
Disentangled Network Alignment with Matching
Explainability

Fan Zhou∗, Zijing Wen∗, Goce Trajcevski‡, Kunpeng Zhang§, Ting Zhong∗†, Fang Liu∗,
∗School of Information and Software Engineering, University of Electronic Science and Technology of China

‡Department of Electrical and Computer Engineering, Iowa State University, Ames IA
§Robert H. Smith School of Business, University of Maryland, College park MD

†Corresponding author: zhongting@uestc.edu.cn

Abstract—Network alignment (NA) is a fundamental problem
in many application domains – from social networks, through
biology and communications, to neuroscience. The main objective
is to identify common nodes and most similar connections across
multiple networks (resp. graphs). Many of the existing efforts
focus on efficient anchor node linkage by leveraging various
features and optimizing network mapping functions with the
pairwise similarity between anchor nodes. Despite the recent
advances, there still exist two kinds of challenges: (1) entangled
node embeddings, arising from the contradictory goals of NA:
embedding proximal nodes in a closed form for representation
in a single network vs. discriminating among them when mapping
the nodes across networks; and (2) lack of interpretability about
the node matching and alignment, essential for understanding
prediction tasks. We propose dNAME (disentangled Network
Alignment with Matching Explainability) – a novel solution for
NA in heterogeneous networks settings, based on a matching
technique that embeds nodes in a disentangled and faithful man-
ner. The NA task is cast as an adversarial optimization problem
which learns a proximity-preserving model locally around the
anchor nodes, while still being discriminative. We also introduce
a method to explain our semi-supervised model with the theory of
robust statistics, by tracing the importance of each anchor node
and its explanations on the NA performance. This is extensible
to many other NA methods, as it provides model interpretability.
Experiments conducted on several public datasets show that
dNAME outperforms the state-of-the-art methods in terms of
both network alignment precision and node matching ranking.

Index Terms—network alignment, social networks, graph ker-
nel, adversarial learning

I. INTRODUCTION

Network Alignment (NA) targets the identification of ver-
tices across different social platforms (or other networks like,
e.g., protein networks [1]) that refer to the same individ-
ual/entity [2]. It has recently attracted an increased amount
of interest due to its crucial impact in various applications
settings such as user behavior prediction [3], and identity veri-
fication and privacy protection [4]. Variants of the NA problem
are also known as User Identity Linkage [5], [6], Account
Linkage Inference [7], [8] and Anchor Link Prediction [9]–
[11].

Various approaches have been proposed to tackle this
practically relevant problem – e.g., COSNET [12] computes
Adamic/Adar scores to measure neighborhood similarities via
capturing the local and global consistency among multiple

networks; FINAL [13] aligns attributed networks by leveraging
the node/edge attribute information to guide topology-based
alignment process; etc. The commonality of all these methods
is that they extract a set of independent features from account
profiles or activities (e.g., username, gender, writing style, etc.)
for representing users – which may not be feasible due to var-
ious reasons, such as privacy and data availability. Inspired by
recent advances in graph representation [14], many approaches
have been proposed to address the NA problem using network
embedding techniques. For example: – IONE [15] learns net-
work embedding from the follower/followee couplings in order
to preserve the proximity of users with “similar” relationships.
–ULink [5] builds the latent user space through projection
matrix, and jointly optimizes the matching pair information
across different networks. – SLAMPRED [11] projects the
features extracted for links from different aligned networks
into a shared lower-dimensional feature space and predicts the
anchor link according to link similarity. – DeepLink [6] ad-
dresses the network alignment problem with a semi-supervised
dual learning framework where network embedding and neural
network based mapping are employed for representing and
linking anchor nodes.
Challenges and Contributions: Although existing NA meth-
ods are effective; with various carefully designed cross-
network embeddings – they suffer two main drawbacks:
(1) Two contradictory objectives exist in these NA methods.
That is, for a single network, it is desirable to embed proximity
nodes in closed forms (or low-dimensional vectors), which has
been done by most (if not all) graph representation algorithms,
such as DeepWalk [16] and node2vec [17] among many oth-
ers [14]. On the contrary, when learning the mapping/aligning
functions between heterogeneous networks, it is desirable
to explicitly separate the embedding vector of each node
from the vectors of its proximities; otherwise, it is difficult
to discriminate the anchor nodes from their neighborhoods,
resulting in poor alignment performance. These two competing
goals explain why existing alignment algorithms demonstrate
high top-k (k > 1) linking accuracy but hardly improve
the top-1 accuracy especially for dense networks – which
we refer to as the confounding matching problem. Since the
representation of nodes in each network is entangled locally
and even more so after the mapping, enhancing the graph

1360



embedding resolution is the main challenge in solving the
network alignment problem.
(2) Although graph embedding based approaches provide
the state-of-the-art alignment performance, these end-to-end
methods lack explanability regarding the process of fine-
grained node matching and alignment. For example, why does
a particular embedding and mapping work for a particular
NA task? What is the glass-ceiling of these approaches and
how to measure the bounds? Which samples are positive for
successful linkage and which of them have negative influence?
If we can distinguish positively influential nodes, then how
much is the impact of each of them on predicting the anchor
nodes? Answering such questions is not trivial, and yet they
are fundamental for understanding the NA task, which can
benefit the model development – e.g., decreasing weights
of those identified negative samples may help improve the
aligning performance.

