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Abstract—We define a virtual projection of a Reed-Solomon
code RS(ql, n, k) to an RS(q, n, k) Reed-Solomon code. A new
probabilistic decoding algorithm that can be used to perform
fractional decoding beyond the α- decoding radius is considered.
An upper bound for the failure probability of the new algorithm
is given, and the performance is illustrated by examples.

Index Terms—Fractional decoding, Virtual projection, Inter-
leaved Reed-Solomon codes.

I. INTRODUCTION

AN Interleaved Reed-Solomon code [4], [6], [10] is obtained
by stacking m codewords of different m RS(q, n, kj)

codes of the same length n. A codeword of an Interleaved
Reed-Solomon code is an m × n matrix over the field Fq .
Interleaved Reed-Solomon codes make sense in scenarios where
the error affects all m RS codewords at the same positions. In
[7], Schmidt et al. presented a scheme that virtually extends a
low-rate RS code to an Interleaved Reed-Solomon code and a
probabilistic decoding algorithm that can correct errors beyond
the unique decoding radius of the RS-code.

Recently, Tamo at al. [3], considered error correction by
maximum distance separable (MDS) codes based on part of
the received codeword to define a fractional decoding problem,
and the α-decoding radius of an (n, k, l) array code over a finite
field Fq . The fractional decoding problem is motivated by the
fact that in distributed systems [2], usually there is a limitation
on the disk operation as well as on the amount of information
transmitted for the purpose of decoding.

In this contribution, we consider a Reed-Solomon code
RS(ql, n, k) with evaluation set L ⊆ Fq and define a virtual pro-
jection to an RS(q, n, k) Reed-Solomon code. We also present
a probabilistic approach to the problem of fractional decoding.
For α = m/l and an RS(ql, n, k) code of rate R 6 α

m(1−α)+1
our method corrects more errors than guaranteed by the α-
decoding radius with failure probability given approximately
by mq−(m+1)(τPα−t)−1, where t < τPα is the number of errors
that we would like to correct.

This work is structured as follows. In Sect. 2, we recall
collaborative decoding of Interleaved Reed-Solomon codes [6]
and fractional decoding [3]. In Sect. 3, we define a virtual
projection to an RS(q, n, k)-code, and we show how the virtual
projection can be used to perform fractional decoding beyond
the α-decoding radius.

II. PRELIMINARIES

A. Reed-Solomon and Interleaved Reed-Solomon Codes

Definition 1. Let L = {γ1, . . . , γn} where γ1, . . . , γn are
distinct nonzero elements of the finite field Fq . For a given
univariante polynomial f(x) ∈ Fq[x] denote

f(L) = (f(γ1), . . . , f(γn)) .
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A Reed-Solomon code RS(q, n, k) over a field Fq with n < q
is given by

RS(q, n, k) = {c = f(L) : f(x) ∈ Fq[x]k}, (1)

where Fq[x]k denotes the set of all univariate polynomials of
degree less than k. The set L is called the evaluation set of C.

An Interleaved Reed-Solomon code of order m is given by
m underlying RS codes, which are arranged in a matrix form.

Definition 2. Let the set K = {k0, k2, . . . , km−1}, consist of m
integers, where all kj < n. An Interleaved Reed-Solomon code
IRS(q, n,K,m) of order m is given by

IRS(q, n,K,m) =

C =


f0(L)
f1(L)

...
fm−1(L)

 : fj(x) ∈ Fq[x]kj

 ,

(2)
The codewords fj(L) ∈ RS(q, n, ki) are called elementary
codewords of the IRS(q, n,K,m)-code. If the dimensions kj
are equal for all j = 0, . . . ,m − 1 the IRS code is called
homogneous. Otherwise, the IRS code is called heterogeneous.

In considering IRS codes we are interested in column errors.
This is equivalent to transmission of the IRS code over a qm-
ary channel.

Let C ∈ IRS(q, n,K,m) and R = C + E, where E =
(E1, . . . , En) and w(E) := |{i : Ei 6= 0}| = t, denote the
received word. The m elementary codewords of an IRS code
are affected by m elementary error words e(0), e(1), . . . , e(m−1)

of weight wt(e(j)) = tj 6 t. Let E(j) denote the set of error
positions for the j − th elementary received word. Since we
are considering column erros, the union of the m sets of error
positions E = E(0) ∪ E(1) ∪ . . . ∪ E(m−1) ⊆ {1, . . . , n} has
cardinality |E| = t.

