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Evolution of critical buckling conditions in
imperfect bilayer shells through residual swelling

Anna Lee, †a Dong Yan,a Matteo Pezzulla,a Douglas P. Holmes b and
Pedro M. Reis *a

We propose and investigate a minimal mechanism that makes use of differential swelling to modify the

critical buckling conditions of elastic bilayer shells, as measured by the knockdown factor. Our shells

contain an engineered defect at the north pole and are made of two layers of different crosslinked

polymers that exchange free molecular chains. Depending on the size of the defect and the extent of

swelling, we can observe either a decreasing or increasing knockdown factor. FEM simulations are

performed using a reduced model for the swelling process to aid us in rationalizing the underlying

mechanism, providing a qualitative agreement with experiments. We believe that the working principle

of our mechanism can be extended to bimetallic shells undergoing variations in temperature and

to shells made of pH-responsive gels, where the change in knockdown factor could be changed

dynamically.

1 Introduction

From colloidal capsules at the microscale to meter-sized
pressure vessels, the buckling of thin shells is observed across
a wide variety of length scales and has been challenging
scientists and engineers for more than a century.1–3 Shell
buckling originally was of interest primarily to structural
engineers, within the realm of the design and analysis of
thin-walled mechanical systems. However, in the last decades,
it has become apparent that the buckling of shell structures is
also relevant at much smaller scales, both in the living world
and in technological settings, with examples, to name just a
few, ranging from the Venus flytrap,4 to pollen grains,5 red
blood cells,6 and colloidal capsules.7

The catastrophic (subcritical) nature of shell buckling has
made it an iconic example of an elastic instability; when the
difference between the outer and the inner pressure of a shell is
increased above a critical value, the shell collapses and loses
its load-carrying capacity.2 As such, determining the critical
buckling conditions of a shell is of extreme importance in the
design and prevention against failure. Still, this task has proven
to be nontrivial since the catastrophic nature of the instability
translates into a high imperfection sensitivity: typically, shells

buckle at significantly lower loads than those suggested by
classic theories, in an unpredictable way.8 These imperfections
can be either due to variations of the geometry or material
properties, or both, and can arise either during the fabrication
or over the lifetime of the structure. Consequently, it took
nearly four decades to reconcile experimental results with the
theoretical prediction for the buckling pressure first derived by
Zoelly.1 As a result of the high imperfection sensitivity and to
aid in designing and characterizing shell structures, engineers
have defined the knockdown factor, kd, as the ratio between the
maximum experimental load sustained by the shell before
buckling and the classic theoretical prediction.9 For thin shell
structures, kd can be as low as 0.2. Rationalizing the factors
that dictate kd has been a major challenge in engineering
mechanics throughout the 20th century10 and, with the lack
of formal predictive frameworks, the practical design of shell
structures is mostly limited to empirical guidelines.11

Recently, Lee et al.12 proposed a rapid and simple fabrica-
tion technique to manufacture thin shells based on the coating
of hemispherical molds with a polymer solution, which even-
tually cures to produce an elastic shell with nearly uniform
thickness. Thin shells produced this way have knockdown
factors of up to kd E 0.9.13 However, even though fabrication
techniques can be improved to reduce the number and the size
of imperfections, the inherently subcritical nature of shell
buckling represents a strong limitation towards the strengthen-
ing of shells by merely improving their fabrication. Moreover,
as buckling can also be a means towards functionality as in the
lock and key mechanism for colloids7 or in microswimmers,14

shells would benefit from being dynamically strengthened or
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even weakened, depending on their task. While there are some
strategies to strengthen shells, such as introducing ribs15 or
fibers,16,17 they are tailored primarily to large-scale systems
where the introduction of ribs or fibers can be more readily
accomplished than at the microscale. Still, some small-scale
examples of reinforced shells do exist, such as fiber-reinforced
micro-capsules17 and pollen grains.5 The latter have a complex
composite structure where the outer layer (known as the exine)
is significantly stiffer than the inner layer. These techniques
rely on the introduction of stiffening parts in the shells
and cannot be extended to weaken or strengthen the shell
dynamically.

Here, we introduce and investigate a minimal mechanism to
modify the buckling strength of shell structures, making use of
differential swelling in a bilayer polymeric structure. The
simplicity of our system contrasts with the design strategies
mentioned above, which require adding manufacturing
complexity to the structure, whereas our mechanism relies
solely on a swelling stimulus. In our prototypical example,
the shell comprises two layers of different silicone elastomers
that undergo differential swelling from residual, uncrosslinked
polymer chains after curing when in contact.18 The sign of the
natural curvature induced by residual swelling depends on the
relative position of the swelling versus the shrinking layers
(i.e., which one is on the outside),18,19 and we observed marked
differences in both the time series of the buckling pressure and
its steady-state value. In a region of parameter space, we find
that the buckling strength of the bilayer shell can increase
or decrease. This problem is analogous to the buckling of
bimetallic shells,20–25 where the structure can buckle due to a
combination of uniform temperature change and applied
external pressure. Given that, in practice, no shell is perfect,
we decide to study the effect of residual swelling on shells
containing a single well-defined engineered defect at the north
pole.13 Our goal is to investigate whether this geometric imper-
fection could potentially be either repaired or aggravated,
depending on the original shape of the imperfection, as well
as on the natural curvature that evolves due to differential
swelling.