To address the above limitations, we present dNAME (dis-
entangled Network Alignment with Matching Explainability)
– a novel approach reconciling the competing goals of existing
NA methods, while capable of explaining the influence of each
node on the network matching. Methodologically, dNAME
exploits graph convolutional neural networks (GCN) for learn-
ing the latent space of single network combined with a graph
kernel based regularizer for discriminating the representation
of anchor nodes from their neighborhoods. Adversarial learn-
ing paradigm is employed to further distinguish the anchor
nodes from the non-anchor but nearby ones. In addition,
we leverage the influence functions [18], [19] to explain the
network alignment performance by identifying the influential
anchor nodes (both positive and negative) for aligning two
networks. Our main contributions are:
• Discriminative Convolutions: We develop a regularized
graph convolution to learn latent semantics of both node
representation and network structure, while a graph kernel
is employed for discriminating the anchor nodes from their
neighborhoods. In addition to efficiently leveraging the node
labels in a semi-supervised manner and the ability of be-
ing generalized to various graphs (besides social networks),
dNAME bridges the tight clustered embedding in NA and
abundant graph kernels originally used in graph classification.
• Adversarial Matching: We leverage upon generative neural
networks to facilitate the confounding matching issue via
a minimax game between a generative mapping function
and a matching discriminator, which are jointly optimized
to disentangle the matching results by preserving the relative
similarity ordering and stabilize the alignment process.
• Explainable Alignment: dNAME is capable of explaining
the behavior of node linkage by investigating the perturbation
of each training sample and its influence on node alignment.
This could benefit the potential network alignment algorithms
with the interpretability of their models.
• To demonstrate the effectiveness of dNAME, we conducted
experiments on several real-world datasets. The results show
that dNAME can both improve the network alignment ac-
curacy compared to the state-of-the-art approaches, and also

explain its behavior.
In the rest of this paper, Section II presents the preliminary

background and formalizes the problem. We provide model-
free evidence in Section III, motivating the methodology
including disentangled embedding and adversarial matching
in Section IV, followed by the model interpretability in Sec-
tion V. Experimental evaluations quantifying the benefits of
our approach are presented in Section VI, and Section VII
concludes the paper and outlines directions for future work.

II. PRELIMINARY & RELATED WORK

We now introduce the basic terminology and definitions in
dNAME setting, and survey the related works.

A. Problem Definition

We consider a set of s different social networks {G1,
...,Gs}, each defined as a Social Network Graph (SNG)
G = (V, E), unweighted and undirected. V is the set of vertices
– each representing a user; and E is the set of edges – ei,j ∈ E
indicating a relationship between the users ui and uj .

We represent each SNG with a unique low-dimensional
latent user space according to the Network Embedding (NE)
model, which learns the probabilistic distributions of nodes
while preserving network properties. After embedding each
SNG (obtaining G1, ...,Gn, and we also use boldface to
denote embedded nodes, e.g., ui), approximate graph mapping
(projection) functions are developed as the task of NA [5], [6],
[15], [20]. We note that some implementations consider node
attributes [5], [20] while others do not [6], [15].

Definition 1. (Network Mapping Function) A function Φ is
a mapping from Gs to Gt, if for each ui ∈ Gs and its latent
space vector ui, we have Φ(ui) = u′

i, where u′
i is in the latent

space of Gt.

In general, the mapping function Φ is unknown – and the
objective of NA methods is to learn a mapping Φ such that
two SNGs Gs and Gt are aligned by maximizing the similarity
of all aligned pairs (ui,vj), where ui ∈ Gs and vj ∈ Gt.

Over the last decade, graph kernels [21] have become the
most effective approach for this task, providing a way of
applying general kernel methods to graphs. Formally:

Definition 2. A Graph Kernel is a positive semidefinite kernel
function κ : G×G → R such that there exists a map φ : G →
F into a Hilbert space F, with the property κ(Gi,Gj) =
〈φ(Gi), φ(Gj)〉F for any pair of graphs Gi and Gj , where
〈·, ·〉 is the inner product in F.

Graph kernels have traditionally been employed as efficient
functions to measure the similarity of a pair of (sub)graphs.
There exist a plethora of graph kernels – e.g., shortest paths,
random walks and subgraphs, (cf. [22] for a review), and con-
siderable improvements are possible by using the Weisfeiler-
Lehman test of isomorphism [23].

1361



B. Related Work

Network-based methods have received much attention and
become increasingly promising in tackling the NA problem,
when only network structure is exploited for alignment, based
on a few known anchor nodes. In [24], Tan et al. model user
relationship using a hyper-graph and project the manifolds of
two networks onto a commonly embedded space to correlate
accounts. Neighborhood-based features seem like a natural
choice for the user-identity linkage problem [5], [12], [25],
relying on computing the Adamic/Adar scores to measure the
neighborhood similarity [26]. CLF [27] predicts correlation for
both anchor nodes and social links by transferring information
related to social links formed by anchor nodes in the source
network to the target network.

Inspired by word2vec [28] techniques in natural language
processing, a number of approaches have been proposed
to represent the graph with low-dimensional vectors, e.g.,
DeepWalk [16], node2vec [17] and GCN [29] – c.f [14] for
an overview. Recently, some researchers have exploited net-
work embedding methods for solving the network alignment
problem, i.e., DeepLink [6] among others [5], [11]. However,
the entangled embedding and indistinguishable matching prob-
lems have not been well studied in this area.

Compared to these works, dNAME is capable of discrimi-
nating the anchor nodes from their neighborhoods. In addition,
it learns node matching in an adversarial manner, which makes
the distribution of anchor nodes widely spread and yields
higher representation resolution for improving alignment accu-
racy. To explain the aligning behavior of dNAME, we borrow
the idea of influence functions [18], [19] to investigate the
training process while making our methods robust to model
interpretability.

III. MODEL-FREE EVIDENCE

In this section, we present model-free evidence to assess the
impact of various factors on NA and to motivate our model.

