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On Fractional Decoding of Reed-Solomon Codes

Welington Santos

Abstract—We define a virtual projection of a Reed-Solomon
code RS(¢',n,k) to an RS(q,n,k) Reed-Solomon code. A new
probabilistic decoding algorithm that can be used to perform
fractional decoding beyond the «- decoding radius is considered.
An upper bound for the failure probability of the new algorithm
is given, and the performance is illustrated by examples.

Index Terms—Fractional decoding, Virtual projection, Inter-
leaved Reed-Solomon codes.

[. INTRODUCTION

N Interleaved Reed-Solomon code [4], [6], [10] is obtained

by stacking m codewords of different m RS(q,n,k;)
codes of the same length n. A codeword of an Interleaved
Reed-Solomon code is an m x m matrix over the field F,.
Interleaved Reed-Solomon codes make sense in scenarios where
the error affects all m RS codewords at the same positions. In
[7], Schmidt et al. presented a scheme that virtually extends a
low-rate RS code to an Interleaved Reed-Solomon code and a
probabilistic decoding algorithm that can correct errors beyond
the unique decoding radius of the RS-code.

Recently, Tamo at al. [3], considered error correction by
maximum distance separable (MDS) codes based on part of
the received codeword to define a fractional decoding problem,
and the a-decoding radius of an (n, k, 1) array code over a finite
field F,. The fractional decoding problem is motivated by the
fact that in distributed systems [2], usually there is a limitation
on the disk operation as well as on the amount of information
transmitted for the purpose of decoding.

In this contribution, we consider a Reed-Solomon code
RS(q', n, k) with evaluation set £ C F, and define a virtual pro-
jection to an RS(g,n, k) Reed-Solomon code. We also present
a probabilistic approach to the problem of fractional decoding.
For o = m/l and an RS(q',n, k) code of rate R < A TT
our method corrects more errors than guaranteed by the a-
decoding radius with failure probability given approximately
by mg~ (DT =t =1 where t < Tp, is the number of errors
that we would like to correct.

This work is structured as follows. In Sect. 2, we recall
collaborative decoding of Interleaved Reed-Solomon codes [6]
and fractional decoding [3]. In Sect. 3, we define a virtual
projection to an RS(q,n, k)-code, and we show how the virtual
projection can be used to perform fractional decoding beyond
the a-decoding radius.

II. PRELIMINARIES
A. Reed-Solomon and Interleaved Reed-Solomon Codes

Definition 1. Let £ = {v1,...,vn} where ~v1,...,y, are
distinct nonzero elements of the finite field F,. For a given
univariante polynomial f(x) € Fq[z] denote

f(ﬁ) = (f(71)1 e '7f(7")) .
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A Reed-Solomon code RS(q,n, k) over a field F, with n < g
is given by

RS(q,n, k) = {c=f(£): f(x) € Fylz]i}, )

where Fy[x]i, denotes the set of all univariate polynomials of
degree less than k. The set L is called the evaluation set of C.

An Interleaved Reed-Solomon code of order m is given by
m underlying RS codes, which are arranged in a matrix form.

Definition 2. Let the set KK = {ko, ka, ..., km—1}, consist of m
integers, where all kj < n. An Interleaved Reed-Solomon code
IRS(q,n, K, m) of order m is given by

fo(L)

L
O @ e Futal,

Fri (L)
(2)

The codewords f;(L) € RS(q,n,k;) are called elementary
codewords of the I1RS(q,n, KC, m)-code. If the dimensions k;
are equal for all j = 0,...,m — 1 the IRS code is called
homogneous. Otherwise, the I RS code is called heterogeneous.

IRS(¢,n,K,m)=<C =

In considering I RS codes we are interested in column errors.
This is equivalent to transmission of the /RS code over a ¢"-
ary channel.

