notice that
P VTIP VI VIRIEE I8 P Y P SRR PRy
for i € {iy,i2},
and that
Xi € {0, Ai1y .o, Nis—1) for all i € [n]\{i1,42}.
Therefore )\“ 0,)\;1 1r-- )\;1 o 1,)\;2 0,)\22 Lre-- )\;2 15 iy

€ [n]\{i1, iz} are all dlstlnct Using (29) and (30), we can
write (27) as

()‘gl,bl(u)) 217a(912,u)+(/\12 ba (u ))tciz a(g12,u)
2

i€[n]\{i1,i2}

t=0,1,2,...,r

AiCia(giza) = 0,

-1, u=0,1,...,52 - 2.

These equations have exactly the same form as the equations
in (25). Therefore the remainder of the proof of this lemma
follows the steps in the proof of Lemma 5, and there is no

need to reproduce them here. [ ]

This lemma enables us to set up a repair procedure for the
nodes C;, and C;,. In the first round of repair, C;, downloads
the set of elements

U {uie)

’UQO

tag,, = 0} 3D

from each helper node C;,7 € R. In the same way, C;,
downloads the set of elements

s—2
U ™

V1 =0

1Qgy, = 0}

from each helper node C;,i € R. For future use, let us
calculate the number of symbols that C;, downloads from
C;,i € R, i.e., the cardinality of the set in (31). Since each
digit of a in its (s> — 1)-ary expansion can take s? — 1
possible values, |{uf;v2) D ag, = 0}] = 1/(s* —1). The
set in (31) is the union of s — 1 such sets, so its cardinality is

(s — 1)I/(s> —1) = I/(s + 1).



According to Lemma 6, after the first round, C;, knows the
values of

s—2 s—1

( U U {cil,a(glg,a:'ug-‘rvl) Phgy, = 0}>

v2=0v1=0 872 (32)

U (U e - ag, = 0}),

V2 =0
and C};, knows the values of

s—2 s—1

( U U {Cir.a(grz,svatv1) © Qgrn = O})

U1 =0 1)2:0
5—2
U(U i s ag, =03). 33

v1=0

In the second round of the repair process, the nodes C;,, Cj,
exchange the second terms in (32)-(33): namely, C;, down-
loads the elements in the set u‘;l—jo{ugfzs) gy

0} from C;,, and C;, downloads the elements in the set

ui;jo{ugi’ff) : Gg,, = 0} from Cj,. After the second round,

C;, knows the values of all the elements in the set

{Ci1 a(grou) * Qg1 = 0,u € {0,1,2,..., 5?2 — 21}

:{Ch,a ‘G € {07 1a27- . ~al - 1}}a
and C;, knows the values of all the elements in the set

{Ciralgrn) © Qg = 0,u€ {0,1,2,..., 5% —2}}

={ciya:0€{0,1,2,...,1 —1}},

ie., both C;, and C;, have recovered all their coordinates.
Moreover, in the course of the repair process, C;, downloads
1/(s+1) symbols of F' from each of the nodes C;, i € Ru{ia},
and C;, downloads [/(s + 1) symbols of F' from each of the
nodes C;,i € R {i1}. Therefore the total repair bandwidth is
2(d+1)l/(s+1), meeting the cut-set bound (3) with equality.

C. Optimal repair of two erasures from arbitrary number of
helper nodes

In this section, we point out a technique which has been
used extensively but somewhat implicitly in the literature,
and we use it to construct (n, k) MDS array codes with the
universal (2, d)-optimal repair property for all k < d <n—2
simultaneously. We only aim to convey the main ideas under-
lying the universal constructions, and we will not discuss all
the details in a rigorous way which would require developing
new notation, and would lead to tedious and redundant presen-
tation. The initial idea to use the expansion of the row index
is due to [3], [28], and it was used in [4] to construct explicit
universal families of regenerating codes for centralized repair.

To illustrate this technique, let us start from the simplest
case of repairing single erasure. Returning to the (n,k,s =
d+ 1 — k) MDS code defined by the parity-check equations
in (14), we observe that the proof of Lemma 3 gives a repair
scheme of the first node relying on downloading a % proportion
of symbols from each of the d helper nodes (it also gives
the w;’s which at this point we ignore). Moreover, as already
remarked, with straightforward changes to the construction we

can obtain a code with optimal repair of the ith node for any
given ¢ = 1,...,n. Denote this code by C;.

