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Buckling of geometrically confined shells†

Lucia Stein-Montalvo, *a Paul Costa,b Matteo Pezzulla ac and
Douglas P. Holmes *a

We study the periodic buckling patterns that emerge when elastic shells are subjected to geometric

confinement. Residual swelling provides access to range of shapes (saddles, rolled sheets, cylinders, and

spherical sections) which vary in their extrinsic and intrinsic curvatures. Our experimental and numerical

data show that when these moderately thick structures are radially confined, a single geometric

parameter – the ratio of the total shell radius to the amount of unconstrained material – predicts the

number of lobes formed. We present a model that interprets this scaling as the competition between

radial and circumferential bending. Next, we show that reducing the transverse confinement of saddles

causes the lobe number to decrease with a similar scaling analysis. Hence, one geometric parameter

captures the wave number through a wide range of radial and transverse confinement, connecting the

shell shape to the shape of the boundary that confines it. We expect these results to be relevant for an

expanse of shell shapes, and thus applicable to the design of shape-shifting materials and the swelling

and growth of soft structures.

Shells are notorious for their nonlinear response to mechanical
loading, and subtle changes to how they are held, or constrained,
can have profound affects on how they deform. Confinement of
soft shells can induce dramatic deformations as illustrated in
Fig. 1, where radial confinement is increased from left to right.
These mechanics are relevant to soft biological tissues, as their
morphology often depends on a combination of mechanical
forces imparted along their boundaries, and non-mechanical
forces that drive growth or swelling. Confinement of soft tissues
can result in the wrinkling and scar formation of surgical
wounds,1 and these changes in shape or morphology are not
purely cosmetic. For example, during the embryogenesis of the
ciliary body of an avian eye, differential growth induces wrinkles
that radiate outward from the retina,2 a stiff region that resists
deformation. Capillary blood vessels form in the valleys of these
wrinkles, while molecules that promote neural cell adhesion
fail to express in the regions where these epithelial tissues
wrinkle.3,4 These effects are entirely mechanical, as evidenced
by experiments that induced wrinkles in the chick eyes by
swelling them in ethanol.2,4 Similar studies on the differential
swelling and growth of artificial tumors5,6 and biofilms7,8

described the role of confinement and the mechanics of these

circumferential wrinkles in much greater detail. Radial con-
finement occurring within airways and arteries,9 as seen in
buckling and folding of mucous membranes, can cause the
collapse or closure of the oesophagus,10 blood vessels,11 and
gastrointestinal tract.12

Beyond these biological systems, the ability to prescribe and
control the shape of objects has ushered in an age of designer
materials.13 By dictating the volumetric strain in specific
regions of soft elastomers, researchers have been able to morph
2D sheets into 3D shells,14–16 with features spanning multiple
length scales.17,18 Differential swelling, sometimes accom-
plished by using the residual polymer chains left in portions
of cured elastomers, has been used to fabricate helical
ribbons,19 rolled sheets,20 saddles,21 pinched spheres,22 and
wavy strips and discs.23–25 Even for free, unconstrained plates
and shells the shape selection process is non-trivial. The shapes
that result from differential swelling can be determined by
examining how swelling alters the metric tensor of the middle
surface of the plate, an approach described by the so-called
theory of unconstrained non-Euclidean plates.26 When swelling
only imparts a local curvature change along the middle surface,
as is the case for the residual swelling of bilayer plates and
shells, the non-mechanical swelling process can be cast as a
mechanical stimulus which alters the natural curvature of the
shell,22 and the stability of these structures can be evaluated
using techniques common to applied mechanics. The inverse
problem – knowing a desired shape and searching for the correct
initial conditions necessary to achieve it – is a problem that has
received far less attention, but will likely be more desirable.
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Work by Dias et al. demonstrated how to find the metric for a
variety of axisymmetric shapes,27 while more recent work has
shown how to find the metric for a wide range of shapes,
including a human face, when a curvature can be prescribed at
any point.28