A. Graphs Similarity

As mentioned, the existing NA methods focus on leveraging
node features and/or employing efficient network representa-
tion (local and global) and mapping functions. However, to
align a pair of networks, we need to understand the notion
of their similarity, since this implicitly determines the upper-
bound performance of a specific NA method. Furthermore,
understanding the glass-ceiling of the datasets may, in turn,
help incubating more efficient NA approaches.

We propose to measure the graph similarity with Optimal
Transport (OT) cost – i.e., Earth Mover’s Distance (EMD)
– originally used for measuring divergences between two
probability distributions [30], and recently employed as a way
of designing graph kernels [31], [32].

Given two networks Gs = (Vs, Es) and Gt = (Vt, E t),
we embed each network with a matrix as a disentangled GCN
model, where each row of the matrix represents the embedding
of a node. This enables a formalization of the similarity
comparison of two graphs as a transportation problem solved

via EMD [30]. In the case of measuring network similarity,
we define the OT cost between a pair of networks (Gs,Gt) as:

min

n1∑
i=1

n2∑
j=1

Tijd(ui,vj) (1)

s.t.
n1∑
i=1

Tij =
1

n2
,

n2∑
j=1

Tij =
1

n1
,Tij ≥ 0, (2)

∀i ∈ {1, ..., n1}, ∀j ∈ {1, ..., n2}
(cf. [32]), where d(ui,vj) is a measure of vertex dissimilar-
ity [33] between nodes ui ∈ Vs and vj ∈ Vt, and T ∈ Rn1×n2

(n1 = |Vs| and n2 = |Vt|) is a transportation matrix. The
node dissimilarity d(ui,vj) between ui and vj is computed
as d(ui,vj) = (1− cos〈ui,vj〉) /2, where cos〈ui,vj〉 is
the cosine similarity between nodes ui and vj . Note that
d(ui,vj) = 0 means that ui and vj are exactly the same
in the latent representation.

Regarding the transportation matrix T, its element Tij ≥ 0
denotes how much mass from the vertex ui ∈ Vs “travels” to
the vertex vj ∈ Vt. This formulation allows each node ui ∈ Vs

to be transported into any node vj ∈ Vt in total or in parts [31].
We note that the outgoing mass from each graph should be
equal to 1 and is equally divided among all the vertices. That
is, we want to ensure that the entire outgoing mass from vertex
ui amounts to 1

n1
– i.e.,

∑
j Tij =

1
n1

. In addition, the amount
of incoming mass to vertex vj should match 1

n2
, i.e.,

∑
i Tij =

1
n2

. The OT distance between the two networks is defined as
the minimum cumulative cost required to move all the nodes
from Gs to Gt.

However, the above method does not distinguish anchor
nodes from non-anchor ones. In the context of NA, the anchor
nodes ui ∈ Vs can only be transported to the anchor nodes
vj ∈ Vt. Thus, we set the distance between anchor nodes
to be d(ui,vj) as above, and the distance between non-
anchor nodes to be maximal – which is 1, according to the
range of d(ui,vj). Hence, we normalize and recalculate the
dissimilarity distance as:

d′(ui,vj) =

{
d(ui,vj), if ui and vj are aligned anchor nodes;
1, otherwise.

(3)

Fig. 1 illustrates the performance of NA between two
networks by manually varying the graph similarity measured
using EMD. Apparently, the node alignment accuracy deteri-
orates with the increasing dissimilarity of two graphs.

B. Indistinguishable Embedding & Matching

There are two indistinguishable situations where the align-
ing performance may deteriorate:
(1) In the network embedding stage, it is not easy to dis-
tinguish a node from its proximal ones under existing unsu-
pervised graph representation techniques. For example, Fig. 2
shows the latent representation (after further dimension reduc-
tion via t-SNE) of a graph embedding (Twitter [34], Table I)
using deepWalk and node2vec, respectively. We can observe

1362



1.0 1.1 1.2 1.3
EMD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
re
c
is
io
n
@
1

Fig. 1. Performance of Network Alignment vs. Graph Similarity. Two
networks: MySpace and Lastfm [12] (cf. Table I in Sec. VI). Network
Embedding: node2vec [17]; Mapping function: MLP [6].

−40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

(a) deepWalk.

−50 −40 −30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

(b) node2vec.

Fig. 2. Indistinguishable Representation via Network Embedding. We note
that t-SNE is applied to obtain a 2-dimensional vector representation of each
node for visualization.

that the nodes (dots in the Figure) are indistinguishable with
each other.
(2) The confounding matching problem with learned map-
ping function occurs when estimating the similarity between
nodes. For example, the MultiLayer Perceptron (MLP) are
usually employed to learn the mapping function between two
graphs [5], [6], where the objective is to minimize the overall
loss between anchor node pairs. However, one side effect is
that we cannot efficiently discriminate the real anchor nodes
with their neighborhoods, since the point-wise ranking of
vectors in the target network is perturbed by the network
embedding process, and the confounding matching may be
further deteriorated after the mapping, as illustrated in Fig. 3.

These two issues are crucial for improving the NA per-
formance and motivate our investigation of discriminative

Gs Gt

ΦAs At

Bt

Ct

Dt

(a) Mapping between two networks.

At

Dt

A′
s

Bt
Ct

(b) Confounding matching.

Fig. 3. Confounding matching: After learning the mapping function Φ be-
tween two networks (part 3(a)), node As is mapped to Gt with Φ(As) = A′

s.
However, in the latent space of Gt (part 3(b)), A′

s is closer towards Dt than
to At (the true corresponding node of A in the target network Gt) – incurring
a linking error due to tightly clustered embedding space of proximal nodes
not allowing enough resolution to distinguish them, especially for the mapped
vectors like A′

s.

embedding and confounding matching.