B. Collaborative Decoding of Interleaved Reed-Solomon Codes

In [6], Schmidt et al. introduced the concept of collaborative
decoding for Interleaved Reed-Solomon codes. This decoder is
based on the fact that the errors occur in the same positions
of each elementary codeword of the Interleaved Reed-Solomon
code.

In the first step of collaborative decoding, m syndrome
polynomials S(0)(x), S(1)(x), . . . , S(m−1)(x) of degree smaller
than n− kj are calculated. The syndrome polynomial is

S(j)(x) =

n−kj∑
i=1

S
(j)
i xi−1 (3)

with coefficients:

S
(j)
i = r(j)(γ

kj
i ) =

n∑
h=1

r
(j)
h γ

kj(h−1)
i (4)

for all i = 1, . . . , n− kj and j = 0, . . . ,m− 1.
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As in the classical case, these syndromes are used to form a
linear system of equations SΛ = V ,

S(0)

S(1)

...
S(m−1)

 .


Λ1

Λ2

...
Λt

 =


V (0)

V (1)

...
V (m−1)

 , (5)

where each sub-matrix S(j) is a (n − kj − t) × t matrix and
each V (j) is a column vector of length n− kj − t:

S(j) =


S
(j)
t+1 S

(j)
t · · · S

(j)
2

S
(j)
t+2 S

(j)
t+1 · · · S

(j)
3

...
...

. . .
...

S
(j)
n−kj S

(j)
n−kj−1 · · · S

(j)
n−kj−t+1

 ,

V (j) =


−S(j)

1

−S(j)
2

...
−S(j)

n−kj−t

 (6)

The system of equations (5) has
∑m−1
j=0 (n−kj−t) equations

and t unknowns. In order to guarantee unambiguous decoding,
the number of linearly independent equations has to be greater
than or equal to the number of unknowns. Under the assumption
that all equations in (5) are linearly independent we obtain the
following restriction on t:

m−1∑
j=0

(n− kj − t) > t (7)

Which can be rewritten as

t 6
m

m+ 1

(
n− 1

m

m−1∑
i=0

kj

)
:= τIRS (8)

However, there is a certain probability that some of the
equations (5) are linearly dependent. In this case, there is no
unique solution of the system of equations and we declare a
decoding failure.

The collaborative decoder presented by Schimidt et al. [6],
can corrects t erros, t 6 τIRS with a failure probability of(

qm − 1
q

qm − 1

)t
q−(m+1)(τIRS−t)

q − 1
. (9)

C. Fractional decoding

Tamo et al. [3], introduced the concept of fractional decoding
where error correction by maximum distance separable codes
based on part of the received codeword is considered. The idea
is that the decoder downloads an α proportion of each of the
codeword’s coordinates. Below we will describe the α-decoding
problem.

Fractional decoding is defined in the following

Definition 3. Let C be an (n, k, l) array code over field Fq . We
say that C corrects up to t errors by downloading αnl symbols
of Fq if there exist functions

fi : Flq −→ Fαilq , i = 1, . . . , n and g : F(
∑n
i=1 αi)

q −→ Fnlq
(10)

such that
∑n
i=1 αi 6 nα and for any codeword C ∈ C and any

error E ∈
(
Flq
)n
, w(E) 6 t

g(f1(C1 + E1), . . . , fn(Cn + En)) = (C1, . . . , Cn). (11)

For α > k/n, we define the α-decoding radius of C as the
maximum number of errors that C can correct by downloading
αnl symbols of Fq , and denote it as rα(C).

Define the α-decoding radius rα(n, k) as follows:

rα(n, k) = max{rα(C) : C is an (n,k)-code}. (12)

Given an (n, k)-linear code we should take α > k
n because

the codeword encodes k data symbols, and even without errors
to recover the data the decoder needs at least as many imput
symbols. If α = 1, we return to the standard problem, so the
goal of fractional decoding is study error correction for α in the
range k

n 6 α < 1.
It was also shown in [3] that the α-decoding radius of a

(n, k)-linear code is

τα =

⌊
n− k/α

2

⌋
(13)

and that an RS(ql, n, k,L) with L ⊆ Fq achieves the optimal
α-decoding radius (13).