Let C € TRS(¢,n,K,m) and R = C + E, where F =
(E1,...,Ey) and w(E) := |{i : E; # 0} = t, denote the
received word. The m elementary codewords of an /RS code
are affected by m elementary error words e(®), ™) . e(m=1)
of weight wt(el)) = ¢; < t. Let £U) denote the set of error
positions for the j — th elementary received word. Since we
are considering column erros, the union of the m sets of error
positions £ = EO UM U ... ugM=D C {1,...,n} has
cardinality |£| = t.

B. Collaborative Decoding of Interleaved Reed-Solomon Codes

In [6], Schmidt et al. introduced the concept of collaborative
decoding for Interleaved Reed-Solomon codes. This decoder is
based on the fact that the errors occur in the same positions
of each elementary codeword of the Interleaved Reed-Solomon
code.

In the first step of collaborative decoding, m syndrome
polynomials S (z), S (z),..., S~ D (z) of degree smaller
than n — k; are calculated. The syndrome polynomial is

n—k;
S(j)(x) — Z Si(")zifl 3)
i=1
with coefficients:
S =D () = 3y 4)
h=1

foralli=1,...,n—kjand j=0,...,m— L
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As in the classical case, these syndromes are used to form a
linear system of equations SA =V,

S(0) Ay 1 (0)
S Ao 1740))
: i : ' )
S(w;fl) A.t V(n.zfl)

where each sub-matrix SU) is a (n — k; — t) x ¢ matrix and
each V) is a column vector of length n — k; —t:

S(J> _ St]+2 Stil T 53]
S’fiyzk] ng)k_,q T Sfil)krtﬂ
!
_qU
v = > (©)
_Sr(l]—)k —t

The system of equations (5) has Z;-";Ol (n—k; —t) equations
and ¢ unknowns. In order to guarantee unambiguous decoding,
the number of linearly independent equations has to be greater
than or equal to the number of unknowns. Under the assumption
that all equations in (5) are linearly independent we obtain the
following restriction on ¢:

,_.

—kj—t)>t 7)
:O

<.

Which can be rewritten as

t<m+1< Zk>:—7ms ®)

However, there is a certain probability that some of the
equations (5) are linearly dependent. In this case, there is no
unique solution of the system of equations and we declare a
decoding failure.

The collaborative decoder presented by Schimidt et al. [6],
can corrects ¢ erros, t < Tyrs With a failure probability of

qm _ % t q7(7n+1)(71RS*t)
; , 9
— — ©)

C. Fractional decoding

Tamo et al. [3], introduced the concept of fractional decoding
where error correction by maximum distance separable codes
based on part of the received codeword is considered. The idea
is that the decoder downloads an « proportion of each of the
codeword’s coordinates. Below we will describe the a-decoding
problem.

Fractional decoding is defined in the following

Definition 3. Let C be an (n, k,l) array code over field F,. We
say that C corrects up to t errors by downloading anl symbols
of Fy if there exist functions

fi:FgH]qul,i:l, ,nand g :Fy
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such that 7, % < na and for any codeword C € C and any
error E € (Fl) w(E) <t

g(fl(ol +E1)1 . 7fn( n+En)) = Cn)- (11)

For o = k/n, we define the a-decoding radius of C as the
maximum number of errors that C can correct by downloading
anl symbols of ¥y, and denote it as r,(C).

Define the a-decoding radius r.,(n, k) as follows:

(017'-'7

ra(n, k) = max{ry(C) : C is an (n,k)-code}. (12)

Given an (n, k)-linear code we should take o > % because
the codeword encodes k& data symbols, and even without errors
to recover the data the decoder needs at least as many imput
symbols. If &« = 1, we return to the standard problem, so the
goal of fractional decoding is study error correction for « in the
range % <a<l

It was also shown in [3] that the a-decoding radius of a

(n, k)-linear code is
—k/a

) 13)

and that an RS(q',n, k, L) with £ C F, achieves the optimal
a-decoding radius (13).