The next step is to show how two codes of this kind can
be combined to construct an (n,k,l = s?) MDS code that
supports optimal repair of each of the first two nodes from
any d helper nodes. For instance, take the codes Cq,Cs defined
over a field F' of size at least n+2s—2, and let Ay o, A1 1,. ..,
)\1_’3_17 )\270, A271, ey )\2_’3_17 )\3, )\4, ey A, be distinct ele-
ments of F. Define an (n, k, s?) MDS array code C = C; ©C»
over F by the following rs? parity-check equations:

n
t t t _
Al,alclya + )‘Z,LLQCQ,a + Z Aici,a =0,
1=3
2
87 =1,

(34)

a=0,1,.. t=0,1,...,r—1,

where (a1,a2) is the two-digit s-ary expansion of the row
index a € {0,1,...,s2—1}. For the repair of the first node, we
fix az and let a; take all the values in the set {0,1,...,s—1}.
In this way we divide the coordinates of each node into s
groups according to the value of ag, and the parity check
equations that correspond to each group have exactly the same
structure as (14). Therefore we can optimally repair the first
node from any d helper nodes. At the same time, fixing aq
and varying as, we can optimally repair the second node in
the same way.

It is clear that the code C defined by (34) is obtained by a
combination of the codes C; and Co which is similar to the
so-called serial concatenation [29]. Now it is easily seen that
the code C1,4 := C1 ©C2 ® --- © C,, has the (1, d)-optimal
repair property. In fact, this code family already appeared in
the literature; see Construction 2 in [4].

Now let us consider cooperative repair of two erasures. For
F < n,|Fl =2and k < d < n—2 let Crq be the
(n,k,l = s> — 1) MDS array code that can optimally repair
the failed nodes Cj,i € F from any d helper nodes. Note that
Ci1,2,q is the code defined by (25), and we previously denoted

it as Cé?u)l. As before, the specific choice of JF is not important,
and we can construct a code Cr g with the same structure and
parameters as Cyy 2y 4 for any 2-subset 7 < [n]. Now it is
clear that the code Cs 4 in Definition 5 is the concatenation of
all Cr 4 such that F < [n], |F| = 2, i.e.,

O)

Fc[n],|F|=2

Coq = Cra.

Following this line of thought, we can easily construct an
(n, k) MDS array code CY with the universal (2, d)-optimal
repair property for all k < d < n—2 simultaneously. Namely,
the concatenated code’

Cg =

G Cua

k+1<d<n—2

can optimally repair any two failed nodes from any subset of
d helper nodes as long as d > k. The size of the finite field is
determined by the code Cs,,—o and is at least (r — 1)n, and
the sub-packetization of the code CY equals ]_[Z;,j 41 ((d -

k+1)?— 1)(2).
STt is easy to see that the code Ca,n—2 has the (2, d)-optimal repair property

not only for d = n — 2, but also for d = k. Therefore in the concatenation
we do not need to include Cy .



VI. COOPERATIVE (h, k + 1) OPTIMAL CODES FOR
GENERAL h

A. Repairing the first h nodes from any d =
nodes

k + 1 helper

In this section we present a construction of MDS array codes
that can optimally repair the first & nodes from any d = k+ 1
helper nodes for any given h = 2, ..., r—1. More specifically,
given any k < n, any h < r — 1, and a finite field F' of
cardinality |F| = n + h, we present an (n,k,h + 1) MDS
array code C = C,(l i1 over the field F' that has the following
property. When the first h nodes of C fail, the repair of each
failed node can be accomplished by connecting to any k + 1
helper nodes and downloading k+h symbols of F' in total from
these helper nodes as well as from other failed nodes. Clearly,
the amount of downloaded data meets the cut-set bound (3)
with equality.

Let (Aij,i=1,...,h,j =0,1), \ny1, Any2, ..., Ap be n+
h distinct elements of the field F'. The code C is defined by
the following parity check equations.

Z)\zoclo—&- Z Meio=0, t=0,1,....,r—1;
i1=h+1
n

(35

)‘fz,lcma"’ Z /\f,oci»a"‘ 2 Aicia =0,

ie[h]\{a} i=h+1

t=0,1,....,r—1,a=1,2,... h.
For every a = 0,1,...,h, the set of vectors
{(c1,a,¢2,a5 - - +Cn,q)} forms an (n,k) MDS code, therefore

C is indeed an (n,k,h + 1) MDS array code. When h = 2,
this code is the same as the code defined in Section IV.

For i € [n] and j € [h], define
/~Lij =G0 + Cij~

Similarly to the previous sections, we have the following
lemma:

Lemma 7. Let C,...,C} be the failed nodes. For any set of
helper nodes R < {h+1,h+2,...,n},|R| = k+ 1 and any
j € [h], the values of c; o, cj; and the sums {p;;,i € [A]\{j}}
are uniquely determined by {ji;; : i € R}.