IV. DISENTANGLED NETWORK ALIGNMENT

We now present our method for representing nodes with
a disentangled graph convolution model and matching them
across graphs in an adversarial manner.

A. Discriminative Graph Convolutional Embedding

Representing each node in a network and capturing the
latent network structural semantics can be accomplished by
various network embedding (NE) based methods. In the
context of dNAME, we are more interested in neighboring
nodes than distant ones for linking a user ui across networks,
because the features and connectivity of nearby nodes provide
more useful information or additional context. That is, local
structure information has more impact in predicting node
relations than higher-order proximity of the network.

Therefore, we propose a disentangled Graph Convolutional
Network (GCN) embedding method, focusing on iteratively
aggregating feature information from local graph neighbor-
hoods. This is an efficient approach – learning polynomials
of the graph Laplacian avoids the computation of eigenvec-
tors [35]. We also leverage the semi-supervised graph learning
ability of GCN to discriminate anchor nodes from non-anchor
nodes.
Graph Convolution: we represent each Gi with two matrices:
a symmetric adjacency matrix W ∈ R

N×N (Wij = 0 if
(i, j) /∈ E and Wij > 0 otherwise) and a diagonal degree
matrix D ∈ R

N×N (Dii =
∑

j Wij). They can be obtained
through graph Laplacian operations. The (unnormalized) graph
Laplacian is a symmetric positive semidefinite matrix Lu =
D − W. By a symmetric normalization, one can obtain a
normalized graph Laplacian L = D− 1

2 (D − W)D− 1
2 =

I−D− 1
2WD− 1

2 , where I is the identity matrix. Since L is also
symmetric and positive-semidefinite, it can be diagonalized as
L = ΨΛΨᵀ, where Λ = diag(λ1, · · · , λN ) are the spectrum
(non-negative eigenvalues) of L and Ψ = (ψ1, · · · , ψN ) are
the corresponding orthonormal eigenvectors.
Representation Learning: Generalizing convolution and F
filters to a signal X ∈ R

N×d – where each row (e.g., a
node/user) is a d-dimensional feature vector xi – produce a
convolved signal matrix U ∈ R

N×F

U = D̂− 1
2ŴD̂− 1

2XF (4)

where F ∈ R
d×F is a matrix of filter parameters, Ŵ = W+I

is the re-parameterization trick and the diagonal elements of
matrix D̂ are D̂ii =

∑
j Ŵij .

Suppose we have an L-layer neural network. It can be
trained with layer-wise propagation rule from input to out-
put with the following differentiable function and trainable
parameters in each layer l:

Hl = σ(D̂− 1
2ŴD̂− 1

2σ(Ul−1)Fl−1)

= σ(D̂− 1
2ŴD̂− 1

2Hl−1Fl−1)

where Ul−1 is the convolved signal matrix in the (l − 1)th

layer; Fl−1 ∈ R
F l−1×F l

is a layer-specific trainable weight

1363



matrix; σ(·) is an activation function (e.g., ReLU(·) =

max(0, ·)), and Hl ∈ R
N×F l

is the matrix of activations in
the lth layer with H0 = X, i.e., the input feature matrix of
the data.

One indication of the effectiveness of the learned embed-
dings is that the distances between random pairs of anchor
node embeddings are well distributed. To obtain the represen-
tation of such a network, we leverage a non-parameterized
graph autoencoder for node embedding, inspired by [36].
Specifically, we use a two-layer neural networks to reconstruct
the symmetrically normalized adjacency matrix as W̃ =
σ(UᵀU), where U ∈ R

N×F is the embedding learned by
Eq.(4) and Eq.(5). After the training of reconstruction and
obtaining optimized U, we denote the social representation
of each node/user by ui, i.e., the ith row of U. Then we
define the cross-entropy loss function when training network
embedding as follows:

L = −
N∑
i=1

N∑
j=1

Ŵij ln W̃ij (5)

where Ŵij ∈ Ŵ and W̃ij ∈ W̃.
Discriminative Regularization: The above GCN based graph
representation model has the advantage of incorporating node
labels for discriminating the nodes belonging to different
classes. In our problem setting, the anchor nodes are more dis-
tinguishable in the latent space compared to the unsupervised
network embedding methods, due to the wider distribution
of the anchor nodes using the described semi-supervised
discriminative embedding approach. However, there is a draw-
back: one cannot efficiently tell apart the anchor nodes from
their neighborhoods. Here we present a regularization method
combined with the graph kernel for further separating the
embeddings of the nodes.

Intuitively, we need a high-resolution node representation
and a suitable similarity measure operating on that represen-
tation. Formally, our node embeddings in the space Z are
first projected into a high-dimensional feature space F via a
function φ : Z → F, i.e., U → φ(U). The mapped embeddings
in space F should not only be able to retain the distance
information among previous representation of the nodes, but
also to make the nodes in the space F more separated from
each other.

There are many ways to measure the similarity between
node embeddings in a high-dimensional feature space, but
they typically involve calculating the inner product among
nodes using their projected high-dimensional representation
〈φ(ui), φ (uj)〉, which would incur computational overheads.
To address this issue, one can rely on the kernel trick to gen-
eralize distance-based algorithms to operate in the projected
space [37] and the dot product can then be evaluated directly
using a nonlinear function κ as κ(ui,uj) = 〈φ(ui), φ(uj)〉.
Therefore, we define the distance between φ(ui) and φ(uj)

in terms of the kernel as:

D(φ(ui), φ(uj)) = ‖φ(ui)− φ(uj)‖2
= κ(ui,ui) + κ(uj ,uj)− 2κ(ui,uj) (6)

Although a kernel κ (ui,uj) can be considered as a similar-
ity measure between instances ui and uj in high-dimensional
feature space F, we are neither able to ensure that they are unit
vectors nor to bound the value in the range of (0, 1]. Thus, we
alternatively construct a similarity matrix S ∈ R

N×N – each
element sij ∈ S measures the similarity between φ(ui) and
φ(uj) relying on the distance function specified in Eq.(6), and
defined as:

sij(φ(ui), φ(uj)) = 1/ exp{D(φ(ui), φ(uj))}, (7)

which is now normalized to be in the range of (0, 1] – the
larger value of sij , the more similar between feature vectors
ui and uj .