In the fabrication of our experimental samples, we use two
vinylpolysiloxane (VPS) polymer liquids (VPS-32 and VPS-8,
Zhermack), which have been shown to undergo differential
swelling when in contact after they are fully cured. This process,
known as residual swelling, involves residual, uncrosslinked
polymer chains that diffuse from one polymer to the other,
across their interface.19,26 Fig. 1(a and b) presents a schematic
of this diffusion process. During curing, polymerization leaves
many uncrosslinked free chains in VPS-8 but much fewer in
VPS-32. This concentration gradient of free polymer chains
causes a net flux of these free chains into the VPS-32 layer
(Fig. 1(a)). The associated mass diffusion results in a variation
of the volume of each layer (Fig. 1(b)), which, together with
geometric confinement, can lead to the build-up of residual
stresses that deform the bilayer structure. The two types of
bilayer shells are illustrated in Fig. 1(c and d), where the order
of the layers is changed in order to change the sign of the

natural curvature. From now on, we will refer to the shrinking
layer on top shell and the swelling layer on top shell, to indicate
the configurations in Fig. 1(c) and (d), respectively.

Our paper is structured as follows. We start by describing
the experimental protocols to fabricate hemispherical bilayer
shells, measure the buckling pressure, and characterize
the deformed shapes of the shells. We then investigate how
differential swelling and the initial geometric imperfection
change the time-evolution of the knockdown factor. To aid us
in rationalizing the underlying mechanism, we conduct Finite
Element Method (FEM) simulations to first predict the buck-
ling pressure of the shells using their experimentally measured
deformed shape, and then perform a parametric study to
investigate the influence of thickness variations, natural curva-
ture, and defect amplitude. We conclude by summarizing our
findings and providing an outlook on possible future research.

2 Experimental methods

To characterize the buckling load of elastic shells, we first need
to measure their elastic properties, such as Young’s modulus
and bending stiffness. Most importantly, as our shells are made
of two layers of different elastomers that are undergoing
differential swelling, we have to characterize the mechanical
properties of the structure over time; i.e., as the swelling takes
place. To do so, we fabricate an originally flat bilayer beam,
which exactly replicates the structure of the shell through its
thickness, in terms of both polymers and dimensions. We then
study the bending of the beam over time, so as to characterize
the swelling in terms of time scale and maximum natural
curvature.19 In Appendix A, we provide the details of this
characterization and show that the elastic properties (Young’s
modulus and bending stiffness) of the bilayer beam remain
constant throughout.

Fig. 1 A schematic of differential swelling in a polymer bilayer and
schematics of two types of bilayer shells. (a) Free chains diffuse from
VPS-8 (pink) to VPS-32 (green) driven by a concentration gradient. (b) The
volume of VPS-8 decreases while the volume of VPS-32 increases as a
result of differential swelling. (c) The shrinking layer on top shell consists of
VPS-8 (softer and shrinking) outer and VPS-32 (stiffer and swelling) inner
layers. (d) The swelling layer on top shell consists of VPS-32 outer and VPS-8
inner layers. Solid arrows correspond to swelling and dashed arrows
correspond to shrinking.
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We turn to investigate the time dependence of the shape and
the buckling strength of bilayer shells made out of both VPS-8
and VPS-32. We will start by describing the protocol that we
used to fabricate our bilayer shells, then characterize their
shape and, finally, measure their buckling pressure as a func-
tion of time.

2.1 Fabrication of hemispherical bilayer shells

We engineer a defect in the shells in order to be able to quantify
the effect of differential swelling on the shape of the defect and,
consequently, its effect on the critical buckling pressure of the
shell (knockdown factor). Note that without a seeded defect
that is more dominant than the uncontrollable small imper-
fections that are intrinsic to the manufacturing process,
the experimentally measured knockdown factor cannot be
predicted by FEM (see Section 4). Moreover, uncontrollable
imperfections could be either repaired or aggravated as a result
of the varying natural curvature due to differential swelling
(more on this below) and would have unpredictable effects on
the measured knockdown factor. We shall show that, by
including an engineered defect (a localized deviation from a
perfect hemispherical shape), we will be able to quantitatively
investigate how differential swelling affects this geometrical
defect, thereby dictating the knockdown factor.13

We used the thick polydimethylsiloxane (PDMS) molds
described in Appendix B to fabricate bilayer shells made out
of VPS-8 and VPS-32. The manufactured shell can have the
shrinking layer (VPS-8) on top (Fig. 2(b)) or the swelling layer
(VPS-32) on top (Fig. 2(c)), depending on the order of coating of
each polymeric liquid during the fabrication process. In
Fig. 2(a), we illustrate the protocol we developed to fabricate
our bilayer hemispherical shells, ensuring clamped boundary
conditions at their equator. First, one of the VPS solutions was
poured onto the concave underside of the PDMS mold and it
was turned upside down to drain the excess polymer and
produce a thin lubrication film.12 The curing time scale of
the VPS polymers is approximately 10 min,12 and both VPS-32
and VPS-8 are fully cured after 20 min. After the first layer of
VPS cured, the other VPS solution (VPS-32 or VPS-8, respec-
tively) was poured and drained to produce the second inner
layer. During the coating of both VPS layers, small pendant
droplets formed at the equatorial rim of the mold, as illustrated
in Fig. 2(a). Once the second layer of VPS solution cured, the
excess polymer on the bottom surface of the mold was cut out
using a scalpel. We enforced that each layer has the same
thickness, h1 = h2 = 0.3 mm, by using the technique presented
in Lee et al.,12 and delaying the pouring time tw = 200 s for
VPS-8 and 260 s for VPS-32, from the moment of preparation of
the VPS liquid.