III. FRACTIONAL DECODING AND COLLABORATIVE
DECODING

A. Virtual Projection to an Interleaved Reed-Solomon Code

Schmidt et al. [7], [8], suggested to extend a low-
rate RS(n,k) code to an IRS code to perform syn-
drome decoding of the RS(n,k) code beyond half the
minimum distance, of course, with some failure proba-
bility. Zeh et al. [9], defined the mixed virtual exten-
sion of a homogeneous interleaved Reed-Solomon code to an
heterogeneous interleaved Reed-Solomon code with objective
of decoding beyond its joined error-correcting capability [4].

In this subsection, we will introduce the concept of virtual
projection of a Reed-Solomon code RS(q',n,k) C IF‘Z, with
evaluation set £ = {71,...,7} C F, to a heterogeneous
Reed-Solomon code IRS(q,n, K, m). Our purpose is to use
the virtual projection to perform fractional decoding beyond the
a-decoding radius.

Definition 4. Let Ay, Ai,...,Ap—1 C Fy be m pairwise

disjoint sets of the field F,. For j = 0,1,...,m — 1, define
the annihilator polynomials of the set A; to be
pi@) = ] (@-w). (14)
WEA;
Note that, degp;(z) = |4;| ¥j=0,...,m— 1.

Definition S. Let ' = T be a finite field extension of B = F
of degree 1. The field trace is defined

treyp(B) =B+ +B% +... 48

Let (op,(1,...,(—1 be a basis of F over B, and let
Vo, V1, ..., Vi1 be the dual basis (i.e., trp p((ivs) = 0 for

all ©,7). Then
-1

B = Z trr (6B

i=0
In other words, any elemeng B in F can be calculated from its
1 projections {trF/B(Qﬁ)}Z (1) on B.



Definition 6. Given a polynomial h(x) = ap_1z*7' +
ak—2a" % + ...+ ag € F[z] and m pairwise disjoint subsets
Ao, ..., Am—1 C Fy. Define

T(h)(x) = hi—maj () (p; () =™ 0+

I—m—1

t 2 h

— 1 and the polynomial h;(x) € Fqlz] is

u(J+l) (15)

forall j=0,....,m
given by

hi(z) = L‘T(Qak,l)ack*1 + tr(Qak,,z)ack*2 + ...+ tr(Cao)-

16)

Lemma 7. Let C = RS(q',n, k) be a Reed-Solomon code and
h(L) € C where L C F is the evaluation set of C. Then each
codeword T;(h)(L) is a codeword of the Reed-Solomon code

Cj = RS (g,n, k+|A;/(1=m)(j+1)). 17
Proof. Fist note that

deg Ty (h) (x ><max{degm e () ()~ O,

u(vH)}

deg by () (p; ()™ = deg hy_py(2)

l-m—1

deg Z h(z

and we can check that

+A; |1 —=m)(j + 1)
<k+|4;|(I—m)(F+1).
and
l—m—1
deg > hu( NEUFD < k| A= m)(f + 1).
u=0
So, degT;(h)(z) < k + |A;|(l — m)(j + 1) forall j =

0,1,...m — 1. Now we must check that T;(h)(£) € Fy. By
definition, T;(h)(L) = (T;(R)(11),-- -, T;(h)(7n)), so we just
need to prove that T;(h)(y;) € F, forall i =1,...,n. For all

7=0,...,m—1. we have
T (h) (Vi) = han—45 (7i) (0 (i ))(l D
I—-m—1
S S
u=0
as hy(z),p;(z) € Fglz] and v; € Fy it is clear that T (h)(7y;) €

Fyforalli=1,...,nand j =0,...,m— 1. O

RS(¢',n,k) be a Reed-Solomon
st C Fy and let

Definition 8. Ler C =
code with evaluation set L = {vy,...