III. FRACTIONAL DECODING AND COLLABORATIVE
DECODING

A. Virtual Projection to an Interleaved Reed-Solomon Code

Schmidt et al. [7], [8], suggested to extend a low-
rate RS(n, k) code to an IRS code to perform syn-
drome decoding of the RS(n, k) code beyond half the
minimum distance, of course, with some failure proba-
bility. Zeh et al. [9], defined the mixed virtual exten-
sion of a homogeneous interleaved Reed-Solomon code to an
heterogeneous interleaved Reed-Solomon code with objective
of decoding beyond its joined error-correcting capability [4].

In this subsection, we will introduce the concept of virtual
projection of a Reed-Solomon code RS(ql, n, k) ⊆ Fnql with
evaluation set L = {γ1, . . . , γn} ⊆ Fq to a heterogeneous
Reed-Solomon code IRS(q, n,K,m). Our purpose is to use
the virtual projection to perform fractional decoding beyond the
α-decoding radius.

Definition 4. Let A0, A1, . . . , Am−1 ⊆ Fq be m pairwise
disjoint sets of the field Fq . For j = 0, 1, . . . ,m − 1, define
the annihilator polynomials of the set Aj to be

pj(x) =
∏
ω∈Aj

(x− ω) . (14)

Note that, deg pj(x) = |Aj | ∀j = 0, . . . ,m− 1.

Definition 5. Let F = Fql be a finite field extension of B = Fq
of degree l. The field trace is defined

trF/B(β) = β + βq + βq
2

+ . . .+ βq
l−1

.

Let ζ0, ζ1, . . . , ζl−1 be a basis of F over B, and let
ν0, ν1, . . . , νl−1 be the dual basis (i.e., trF/B(ζiνj) = δi,j for
all i, j). Then

β =
l−1∑
i=0

trF/B(ζiβ)νi.

In other words, any element β in F can be calculated from its
l projections

{
trF/B(ζiβ)

}l−1
i=0

on B.
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Definition 6. Given a polynomial h(x) = ak−1x
k−1 +

ak−2x
k−2 + . . .+ a0 ∈ Fql [x] and m pairwise disjoint subsets

A0, . . . , Am−1 ⊆ Fq . Define

Tj(h)(x) = hl−m+j(x)(pj(x))(l−m)(j+1)

+
l−m−1∑
u=0

hu(x)(pj(x))u(j+1) (15)

for all j = 0, . . . ,m − 1 and the polynomial hi(x) ∈ Fq[x] is
given by

hi(x) = tr(ζiak−1)xk−1 + tr(ζiak−2)xk−2 + . . .+ tr(ζia0).
(16)

Lemma 7. Let C = RS(ql, n, k) be a Reed-Solomon code and
h(L) ∈ C where L ⊂ Fq is the evaluation set of C. Then each
codeword Tj(h)(L) is a codeword of the Reed-Solomon code

Cj = RS (q, n, k + |Aj |(l −m)(j + 1)) . (17)

Proof. Fist note that

deg Tj(h)(x) 6 max
{

deg hl−m+j(x)(pj(x))(l−m)(j+1),

deg
l−m−1∑
u=0

hu(x)(pj(x))u(j+1)

}
and we can check that

deg hl−m+j(x)(pj(x))(l−m)(j+1) = deg hl−m+j(x)

+|Aj |(l −m)(j + 1)

< k + |Aj |(l −m)(j + 1).

and

deg
l−m−1∑
u=0

hu(x)(pj(x))u(j+1) < k + |Aj |(l −m)(j + 1).

So, deg Tj(h)(x) < k + |Aj |(l − m)(j + 1) for all j =
0, 1, . . .m − 1. Now we must check that Tj(h)(L) ∈ Fnq . By
definition, Tj(h)(L) = (Tj(h)(γ1), . . . , Tj(h)(γn)), so we just
need to prove that Tj(h)(γi) ∈ Fq for all i = 1, . . . , n. For all
j = 0, . . . ,m− 1. we have

Tj(h)(γi) = hm−l+j(γi)(pj(γi))
(l−m)(j+1)

+
l−m−1∑
u=0

hu(γi)(pj(γi))
u(j+1)

as hu(x), pj(x) ∈ Fq[x] and γi ∈ Fq it is clear that Tj(h)(γi) ∈
Fq for all i = 1, . . . , n and j = 0, . . . ,m− 1.

Definition 8. Let C = RS(ql, n, k) be a Reed-Solomon
code with evaluation set L = {γ1, . . . , γn} ⊆ Fq and let
A0, . . . , Am−1 any pairwise disjoint subsets of Fq such that∑m−1
j=0 |Aj | > k. The Virtual Projection CPm/l(q, n,K) is given

by

CPm/l =




c(0)
c(1)

...
c(m−1)

 =


T0(h)(L)
T1(h)(L)

...
Tm−1(h)(L)


 , (18)

where Tj(h)(x) is given by (15) and K = {k0, . . . , km−1} with
kj = k + |Aj |(l −m)(j + 1) for all j = 0, . . . ,m− 1.