In the effort to understand and control shape change in
soft and thin structures, the interplay between intrinsic geo-
metry and geometric constraints is still not well understood.
Confining a simple 1D object, i.e. an elastica, within a rectan-
gular box is a nontrivial problem, in part due to the unknown
and evolving location of the point of contact between the
elastica and the walls.29–33 Similar problems emerge in the
packing of thin sheets, for instance pushing a plate through a
ring causes it to form a developable cone, or d-cone,34–39 and in
the confinement of a thin plate between two hemispheres40 or
onto a droplet of water.41 Confinement of intrinsically curved
shells has received less attention, with an exception being the
behavior of shells under indentation,42 including a hybrid
experimental-numerical study of the response of positively
curved shells to indenters of varied geometries.43 In this work,
we present a primarily experimental study on how geometric
confinement facilitates pattern formation in structures with
intrinsic curvature. We consider shells with various mean and
Gaussian curvatures under a range of radial confinement,
and we examine the combined role of radial and transverse
confinement on negatively curved shells, or saddles. We focus
our study on four categories of shapes, shown in Fig. 1 and
schematically in Fig. 2a: saddles, rolled sheets, cylinders, and
spherical segments. Each is initially axisymmetric and exhibits
periodic postbuckling patterns when subjected to geometric
constraints. These geometries were chosen to access a range of
average Gaussian and mean curvatures in their reference

K
�
avg;H

�
avgÞ

�
and deformed (Kavg, Havg) configurations.

The range of structures studied is outlined in Fig. 2b. Of the
four shapes we study, two start out as flat plates – one of these
changes its average mean curvature, and the other changes its
average Gaussian curvature after fabrication. Our study omits
spherical caps, which have been well-characterized, e.g. in
ref. 43. These shells are relatively thick as compared to recent
work on thin film confinement,41,44,45 and we will show that
the characteristic pattern of deformation can be described by a
single geometric parameter that appears to be independent of
shell thickness in this regime.

1 Radial confinement

Each of the unconstrained, residually stressed shapes are
shown in the leftmost column of Fig. 1. We begin by constrain-
ing the rolled sheets and saddles in the radial direction by
clamping the shells between two rigid acrylic sheets of radius
Rc. In Fig. 1a & b, we increase Rc from left to right while keeping
the shell radius R and thickness h constant, and we see that
the number of lobes N, or wavenumber, increases. Three-
dimensional simulations were implemented in COMSOL Multi-
physics to validate these experiments for the three bilayer
geometries (rolled sheets, cylinders, and spheres). Residual
swelling is represented by an inelastic distortion field, and
Dirichlet boundary conditions around a ring of radius Rc act as
the external constraint (see Appendix A for details on fabrica-
tion and simulations).

The wavenumber appears to be insensitive to changes
in thickness in the range of h/R we considered (Fig. 3a),
h/R A [0.008, 0.13] – thicker shells behave more like 3D bodies,
while thinner shells made from these materials (see Appendix)
deform significantly under gravity. Instead, it appears that the
wavenumber is inversely proportional to the length of material
that is unconstrained, i.e. r � R � Rc.

The bending energy of the shell, which we assume to
be decoupled from the stretching energy, is known to scale

as Ub � B

2

Ð
r2do. The quantity r = (k � ko) represents the

Fig. 1 As the extent of confinement increases from left to right, the (a)
saddle, (b) rolled sheet, (c) cylinder and (d) spherical segment exhibit more
lobes. In (a and b), shells are clamped between acrylic plates of increasing
diameter. The cylinder and sphere cut to varied (c) heights and (d) latitudes,
and fixed with an acrylic ring at the base. Shells are made of polyvinylsi-
loxane (PVS). Scale bars represent 30 mm.

Fig. 2 (a) Schematics showing pre-residual swelling configurations
and relevant geometric parameters for the (i) saddle, (ii) rolled sheet,
(iii) cylinder, and (iv) spherical segment. Pink areas will ‘‘shrink’’ while green
ones will ‘‘grow’’ upon residual swelling, and grey represents areas
constrained by acrylic plates. (b) Table displays initial (accented ‘‘o’’) and
post-swelling (subscripted ‘‘avg’’) Gaussian K and H mean curvatures for
each shape.
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curvature strains – the difference between the deformed
curvature k and the curvature in the reference (unconstrained)
state ko – and do is the area element.