After the fabrication of the bulk of the bilayer shell, we then
added a circular plate at its base (equator) in order to close the
shell and impose a clamped boundary (otherwise the shell
would undergo large deformations due to swelling, and break
rotational symmetry18). To set these boundary conditions, we
poured a mixture of VPS-8 and VPS-32 with a ratio 1 : 1 onto the
acrylic plate and covered the puddle of this mixture with the

shell. The puddle of VPS mixture gradually spread until the
leading edge met the shell at its equator, which, upon curing,
formed a band with a thickness of 3.1� 0.5 mm, which ensured
the clamped boundary condition at the equator. For this base
plate of the shell, we used a VPS-8 and VPS-32 mixture to
minimize the effect that the base plate had on the differential
swelling of the bilayer shell. Had we used pure VPS-8 or VPS-32
as the material of the base plate, we would have observed
significant diffusion between the shell and the base plate.
We measured and compared the natural curvature of an open
bilayer shell (without the base plate) and a closed one (with the
base plate) and found no difference between them, which
reveals that the base plate did not affect the differential
swelling of the shell. Finally, the bilayer shell closed with the
plate at its equator was peeled from the PDMS shell, and a hole
was made at the center of the bottom plate.

We define t = 0 as the instant of time when the second layer
of the shell is poured onto the first, already cured, shell. The
first buckling pressure measurement was taken at t E 30 min
because the polymerization of the shell and the thicker band at
the equator, together with the preparation to measure the
buckling pressure, required t E 30 min. We fabricated a set of
bilayer shells with a systematic variation of the amplitude of the
defect, d = {0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} mm,
where VPS-32 could be on top of VPS-8, or the reverse. For all
samples, the radius of the shell was R = 25.1 mm, and the
thickness was h = 0.6 mm, such that the radius to thickness

Fig. 2 (a) Fabrication process of a hemispherical bilayer shell that has a
flat defect of amplitude d. Photographs of shells with (b) the shrinking layer
(VPS-8) on top and (c) the swelling layer (VPS-32) on top. Profiles of
the outer surface (solid line) and the inner surface (dashed line) of the
(d) shrinking layer on top and (e) swelling layer on top shells. (f) Thickness
profiles as a function of the zenith angle, y, of the shrinking layer on top
and the swelling layer on top shells.
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ratio was Z � R/h = 42. This value of Z satisfies the condition for
a thin shell Z Z 20, as described in Ventsel and Krauthammer,27

but our shell is still much thicker than the shells used in other
shell buckling experiments (Z 4 70). However, if the thickness of
the shell were decreased, the diffusion time scale would decrease
steeply since TB h2 as discussed also in Pezzulla et al.,26 so that it
would become difficult to investigate the time-evolution of the
knockdown factor, which is addressed in the next section.

2.2 Protocol to measure the critical buckling pressure of
bilayer shells

We recall that the knockdown factor kd is defined as the
maximum experimentally measured pressure, pmax, which the
shell can withstand, normalized by the classical buckling
pressure, pc, for a perfect shell. The critical buckling pressure
for a perfect bilayer shell, pc, was obtained by FEM with linear
buckling analysis. In the FEM simulations, the bilayer shells
had the same parameters as the shells used in our experiments,
but the mass diffusion of free chains was not considered. The
shell has a radius R = 25.1 mm, and the thickness of each layer
was forced to be constant h1 = h2 = 0.3mm. The Young’s moduli of
each layer were also assumed to be constant over time (Section 4),
which is consistent with our experimental measurements.

The shell was mounted onto an acrylic plate with a hole at its
center, and connected to both a syringe pump (NE-1000, New
Era Pump Systems, Inc.) and a pressure sensor (MPXV7002,
NXP semiconductors). The air inside the shell was extracted at
an imposed constant flow rate of 0.6 ml min�1 for 1 min, and
then injected back into the shell with a constant flow rate of
0.6 ml min�1 for 1 min. For each shell, we repeated these
measurements as a function of time to obtain time-series of the
critical buckling pressure. This air extraction–injection process
was repeated automatically every five minutes by programming
the syringe pump. The internal pressure was monitored at an
acquisition rate of 1 Hz using the pressure sensor. During the
air extraction period, the inner volume of the shell decreased,
until the shell buckled, at which point a minimum value of the
internal pressure and its time were recorded. Beyond this point,
the shell deformed further, decreasing its volume, until the end
of air extraction. During the next air injection cycle, the deflec-
tion was reduced, and finally the shell returned to the original
shape at the end of the air injection. After a 3 min pause, the air
extraction–injection process was repeated, so the time-step of
the measuring process is 5 min.

2.3 Characterization of the final shape of the bilayer shells
through X-ray tomography

As shown in Section B of the appendix, differential swelling of a
bilayer beam causes its natural curvature to evolve. For the
case of bilayer shells, this swelling is also expected to modify
the shape of an existing defect. Consequently, a change in the
geometry of the imperfection, albeit small, can have a large
effect on the knockdown factor. Thus, prior to presenting the
results on the knockdown factor (Section 3), we shall first
quantify the shape of our bilayer shells in their final steady
state, which, eventually, will enable us to evaluate how the

deformation of the defect relates to the variation of the knock-
down factor. The shape profiles reported next will also be used
in the FEM simulations (Section 4).

