
Information Diffusion Prediction via Recurrent
Cascades Convolution

Xueqin Chen∗, Fan Zhou∗†, Kunpeng Zhang‡, Goce Trajcevski§, Ting Zhong∗, Fengli Zhang∗
∗School of Information and Software Engineering, University of Electronic Science and Technology of China
‡Department of Decision, Operations & Information Technologies, University of Maryland, college park MD

§Department of Electrical and Computer Engineering, Iowa State University, Ames IA
†Corresponding author: fan.zhou@uestc.edu.cn

Abstract—Effectively predicting the size of an information cas-
cade is critical for many applications spanning from identifying
viral marketing and fake news to precise recommendation and
online advertising. Traditional approaches either heavily depend
on underlying diffusion models and are not optimized for popu-
larity prediction, or use complicated hand-crafted features that
cannot be easily generalized to different types of cascades. Recent
generative approaches allow for understanding the spreading
mechanisms, but with unsatisfactory prediction accuracy.

To capture both the underlying structures governing the spread
of information and inherent dependencies between re-tweeting
behaviors of users, we propose a semi-supervised method, called
Recurrent Cascades Convolutional Networks (CasCN), which
explicitly models and predicts cascades through learning the la-
tent representation of both structural and temporal information,
without involving any other features. In contrast to the existing
single, undirected and stationary Graph Convolutional Networks
(GCNs), CasCN is a novel multi-directional/dynamic GCN. Our
experiments conducted on real-world datasets show that CasCN
significantly improves the prediction accuracy and reduces the
computational cost compared to state-of-the-art approaches.

Index Terms—information cascade, structural-temporal infor-
mation, cascade size prediction, deep learning

I. INTRODUCTION

Online social platforms allow their users to generate and

share various contents and communicate on topics of mutual

interest. Such activities facilitate fast diffusion of informa-

tion and, consequently, spur the phenomenon of information

cascades. The phenomenon is ubiquitous – i.e., it has been

identified in various settings: paper citations [1], blogging

space [2], [3], email forwarding [4], [5]; as well as in social

sites (e.g., Sina Weibo [6] and Twitter [7], [8]). A body

of research in various domains has focused on modeling

cascades, with significant implications for a number of appli-

cations, such as marketing viral discrimination [9], influence

maximization [10], [11], media advertising [12] and fake news

detection [13]–[15]. Cascade prediction problem turns out

to be of utmost importance since it enables controlling (or

accelerating) information spreading in various scenarios.

The plethora of approaches proposed to tackle cascade

prediction problem fall into four main categories: (1) diffusion
model-based approaches [16]–[19], which characterize the

diffusion process of information – but heavily depend on

assumed underlying diffusion models and are not optimized

for cascade prediction; (2) feature-based approaches – mostly

focusing on identifying and incorporating complicated hand-

crafted features, e.g., structural [20]–[22], content [23]–[26],

temporal [27], [28], etc. Their performance strongly depends

on extracted features requiring extensive domain knowledge,

which is hard to be generalized to new domains; (3) generative
approaches – typically relying on Hawkes point process [6],

[29], [30], which models the intensity function of the arrival

process for each message independently, enabling knowledge

regarding the popularity dynamics of information – but with

less desirable predictive power; and (4) deep learning based
methods, especially Recurrent Neural Networks (RNN) based

approaches [6], [8], [31], [32] – which automatically learn

temporal characteristics but fall short in the intrinsic structural

information of cascades, essential for cascade prediction [33].

Challenges and Our Approach: Effective and efficient pre-

diction of the size of cascades has several challenges: (1)

lack of knowledge of complete network structure through

which the cascades propagate [34]. This impedes many global

structure based approaches since obtaining or further embed-

ding a complete graph is hard, if not impossible. (2) efficient

representation of cascades – difficult due to their varying size

(from very few to millions [33]), making the random walk

based cascade sampling methods biased and ill-suited. (3)

modeling diffusion dynamics of information cascades not only

requires locally structural characteristics (e.g., community size

and activity degree of users) but also needs some temporal

characteristics – e.g., information within the first few hours

plays crucial role in determining the cascades’ size.