Assume that a codeword c(L) ∈ C is transmitted over a
noisy channel, which adds t erros in such a way, that the word
y(L) = c(L)+e(L) is observed at the channel output. Using the
observed word y(L), we calculate the m polynomials Tj(y)(x),
j = 0, . . . ,m− 1, and create the matrix

Y =


T0(y)(γ1) . . . T0(y)(γn)
T1(y)(γ1) . . . T1(y)(γn)

...
. . .

...
Tm−1(y)(γ1) . . . Tm−1(y)(γn)

 (19)

The matrix Y can be considered as received word of the
virtual projection CPm/l(q, n,K) of C = RS(ql, n, k).

Theorem 9. Let c(L) ∈ RS(ql, n, k) be a codeword of a Reed-
Solomon code C transmitted over a noisy channel. Assume that
the word y(L) = c(L) + e(L) is received, if e = (e1, . . . , en)
has t nonzero coefficients ei1 , . . . , eit then the matrix Y is a
corrupted codeword of the CPm/l(q, n,K) code with at most t
erroneous columns at the positions i1, . . . , it.

Proof. If e = 0, then y = c ∈ C, and by Lemma (7) we know
that Y is a codeword of the virtually projection CPm/l(q, n,K).
Note that

Tj(y)(γi) = Tj(c+ e)(γi) = Tj(c)(γi) + Tj(e)(γi).

Clearly, if ei = 0, that is, if i /∈ {i1, . . . , it}, then Tj(e)(γi) = 0
for all j = 0, . . . ,m−1. If i ∈ {i1, . . . , it}, then Tj(e)(γi) may
be non-zero, so Y has at most t erroneous columns.

Unlike the virtual extension to an IRS code [8], where it
is possible to ensure that given a word y = c + e the virtual
extension of y is a word with exactly t erroneous columns, in
the virtual projection we can not assure it.

In addition, in the virtual extension approach given a code-
word c ∈ RS(q, n, k) and its virtual extension C ∈ IRS when
we recover the word C ∈ IRS, we immediately recover the
codeword c ∈ RS(q, k) (the first row of the codeword C). In
virtual projection it is not so immediately that given a codeword
c ∈ RS(ql, n, k) and its virtual projection C ∈ CPm/l we can
recover the codeword c ∈ RS(ql, n, k) just by recovering the
codeword C ∈ CPm/l , but the following ensures it.

Lemma 10. Given polynomials {Tj(h)(x)}m−1j=0 as in (15).
Suppose that

∑m−1
j=0 |Aj | > deg h(x) then we can recover the

polynomials {hj(x)} and consequently we can recover h(x).

Proof. Tj(h)(ω) = h0(ω) for all ω ∈ Aj ; of course, we can
rewrite (15) as

Tj(h)(x) = hl−m+j(x)(pj(x))(l−m)(j+1)

+
l−m−1∑
u=0

hu(x)(pj(x))u(j+1)

= hl−m+j(x)(pj(x))(l−m)(j+1)

+h0(x)(pj(x))0(j+1) +
l−m−1∑
u=1

hu(x)(pj(x))u(j+1).

So, Tj(h)(ω) = h0(ω) for all ω ∈ Aj . Then, we know
the evaluations of h0(ω) at all the points ∪m−1j=0 Aj and by
assumption,

∑m−1
j=0 |Aj | > deg h(x) > deg h0(x), so we can

recover h0(x). Now from h0(x) and {Tj(h)(x)}m−1j=0 , we can
calculate the polynomials
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T
(1)
j (h)(x) =

Tj(h)(x)− h0(x)

pj(x)j+1

= hl−m+j(x)(pj(x))(l−m−1)(j+1)

+h1(x) +
l−m−1∑
u=2

hu(x)(pj(x))(u−1)(j+1).

So, T (1)
j (h)(ω) = h1(ω) for all ω ∈ Aj , and again, we know

the evaluation of h1(x) in ∪m−1j=0 Aj . So, we can recover h1(x).
From h0(x), h1(x) and {Tj(h)(x)}m−1j=0 we can calculate the
polynomials

T
(2)
j =

T
(1)
j (h)(x)− h1(x)

pj(x)j+1
.