The proof of this lemma is the same as that of Lemma 3,
and we do not repeat it here. This lemma implies that the
first A nodes of C can be repaired with optimal bandwidth.
In the first round, every failed node Cj,j € [h] downloads
fti; from each helper node Cj,7 € R. According to Lemma 7,
after the first round, for every j € [h], the node C; knows
the values of ¢;,¢;; and {p;;,7 € [R]\{j}}. In the second
round, every failed node C},j € [h] downloads the sum p;
from each of the other failed nodes C;,i € [h]\{j}. After the
second round, every failed node C, j € [h] knows the values
of ¢ 0,c¢;; and the sums ¢; o+ ¢;;,% € [h]\{j}. Therefore C;
can recover all its coordinates. Moreover, in the whole repair
process, every failed node Cj,j € [h] downloads only one
symbol of F from each of the nodes C;,i € R u [R]\{j}.
Therefore the total repair bandwidth is h(k + h), meeting the
cut-set bound (3) with equality.

B. Repairing arbitrary h nodes

In this section we construct explicit MDS array codes that
support (h, k+1)-optimal repair of any h-tuple of failed nodes.
More specifically, given any £k < n, any h < r — 1, and a
finite field F' of cardinality |F'| > 2n, we present an (n, k,! =
(h + 1)™) MDS array code C = Cp 41 over the field F,
where m := (7). The code C has the property that for any
h-subset F of [n], the repair of each failed node C;,i € F
can be accomplished by connecting to any k + 1 helper nodes
and downloading (k + h)l/(h+ 1) symbols of F in total from
these helper nodes as well as from other failed nodes. Clearly,
the amount of downloaded data meets the cut-set bound (3)
with equality.

As in the previous sections, we will define C by its
parity-check equations, and we begin with some notation. Let
{\ijYie[n],jef0,1y be 2n distinct elements of the field F'. Let
g be a bijection between the set of h-subsets {F : F <
[n],|F| = h} and the numbers {1,2,...,m}. As in (19), the
particular choice of g does not matter; for instance, we can
take

el
g{in,in—1,...,01}) = (’h i~ >+1
o ;) h=] (36)

forallm =iy >ip_1 > >0 =1,

where we use the convention that (z;) =0 if n; < no. For a
givena =0,1,2,...,01—1, let ay,, amm—1, ..., a1 be the digits
of its expansion in the base h+1,i.e.,a = Z;n:_ol ajr1(h+1)7.
For a set F € [n] and an element i € F, let z(F,i) = [{j :
j € F,j < i}| be the number of elements in F that are no
larger than :. Define the following function:

Filn] x{0,1,...,1—1} — {0,1}
Ga)y— (3 agr =z(]—",i)}) (mod 2), (37)
st

where 1(-) is the indicator function. Finally, given a =
0,1,...,0—1,9€ [m] and w = 0,1,2,...,h, let a(i,u) :=
(amy -y ,a1).

Definition 6. The code C = C}, ;.41 is defined by the following
rl parity-check equations:

n
2 M iy Cia =0,
=1

t=0,1,2,...,r

it 1, Uy Aj—15 - - -

—1;,a=0,1,2,...,1 —1.
For a given a = 0,1,2,...,1 — 1 the vectors (¢1,4,¢2.4,
., Cn,q) form an (n, k) MDS code. Therefore C is indeed an
(n, k,1) MDS array code.

Let us show that C has the (h, k+1)-optimal repair property.
As before, we define sums of particular entries of the ith node.
Namely, let F = {i1,i9,...,in}, where i1 < ig < -+ < ip,
be an h-subset of [n]. Given ¢ = 0,1,...,1 —1,j € [h] and
i€ [n], let

) =
The following lemma implies the optimal bandwidth of C for
repairing h failed nodes.

Ci,a(g(F),0) T Ci,a(g(F).5)-



Lemma 8. Let F = {iy,i2,...,i,} be the set of failed nodes.
For any set of helper nodes R < [n] =k +1,
any j € [h], and any a € {0,1,...,1 — 1}, the values of
Ci; a(g(F),0)» Cija(g(F).j) and {uz(al)] 1€ F\{i;}} are uniquely
determined by {,ugalz (e R}

The proof of this lemma relies on the same ideas as the
proofs of Lemmas 4 and 6. For completeness we outline it at
the end of this section.