A07... Ap—1 any pairwise disjoint subsets of Fq such that
Py o |A;| = k. The Virtual Projection Cp,,,(g,n,K) is given
by
C(o) T()(h) (,C)
C(l) T1 (h) (,C)
Cr. : = : . (18)
C(m—1) T7,,171(h)(L)
where T;(h)(x) is given by (15) and K = {ko, ..., km—1} with

kj=k+|A;|l—m)(j+1) forall j=0,...,m—1.

1554

Assume that a codeword ¢(£) € C is transmitted over a
noisy channel, which adds ¢ erros in such a way, that the word
y(L) = ¢(L)+e(L) is observed at the channel output. Using the
observed word y(L), we calculate the m polynomials 7T} (y)(z),

7=20,...,m—1, and create the matrix
T()(y)(’)/l) TO(y)(fYn)
T . T n
v — 1(?!?(71) . 1(?1?(’7 ) (19)

T s )1) oo Tt (8) ()

The matrix Y can be considered as received word of the
virtual projection Cp_, (q,n,K) of C = RS(¢',n, k).

'm /1
Theorem 9. Let ¢(L) € RS(q¢',n, k) be a codeword of a Reed-
Solomon code C transmitted over a noisy channel. Assume that
the word y(L£) = ¢(L) + e(L) is received, if e = (e, ..., e,)
has t nonzero coefficients €;,,...,e;, then the matrix Y is a
corrupted codeword of the Cp, (q,n K) code with at most t
erroneous columns at the positions i1, . .. 1.

Proof. If e =0, then y = ¢ € C, and by Lemma (7) we know
that Y is a codeword of the virtually projection Cp,, , (g, n, K).
Note that

Ti(y)(vi) = Tj(c+e) ()

Clearly, if e; = 0, that is, if ¢ & {i1,..., 4}, then Tj(e)(y;) =
forall j =0,...,m—1.1fi € {i1,... i}, thenT(e)( )may
be non-zero, so Y has at most ¢ erroneous columns. O

=T;(c)(w) + Tj(e) (n)-

Unlike the virtual extension to an IRS code [8], where it
is possible to ensure that given a word y = c + e the virtual
extension of y is a word with exactly ¢ erroneous columns, in
the virtual projection we can not assure it.

In addition, in the virtual extension approach given a code-
word ¢ € RS(gq,n, k) and its virtual extension C' € IRS when
we recover the word C' € IRS, we immediately recover the
codeword ¢ € RS(q,k) (the first row of the codeword C). In
virtual projection it is not so immediately that given a codeword
c € RS(¢',n, k) and its virtual projection C' € Cp,,, we can
recover the codeword ¢ € RS(q',n, k) just by recovering the
codeword C' € Cp /10 but the following ensures it.

m—1

Lemma 10. Given polynomials {Tj(h)(x)};Z," as in (15).
Suppose that 377", |A | > degh(x) then we can recover the
polynomials {h; ( )} and consequently we can recover h(z).

Proof. Tj(h)(w) = ho(w) for all w € Aj; of course, we can
rewrite (15) as

T (h)(x) = himaj (@) (pj ()~ U+

l—m—1

>

= hl*'m,ﬁ»j (I) (pg (1}))(177”)(]"'!’1)

l—m—1
+ho(z)(pj(x))

00D 4 ST hy(2)(ps(x)

So, Tj(h)(w) = ho(w) forall w € A, Then we know
the evaluations of ho(w) at all the points UJ" o A; and by

assumption, Z \A | > degh(z) > deg ho( ) SO we can
recover ho(x). Now from ho(z) and {Tj(h)(x)}?:()l,
calculate the polynomials

()04

)u(j+1).

we can



pj(z)*
= i () (pj () - DEHD
l—m—1

tha(@)+ D hu()(pi(2) @ DETY,

u=2

So, Tj(l)(h)(w) = h1(w) for all w € Aj, and again, we know
the evaluation of hq(z) in U;"’;OIA]'. So, we can recover hy(z).
From ho(z), hi(z) and {Tj(h)(z)}""

j—o We can calculate the
polynomials

T® = :
! pj(z)7
Since TI(Q)(h)(w) = ho(w) for all w € Aj;, by the previous
argument we can recover ho(z). Generally, the polynomials
m—1
{hi—m+j(2)};Z, can be recovered from