Until now, anchor nodes have not been considered when
embedding the network. However, it is interesting that our
graph representation utilizes the role of anchor nodes – strictly
speaking, the only label information that can be incorporated
into node alignment are the anchor nodes. Thus, we use the
representation of anchor nodes to reconstruct the representa-
tion of the remaining nodes. We first build an intermediate
matrix C ∈ R

N×F , whose ith row ci denotes the embeddings
of anchor node ui

ci =

{
ui, if ui is anchor node;
0, otherwise.

(8)

This operation sets the non-anchor node representation as 0.
Then, we use matrix C combined with above similarity matrix
S to derive a new representation of nodes:

U′
N×F = SN×N ·CN×F (9)

where ith row of U′ is a vector u′
i =

∑N
j=1 sij · cj .

We now explain the rationale behind this embedding re-
construction: (1) representing the non-anchor nodes using
anchor ones can (partially) eliminate the bias of autoencoder
based node embedding caused by non-anchor nodes – possible
reason for confounding matching problem; (2) incorporating
the similarity measure in Hilbert space (Eq.(7)) can help
discriminate nodes that are non-separable in the original
embedding space, which is also the reason of involving graph
kernels; and (3) more importantly, reconstructing embedding
can efficiently improve the matching performance, as we will
demonstrate later.

B. Adversarial Matching

After obtaining the latent embedding space for two graphs
Gs and Gt, we turn to learn the mapping generator with known
anchor nodes, which is a parameterized function implemented
with neural networks in this work. Given a labeled anchor node
pair (ui, vj) (ui ∈ Vs and vj ∈ Vt) and their representation

1364



vectors (ui,vj), a mapping generator Φ(ui; θ1) is trained by
minimizing the following loss function:

�(ui,vj) = argmin {1− cos 〈Φ (ui; θ1) ,vj〉} , (10)

Unfortunately, directly applying the mapping function may
lead to large matching errors due to the confounding matching
problem as illustrated in Sec. III. The main reason is that we
only leverage the labeled anchor nodes for learning mapping
function which incurs that all nodes (both anchor nodes
and non-anchor ones) in Gs are towards approximating the
distribution of known anchor nodes in Gt after mapping.
Thus, unknown anchor nodes (e.g., those used in testing)
are also departing from their true corresponding nodes in
Gt. Therefore, it is desirable to “distort” the non-training
anchor nodes to be discriminable from the training ones while
approaching their real corresponding nodes.

Towards that goal, we present an adversarial learning
paradigm by leveraging the idea of Generative Adversarial
Nets (GAN) [38], which have been primarily applied to
generate real-like images, grammatically correct texts and
fluent dialogue. Briefly, the generator in GAN produces an
adversarial example to fool the discriminator, while the dis-
criminator tries to distinguish against the adversary. However,
our proposed matching method is no longer intended as a
defense against an adversary, but as a means of regularizing
the node matching by stabilizing the mapping function.

More formally, the adversarial matching consists of a map-
per Φ(·; θ1) and a discriminator D(·; θ2): Φ(·; θ1) is a non-
linear transformation of the vectors in Gs to vector representa-
tions in Gt which are regarded as fake samples, with the goal
of trying to confuse the discriminator that a mapped vector u
(sampled from a prior distribution pu, e.g., an uniform or a
Gaussian) comes from the real anchor node distribution panchor
in Gt; simultaneously, D(·; θ2) computes the probability that a
mapped vector u in target space is a sample from the real data
distribution panchor, rather than from the data distribution pm
generated from our mapping function. This matching process
is to learn the mapper’s distribution pm over anchor nodes n
which can be considered as a minimax game with the mapper
and discriminator playing against each other iteratively:

min
Φ

max
G

En∼panchor(n) [logD (n; θ2)] +

Eu∼pu(u) [log (1−D (Φ (u; θ1) ; θ2))] (11)

where D(·; θ2) adjusts its parameters θ2 to maximize the
capability of discriminating the mapped vectors from the
real anchor nodes, while Φ(·; θ1) minimizing log(1 −
D(Φ(u; θ1); θ2)) by tuning θ1.

We note that adversarial matching is different from the dis-
criminative embedding in terms of objective and methodology.
Generally, adversarial matching is a method to learn the anchor
node distribution in target space by reducing the empirical bias
of training data. In contrast, we use discriminative embedding
to widely distribute the anchor nodes and their neighborhoods
in the latent space during embedding, although its outcome
also benefits node matching in the later step. We argue

and experimentally observe (Sec. VI) that above adversarial
matching can successfully improve the network alignment
performance especially for the top-1 accuracy.

V. MATCHING INTERPRETABILITY

Most of the neural network-based alignment methods are
viewed as “black-box” models and limited by the lack of
explaining the behaviors. To demystify the aligning behavior
of dNAME, we estimate in a closed form the importance of
each training sample (node) u on the NA performance of
a particular testing instance utest using the well-established
theory from influence functions [18], [19].