Let us explain why Lemma 8 implies that C;,7 € F can
be repaired with optimal bandwidth. In the first round of
the repair process, every failed node C;,,j € [h] downloads

{ul i L GgF) = = 0} from each helper node C;,i € R.
Accordlng to Lemma 8, after the first round, C;, knows the
values of

{¢ij.0 2a9(7) = 0} U {Ci; ae(F).5) * ag(F) = 0}
U {Ciﬂ + Ci,a(g(F),j) - Qg(F) = 0,7 € .F\{’LJ}}
In the second round of the repair process, every failed node
Ci;,j € [h] downloads {c;; o +c;, alg(F).) | g(F) = 0} from
each of the other failed nodes C’, 220" € A\ ]} As a result,
C;; knows the values of all the elements in the set

{¢i,.a(e(F) ) Gg(r) = 0,u=0,1,...,h}
={ci,a:a€{0,1,2,...,1 —1}},

or, in other words, Cij can recover all its coordinates. In
regards to the repair bandwidth expended during the two
rounds of communication, every failed node C;;,j € [h]
downloads I/(h + 1) symbols of F' from each of the nodes
C;,i € R u F\{i;}. Therefore the total repair bandwidth is
h(k+h)l/(h+1), meeting the cut-set bound (3) with equality.

Proof
that

The
rows

of Lemma 8:
correspond to the

parity-check equations
labeled by a(g(F),0),

a(g(F),1),...,a(g(F),h) are as follows:
t J—
;Ai,f(iﬂ(g(}—),u))ciﬂ(g(]:),u) =0, 58
t=0,1,2,...,r—1, u=0,1,2,... h.

According to definition of the function f in (37), if i ¢ F,
then the value of f(i,a) does not depend on the digit of a in
position g(F). Thus we have

fi,a(g(F),0)) = (i, ( F),1))
= = f(lva( ( ) ))?Z € [n]\]:
Likewise we have for any j € [h]
f(ij,a(g(]:),O)) 7 f(ijva(g(]:)?j))a
f(iz,a(g(F),0)) = f(ij,alg(F),5"), i" € [A]\{5}-
Thus we are justified in using the following notation:
Ai 1= A f(i,a(9(F)0) = Airf (ia(g(F),1)

== N f(ia(g(F).h)), 1 € [N]\F; (39)
bV

15,0 = )\ijvf(ijva(g(]:)vo)) = )‘i.j,f(ij,a(g'(f),j')% )
jelnl, i e [R\{g} (40)
X1 = X fGigate(P).0))» I € [h]-

Notice that
Ao # Nija

and

{AZJ,O7 ij,l} = {)\i]‘707)\ij,1} fOI‘ all _7 € [h]7
A € {>\i07)\i 1} 1€ [n]\]—"
Therefore the elements A o, A}, o, Af, 05 A%, 15 Aiy 15 -+ -5

A1, iy € [n]\F are all distinct. Now we can write (38) as

ip,10

Z 1‘,7 y C'LJ 9(]:

Z )‘Czag(]-' =0,

j=1 €[n\F
—0,1,...,r—1;
(/\;u,l)t tu,a(g(F),u + Z zJ, zj,a(g(}'),u)
Je[h]\{u}
+ Z AiCia(g(F)u) = 0,
€[n]\F
t=0,1,...,r—1, u=1,2,... h.

These equations have exactly the same form as the equations
in (35). Therefore the remainder of the proof of Lemma 8
follows the steps in the proof of Lemma 7 (or Lemma 3), and
we do not repeat them here.

VII. COOPERATIVE (h,d)-OPTIMAL CODES FOR GENERAL
h AND GENERAL d

A. Repairing the first h nodes from any d helper nodes

In this section we present a construction of MDS array codes
that can optimally repair the first h nodes from any d > k + 1
helper nodes for any given 2 < h < n—d < r — 1. (We
do not consider the case of d = k because codes for it were
constructed earlier in [16].) Let s := d + 1 — k. Given a finite
field F' of cardinality |F'| > n + h(s — 1), we present an
(n,k,l = (h+s—1)(s —1)"~1) MDS array code C = C.")
over the field F' that has the following property: When the
first h nodes of C fail, the repair of each failed node can
be accomplished by connecting to any d helper nodes and
downloading

l
)d h—k
symbols of F' in total from these helper nodes as well as from
the other failed nodes. Clearly, the amount of downloaded data
meets the cut-set bound (3) with equality.

Let ()\ij,i = L hyg = 0,1,...,5 —
1), Aht1, Ant2s---,An be hs + n — h distinct elements
of the field F'. Define

(d+h— =(d+h—-1)(s—1)"!