The bending energy penalizes high curvatures, so in the circum-
ferential direction, long wavelengths are preferable. We assume that
the y-direction wrinkle curvature will scale with the amplitude
and wavelength as k(y) B A/l2, so r(y) B ((A/l2) � (Ao/lo

2)).
When the two initial lobes, each of amplitude Ao, are split into
N lobes, the amplitude becomes A = 2Ao/N – the total length
does not change. Thus, Ao B NA. Similarly, l = 2pR/N) NB R/l,
and lo B R, so that R(y) B A/l2 � A/(lR). Again by inextensi-
bility, l B A, so we can also say r(y) B 1/l � 1/R. Together,
this gives

U
ðyÞ
b � B

2

ð
1

l
� 1

R

� �2

do: (1)

The question in regard to these constrained shells is: what
opposes the circumferential bending energy to produce shorter

wavelengths? Typically in (unconstrained) shell problems, com-
petition between bending and stretching drives deformation.
However, stress distributions of similarly confined structures
obtained experimentally23 and numerically46 suggest that
stretching in the radial direction is concentrated in a small
region near the inner boundary. Further, since in this thickness
regime the shell thickness does not appear to play a dominant
role in setting the wavelength, or wavenumber (Fig. 3a), of these
constrained shells, we expect that any energy comparison
should be independent of thickness to leading order. Thus,
we hypothesize that bending in the radial direction is the
other relevant contribution to the energy:‡ along the length r,
the radial bending energy prefers short wavelengths (smaller
amplitudes).

In the radial direction, the curvature k(r) B A/r2, so we can
say r(r) B (k(r) � k(r)o ) B A/r2 � Ao/R

2. With the same arguments
as before applied to the numerator, the bending energy in the
radial direction is given by

U
ðrÞ
b � B

2

ð
l
r2

� 1

R

� �2

do: (2)

Balancing the two energies in (1) and (2) gives l B r. With
l = 2pR/N B R/N, and defining c � R/r, we arrive at a scaling of
the wavenumber as a function of the unconstrained, or free
length of the shell:

N B c. (3)

In Fig. 3b, we plot experimentally and numerically obtained
wavenumbers N as a function cp, which is c for the shells that
initially started as flat plates. When the constraint Rc - 0 the
dimensionless length cp - 1, and experiments on uncon-
strained shells confirm that N - 2 (Fig. 1), suggesting that
for rolled sheets and saddles eqn (3) should be modified to
NB cp + 1. This scaling is plotted as a solid line on Fig. 3b, with
a slope of 1.72 found via linear regression. We would expect the
slope to be of O(1) if the scaling is valid, and these results
suggest that our approximations were reasonable.

We now turn our attention to shells with initially nonzero
mean and Gaussian curvatures. Physically, the scaling from
eqn (3) suggests that the wavenumber will increase linearly as
the free, unconstrained length of the shell decreases. For the
cylinders and spherical segments constrained at their base, the
free length that decreases from left to right on Fig. 1c & d is
the arclength r of material from the clamped base to the shell
opening, and similar to the rolled sheets and saddles, as this
free length is decreased the wavenumber increases. Therefore,
we anticipate that eqn (3) will also capture the wavenumber of
these constrained shells, provided the appropriate limits on N
and cs are met, where cs is c for shells that have are initially
curved. Here, the unconstrained shell corresponds to r - N,

Fig. 3 (a) In the thickness range we study, the wavenumber is insensitive
to changes in thickness, h. Instead, the amount of unconstrained material,
quantified by c, sets the wavenumber: for cp in a fixed range, but h/R
varied, N (shown for rolled sheets) is unaffected. (b & c) The number of
lobes N may be reduced to one geometric parameter, c = R/r, which
quantifies the relative amount of constraint. The evolution of N is a linear
function of c. Triangles are experimental data points and circles are from
simulations. Solid lines of best fit, and their slopes, are shown in each plot.
Free of constraints, each shape has two lobes (dotted line). Solid horizontal
axes are drawn according to the minimum value for c. (b) For saddles
(purple) and rolled sheets (green), cp = R/(R � Rc), and min(cp) = 1. Inset:
Results from simulations for rolled sheets for (bottom to top) cp = {2.2, 3.2,
4.5, 5.8}. (c) For cylindrical shells (red) with height r, cs = R/r. For spherical
segments (orange), cs = sinff/(fc � ff). The minimum of cs is 0.