To address above challenges, we propose a novel framework

called CasCN (Recurrent Cascades Convolutional Networks)

which, while relying on existing paradigms, incorporates both

structural and temporal characteristics for predicting the future

size of a given cascade. Specifically, CasCN samples sub-

cascade graphs rather than a set of random-walk sequences

from a cascade, and learns the local structures of each sub-

cascades by graph convolutional operations. The convoluted

spatial structures are then fed into a recurrent neural network

for training and capturing the evolving process of a cascade

structure. Our main contributions and advantages of CasCN
are:

• Use of less information: We rely solely on the structural and

770

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00074

temporal information of cascades, avoiding massive and com-

plex feature engineering, and our model is more generalizable

to new domains. In addition, CasCN leverages deep learning

to learn latent semantics of cascades in an end-to-end manner.

• Representation of a cascade graph: We sample a cascade

graph as a sequence of sub-cascade graphs and use an adja-

cency matrix to represent each sub-cascade graph. This fully

preserves the structural dynamics of cascades as well as the

topological structure at each diffusion time, while eliminating

the intensive computational cost when operating large graphs.

• Additional impacting factors: CasCN takes into account two

additional crucial factors for estimating cascade size – the

directionality of cascade graphs and the time of re-tweeting

(e.g., decay effects).

• Multi-cascade convolutional networks: We propose a holis-

tic approach, with variants capturing spatial, structural, and

directional patterns in multiple sub-graphs, aware of temporal

evolution of dynamic graphs – making our methodology read-

ily applicable to other spatio-temporal data prediction tasks.

• Evaluations on real-world datasets: We conduct extensive

evaluations on several publicly available benchmark datasets,

demonstrating that CasCN significantly outperforms the state-

of-the-art baselines.

Organization: In the rest of this paper, Section II reviews the

related work, followed by Section III which formalizes the

problem and introduces the preliminary background. In Sec-

tion IV, we describe the main aspects of CasCN methodology

in details. Experimental evaluations quantifying the benefits

of our approach are presented in Section V and Section VI

concludes the paper and outlines directions for future work.

II. RELATED WORK

There exists a large body of related research on information

cascade prediction and graph representation learning.

A. Information Cascades Modeling & Prediction

The works on information cascades modeling mainly focus

on two levels: (1) At micro-level, local patterns of social

influence are studied – e.g., inferring the action status of a

user [31], [32]. The approaches predict the likelihood of a

user propagating a particular piece of information, or fore-

cast when the next propagation might occur given a certain

information cascade [32]. (2) At macro-level, typical studies

include cascade growth prediction [6], [8], [22], [23], [31] and

outbreak prediction (above a certain threshold) [7], [22], [33],

[35].

The methods on information cascades prediction fall into

the following four categories:

Diffusion model-based approaches strongly assume that the

underlying diffusion model is known as a prior. Typical exam-

ples include independent cascade model [16]–[19] and linear

threshold model [17]. Specifically, latent influence and suscep-

tibility (LIS) model to directly learn user-specific influence and

susceptibility, and naturally capture context-dependent factors

is proposed in. [18]. Information propagation via survival the-

ory is described in [16], and [17] implements both independent

cascade model and linear threshold model for information

propagation, assuming a uniform or a degree-modulated prop-

agation probability for a piece of information. While these

methods gain success at characterizing the diffusion process of

information, they heavily depend on the underlying diffusion

model and are not quite appropriate for cascade prediction.

Generative process approaches focus on modeling the inten-

sity function for each message arrival independently. Typically,

they observe every event and learn parameters by maximizing

the probability of events occurring during the observation

time window. There exist two typical generative processes:

(1) Poisson process – [1], [36], mainly modeling the stochas-

tic popularity dynamics by employing Reinforced Poisson

Process and incorporate it into the Bayesian framework for

external factor inference and parameter estimation. (2) Hawkes

process [6], [29], [30] – constructing predictors that combine

Hawkes self-exciting point process for modeling each cascade

and leverage feature-driven method for estimating the content

virality, memory decay, and user influence (cf. [29]). These

methods demonstrate an enhanced comprehensibility, but are

unable to fully leverage the implicit information in the cascade

dynamics for satisfactory prediction.

Feature-based approaches extract various hand-crafted fea-

tures from raw data, typically including information content

features [23]–[26], user characteristics [35], [37], [38], cas-

cade’s structural [20]–[22] and temporal features [27], [28]

– and then feed them into discriminative machine learning

algorithms to perform prediction. Combining content informa-

tion with other types of features, e.g., temporal and structural

features, can significantly reduce the prediction error [23]

. Incorporating features related to early-adopters (cf. [37])

demonstrated that user features are informative predictors;

and recent results comparing the prediction power of models

using different sets of features (cf. [39]), found that temporal

features have largest impact on prediction. However, [33]

concluded that both temporal and structural features are almost

equally effective in predicting cascade size. All these features

heavily depend on domain knowledge. The non-existence of

a standard and systematic way to design features, makes such

methods hard to generalize. Moreover, the conclusions of

existing works are sometimes contradictory, largely due to the

heterogeneity among different types of social networks.