A= {Q: (a1,az,...,an) :ge{O,l,...,s—l}h’,
h 41)
Z]l{aizsfl}él},
i=1

i.e., A is the subset of {0,1,...,s — 1} consisting of all the
a such that at most one of its coordinates is s — 1. It is easy
to verify that

Al = (h+s—1)(s— 1)t =1. (42)



Let C = (C1,Cy,...,Cy) € C be a codeword of the code
C. In this section, we use a multi-index (vector) notation g =
(a1,az2,...,ay) to label the entries of each node C;, so the
node has the form C; = (¢;4,a € A). In previous sections
we opted for numbering the entries of C; with integers even
though on several occasions (e.g., in Sections IV-B, V-B) we
have essentially relied on the multi-index notation. We could
follow this pattern in this section as well, however the integer
numbering would not be consecutive, and we find the vector
notation much more convenient for the presentation. We note
that, according to (42), the dimension of C; over F' is indeed

l.

Definition 7. The code C is defined by the following parity
check equations:

h n
DN aiat Y Meig=0,t=0,1,...,r—1, ac A
i=1

i=h+1
(43)
Since for each a € A, the set of vectors
{(c1,0,¢2,a5---+Cnq)} forms an (n,k) MDS code, C is

indeed an (n, k,!) MDS array code.

1) Intuition behind the repair scheme: We begin with an
informal discussion of the code construction and the accom-
panying repair scheme. According to the cut-set bound (3),
if we assume that the amount of communication between
any two nodes is the same (uniform download), which is
the case for our repair scheme, then this amount is equal to
ﬁ = (s — 1)1 symbols of F. More precisely, in the
first round of repair process, each failed node should download
(s — 1)"=1 symbols of F from each helper node, and in the
second round, each failed node should download (s — 1)1
symbols of F' from each of the other failed nodes.

For ¢ € [h] and u € {0,1,...,s — 1}, define a(i,u) :=
(al, A2y e v ey Qi1 Uy Q15 Ajp-2, - -« ,CL}L). For 7 € [h], define
the set of indices

B; = {Q: (al,CLQ,...,ah) 1a; € [O,S— 1]7
a; € [0,s — 2] for all j # i},

where [0,¢] := {0,1,...,t} for an integer t. Define Ay :=
{0,1,...,s —2}" Tt is easy to see that

h h
UUBi=A [)Bi=4.
i=1 i=1

In the first round of repair, each failed node C;,i € [h]
connects to d helper nodes C;,7 € R and downloads
(s—1)"~1 symbols from each of them, so altogether it acquires
d(s—1)"=1 symbols of F. This enables C; to recover a certain
portion of its entries, which we can quantify relying on the
cut-set bound. For this, we observe that this bound gives a
lower estimate on the repair bandwidth for a given size of each
node [. At the same time, given the repair bandwidth, it gives
an upper estimate on the node size, including in particular a
bound on the maximum number of entires of the node that can
be recovered from a certain amount of the downloaded data.
Using this observation, let us take |F| = 1 and |R| = d in (2)
(or in (3)), and replace the left-hand side with d(s — 1)"1.
Solving for I, we see that each failed node can recover at most
s(s — 1)"=1 coordinates. At the same time, the cardinality of

the set B; is exactly s(s — 1)"~1, and this is the subset of
the entries of C; that will be repaired after the first round of
communication. Namely, according to Lemma 2, the set of
values {¢; , : @ € B;} can be found relying on the values

s—1
{( Z Cja(iu) * @€ Bi,a; = 0>7j € R}
u=0

(see Lemma 9 below), and therefore, the node C; downloads
the set {3°_¢ ¢ja(iu) : @ € Bi,a; = 0} from each of the
helper nodes CjJ € R. Since for every a € B; the coor-
dinate a; can take s possible values, the number of symbols
downloaded from each of them is exactly 2 = (s — 1)1,

S

To move forward, we note that Lemma 2 gives us more:
namely, apart from the values {c; , : @ € B;}, each C;,i € [h]
can also compute (s — 1)~ sums of coordinates of the other
failed nodes. Namely, after the first round, C; can find the
values

s—1
{3 ciatw :ac Bia; =0} forall je [B\G}. @4)
u=0

This is the information that will be exchanged between the
failed nodes Cj,i € [h] in the second round.

To describe the second part of the repair scheme, we note
that the number of coordinates still not available at the node
C; equals

|A\B;| =1—s(s — 1)1 =(h—1)(s — )"

As noted above (again assuming uniform download), in the
second round each failed node should download (s — 1)"~!
symbols of F' from each of the other (h — 1) failed nodes.
Therefore, in the second round, each failed node should
acquire (h — 1)(s — 1)"~! symbols of F, which matches the
number of the still missing symbols of the node. To decide
what to download we turn to (44), noting that each failed
node C; knows the sums in (44) for all the other failed nodes
Cj,j € [h]\{i}. For a fixed j, there are (s — 1)"~1 symbols
in the set (44), so a natural thing to do in the second round is
to let C; transmit the sums in (44) to each of the remaining
failed nodes C}, j € [h]\{i}.