‡ Inherently, these assumptions are contradictory – bending in both directions
throughout the free area implies stretching, which we have chosen to neglect. We
anticipate that a more thorough analysis is needed to relieve this contradiction.
Here, we assume these stretching effects are small compared to bending. We are
grateful to James Hanna who provided helpful insight to clarify this scaling.
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or cs - 0, which is analogous to the two lobe deformation
(i.e. N - 2) observed with a ‘‘pinch in a pipe’’.47 This suggests
that for cylinders and spherical segments, we expect that
eqn (3) should be modified to N B cs + 2. In Fig. 3c, we plot
experimentally and numerically obtained wavenumbers N as a
function cs for cylinders and spherical segments. The scaling
N B cs + 2 is plotted on Fig. 3c, with a slope of 1.50 found via
linear regression. These results seem to be in good agreement
with this reduced order model, suggesting that the wavenumber

of a wide range of constrained shells can be characterized with
a dimensionless parameter corresponding to the free length of
the shell.

2 Transverse confinement

We will now relax the radial confinement to investigate shell
behavior under varying amounts of transverse confinement. We
focus primarily on an experimental analysis of saddles, because
to our knowledge there are only limited examples of the
transverse confinement of saddles in the literature, and the
experiments on saddles are the most practically feasible out of
the structures discussed in Section 1. We constrain the shells
in the transverse direction with quasi-static, displacement-
controlled tests in which a saddle is compressed between pairs
of acrylic plates of radius Rc. Initially, the distance d between
the top and bottom plates equals the saddle’s thickness, i.e.
d = d � h = 0 (Fig. 4a & b, (i)), which represents the limit
discussed in Section 1.

As we separate the distance between the two plates by an
amount d, there is a non-monotonic decrease in the applied
compressive load, and the number of lobes decreases, as shown
in Fig. 4a (a more detailed experimental protocol is discussed in
Appendix A.2, and a video may be found in the ESI†). The
decrease in the compressive load is nearly linear for d/A { 1, and
then reaches a minimum when one point of contact between the
acrylic plate and the saddle is lost, thus beginning the mode
shape transition from N = Nmax to N � 1 lobes. The load
immediately increases, and once the saddle has reaches N � 1
(asymmetric) lobes (Fig. 4a & b, (ii)) the load once again decreases.
When a new symmetric shape is reached at N � 1 lobes, the slope
of the force–displacement curve decreases but remains positive,
and the process repeats until d C A, F C 0, and there are N = 2
lobes (Fig. 4a & b, (iv)). The slope of the force–displacement curves
through these transitions appears to gradually decrease, pointing
to a diminishing effective stiffness as d increases. Fig. 4b shows
these trends in a force–displacement curve for a representative
sample that achieves a maximum of 5 lobes at d = 0.

We now aim to provide some mechanistic insight as to
the lobe transitions from Nmax to N = 2 for saddles as the
transverse constraint is reduced. Here, we know the two limits:
(1) as d - N we expect that N - 2, and (2) as d - 0 we expect
that N - Nmax as given by eqn (3). The first limit can be
simplified, because the sheet will be unconstrained once d is
larger than the amplitude of the shell’s lobes, i.e. N - 2 when
d Z A. In these experiments, while in principle cp is fixed, in
effect the free length of the shell may be approximated as being
a function of d, i.e. rd(d), with rd(0) = r from Section 1. As an
ansatz for rd that meets these two limits, we chose a logistic
function in the form

rdðdÞ ¼
R

1þ Rc

r
e�m

d
A

; (4)

where m is an unknown constant that describes how quickly
the unconstrained length will transition between r and R.