T‘j (h) (.1?) B 21;7;71 hu(l‘)(pj (m))“(jJrl)
(p;())t=m)G+1) .

hlferj (‘73) =
O

By Lemma 10, we conclude that given an RS(q',n, k)-code

with evaluation set £ C F, and its virtual projection Cp,, , it

is possible to recover a codeword ¢ € C using the code Cp,, ,
whenever the received word y = ¢ + e has no more than ¢
errors with ¢ < 7p,_,, where 7p, , denotes the decoding radius

of Cp,, ,. Hence, we have the following algorithm.

Algorithm 1: Virtual Projection IRS Decoder
Input: Received word y(L£) = ¢(L) + e(L), o = m/l
For: j =0tom —1 do
Create the matrix Y from 7} (y)(£) and calculate the
syndromes S ... §(m=1)
Compute ¢t and A(x) by Algorithm 1 in [6] .
if t < 7p, and A(x) is t-valid then
for each j from 0 to m — 1 do
evaluate errors, and calculate 7 (e)(L£)
calculate T}(¢)(£) = T;(y)(£) — Tj(e)(L)
Use Lemma 10 to compute ¢(L)
else
| decoding failure

output: ¢(£) € C or decoding failure

Theorem 11. Let C = RS(q',n, k) be a Reed-Solomon code
then its virtual projection code Cp,, ,, (g,n, K) given by Defini-
tion 8 has maximum decoding radius Tp,,, given by

m—1
m n_k_w
m

p—— [4;](7+1)

TPm/z = (20)

j=0
Proof. The decoding radius of the code Cp,, ,(q,n,K) is the
error-correcting radius of the heterogeneous IRS(q,n, K, m)
code with £ = {ko,...,kn—1} and dimensions k; given by
kj = k+]A;{(0—m)(j+1) forall j =0,...,m — 1. The
correcting radius is given by (8)
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1
- _ = k:
TPt m-+1 " m = ‘
m ] —m e
R L P el N R
m+1 " j:0| G +1)

Corollary 12. Let C = RS(q',n, k) be a Reed-Solomon code
and Cp,, ,,(q,n, K) its virtual projection as in (18), then:
i) Ifl=m then 7p,,, = H%(n —k);
e

ii) ]fl =m =1 then TP, =50 =T

iii) If |Aj|=0bforall j=0,...,m—1 then

i a0 (1)

Proof. Straight forward calculation from (20). O

TPt

Note that if, [ = m then 7p, , is the decoding radius of a
homogeneous Interleaved Reed-Solomon code [6], [8]. For [ =
m = 1 the result 7p,, is the decoding radius of the RS(g,n, k)

Reed-Solomon code over F,.

B. Fractional decoding beyond the a-decoding radius

Let C = RS(¢',n, k) be a Reed-Solomon code with evalua-
tion set £ = {y1,...,7,} C F,. Let « = m/Il, where m and [
are positive integers and m|k. We will show that is possible to
perform fractional decoding beyond the a-decoding radius.

Let ¢ = (c1,...,¢,) = (h(m),...,h(n)) € C, where
h(z) € Fylz]. Let also Ay,...,Ay,—1 € Fy be m pairwise
disjoint subsets of I, each of size k/m. The m symbols we
download from the i-th coordinate are

d} = trs,, 5, (Gomejci) (p; (7)™
l—-m—1

37 b e, (Gue) (0 ().
u=0
21

Substituting ¢; by h(y;) for all i = 1,...,n, we see that
(d,....d5) = (Tj(h)(m), ..., Tj(h) (7)) is the j-th row of

the virtual projection code Cp,, of C. Now by the fact that |A;| =
k/m for all j and by the Corollary 12 we know that 7p_ is given

by
. _ 1 ——— _k(m+1
P = 1 2]  al 2 '

As Y7 Al = k. using the Algorithm 1 it is possible to
recover the codeword ¢ € C with failure probability given by
Theorem 14 if ¢ has no more than ¢ < 7p, erros.