Since every failed node C; knows {c;, : a € B;} after
the first round and Ay < B; for all j € [h], every failed
node C; knows {c;, : a € Ap}. We observe that each sum in
(44) has s terms and that the indices of s — 1 of them belong
to the set Ay, so C; can calculate the single remaining term
from each of these sums. Upon completing this calculation, the
node C; knows the values of all the summands of all the sums
in the set (44), i.e., C; knows all the coordinates in the set
{cja : a € B;}. Since C; downloads these sums from all the
other failed nodes C;, i € [h]\{j}, the downloaded symbols in
the second round enable C; to calculate the coordinates

U {Cja:a€ B}
ie[h]\{s}
Recall that after the first round, C; already knows the values

of coordinates {c;, : a € B;}. Thus after the whole repair
process, C; can find the entries

h
{cjyg ta€ U B} ={cjqa:ac A}
i=1



This concludes the repair procedure because C'; has found all
the missing [ entries.

2) Formal description and validity proof of the repair
scheme: The discussion in the previous subsection contains
most of what is needed to justify the repair scheme. The
omitted step is a connection with Lemma 2 which we include
next.

Lemma 9. Ler C;,i € [h] be one of the failed nodes, and let
R < [n]\[R] be the indices of helper nodes, where |R| = d.
For any a € B, the elements Ci,a(i,0)> Cira(i,1)s - - » Cisali,s—1)
and the values of {>°_; 0Cja € [h]\{i}} can be
calculated from the values in the set {ZZ;%) Cia(im) :JER}

(i,u)

Proof: We again use Lemma 2. Let us write out the
parity-check equations (43) that correspond to the indices

a(,0),a(i, 1),...,a(i,s — 1):
)‘l wCi,a(iu) Z /\ Cj,g(i,u) + 2 )‘z‘cj,g(i,u) =0,
je[h\{i} j=h+1
t=0,1,....r—1, w=01,....s—1. (45)

We can see that this set of equations has the same form as (14):
In (45) only the coefficients of ¢; 4(;,,) Vary with u while the
coefficients of ¢; 4(; ) are independent of u for all j € [n]\{i};
in (14) only the coefficients of c¢;, vary with u while the
coefficients of ¢;, are independent of u for all j € [n]\{1}.
Therefore Lemma 2 applies directly, and the proof is complete.

|

In the first round, each failed node C;, i € [h] downloads

s—1
{ Z Cja(iu) - @€ Bizai = O}
u=0
from each helper node C,j € R. As already explained, the
cardinality of the set in (46) is (s — 1)"~1

According to Lemma 9, after the first round, each failed
node Cj,i € [h] knows the following field elements:

{Cia aeB}U< U {Z Calin) aeBz,aZ—O})

e[r]\{i} u=0

(46)

In the second round, each failed node C}, j € [h] downloads

s—1
{ Z Cja(iu) - @€ Bizai = O}
u=0
from each of the other failed nodes C;,i € [h]\{j}. According
to the arguments above, after the second round each failed
node can recover all its coordinates, and the repair bandwidth
achieves the cut-set bound (3) with equality.

Let us look back

at the codes Cé 4 and Cf(LO,C 41 Which are special cases of the
above construction (although this may be not immediate to
see, which justifies their 1nder§endent description earlier in the
paper) Namely, the code C with i = 2 becomes the same

3) Connections with C2d and Ch 1’

as 02 4 albeit with a dlfferent way of indexing the entries of
each node C;, and similarly, letting d = k + 1 in Ch o
obtain the code C,(L 2 41 With a different way of 1ndex1ng.

First, using Table I, it is immediate to see that the sub-
packetization values match. Now let us verify the easier of
the two specializations, checking the case of h = 2. Indeed,
in this case the set A defined in (41) becomes

A= {Q: (a/l,ag):al,GQE{O,l,.-.,S_l},
(ar,a2) # (s — 1,8 — 1)}

A natural way to transform the multi-index a = (a1, a2) into
an integer index is to use the mapping a = a1 + sae. It is clear
that the image of A under this mapping is {0,1,2,...,s% —
2}, which is exactly the same as the set of integer indices in
Section V-A. One can further check that when h = 2, the

parity check equations of C,(le given in (43) are the same as
the parity check equations (25) of Céfg

Let us now explam that usmg d =k + 1 in the description
of the code Ch » We obtain Ch we1- When d =k + 1, the set
A defined in (41) becomes