Fig. 4 (a) As d increases from left to right, the number of lobes (N)
decreases. The recessed images are mirrored views showing the back
side of saddles. (b) Force–displacement curves of three displacement-
controlled tests on a single shell. Pink diamonds correspond to lobe
transition points with Roman numerals indicating the transition from five
(i), to four (ii), to three (iii) to two (iv) lobes. (c) Wavenumber N vs. d for the
same sample. Solid points correspond to symmetric lobes, and open
circles correspond to transitions between lobes. We expect the solid
theoretical curve to capture the points marked by pink diamonds. This
curve is eqn (5) withm = 3.5. (d) The same equation captures experimental
lobe switches (points, as in c) with different geometric parameters. Black
curves fixm = 4, and grey curves correspond to best fitm values: from top,
m = 3.68, m = 4.38, m = 8.00.
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Substituting this ansatz into equations Ub and Uk for r, we can
solve for N(d). Following some algebra, we find

NðdÞ � ‘p þ 1� Rc

r
1� e�m

d
A

� �
: (5)

which reduces to eqn (3) for plates when d = 0. In Fig. 4c, we
plot the experimentally observed wavenumber as a function of
d. The transition process is highly nonlinear, and so we note the
transition between two wavenumbers with open symbols, while
highlighting the transition points from the local minima in the
force–displacement curve as filled diamonds. Eqn (5) is plotted
as a solid black curve, with m = 3.5 chosen as a best fit
parameter to the transition points. Although m is effectively a
fitting parameter, we anticipate that it will depend on the
bending rigidity of the saddle. We have not taken into account
how the magnitude of the saddle’s Gaussian curvature, which
will be related to the amplitude of the lobes, nor the shell
thickness affect the transition points, however we expect that
m will be a function of these parameters. Further testing,
in particular numerics, will help explain the contribution of
K and h to the transition between mode numbers. Still, we
note that for the samples we tests, using m = 4 captures the
transition points for shells with Nmax = 5, Nmax = 4, and Nmax = 3
(Fig. 4d). Choosing the best fit values of m for each sample
(m = 3.7, m = 4.4, and m = 8.0) changes the critical d for
observing lobe transitions, but qualitatively provides similar
values. In general, the form of (5) clarifies the relative contribu-
tions of transverse (d) and radial (Rc) confinement. At low d
values, radial effects dominate. As the wave number depends
on d exponentially, however, the effects of reduced transverse
confinement quickly take over with increasing d.

3 Conclusions

In this work, we explored geometry’s fundamental role in
the periodic buckling patterns that emerge in confined shells.
We studied shells covering a range of Gaussian and mean
curvatures, accessible via residual swelling. We first saw that
one simple geometric parameter, c, which relates the overall
shell radius to the amount of unconfined material, predicts the
number of wrinkles (N) a radially confined shell will adopt.
Then for negatively curved saddles, we reduced the radial
constraint by varying transverse confinement and measured
the transition points between wavenumbers.

We observed that decreasing the amount of confinement,
whether in-the-plane or vertically, makes bending in the
circumferential direction costly – lower buckling modes are
energetically preferable in a low-confinement regime. This
interpretation allowed us to generalize c to include our range
of transverse confinement. Thus, the model given by relation
(5) captures a wide range of bidirectional confinement.

There is much to be done in terms of more rigorously
understanding why thickness and stretching appear to be
unimportant, and to put our scaling assumptions on firmer
ground. A nice analog to our transverse confinement of saddles
is the transverse confinement of an elastica.31,32 In these works,

solutions for the confined elastica29,30 are extended to thin
plates constrained progressively in the vertical direction. Our
problem has subtle differences, notably that our shells are
naturally curved, and our confining plates are smaller than
the shell size. However, the transitions between buckling
modes in our experiments are reminiscent of these studies,
including qualitative features like planar contact, free-standing
folds, and rolling.33 These parallels suggest a way to pursue a
more formal connection between the two problems. The shells
studied in this work are residually stressed, and the magnitude
of residual stress did not enter our mechanical model. It was
recently shown that the magnitude of residual stress in shells
will alter the critical point at which an instability occurs, i.e. the
load required to buckle the structures, but that the instability
remains qualitatively similar.48 Also, as others43 have observed,
contact plays an important role in transverse confinement.
Further numerical analysis of these constrained shells would
be beneficial, in particular, such an analyses could also offer a
more geometric freedom, with regards to both shells and their
confining boundaries, beyond what is readily accessible experi-
mentally. In general, we anticipate these results will aid in the
design of shape-shifting structures, and we believe there are
many open questions regarding the role of confinement when
designing structures that change shape on command.