Specifically, removing a data point u from the training set
results in a change of θ∗−u − θ∗, where θ∗−u is the optimal
parameter θ with the minimum total loss without the data
point u, denoted by: θ∗−u

def
= argminθ∈Θ

∑
ui �=u �(ui, θ),

where �(ui, , θ) is the loss of aligning ui. To estimate the
influence of each removed training sample u and avoid re-
training the model, Koh et al. [29] use influence functions
to efficiently approximate this behavior. The basic idea is
to compute the parameter changes if u was upweighted
by some small ε, which gives the new parameters θ∗ε,u

def
=

argminθ∈Θ
1
N

∑N
i=1 �(ui, θ) + ε�(u, θ). The influence of up-

weighting u on the parameters θ∗ is given by

Iup,θ∗(u)
def
=

∂θ∗ε,u
∂ε

∣∣∣∣
ε=0

= −H−1
θ∗ 	θ �(ui, θ

∗) (12)

where Hθ∗ = 1
N

∑N
i=1 	2

θ�(ui, θ
∗) is the Hessian matrix.

Eq.(12) shows that removing u is the same as upweighting
it by ε = −1/N . Thus, one can linearly approximate the
parameter change of removing u as θ∗−u−θ∗ ≈ − 1

N Iup,θ∗(u)
without re-training the model. The influence of upweighting a
training point u on the loss for a testing point utest can then
be calculated according to the chain rule:

Iup,loss(u,u
test)

def
=

∂�(utest, θ∗ε,u)
∂ε

∣∣∣∣
ε=0

= �θ�(u
test, θ∗)ᵀ

∂θ∗ε,u
∂ε

∣∣∣∣
ε=0

= −�θ �(u
test, θ∗)ᵀH−1

θ∗ �θ �(u, θ
∗). (13)

To speed up the computation, we use implicit Hessian-
vector products (HVPs) to efficiently approximate Stest

def
=

H−1
θ∗ 	θ �(u, θ

∗). Then, the Iup,loss(u,u
test) can be rewritten

as Iup,loss(u,u
test) = −Stest 	θ �(u, θ

∗). Since Hessian Hθ∗ is
positive semidefinite by assumption, we have:

H−1
θ∗ �θ �(u, θ

∗) = argmin
ν

{1
2
νᵀHθ∗ν −�θ�(u, θ

∗)ᵀν}

where the exact solution ν can be obtained with conjugate
gradients requiring only the evaluation of Hθ∗ν instead of
explicitly computing H−1

θ∗ . We refer the reader to [29] for
details and explanations on this topic, where the application
of influence functions in computer vision is investigated. We
will show the experimental results of explaining the network
alignment and matching in Sec. VI.

1365



VI. EXPERIMENTS

We now present in detail the experimental observations
demonstrating the advantages of dNAME from two aspects:
aligning precision and ranking performance. We also discuss
the interpretability of our proposed model.

A. Datasets

To compare the performance of different methods, we use
the following social networks collections in our experiments
(cf. Table I):
• Foursquare-Twitter (F-T): This dataset is provided by

Zhang et al. [34], where nodes (users) of two social networks
(Foursquare and Twitter) are partially aligned.

• Lastfm-MySpace (L-M): This dataset is published by [12]
and available online (http://aminer.org/cosnet). It contains 5
networks, however, for the sake of privacy, it only provides
partial anchor nodes for true identity linkage.

TABLE I
STATISTICS OF DATASETS.

Dataset |V | |E| # of anchor nodes
Foursquare 5,120 76,972 3,148Twitter 5,313 164,920

Lastfm 2,138 4,259 1,561MySpace 2,117 3,798

B. Baselines & Metrics

In this work, we use a 3-layer perceptron as the graph
convolution to embed nodes into a 256-dimensional vectors
with ReLU activation. As for the adversarial matching in
dNAME, both the mapper and discriminator are 3-layer per-
ceptrons. In addition, we also implement a simplified version
of dNAME, called dNAME* with all components included
except the adversarial matching. Both dNAME* and dNAME
employ AMSGrad [39] as stochastic optimization for training
the neural networks.

dNAME together with several network-based methods re-
quire only network structural information for alignment. We
note that profile-related features can be incorporated to im-
prove the performance. However, in this paper, we focus on
network structure based NA and evaluate against the following
baselines:
• DeepLink [6]: DeepLink is an end-to-end network align-

ment approach that samples networks and learns to encode
nodes into vector representations to capture local and global
network structures. A dual learning based paradigm is then
employed to learn transferring knowledge and updating the
anchor linkage with policy gradient.

• IONE/ONE [15]: Input-Output Network Embedding
(IONE) is a network embedding and partial network
alignment method. In IONE, the user latent space is
obtained with negative sampling and constraints on
common users of the networks, where gradient descent is
used to train and align two networks with anchor nodes.
ONE is a simplified version of IONE where only node

vector and output vector representation of a user are
considered for alignment.

• MAH/MAG [24]: Manifold Alignment on Hypergraph
(MAH) is the network embedding method which represents
nodes into a common low dimensional space and infers
account correlation by comparing distances between two
vectors across networks in the embedding space. Manifold
Alignment on traditional Graphs (MAG) builds a social
graph for each network by computing user-to-user pairwise
weights.

• CRW: Collective Random Walk (CRW) [27] predicts the
formation of social links among users in the target network
as well as anchor links aligning the target network with other
external social networks.
To evaluate the linking accuracy (inline with some of the

existing works [2], [6]), we use a rather standard evaluation
metric – Precision@k(P@k), which is the portion of the
relevant items from among the top k recommended ones (note
that the higher the value, the better the performance). We
omit the results on ranking performance comparison due to
the space limitation. However, we visualize different methods
on alignment results which, in a sense, reflects their ranking
performance.

P@k =

n∑
i

�i{success@k}/n (14)

where �i{success@k} incidates whether the positive match-
ing identity exists in the top-k (k <= n) list, and n is the
number of testing anchor nodes. Note that since top-k is a
metric of the true positive prediction rate, Precision@k is
exactly the same as Recall@k, as well as the F1@k, in the
context of network alignment.