A={0,e1,e9,...,en},

where 0 is an all-zero vector of length A, and for i € [R], ¢;
is the h-dimensional vector whose only nonzero coordinate is
located at the ¢th position, and this coordinate is 1. We map
0to 0 and e; to i for all 7 € [h]. It is easy to check that under
this mapping the parity-check equations (43) of the code Cfb?()i

are the same as the parity-check equations (35) of C}(LO,l 1

B. Repairing any h nodes from any d helper nodes

Finally, in this section we present the codes C = Cp, 4 that
address the most general case of the repair problem. As above,
we let s := d+ 1 — k and suppose that F, |F| > sn is a finite
field. We present an (n,k,l = ((h+s—1)(s—1)"~1)™) MDS
array code C = Cj, 4 over F', where m := (Z) The code C has
the property that for any h-subset F of [n], the repair of each
failed node C;,i € F can be accomplished by connecting to
any d helper nodes and downloading (d+ h—1)l/(h+s—1)
symbols of F' in total from these helper nodes as well as from
the other failed nodes. Clearly, the amount of downloaded data
meets the cut-set bound (3) with equality, and so the code C
supports optimal repair.

Let {\;j,i =1,...,n,j7 = 0,1,...,5 — 1} be sn distinct
elements of the field F'. We will rely on the definition of the
set A in (41). To remind ourselves, this is the set of h-tuples
of integers between 0 and s — 1 that contain at most one
entry equal to s — 1. We use the shorthand notation [0,7] :=
{0,1,...,4} for an integer 4, and define a set of integer vectors
Al™ = 0,5 — 1]"™ such that each of the m subvectors is
contained in A. More specifically, in this section we use a to
denote an integer vector of length hm:

a = (Q(l)7a(2)a" - a

), @47

o, ... (1)) € [0,s — 1]". Define the set
m:QZ)EAyi::l?'"?m}'
_ 1>h—1

where a(¥) = (
Alml = fa e 0,5 — 1]

According to (42), each a(*) can take (h + s — 1)(s
possible values, so

A = (h+s =1 (s— D)™ =1 (48)



Let g be the bijection between the set of h-subsets {F : F <
[n], |F| = h} and the numbers {1,2,...,m} defined in (36).
For a set 7 < [n] and an element i € F, let 2(F,i) = [{j :
j € F,j < i}| be the number of elements in F that are not
greater than ¢. Define the following function:

fi[n] x A" S 40,1, s — 1}
(i) (f h) 7)) mod ), 49

n],|F|=h

Fai
Let C' = (C1,Cs,...,Cy) € C be a codeword of the code C.
We index the entries of the code C; using the multi-index
a defined above in (47), writing C; = (¢; 4,0 € A[m]).
According to (48), the dimension of C; over F' is indeed .
The last element of notation is as follows: for every a € Alml,
i€[m]and be A, let

Q(Zab) = (Q(l)ag(z)a sy

Definition 8. The code C = Cy, q is defined by the following
rl parity-check equations:

aV b oD e,

DN i Cia=0,t=0,1,2,....r—1;ae A", (50)
=1

For every a € Al™] the vectors (cl,g, C2,45-+-1Cn
an (n, k) MDS code. Therefore C is indeed an (n, k,
array code.

o) form
) MDS

Let us show that C has the (h,d)-optimal repair property.
Let F = {il,ig,...,ih}, where 1 <41 <19 < -+ <ip <N,
be the set of indices of h failed nodes. For every codeword
C = (C1,Cs,...,Cy) € C and every a € Alml e form a
vector C'(@) by taking a subset of coordinates from each node
C;,i€[n]:

0@ = (0 0 .. o),
where

C¥ = (Ciagrm bEA), i=1...,n. (51
By definition the set C'? contains (h + s — 1)(s — 1)h~1
coordinates of C;. Since the indices of these coordinates are
obtained by replacing the subvector a(9(*)) with all the vectors
of the set A, the vectors C(@) and C’i@ do not depend on the
original value of a9 ie.,

0@ — 0e(F)b) 4nd 0@ — olele(F)b)

: (52)
forall CeC,ie[n] and be A.

Moreover, consider the following ((h+s—1)(s—1)"=1)m~1
sets of coordinates of C;:

{Cf :ae AlM, a0 — 0}, (53)
where we view each vector Ci(g) defined in (51) as a set. Since
we are limiting the subvector a(9(*)) to 0 while originally it
can take |A| = (h + s — 1)(s — 1)"~! values, the vector a in
(53) takes

l

(h+s—1)(s—1)h1 =((h+s—1)(s— 1) Hm-1

16

possible values. Therefore (53) contains ((h + s — 1)(s —
1)"=1)ym=1 distinct sets of coordinates of C;. This amounts to
saying that the sets in (53) form a partition of the coordinates
of (jz

For every a € Al™), we define an (n, k, (h+s—1)(s—1)""1)
MDS array code C(@) as follows:

c@ .= {(c®,ci¥,...,cW) . cec),

where the MDS property and the dimension of C(@) follow
directly from the definition of the code C; see (50), (51). To
better understand the connection between the code C and its
subcodes C(ﬂ)@ e Alml we can view each codeword of C
as a two-dimensional array of size [ x n. We use multi-index
a € Al to index each row and i € [n] to index each column
of the codeword. Each subcode C'@ a e Al contains (h +
s—1)(s—1)""1 rows of the codewords in C, and the indices
of these (h+s—1)(s—1)"~1 rows are in the set {a(g(F),b) :
b e A}. From (52) it is clear that

@ = c@@(F)L) for all he A.