X-ray computed tomography (CT), together with digital
image processing, was employed to obtain three-dimensional
(3D) data on the full geometry of the bilayer shells. Specifically,
we focused on obtaining data on the outer and inner surfaces,
from which we could readily compute the thickness profile of
the shells. We found that the shape of the shell remained
axisymmetric throughout the differential swelling process.
From the outer/inner surface data, we extracted curves along
three meridians (at different azimuthal angles) and averaged
them to obtain the axisymmetric shell shape, as well as its
thickness profile. This nondestructive technique prevented us
from having to cut the shell for inspection. The scanning
resolution was 26 mm (voxel size), and each scan took approxi-
mately 1 h. As such, we could not obtain time-dependent data
from the X-ray CT and, instead, we only quantified shells in the
steady state (at least after 1 day past fabrication), once the
shape had ceased to evolve due to saturation of differential
swelling.

In Fig. 2(b and c) we show photographs of the steady state of
two representative bilayer shells, one with the shrinking layer
on top (Fig. 2(b)) and one with the swelling layer on top
(Fig. 2(c)). Both of these shells were fabricated to contain a
defect with an initial amplitude of d = 0.4 mm, corresponding
to d/h = 0.66. In Fig. 2(d and e), we plot the corresponding
profiles of their outer and inner surfaces (solid and dashed
lines, respectively). The shrinking layer on top shell has a large
and smooth defect; see Fig. 2(b and d). On the other hand, the
swelling layer on top shell has a smaller and sharper defect;
see Fig. 2(c and e). For other shells with different values of the
initial defect amplitude, we found that the steady-state shape
near the defect varies accordingly but the shape of the rest of
the shell remains nearly the same.

Beyond the outer shape of the defect (which could have
alternatively been obtained in an easier way using a contactless
profilometer), any potential spatial variation of the shell thickness
(the quantification of which can only be obtained through tomo-
graphy) must also be treated as an imperfection. If present,
such thickness variations are important as they would likely
contribute significantly to affecting the buckling behavior and
must, therefore, be quantified. We expect the thickness profile of
our imperfect shells to be nonuniform in the vicinity of the defect
due to fabrication details associated with the viscous flow of the
polymer suspension coating the surface of the mold, which
precedes curing. Our shells could exhibit non-uniform thickness
due to two effects. First, under the flat part of the mold (which
shapes the initial shape of the defect), the Rayleigh–Taylor
instability28 can occur when the defect is large, which would
induce a localized increase of the thickness. Second, it is known
that the thickness of a liquid film flowing over a complex surface
increases at a concave corner.29,30 In our shells, this effect could
translate into the VPS film having amaximum thickness along the
circular edge of the defect. We examine these two possibilities by
extracting the thickness profile from our X-ray CT scans.
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In Fig. 2(f), we plot the final (steady state) thickness profiles
for a set of shells, as a function of the zenith angle y. As
representative cases, we selected shells containing a defect with
the following initial amplitudes, d = {0.2, 0.3, 0.4} mm (dashed–
dotted, dashed, and solid lines, respectively), the three of which
could either have the shrinking layer on top (red lines) or the
swelling layer on top (blue lines). The shrinking layer on
top shell and swelling layer on top shell have nearly the same
thickness profiles, indicating that the non-uniformity results
from the fabrication procedure (viscous coating), rather than
from differential swelling. The thickness at the pole was
measured to be hy=0 = {0.51, 0.66, 0.73} � 0.03 mm, for the
shells with d = {0.2, 0.3, 0.4} mm, respectively. The larger values
of hy=0 are obtained for the shells with the larger values of d,
which is compatible with the accumulation of VPS at the pole
due to Rayleigh–Taylor effects. Beyond the pole, another max-
imum of thickness occurs near the edge of the defect (black
vertical lines in Fig. 2(f)), with values of hb = {0.64, 0.73, 0.75} �
0.02 mm for d = {0.2, 0.3, 0.4} mm, respectively. The existence of
this second maximum is consistent with the mechanism men-
tioned above for the increase of the thickness of a film near a
concave corner (which is the case at the edge of the defect).
Away from the defect, the thickness decreases to 0.6 mm in the
rest of the shell, for all the cases evaluated.

The non-uniformity of the thickness reported above will
need to be included in the FEM simulations presented in
Section 4, and must also be considered when interpreting
the experimental results on the knockdown factor, which we
present next.

3 Experimental results on the
time-varying knockdown factors

We proceed by making use of the experimental protocols
presented above to quantify how the critical buckling pressure,
and hence the knockdown factor, of our bilayer shells evolves
over time due to differential swelling. We shall also compare
the knockdown factors of the shrinking layer on top and
swelling layer on top shells, and systematically explore how
the evolution of kd is affected by the amplitude of the defect.
In Fig. 3, we plot time series for kd(t), for the two cases of the
shrinking layer on top shells (Fig. 3(a)) and swelling layer on
top shells (Fig. 3(b)).