C. Results
Network Alignment: We first systematically evaluate various
methods on the top-k accuracy of NA. As shown in Fig. 4(a)
and 4(b) for the precision over different values of parameter
k on two datasets, dNAME consistently outperforms the
baselines. Compared to DeepLink – the best approach in
baselines, it achieves 17% and 53% higher (on average) over
the best DeepLink in terms of top-30 and top-1 accuracy,
respectively. This is an empirical evidence that disentangled
network embedding and de-confounding matching are effec-
tive for the NA problem. We also observe that dNAME
outperforms dNAME* by 10% on top-30 and 16% on top-
1 accuracy, respectively, demonstrating that our adversarial
matching can further improve the alignment performance by
tackling the confounding matching with a minimax game. The
remaining methods (CRW, MAG, and IONE), yield signif-
icantly lower scores than our approach. This is due to the
fact that the crux of these methods is to learn heterogeneous
embedding without addressing the contradictory objectives
between embedding and matching. We also note that dNAME
significantly improves the top-1 alignment performance –
critical for applications seeking higher Recall scores. While
Figure 4 only shows results on Precision vs. k for Lastfm-
MySpace, the rest of comparisons on this dataset – omitted
for space limitation - are consistent.

1366



5 10 15 20 25 30
matching identity k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re
c
is
io
n

CRW

MAH

MAG

ONE

IONE

DeepLink

dNAME*

dNAME

(a) Precision vs. k (F-T).

5 10 15 20 25 30
matching identity k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

c
is

io
n

CRW

MAH

MAG

ONE

IONE

DeepLink

dNAME*

dNAME

(b) Precision vs. k (L-M).

10 20 30 40 50 60 70 80 90
training ratio r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n
@

3
0

CRW

MAH

MAG

IONE

DeepLink

dNAME*

dNAME

(c) Precision vs. r (F-T).

104 105 106
107 108

iteration i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n
@

3
0

dNAME

dNAME*

DeepLink

IONE

(d) Precision vs. i (F-T).

Fig. 4. Alignment precision results. Parameters: k is the predicted k top matching identities; r is the percentage of anchor nodes used for training; i is ith

training iteration.

Twitter

F
o
u
rs
q
u
a
re

(a) IONE Training.
Twitter

F
o
u
rs
q
u
a
re

(b) DeepLink Training.
Twitter

F
o
u
rs
q
u
a
re

(c) dNAME Training.

Twitter

F
o
u
rs
q
u
a
re

(d) IONE Testing.
Twitter

F
o
u
rs
q
u
a
re

(e) DeepLink Testing.
Twitter

F
o
u
rs
q
u
a
re

(f) dNAME Testing.

MySpace

L
a
s
tf
m

(g) dNAME Training.
MySpace

L
a
s
tf
m

(h) dNAME Testing.

Fig. 5. Heat map/alignment comparison: Plot the matching scores of training
the top 50 accurate aligned nodes for each algorithm. (a) - (c): training on
Foursquare-Twitter. (d) - (f): testing on Foursquare-Twitter dataset. (g) - (h):
training and test of dName on Lastfm-MySpace dataset.

There is a trade-off when training a supervised model: –
with a larger training sample, the model is better at capturing
informative patterns, but it incurs greater computational cost.
Fig. 4(c) plots the performance of the algorithms as a function
of the size of training sample (represented by the training ratio
r). It shows that dNAME, as well as dNAME*, requires less
training data (anchor nodes) for boosting the models. This is an
advantage of the graph convolution employed in our approach,
i.e., it requires less labeled data to learn the network structure
and can inductively propagate the node information by local
convolutional operation.

Efficiency (convergence rate) is another important metric
to consider when training networks. As shown in Fig. 4(d),
both dNAME and dNAME* converge very fast compared to
DeepLink and IONE – we do not consider the remaining
methods due to their inferior performance (note the expo-
nential scale of iterations in the figure). The result also
demonstrates that our discriminative embedding with kernel
trick is more efficient than the methods directly calculating
the vector similarity in projected high-dimensional space, and

(a) Foursquare. (b) Twitter.

(c) Lastfm. (d) MySpace.

Fig. 6. Latent space visualization of dNAME on different datasets.

−0.010 −0.005 0.000 0.005 0.010 0.015 0.020

Cosine similarity

0.00

0.01

0.02

0.03

0.04

−

u
p
,
lo
s
s
/n

1-hop

2-hop

3-hop

4-hop

5-hop

6-hop

Fig. 7. Impact of node matching from training samples: Nodes above (below)
the dashed horizontal line have positive (negative) impact on the alignment.

that adversarial matching explored by dNAME successfully
stabilizes the node alignment process. In addition, we find that
IONE suffers from overfitting while dNAME and DeepLink
are more robust to the increase of the training iterations.
Visualization. We use heat maps to plot the alignment perfor-
mance (for both training and testing sets) for IONE, DeepLink
and dNAME, as shown in Fig. 5. The darkness of a block
corresponds to the similarity score of matching nodes and
the darkness is consistent for all comparisons. Clearly, our

1367



approach achieves more discriminative results (darker along
the diagonals) for both training and testing. We note that
this visualization indirectly reflects the ranking performance.
Further, we observe that dNAME achieves more widely dis-
tributed embedding compared to DeepWalk and node2vec (cf.
Fig. 2), due to its discriminative graph convolution, as shown
in Fig. 6. This higher-resolution representation manifests that
we bridge the gap between the graph kernel based technique
and the network alignment applications.
Matching Explanation. Finally, we explain the aligning
behavior by first randomly selecting a testing anchor node
pair that has been successfully aligned. Then we measure
how much impact (both positive and negative) of all training
samples on successfully aligning the selected anchor node pair,
as shown in Fig. 7. Additionally, the closer training sample
(e.g., 1-hop) to the testing anchor node before mapping,
the more positive impact it has. Although such a fact that
neighborhoods plays more important role on representation
and aligning a particular anchor is intuitive, we are the first
proving it and quantifying its influence.