Thus, the code C can be partitioned into ((h + s — 1)(s —
1)"=1)m=1 subcodes

{C(g) cae A™ g9(F) = 0},

and each subcode contains (h + s —1)(s — 1)"~1 rows of the
code C. We will show that each of these subcodes has the
same structure as the code C,(l?()i defined in Section VII-A, and
can therefore be optimally repaired.

Lemma 10. For every a € Al™, the (n,k,(h + s —1)(s —
1)*=1) MDS array code C'% can optimally repair the failed
nodes Ci(g),i € F from any d helper nodes, i.e., the bandwidth
of repairing Cfg),i € F from any d helper nodes achieves (3)
with equality.

Proof: Our goal is to show that the code C(@) has the
same structure as the code C ;(Logz- Then we can apply the optimal

repair scheme for the first & nodes of C,(L?zl to the repair of the
failed nodes of C(%) whose indices are in F.

By definition (49), the function f has the following prop-
erty: For any a € Al™ and any b = (b1,ba,...,by) € A,

fi,a(g(F),b)) = f(i,a) for all i € [n]\F,
fiu, a(g(F), b)) = f(iu,a(g(F),0)) @b, for all ue [](1;21)
where 0 is the all-zero vector of length h, and @ is addition
modulo s. From now on we fix an a € A" and prove the
claim for this fixed a. According to (54), we are justified in
using the following notation:

Ai = Aif(i,a) =i f,a(g(F).b)

55
for all ¢ € [n]\F and all b € A. (53)

We further define
)\I

usj

=i, fina(9(F),0)Dj

for all w € [h] and all j € {0,1,...,s — 1}.

Again by (54), we have

7:11/ 7bu

= Ny F(i,a(9(F),0)Bbu = iy f(iua(g(F),b)) (56)
for all u € [h] and all b € A.



By (51), Ci@ consists of the coordinates (¢; 4(y(F)p) : b € A).
Using (50), (55) and (56), we can write out the parity check
equations of C(@) as follows:

h
DN ) Ca@E ) + Y, Mgy =0,
u=1 i€[n\F

t=0,1,....,r—1, beA.

We can check that (57) has the same form as (43). Indeed, b in
(57) plays the role of a in (43); the first sum in both equations
consists of coordinates of the A failed nodes, and the second
sum in both equations consists of coordinates of the other
available nodes; in both equations, only the coefficients of the
coordinates of the failed nodes vary with the indices, and they
vary in exactly the same way. Therefore the repair scheme of
code C,(L(?zl can be directly applied to the repair of C’i@,i e F
from any d helper nodes, and the repair bandwidth of this
scheme achieves the bound (3). This completes the proof of
Lemma 10. [ ]

Since every subcode can optimally repair the failed nodes
whose indices are in the set F, the same is true for the code C:
namely it is capable of repairing C;,¢ € F from any d helper
nodes with optimal repair bandwidth.

(57)

Remark: Expanding the discussion in Section VII-A3, we
can see that both the codes Cy 4 and Cj, 11 are special cases
of the code Cj, 4 : taking A = 2 in the definition of Cj, 4, we
obtain the code C; 4 with a different indexing of the node’s
coordinates, and in the same way, taking d = k + 1 in Cj g4,
we obtain the code Cp, ;4+1, with a different way of indexing.

C. A family of universal codes

Using the construction in the previous subsection as a
building block and exploiting the concatenation operation
defined in Section V-C, we can easily construct an (n, k) MDS
array code CU with universal (h, d)-optimal repair property for
all 1 < h < n—d < n— k simultaneously. In other words,
the codes that we construct can optimally repair any number
of erasures from any number of helper nodes.

Indeed, let
CU = Ch d-

1<h<n—d<n—k

The code CY is simply a concatenation of all Cp, 4 for 1 <
h < n—d < n—k, where the codes C 4 for h > 2 are
defined in the previous subsection, and the code C; 4 is given
in Sec. V-C [4]. It can be constructed over a field F' with size
|F| = rn, and it supports optimal repair of any single node,
and optimal cooperative repair of any h > 2 nodes.
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