Note that if m =1 then o = 1/1 and

= L (wer(l)-u(?))
- (8-

For m > 2, we would like to improve the fractional decoding
radius of C, it means that we are interested in the case 7p, > 7,

1 m E(m+1 n—kja
_ _r > 2
TPa m+1(m"+k(2) a( 2 ))/ 2

(23)

(22)



and it is possible to check that (23) is true if and only if

R—E< o _ m
“noom(l-a)+1 ml-m)+1

(24)

This can be summarized in the following theorem.

Theorem 13. Let C = RS(q¢', n, k) be a Reed-Solomon Code
with evaluation set L = {m,...,7} C Fq and o = m/l.
If m > 2 and the rate of C is restricted as in (24) then the
maximum a-decoding radius of C using Algorithm 1 is

g (e () = 2("))

Moreover; in this case Tp, > T,.

Th, = (25)

IV. FAILURE PROBABILITY OF THE ALGORITHM [

The failure probability can be calculated in the same way that
[6] and [9].

Note that the values of T}, (e)(v;) and T}, (e)(v;) do not
depend of each other for all j1,72 € {0,...,m — 1} and we
can assume that if Y in (19) is corrupted by ¢ errors, that is,
Y = C+FE where E has t non-zero columns, then each non-zero
column is an independent random vector uniformly distributed
over IFy* \ {0}. Hence, we can apply Lemma 6 and Theorem 6
of [6] to upper bounded the failure probability of Algorithm 1.

Theorem 14. Let C = RS(q¢',n, k) be a Reed-Solomon Code
with evaluation set L = {y1,...,7} C Fy and o = m/l. If
m > 2 and the rate of C is restricted as in (24). The probability
for a decoding failure using the Algorithm 1 is upper bounded
by

gn -1 ¢ g~ (D, =)

P (1) <
fa (£) < g —1

qg—1

Example 15. Let C = RS(2°,31,4) be a Reed-Solomon code
with evaluation set L € Fg in this case the decoding radius
of Cis 7 = 13 and R ~ 0.1290. By definition o = % and
% < < 1ithus m € {1,2,3,4}. Let a; = g for i=2,3,4
then for each a; we have

— — R
a) Ty, =Tp, =O.

D) Tay =10 < 12=1p,.
C) Tay =12<16 = TP,
d) 7o, =13<19= TPy, -
The failure probability of c) is given in Table I.

TABLE I
FAILURE PROBABILITY Py, (t) FOR THE REED-SOLOMON CODE
RS(25,31,4).

[ 2 3 14 15
Pi, () | 2x10° 7x10° 2x103 8x10 2

Example 16. Let C = RS(2%,31,6) be a Reed-Solomon code
with evaluation set L € Fy in this case the decoding radius of
Cist= |2~ =12 and R = £ ~ 0.1935. By definition
a= "% and % < B < 1thus m € {1,2,3,4}. If we denoted
a; = ¢ for 1 =2,3,4 then for each o; we have

= 7. This is due to the fact that R ~

ﬁ ~ (0.1818 that is (24) is not true in

a) Ty, = 8 > Tp,
0.1935 and
this case.

b) Tay =10<12=17p__.
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¢) Ta, = 11 < 16 = 7p,,. Note that Tp,  is even greater
than the decoding radius of C. So, without accessing the
entire codeword it is possible to recover more than L"—_kj

2
errors with failure probability given in the Table II.

TABLE 11
FAILURE PROBABILITY Py, (t) FOR THE REED-SOLOMON CODE
RS(2°,31,6).

t 11 12 13 4 15 16
P, () [ 1077 4x10- 1005 4x10° 103 5x10 2
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