VII. CONCLUSIONS AND FUTURE WORKS

We presented the dNAME – a novel approach for dis-
entangled networks embedding. Our discriminative match-
ing algorithm addressed the network alignment problem by
leveraging the graph convolution for semi-supervised embed-
ding and graph kernels to distinguish anchor nodes from
their neighborhoods. dNAME is an adversarial node aligning
approach capable of addressing the confounding matching
problem inherent in existing methods. In addition to the new
methodology that ensures higher network alignment perfor-
mance, we introduced the use of influence functions which,
when it comes to training, successfully explain the network
alignment behavior and provide insight of the impact of all
training samples. This, in turn, can be beneficial not only for
network alignment but also other identity-based applications.

VIII. ACKNOWLEDGEMENTS

Work supported by National Natural Science Foundation of
China (Grants No.61602097 and No.61472064), NSF Grants
III 1213038 and CNS 1646107, ONR grant N00014-14-10215.

REFERENCES

[1] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger, “Isorankn:
spectral methods for global alignment of multiple protein networks,”
Bioinformatics, 2009.

[2] K. Shu, S. Wang, J. Tang, R. Zafarani, and H. Liu, “User identity
linkage across online social networks: A review,” SIGKDD Explorations
Newsletter, vol. 18, no. 2, pp. 5–17, 2017.

[3] M. Jiang, P. Cui, N. J. Yuan, and X. Xie, “Little is much: Bridging
cross-platform behaviors through overlapped crowds,” in AAAI, 2016.

[4] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer, and
R. Teixeira, “Exploiting innocuous activity for correlating users across
sites,” in WWW, 2013.

[5] X. Mu, F. Zhu, E. P. Lim, J. Xiao, J. Wang, and Z. H. Zhou, “User
identity linkage by latent user space modelling,” in SIGKDD, 2016.

[6] F. Zhou, L. Liu, K. Zhang, G. Trajcevski, J. Wu, and T. Zhong,
“Deeplink: A deep learning approach for user identity linkage,” in
INFOCOM, 2018.

[7] N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for
social networks,” in VLDB, 2014.

[8] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan, “Hydra: large-
scale social identity linkage via heterogeneous behavior modeling,” in
SIGMOD, 2014.

[9] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across multiple
heterogeneous social networks,” in CIKM, 2013.

[10] Y. Shen and H. Jin, “Controllable information sharing for user accounts
linkage across multiple online social networks,” in CIKM, 2014.

[11] J. Zhang, J. Chen, S. Zhi, Y. Chang, P. S. Yu, and J. Han, “Link
prediction across aligned networks with sparse and low rank matrix
estimation,” in ICDE, 2017.

[12] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “Cosnet: Connecting
heterogeneous social networks with local and global consistency,” in
SIGKDD, 2015.

[13] S. Zhang and H. Tong, “Final: Fast attributed network alignment,” in
SIGKDD, 2016.

[14] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph
embedding: problems, techniques and applications,” TKDE, 2018.

[15] L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across social
networks using network embedding,” in IJCAI, 2016.

[16] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in SIGKDD, 2014.

[17] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD, 2016.

[18] R. D. Cook and S. Weisberg, “Characterizations of an empirical influ-
ence function for detecting influential cases in regression,” Technomet-
rics, 1980.

[19] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel,
Robust Statistics: The Approach Based on Influence Functions. Wiley,
2005.

[20] T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng, “Predict anchor links
across social networks via an embedding approach,” in IJCAI, 2016.

[21] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” JMLR, 2010.

[22] S. Ghosh, N. Das, T. Gonçalves, P. Quaresma, and M. Kundu, “The
journey of graph kernels through two decades,” Computer Science
Review, vol. 27, pp. 88–111, 2018.

[23] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” JMLR, 2011.

[24] S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen, “Mapping users
across networks by manifold alignment on hypergraph,” in AAAI, 2014.

[25] R. Zafarani, L. Tang, and H. Liu, “User identification across social
media,” ACM Trans. Knowl. Discov. Data, vol. 10, no. 2, 2015.

[26] X. Zhou, X. Liang, H. Zhang, and Y. Ma, “Cross-platform identification
of anonymous identical users in multiple social media networks,” IEEE
TKDE, vol. 28, no. 2, pp. 411–424, 2016.

[27] J. Zhang and P. S. Yu, “Integrated anchor and social link predictions
across social networks,” in IJCAI, 2015.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013.

[29] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in ICML, 2017.

[30] C. Villani, “Topics in optimal transportation,” Graduate studies in
mathematics, 2003.

[31] F. D. Johansson and D. P. Dubhashi, “Learning with similarity functions
on graphs using matchings of geometric embeddings,” in SIGKDD,
2015.

[32] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Matching node
embeddings for graph similarity,” in AAAI, 2017.

[33] H. Zou, “Distance, dissimilarity index, and network community struc-
ture,” PHYSICAL REVIEW E, vol. 67, 2003.

[34] J. Zhang and P. S. Yu, “Pct: Partial co-alignment of social networks,”
in WWW, 2016.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[36] ——, “Variational graph auto-encoders,” arxiv, 2016.
[37] B. Schölkopf, “The kernel trick for distances,” in NIPS, 2000.
[38] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in NIPS, 2014.

[39] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” in ICLR, 2018.

1368