The experimental results reported in Fig. 3 clearly show that
the shrinking layer on top shells become weaker with time, that
is with a positive increasing natural curvature, except for some
noise when the defects are small (d/h o 0.3) since other
imperfections coming from the fabrication procedure might
have a comparable influence. The swelling layer on top shells,
that is shells with a negative decreasing natural curvature,
become weaker over time for small defects (d/h o 0.16), but
heal and get stronger for larger defects, resulting in an increas-
ing knockdown factor over time. Specifically, when the defect
amplitude is small (d = {0, 0.1, 0.2} mm), the knockdown factor
of the shrinking layer on top (Fig. 3(a)) shells slightly decreases

from kd = 0.53 � 0.06 to kd = 0.49 � 0.04, a decrease of about
8%. With larger defects (d = {0.3, 0.35, 0.4, 0.5} mm), both
the initial and steady-state knockdown factor are lowered.
The knockdown factor decreases from kd = 0.30 � 0.03 to
kd = 0.17 � 0.07 (E43%).

For the swelling layer on top shells (Fig. 3(b)), when the
defect is small (d = {0, 0.1} mm), the knockdown factor
decreases non-monotonically by 16% and 12%, respectively.
For larger defects, the shell gets stronger, increasing its knock-
down factor, for example, by 19% when d = 0.3 mm and by 55%
when d = 0.4 mm. Some non-monotonic behavior is observed
for shells with even larger defects. For example, for the case
with d = 0.5 mm, buckling first occurs at the defect, and then,
once kd reaches the maximum value, additional buckling
events occur close to the equator, meaning that the seeded
defect is not the most critical imperfection. This is because
the large thickness at the center compensates the effect of
the geometric imperfection. Moreover, when the defect is small
(d = {0, 0.1} mm), the other uncontrollable imperfections can
have more significant effects on shell buckling.

Fig. 3 Knockdown factor versus time. Experimental results of the knock-
down factor of the (a) shrinking layer on top shells and (b) swelling layer on
top shells with R = 25.1 mm and h = 0.6 mm. The amplitude of the flat
defect is varied, d = {0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.5} mm.
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In Fig. 4(a), we plot the initial (open symbols) and the final
(solid symbols) values of the knockdown factor, kd, as a func-
tion of the normalized defect amplitude, �d = d/h, for both the
swelling layer on top shells (blue circles) and the shrinking
layer on top shells (orange triangles). These open and solid
symbols correspond to the large open and solid symbols in
Fig. 3, respectively. The time-series in Fig. 3 is a subset of all the
data, and here Fig. 4 shows all the data with error bars. With
the same initial amplitude of the defect, the swelling layer on
top shells are generally stronger than the shrinking layer on top
shells. The error bars of the data in this figure correspond to
the standard deviation of three buckling pressure measure-
ments, with three different shells.

For the swelling layer on top shells in the initial state (empty
circles), the knockdown factor continuously decreases and then
reaches a plateau as the defect size increases, which is analo-
gous to the relation between kd and �d found in our previous
work,13 even though the values of the plateaus are different
because the geometry of the flat defects is different from the
dimple-like defects studied in the previous work. When the
steady state is attained (solid circles), the swelling layer on top

shells heal the large defect. The knockdown factor first
decreases as the defect size increases and then achieves a
minimum value of kd = 0.50 at �d = 0.33. The knockdown factor
then increases as the imperfection increases further. The
minimum value of kd = 0.50 in the steady state is higher than
the value of the plateau kd = 0.43 in the initial state. On the
other hand, the knockdown factor of the shrinking layer on top
shells is nearly constant at first and then decreases as the defect
amplitude increases both in the initial (open triangles) and steady
(solid triangles) states. The value of the plateau for shells with
large defects is lower in the steady state than in the initial state.

Fig. 4(b) shows how the knockdown factor varies from the
initial to the steady state. Specifically, we plot the variation of
the knockdown factor, Dkd = kd,steady � kd,initial, versus the
normalized defect amplitude, �d; a positive value means that
the shell was strengthened over time. The shrinking layer on
top shells (crosses) have negligible Dkd for small defect sizes,
and then decreasing Dkd from +0.10 to �0.19 with �d. The
swelling layer on top shells (squares) see their Dkd increase
from �0.12 to +0.26 with the defect size, except when the defect
and its thickness at the center are too large (�d 4 0.8). Overall,
differential swelling can increase or decrease the knockdown
factor of bilayer shells. Small defects in the swelling layer on
top shells are aggravated by differential swelling. However,
large defects (�d 4 0.4) are healed as the knockdown factor
increases, by as much as Dkd = 0.26. The minimum knockdown
factor for the swelling layer on top shells is kd = 0.50. On the
other hand, the knockdown factor of the shrinking layer on top
shells slightly changes with small defects, and decreases
with large defects over time due to differential swelling by
Dkd = �0.19, at most.

4 Finite element simulations

To help us in better understanding the knockdown factor
evolution observed in the experiments and explore a broader
parameter space, we conducted simulations using the FEM to
model bilayer shells with residual swelling and compute their
buckling load under applied pressure. In the simulations, the
swelling or shrinking of the two layers is simulated, analo-
gously, by thermal expansion or contraction, respectively. Even
though this does not represent a physically-accurate model of
swelling, and a microscopically-based swelling model should
be used, this simplified approach does take into account the
geometric changes (variations in natural curvature) similar
to those induced by swelling, as also discussed in previous
studies.18,31 Note also that, since the swelling changes the
shape of the shell just after fabrication, we could not experi-
mentally measure the initial shape of the bilayer shells using
X-ray tomography, which is a relatively slow technique (each
scan took approximately 1.5 hours). Therefore, in the FEM
simulations we used the deformed shape measured in the
steady state as the natural configuration, which then undergoes
thermal deformation. The thermal expansion and contraction
of the two layers are assumed to have the same magnitude.