Since T
(2)
1 (h)(ω) = h2(ω) for all ω ∈ Aj , by the previous

argument we can recover h2(x). Generally, the polynomials
{hl−m+j(x)}m−1j=0 can be recovered from

hl−m+j(x) =
Tj(h)(x)−

∑l−m−1
u=0 hu(x)(pj(x))u(j+1)

(pj(x))(l−m)(j+1)
.

By Lemma 10, we conclude that given an RS(ql, n, k)-code
with evaluation set L ⊆ Fq and its virtual projection CPm/l it
is possible to recover a codeword c ∈ C using the code CPm/l
whenever the received word y = c + e has no more than t
errors with t < τPm/l , where τPm/l denotes the decoding radius
of CPm/l . Hence, we have the following algorithm.

Algorithm 1: Virtual Projection IRS Decoder
Input: Received word y(L) = c(L) + e(L), α = m/l
For: j = 0 to m− 1 do
Create the matrix Y from Tj(y)(L) and calculate the
syndromes S(0), . . . , S(m−1).

Compute t and Λ(x) by Algorithm 1 in [6] .
if t < τPα and Λ(x) is t-valid then

for each j from 0 to m− 1 do
evaluate errors, and calculate Tj(e)(L)
calculate Tj(ĉ)(L) = Tj(y)(L)− Tj(e)(L)
Use Lemma 10 to compute c(L)

else
decoding failure

output: c(L) ∈ C or decoding failure

Theorem 11. Let C = RS(ql, n, k) be a Reed-Solomon code
then its virtual projection code CPm/l(q, n,K) given by Defini-
tion 8 has maximum decoding radius τPm/l given by

τPm/l =
m

m+ 1

n− k − (l −m)

m

m−1∑
j=0

|Aj |(j + 1)

 . (20)

Proof. The decoding radius of the code CPm/l(q, n,K) is the
error-correcting radius of the heterogeneous IRS(q, n,K,m)
code with K = {k0, . . . , km−1} and dimensions kj given by
kj = k + |Aj |(l − m)(j + 1) for all j = 0, . . . ,m − 1. The
correcting radius is given by (8)

τPm/l =
m

m+ 1

n− 1

m

m−1∑
j=0

ki


=

m

m+ 1

n− k − l −m
m

m−1∑
j=0

|Aj |(j + 1)

 .

Corollary 12. Let C = RS(ql, n, k) be a Reed-Solomon code
and CPm/l(q, n,K) its virtual projection as in (18), then:

i) If l = m then τPm/l = l
l+1 (n− k);

ii) If l = m = 1 then τPm/l = n−k
2 = τ ;

iii) If |Aj | = b for all j = 0, . . . ,m− 1 then

τPm/l =
m

m+ 1

(
n− k − b (l −m)

m

(
m+ 1

2

))
.

Proof. Straight forward calculation from (20).

Note that if, l = m then τPm/l is the decoding radius of a
homogeneous Interleaved Reed-Solomon code [6], [8]. For l =
m = 1 the result τPm/l is the decoding radius of the RS(q, n, k)
Reed-Solomon code over Fq .

B. Fractional decoding beyond the α-decoding radius
Let C = RS(ql, n, k) be a Reed-Solomon code with evalua-

tion set L = {γ1, . . . , γn} ⊆ Fq. Let α = m/l, where m and l
are positive integers and m|k. We will show that is possible to
perform fractional decoding beyond the α-decoding radius.

Let c = (c1, . . . , cn) = (h(γ1), . . . , h(γn)) ∈ C, where
h(x) ∈ Fql [x]k. Let also A0, . . . , Am−1 ⊆ Fq be m pairwise
disjoint subsets of Fq , each of size k/m. The m symbols we
download from the i-th coordinate are

dji = trF
ql
/Fq (ζl−m+jci)(pj(γi))

(l−m)(j+1)

+

l−m−1∑
u=0

trF
ql
/Fq (ζuci)(pj(γi))

u(j+1).

(21)

Substituting ci by h(γi) for all i = 1, . . . , n, we see that
(dj1, . . . , d

j
n) = (Tj(h)(γ1), . . . , Tj(h)(γn)) is the j-th row of

the virtual projection code CPα of C. Now by the fact that |Aj | =
k/m for all j and by the Corollary 12 we know that τPα is given
by

τPα =
1

m+ 1

(
mn+ k

(
m

2

)
− k

α

(
m+ 1

2

))
. (22)

As
∑m−1
j=0 |Aj | = k, using the Algorithm 1 it is possible to

recover the codeword c ∈ C with failure probability given by
Theorem 14 if c has no more than t 6 τPα erros.