Conflicts of interest

There are no conflicts to declare.

Appendix A
A.1 Structure fabrication

To fabricate the shapes shown in Fig. 1, we use a technique
known as residual swelling.20,21 We use two polyvinylsiloxane
(PVS) elastomers, which we will refer to as green (Zhermack
Elite Double 32, E = 0.96 MPa) and pink (Zhermack Elite
Double 8, E = 0.23 MPa). The materials are cast in as fluids
and allowed to thermally crosslink, or cure, at room temperature
for 20 minutes. After curing, the pink elastomer has residual
polymer chains within the material, and these residual free
chains flow into the green elastomer when the two materials
are in contact with each other. The local loss of mass causes the
pink material to decrease in volume, or shrink, while the green
material correspondingly swells, thus inducing a differential
swelling in the structure which preserves its total mass. Differ-
ential swelling in shells can lead to residually stressed structures
that emerge because the shell must deform to accommodate a
geometric incompatibility.49 When the differential swelling
occurs through the shell’s thickness, it deforms in a nearly
isometric manner in the bulk of the shell, away from shell’s
edges,22 and when the differential swelling occurs in-the-plane
of the shell the deformation is dominated by stretching.21 These
opposing deformations explain why the initially flat shapes can
be morphed into either rolled sheets or saddles. As residual
swelling is a diffusive process, the time to deform scales with
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the square of the dimension across which swelling occurs. This
characteristic dimension for swelling is either the thickness
h E 1 mm, or in the case of saddles, where residual swelling
occurs in-the-plane, the radius, R = 30 mm.21

To make homogeneous rolled sheets, we use a spin coater
(Laurel Technologies, WS-650-23) to deposit a pink layer of
PVS atop a laser-cut (Epilog Laser Helix, 75 W) circular acrylic
plate, R A [25 mm, 35 mm]. After it cures, we add a green layer
in the same manner. The residual swelling first bends the sheet
into a shallow spherical cap, and then ultimately buckles it into
a rolled sheet – a cylinder-like shape that is open along its
directrix. The rolled sheet is nearly isometric away from its edges
(i.e. Kavg = 0) and its non-zero mean curvature is linearly propor-
tional to the natural curvature imposed by residual swelling.20,22,50

In the range of thicknesses we study, the unconstrained mean
curvature H seems to have no effect on the wavenumber.
Qualitatively, we observe that higher H does, however, increase
the amplitude of wrinkles in constrained shells.

Saddles are made by laser-cutting a negative circular mold
(R = 30 mm) from clear cast acrylic sheets of thickness h:
0.794 mm � 0.119 mm (inventables), 1.589 mm (tolerance
�0.584 mm to +0.254 mm), 2.381 mm (�0.034 mm to
+0.025 mm), or 3.175 mm (�0.635 mm to +0.381 mm)
(McMaster-Carr). This circular mold is glued atop a base acrylic
plate, and a smaller circle, radius Rc A {12.5 mm, 28.25 mm}, is
centered and fixed to the base plate. We then pour green PVS to
form a ring, filling the mold up to the acrylic sheet thickness.
After the ring cures, the smaller circle is removed and the
remainder is filled with pink PVS. After residual swelling, a
saddle shape forms: Havg � 0 and Kavg o 0 – the value of the
latter depends on the ratio of pink to green polymer.20 In-plane
swelling is quite a bit slower than through-thickness swelling,
since the characteristic length scale changes from the thickness
to the radius.21 The dynamics can be increased by extracting
the free polymer chains in a solvent bath, e.g. ethyl acetate.