Fig. 4 (a) Knockdown factor versus normalized defect amplitude in the
initial state (empty symbols) and in the steady state (solid symbols).
(b) Knockdown factor change from the initial to the steady-state as a
function of normalized defect amplitude.
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The induced natural curvature k is described by the curvature of
a bilayer strip under differential thermal expansion32 as

kh ¼ 48eT
14þ E1=E2 þ E2=E1ð Þ; (1)

where eT is the thermal expansion strain, and E1 and E2 are the
Young’s moduli of the two materials.

We performed FEM simulations using the commercial finite
element modeling package ABAQUS/STANDARD. The hemi-
spherical bilayer shell is reduced to a 2D axisymmetric model
since the buckling observed in our experiments is axisym-
metric. The two layers are modeled by incompressible neo-
Hookean materials with the initial Young’s moduli measured
in experiments. Each layer is discretized by the reduced hybrid
axisymmetric elements CAX4RH with a regular mesh of 8
elements in the thickness direction, and 1000 elements in the
longitudinal direction. Geometric nonlinearity is considered in
the simulations. The shell is clamped at the equator and a
temperature field is applied to induce the thermal expansion
and contraction in the two layers. The shell deforms to a new
configuration under this differential thermal expansion. The
magnitude of natural curvature is controlled by the tempera-
ture field. We then depressurize the shell by applying a uniform
live pressure on its outer surface, for different values of natural
curvature. The simulation is conducted using the Riks method,
which solves for the equilibrium states by prescribing the arc-
length of the load–displacement curve. The buckling pressure
is defined as the maximum pressure and is divided by the
buckling pressure of a perfect bilayer shell, which is predicted
by FEM using eigenvalue buckling analysis, to get the knock-
down factor.

4.1 FEM results using the experimentally measured shape of
shells

We proceed by taking the deformed geometry of the shell
measured in the experiments using X-ray computed tomo-
graphy and compare FEM predictions with experimental
results. As described in Section 2.3, the axisymmetric shape is
obtained by averaging the extracted curves along three meridians
at different azimuthal angles.

We increase the differential thermal expansion and predict
the knockdown factor for different values of natural curvature.
Using the time evolution of the natural curvature, experimen-
tally characterized in a bilayer beam (Appendix A, Fig. 7), we
plot the knockdown factor as a function of time and compare
with the experimental results, as shown in Fig. 5. FEM simula-
tions can qualitatively describe the evolution of the knockdown
factor. For the shrinking layer on top shells (Fig. 5(a)), the
numerical results agree well with the experiments. The shells
weaken with time, except for small defects (d = 0.2 mm). For
the swelling layer on top shells (Fig. 5(b)), the simulations
predict the evolution of the knockdown factor only qualita-
tively. The lack of quantitative agreement may be due to the
over-simplification in the modeling of swelling via thermal
expansion, and to the fact that in numerical simulations,
the experimentally measured deformed shape is used as

the natural configuration, which then undergoes thermal
deformation.

Next, we perform a parametric study where a swelling layer
on top shell with an engineered defect and a non-homogeneous
thickness undergoes differential thermal expansion, toward
shedding light on the various parameters at play.

4.2 Influence of thickness variation on the evolution of the
knockdown factor

In the numerical exploration of the parameter space that we
present next, we describe the normalized shell thickness as

h0

h
¼

1þ dh
h
cos2

y
y0
p

� �
;

1

2
y0 � y � 3

2
y0;

1; yo
1

2
y0 or y4

3

2
y0;

8>>><
>>>:

(2)

where dh is the amplitude of thickness variation, and y0 is the
half angular width of the flat defect so that cos y0 = 1 � d/R
(Fig. 6(a)). We vary dh/h from 0 to 0.5 for shells with different
defect amplitudes. In this parametric study, we focus on

Fig. 5 Evolution of the knockdown factor predicted by FEM simulations,
which consider the experimentally measured deformed shapes of the
shells, compared with experimental results, for the (a) shrinking layer on
top shells and (b) swelling layer on top shells. The amplitude of the flat
defect is varied: d = {0.2, 0.3, 0.4} mm.
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swelling layer on top shells, as they can exhibit both increasing
and decreasing knockdown factors.

Fig. 6(b) shows the knockdown factor for swelling layer on
top shells with different thickness variations, in the initial state

(kh = 0) and in the steady state (kfh o 0). For a shell with a
specific defect amplitude, the change in knockdown factor
from the initial state to the steady state is indicated by the
distance between the dashed and the solid curves. For
shells with a small thickness variation, the knockdown factor
decreases due to swelling. For larger thickness variations, the
shells strengthen, resulting in a positive change in the knock-
down factor. As shells with larger thickness variations manifest
larger increases in the knockdown factor, this parametric study
suggests that thickness variation is a key parameter in this
phenomenon.

Fig. 6(c) shows the contour plot of Dkd for different values of
the normalized amplitude of thickness variation dh/h and
normalized defect amplitude �d: the contour line with Dkd = 0
(thick solid line in Fig. 6(c)) corresponds to the boundary
between the strengthening and weakening of shells due to
differential swelling. We observe that for shells with a large
defect, �d 4 0.3, the change in the knockdown factor is much
more sensitive to the thickness variation than to the defect
amplitude. We notice that in the blank (white) region of the
contour map, the shells have a very small defect but a relatively
large thickness variation, such that the shell is locally strength-
ened at the north pole, and buckling occurs at the equator of
the shell. This buckling regime is out of the scope of this paper.