Note that if m = 1 then α = 1/l and

τPα =
1

2

(
n+ k

(
1

2

)
− lk

(
2

2

))
=

1

2

(
n− k

α

)
= τα.

For m > 2, we would like to improve the fractional decoding
radius of C, it means that we are interested in the case τPα > τα

τPα =
1

m+ 1

(
mn+ k

(
m

2

)
− k

α

(
m+ 1

2

))
>
n− k/α

2
.

(23)

1555



and it is possible to check that (23) is true if and only if

R =
k

n
6

α

m(1− α) + 1
=

m

m(l −m) + l
. (24)

This can be summarized in the following theorem.

Theorem 13. Let C = RS(ql, n, k) be a Reed-Solomon Code
with evaluation set L = {γ1, . . . , γn} ⊆ Fq and α = m/l.
If m > 2 and the rate of C is restricted as in (24) then the
maximum α-decoding radius of C using Algorithm 1 is

τPα =
1

m+ 1

(
mn+ k

(
m

2

)
− k

α

(
m+ 1

2

))
. (25)

Moreover, in this case τPα > τα.

IV. FAILURE PROBABILITY OF THE ALGORITHM I

The failure probability can be calculated in the same way that
[6] and [9].

Note that the values of Tj1(e)(γi) and Tj2(e)(γi) do not
depend of each other for all j1, j2 ∈ {0, . . . ,m − 1} and we
can assume that if Y in (19) is corrupted by t errors, that is,
Y = C+E where E has t non-zero columns, then each non-zero
column is an independent random vector uniformly distributed
over Fmq \ {0}. Hence, we can apply Lemma 6 and Theorem 6
of [6] to upper bounded the failure probability of Algorithm 1.

Theorem 14. Let C = RS(ql, n, k) be a Reed-Solomon Code
with evaluation set L = {γ1, . . . , γn} ⊆ Fq and α = m/l. If
m > 2 and the rate of C is restricted as in (24). The probability
for a decoding failure using the Algorithm 1 is upper bounded
by

Pfα(t) 6

(
qm − 1

q

qm − 1

)t
q−(m+1)(τPα−t)

q − 1
.

Example 15. Let C = RS(25, 31, 4) be a Reed-Solomon code
with evaluation set L ∈ Fq in this case the decoding radius
of C is τ = 13 and R ' 0.1290. By definition α = m

5 and
4
31 6 m

5 < 1 thus m ∈ {1, 2, 3, 4}. Let αi = i
5 for i = 2, 3, 4

then for each αi we have
a) τα1

= τPα1
= 5.

b) τα2
= 10 < 12 = τPα2

.
c) τα3

= 12 < 16 = τPα3
.

d) τα4 = 13 < 19 = τPα4
.

The failure probability of c) is given in Table I.

TABLE I
FAILURE PROBABILITY Pfα3

(t) FOR THE REED-SOLOMON CODE
RS(25, 31, 4).

t 12 13 14 15
Pfα3

(t) 2× 10−6 7× 10−5 2× 10−3 8× 10−2

Example 16. Let C = RS(25, 31, 6) be a Reed-Solomon code
with evaluation set L ∈ Fq in this case the decoding radius of
C is τ = bn−k2 c = 12 and R = k

n ' 0.1935. By definition
α = m

5 and 6
31 6 m

5 < 1 thus m ∈ {1, 2, 3, 4}. If we denoted
αi = i

5 for i = 2, 3, 4 then for each αi we have
a) τα2

= 8 > τPα2
= 7. This is due to the fact that R '

0.1935 and α2

2(1−α2)+1 ' 0.1818 that is (24) is not true in
this case.

b) τα3
= 10 < 12 = τPα3

.

c) τα4
= 11 < 16 = τPα4

. Note that τPα4
is even greater

than the decoding radius of C. So, without accessing the
entire codeword it is possible to recover more than

⌊
n−k
2

⌋
errors with failure probability given in the Table II.

TABLE II
FAILURE PROBABILITY Pfα4

(t) FOR THE REED-SOLOMON CODE
RS(25, 31, 6).

t 11 12 13 14 15 16
Pfα4

(t) 10−9 4× 10−8 10−6 4× 10−5 10−3 5× 10−2
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