Cylinders and spherical segments are poured as bilayers
over corresponding 3D molds. Spherical segments are formed
by coating a metal ball-bearing with viscous PVS so that each
layer has approximately uniform thickness.22,51 These spherical
shells have positive average mean and Gaussian curvatures
both before and after the swelling process. Cylinders are
fabricated similarly52 (see Fig. 5), and like spheres, the initial

mean curvature H
�

4 0, though K
�
¼ 0. After deformation, a

‘‘pinched pipe’’ forms,47 with Havg 4 0 and Kavg 4 0.
For the experiments described in Section 1, rolled sheets

and saddles are clamped in the center between two laser-cut
acrylic plates of equal size, Rc A {12.7 mm, 30.5 mm}. Cylinders
and spherical segments, on the other hand, are constrained by
acrylic plates glued to the base with a very thin layer of green
VPS. Cylinders are then cut to varied heights, and spheres
are cut at different latitudes: the angle ff is subtended by
the arclength from the origin (the north pole) to the top cut
(the free surface). The base, where the shell is constrained,
is defined by the angle fc. Schematics of the pre-swelling
configurations, including constraints, are given in Fig. 2.

Thickness is measured at h = {0.25, 0.45, 0.75, 1.5,4} mm �
0.15 mm for Section 1, and h A [2.381 mm � 0.1 mm,
3.175 mm � 0.1 mm] for the saddles discussed in Section 2.

The wavenumber in rolled sheets, cylinders, and spheres is
indifferent to whether the constraint is applied before or after
residual swelling occurs, and the experimental data in Fig. 1b &
c represents a mix of both scenarios.

For saddles, where the swelling gradient lies in-the-plane,
the confining plates are added after the swelling process. Our
aim in this paper was to examine how, given a saddle, con-
straints affect its shape. Therefore, residual swelling is a tool to
make these saddles. Applying the constraint beforehand leads
to a different question: how does confinement affect saddle
formation in residual swelling?

If the radius of the pink PVS region Rp o Rc, the clamp
forces the pink region to stretch to conform to Rc. The inner

Fig. 5 (a) Fabrication process for a bilayer cylinder: (i and ii) the first pink
layer of PVS is poured to uniformly coat the steel cylinder. (iii) After
20 minutes, the first layer has cured. The cylinder is flipped upside-
down, and the excess material is removed. (iv and v) A second layer of
pink PVS is poured in order to achieve a uniform thickness in the vertical
direction. (vi and vii) After another 20 minutes, both pink layers have cured.
A green layer is added in the same manner. (viii) After 20 minutes, the
excess material is removed and the cylinder is flipped upside-down again.
(ix and x) The final green layer is added. (xi and xii) After the final layer has
cured (20 minutes), the bilayer cylinder is cut from the mold using
a straightedge. (xiii) The bilayer cylinder once peeled from the mold.
Residual swelling causes the cylinder to buckle into a ‘‘pinched pipe’’.
(b) Thickness versus (right) axial and (left) azimuthal (y = 0) position,
corresponding to parameters shown in the images in (c). Thickness is
relatively uniform in both directions, albeit more so in the radial direction.
Measurements were taken using ImageJ. (c) Top view (left) and cut view
(right) show parameters relevant to the above plots. Right: To obtain
thickness measurements in the axial direction, the cylinder is cut, then
glued between glass plates to prevent rolling.
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perimeter of the green region is fixed, but the outer perimeter
decreases as free chains are lost from the green polymer. Then,
instead of buckling into a negatively curved saddle, the shape
develops positive Gaussian curvature. This is analogous to
ref. 21, in which structures comprised of geometrically mis-
matched disks and annuli buckle into saddles if the perimeters
require that the annulus stretches, and domes if the annulus
must compress.

A.2 Mechanical force testing

The saddles used in Section 2 were fabricated with a centered
2.25 mm radius hole through which we guide a 2 mm radius
rod as transverse confinement is varied. We determined this
hole to be necessary for maintaining the saddle’s position but
negligible for our purposes – it has no effect on lobe number.
Care was taken to align shells as close to centered as possible,
as shells are sensitive to initial conditions (see ESI†).