5 Conclusions

In closing, we have introduced a minimal mechanism that can
be used to modify the buckling pressure, and hence the knock-
down factor, of hemispherical bilayer shells, due to differential
swelling. The natural curvature of the bilayer system changes
due to swelling, which, in turn, induces both a shape change
and a build-up of residual stress. Consequently, the critical
buckling pressure of bilayer shells with differential swelling is
modified with respect to the reference non-swelling case.
Depending on the size of the initial defect and the magnitude
of swelling, shells can strengthen or weaken against buckling.

An experimental fabrication method was developed to
produce hemispherical bilayer shells that contain a single flat
defect at their pole, the amplitude of which was varied system-
atically. The critical pressure for the onset of buckling for these
shells was measured while polymer chains were diffusing
across the bilayer interface, causing differential swelling. The
experimental results show that swelling layer on top shells have
a higher knockdown factor than shrinking layer on top shells.
Moreover, we found that the knockdown factor of swelling layer
on top shells could increase over time due to differential
swelling, depending on the size of the defect. This healing of
imperfections is more effective when the initial amplitude of
the defect is large. In parallel to the experiments, we carried out
FEM simulations to further explore the underlying mechanism
and found a qualitative agreement with experiments. The
FEM indicates that the change of shape had a primary role
in increasing and decreasing the knockdown factor during
differential swelling. Spatial variations of the shell thickness

Fig. 6 (a) Thickness profile as a function of the zenith angle y in FEM
simulations (dh/h = 0.2 and y0 = 0.057p). (b) Knockdown factor kd versus
normalized amplitude of thickness variation dh/h, in the initial state (dashed
curves) and in the steady state (solid curves), predicted by FEM simulations,
for swelling layer on top shells. The normalized defect amplitude is varied
as �d = {0.1, 0.15, 0.2, 0.3, 0.5, 1}. (c) Contour plot of the knockdown factor
change Dkd for different values of the normalized amplitude of thickness
variation dh/h and normalized defect amplitude �d.
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significantly were also found to be particularly important in
affecting the time evolution of the knockdown factor or shape-
changing shells.

We believe that the mechanism that we have introduced and
investigated to evolve the knockdown factor of spherical bilayer
shells over time could be extended to bimetallic shells or shells
made of pH-responsive gels to dynamically control their buck-
ling conditions. In addition, since the mechanical response of
the shells is dependent on both the timescale and magnitude
of residual swelling, these results suggest that a more detailed
characterization of the residual solvent and the physics of
residual swelling is necessary in the future.

Conflicts of interest

There are no conflicts to declare.

Appendix A: Characterization of a
bilayer beam undergoing differential
swelling

Differential swelling causes a change in the natural curvature of
a thin structure. One-dimensional objects, like beams that are
either flat or initially curved, can simply bend to accommodate
this change in curvature. On the other hand, plates and shells
cannot simply bend and accumulate residual stress that can
eventually lead to instabilities. Hence, to relate the diffusion of
free chains to the natural curvature, it is important to quantify
how beams deform, since they have no geometric incompat-
ibilities that can lead to instability. Therefore, in this Appendix,
we investigate the mechanics of deformation of rectangular
bilayer films that are originally flat, with an emphasis on
quantifying the evolution of their natural curvature as a result
of differential swelling, and measuring their mechanical
properties.

We have performed a series of experiments to characterize
the natural curvature, the bending stiffness, and the axial
stiffness of a bilayer beam. We define the natural curvature
of a beam as its curvature in the absence of external loads
(e.g., gravity), which can be measured as the curvature of the
beam bending set orthogonally to the gravitational field
(see Fig. 7(a)). Then, if the same beam bends under gravity
(Fig. 7(b)), its shape will be the result of the combined effects of
natural curvature and bending stiffness. Assuming that the
former has already been quantified, the latter can be determined
as a function of time. Furthermore, the effective axial tensile
stiffness can be measured with an independent tension test.

An initially flat bilayer film was fabricated using the follow-
ing protocol. First, VPS-32 was mixed with a base/cure ratio of
1 : 1 in weight and the liquid solution was coated onto a glass
plate using an automatic film applicator (ZAA2300, Zehntner
GmbH Testing Instruments), which, upon curing, yielded a
solid sheet of thickness h1 = 0.3 mm. Second, a liquid suspen-
sion of VPS-8 was mixed (also with a base/cure ratio of 1 : 1 in
weight) and poured onto the previously cured VPS-32 film, and

cured, achieving the same thickness of h2 = h1, set by the film
applicator. Note that these specific values for h1 and h2 were
chosen because they are also the values for the targeted
thicknesses of the bilayer shells used in this manuscript,
whose fabrication procedure is described in Section 2.1. Upon
curing of the VPS-8 film (tc = 10 min measured from the end of
mixing), we set a timer and then cut a rectangular strip from
the bilayer film with a thickness h = h1 + h2 = 0.6 mm, width
w = 2 mm, and length l = 12 mm. To measure the natural
curvature, this bilayer strip was clamped as depicted in
Fig. 7(a), such that the bending deformation occurred ortho-
gonally to gravity, and time-lapsed photographs were taken
(Nikon 850).

Fig. 7 (a and b) Photographs of a bilayer beam with thickness h = 0.6 mm,
deforming (a) orthogonally and (b) against gravity. The dashed line corre-
sponds to the fitted circle and the solid line is the solution of eqn (4) with
the determined bending stiffness. (c) Time evolution of the natural curva-
ture of the bilayer beam, k(t). The dashed line corresponds to the fit of
eqn (3). (d) Young’s modulus, E, and (e) bending stiffness, EI, of a bilayer
beam as a function of time. The lines correspond to the average values.
The error bars are smaller than the symbol size.
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From the digital photographs, we fit a circle of radius R to
the mid-surface of a bilayer beam (red dashed lines in Fig. 7(a)).
We define the curvature of the bilayer beam as k(t) = 1/R, which
is time-dependent due to the differential swelling. In Fig. 7(c),
we plot the normalized curvature kh of the bilayer beam as a
function of time, t. We find that the experimental data (circles)
are well described by

kh = kfh(1 � e�t/T), (3)

where kf is the final curvature once the steady state has been
reached, and T is the characteristic time constant associated
with the diffusive process across the interface of the bilayer. For
this particular sample, the final normalized curvature was
measured to be kfh = 0.1462 � 0.0016, and the characteristic
time was T = 42.5 � 0.2 min by curve fitting (the � values
correspond to the 95% confidence bounds). The latter repre-
sents the ratio between the square of the characteristic length
(in this case the thickness of the shell) and the diffusivity of the
bilayer system. These results indicate that the diffusion time
scale is significantly larger than the curing time scale of the VPS
polymers (tc E 10 min for both VPS-8 and VPS-32). As discussed
in Section 2, where we characterize the response of bilayer
shells (e.g., shape and buckling pressure) during swelling, the
time intervals chosen for data acquisition (Dt = 5 min) provide
sufficiently dense data to represent the time evolution of the
process.

In addition to the evolution of the natural curvature of
the bilayer beams reported above, we have also measured the
time-dependence of their mechanical properties. The Young’s mod-
uli of VPS-32 and 8 weremeasured to be E1 = 1.164� 0.026MPa and
E2 = 0.267� 0.002MPa, respectively. The effective Young’smodulus,
E, of the bilayer beam was measured through tensile tests
(Instron 5943 mechanical testing system with a 5 N load cell).
For this purpose, we fabricated a dog-bone shaped bilayer
specimen with a length (reduced parallel section) of l = 100 mm,
width w = 12.15 mm, and thickness h = h1 + h2 = 0.6 mm. The
measurements were repeated every 20 min to detect any possibility
of time-dependence due to differential swelling and the results are
plotted in Fig. 7(d). Then, we measured the bending stiffness, EI, of
the bilayer beam, for which we positioned the bilayer beam as
shown in Fig. 7(b), so as to have the beam bending against gravity.
The elastica equation with gravity and natural curvature was solved
numerically, and the value of EI was determined so as to minimize
the quadratic distance between the numerical solution and the
experimental profile of the beam deforming with the effect of
gravity. The elastica description we used, in terms of dimensionless
quantities, is given by33

y00ðsÞ � 1� s

b
cos yðsÞ ¼ 0; (4)

where y is the angle of the tangent vector of the neutral axis of the
beam with respect to the horizontal axis, s is the dimensionless arc-
length nondimensionalized by the total length of the elastica L, and
b is a dimensionless parameter defined as b = EI/(rgSL3), where r is
the density, and S is the cross-sectional area. Without gravity
(configuration in Fig. 7(a)), b becomes infinite, such that the

associated term in eqn (4) vanishes, and the solution of the
equation is a segment of a circle. Under gravity (configuration in
Fig. 7(b)), we determine the value of b that best fits the experi-
mental profile, which in turn yields the value of EI. The natural
curvature, which is homogeneous along s, enters the problem via a
boundary condition at the free end, equivalent to an applied
torque: y0(1) = Lk. In Fig. 7(e), we plot the time evolution of the
experimentally determined bending stiffness, EI, of the bilayer
beam, obtained using the fitting procedurementioned above. From
the ensemble of the results in Fig. 7, we found that both E = 0.68�
0.02 MPa and EI = 4.31 � 0.03 � 10�8 Nm2 are constant to within
3% (MAD) over time.

Appendix B: Fabrication of PDMS
molds

To manufacture our hemispherical bilayer shell samples, we
first fabricated thick elastic shells out of PDMS, which were
used as molds to produce our desired VPS-8/VPS-32 bilayer
shells using a coating technique. To make these PDMS molds,
we first machined stainless steel bearing balls (TIS Wälzkör-
pertechnologie GmbH) that were originally spherical, with a
radius of 25.4 mm, to flatten their pole with a set amplitude in
the range 0 r d [mm] r 0.5. Second, we poured a PDMS
mixture onto the machined stainless balls with a waiting time
tw E 30 min between the preparation of the mixture and the
moment of pouring to tune the viscosity.12 The PDMS base,
curing agent (Sylgard 184, Dow Corning), and cure accelerator
(3-6559 Cure Accelerator, Dow Corning) were previously mixed
in a 10 : 1 : 2 weight ratio.

These PDMSmolds were cured in a convection oven at 40 1C.
We repeated pouring and curing of PDMS six times to obtain
hemispherical molds with the desired thickness of hmold =
2.0 � 0.1 mm. Upon curing, the molds were sufficiently thick
and stiff so as to not deform from the target shape under self-
weight. Finally, the thick PDMS shells were peeled from the
stainless spheres and the resulting molds had an inner radius of
25.4 mm and a single flat defect at their pole with amplitude d,
which was varied systematically.
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