We investigate transverse confinement with a setup
designed for the INSTRON 5943. We attach a drill-type grip
(Instron 0.375 in Keyless Drill-Type Chuck Assembly) to the
load cell to secure an aluminum rod (2 mm radius), which is
screwed to an internally threaded acrylic plate of radius Rc.
A second partially threaded rod is attached to the underside of
this top plate, pointing downward. The rod is guided through
the saddle’s center hole and then through a hole also of radius
2.25 mm in the center of the acrylic base plate, which itself has
radius Rc. The base plate is affixed to a thick tube of outer
radius o Rc, inner radius 3.5 mm and height 44.45 mm. This
tube is comprised of stacked acrylic rings each of thickness
6.35 mm, glued together and closed at the base. The base of the
tube is screwed to a tapped optical table.

Displacement-controlled tension tests are performed at a
rate of 4 mm min�1 and force is measured with a 500 N load
cell (resolution 0.0025 N). Videos were taken with a Nikon D610
DSLR Camera and were used for post-processing in conjunction
with Instron data.

A.3 Numerics

For the three bilayer geometries where residual swelling occurs
through-the-thickness, we sought to validate the experiments
from Section 1 with simulations developed in COMSOL Multi-
physics. We created a 3D model within the context of elasticity
with large distortions using a Neo-Hookean incompressible
material model.53 The residual swelling stimulus is represented
by a spherical distortion field

-

Fo = a(Z3)
-

I where Z3 is the general
coordinate normal to the midsurface (i.e. across the thickness).
Shells are composed of two layers: in the swelling (green) layer,
a(Z3) = lo, and in the other (pink) layer, a(Z3) = 2 � lo, where lo
represents an inelastic stretching factor (see Fig. 6). This
ensures that the conformal stretching factor Lo C 1, as was
found experimentally for residual swelling bilayers.50 The con-
straints were modeled with Dirichlet boundary conditions
imposed around a ring of radius Rc in each case, reflecting
the experimental setup. Solving for the deformed shape while
varying geometric parameters, we confirmed our experiments
from Section 1 for rolled sheets, cylinders, and spheres.

A.4 Buckling dynamics

We know from ref. 50 that for the unconstrained rolled sheet
(cp = 1), the critical buckling curvature (normalized by the
thickness) is

kbh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 7

ffiffiffi
2

pq
h

R

� �2

: (6)

We examine the effect of constraint on this value – our
numerics allow us to extract the critical curvature required
for buckling for various values of cp. This is shown in Fig. 7

Fig. 6 Top: Schematics depicting the distortion field and boundary con-
ditions applied in COMSOL to the bilayer geometry, and the resulting
deformation. Bottom: Top-down images from simulations showing the
geometry, mesh, and deformation.

Fig. 7 The critical buckling curvature for rolled sheets increases with the
extent of constraint, quantified by cp. �k is the ratio of the critical buckling
curvature to that of the unconstrained case, from (6).

Fig. 8 Timelapse images of constrained swelling spherical segments.
Time between photos is about 40 minutes. (a) As curvature develops,
a spherical segment (c E 2) develops five increasingly curved lobes.
(b) A different sample (c E 1) is unstable through the residual swelling
process: at lower curvatures (earlier in the residual swelling process), four
lobes emerge. As curvature continues to increase, the spherical segment
settles on three lobes as its energy-minimizing configuration.
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by �k, which represents the ratio of the buckling curvature of the
constrained structure over an unconstrained but otherwise
geometrically identical sheet (according to (6)). We observe that
the buckling curvature increases with cp or, in other words, that
more constrained structures require more curvature to buckle.

Curvature continues to develop past the critical buckling
point, and we generally observe that lobes become increasingly
pronounced, as in Fig. 8a. However, when c corresponds to an
intermediate N value, the lobe-selection process can be unstable
(Fig. 8b). A similar bistability between twomode numbers is seen
in some shells after residual swelling is complete.
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