Deep learning based approaches are inspired by the recent

successes of deep learning in many fields, and cascade pre-

diction using deep neural networks has achieved significant

performance improvements [6], [8], [31], [32]. The first deep

learning based predictor of information cascades (DeepCas),

presented [8], transforms the cascade graph as node sequences

through random walk and automatically learns the represen-

tation of individual graphs. A deep learning based process

that inherits the high interpretability of Hawkes process,

with the high predictive power of deep learning methods

was proposed in [6]. Coverage and attention mechanisms for

capturing the cross-dependencies in cascades and alignments

to better reflect the structural information was introduced

in [32], whereas [31] employs topological RNNs to explore

771

the dynamic directed acyclic graph diffusion structure and

tailor it for the task of node activation prediction. Overall,

these approaches treat the cascade modeling as a sequence

modeling problem using RNN – avoiding strong prior knowl-

edge imposed by the diffusion models and feature design,

while flexibly capturing sequential dependence in cascades.

However, they lack good learning abilities in modeling struc-

tural information and dynamics in cascade, largely due to

the biased cascade sampling methods and inefficient local

structure embedding. Furthermore, the methods incur intensive

computation overhead from the node sampling and subsequent

embedding, especially for larger cascades.

B. Graph Convolutional Network

Graph convolutional networks (GCN [40]) learn a convo-

lutional operation in Fourier domain by computing the eigen-

decomposition of the Laplacian graph, bridging the spectral

graph theory and deep neural networks on graph learning.

An extension on fast localized convolutional filters on graphs

is presented in [41] where the filters are approximated via a

Chebyshev expansion of the Laplacian. GCNs model proposed

in [42] simplifies previous works by restricting the filters

in a first-order approximation of spectral graph convolution.

Recently, a self-attention mechanism was introduced into GCN

to reduce the dependency on graph structure [43]. Also, [44]

propose FastGCN, which interprets graph convolutions as

integral transform of embedding functions, under probability

measures to solve the time and memory challenges for training

large and dense graphs. Merging CNN and RNN for graph-

structured data to identify dynamic patterns for modeling

and predicting time-varying graph-based data was proposed

in [45]. Authors extend GCN to model multivariate time series

distributed on a network [46]. This is similar to recent work on

sequential generalization of GCN [45], but the focus is on con-

tinuous time prediction and long-term forecasting via encoder-

decoder architecture and scheduled sampling techniques.

While we rely on existing paradigms (combining graph

convolutional mechanisms and RNN) to model and predict

the cascades, our main differences are: (1) we use GCN

to model the cascades prediction; (2) we propose a semi-

supervised learning approach for capturing spatial dependence

and temporal dynamics of information diffusion in an end-

to-end manner; (3) we train RNN with a sequence of sub-

graphs (via cascade Laplacian) rather than individual node

embeddings, which better represents both global and local

structures and improves the cascade prediction performance

(cf. Section V).

III. PRELIMINARIES

We now present the necessary background and formally

define the problem, and introduce the preliminaries regarding

structural and temporal modeling in information cascades.

A. Problem Definition

We cast the cascade size prediction as a regression problem

aiming at predicting the size of information cascades, used

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER

Symbol Description
pi A message post, e.g., a tweet or a paper.

Ci(t) A cascade graph regarding post pi.
T Observation time window.

g
tj
i , a

tj
i

A sub-cascade graph of Ci(t) at diffusion time
tj and it’s adjacency matrix.

GT
i , AT

i
A sequence of sub-cascade graphs of Ci(t) and

the corresponding adjacency matrices.

Δt The fixed time interval.

ΔSi The increment size of pi after Δt.
Pc Transition matrix of a cascade.

φ,Φ
Stationary transition distribution and

diagonalized φ
Δc Laplacian of a cascade.

λmax The largest eigenvalue of Laplacian.

K
Maximum steps from the central node, i.e.,
Kth-order neighborhood or Chebyshev

coefficients.

on a social network to describe the process of information

diffusion (e.g., specific tweets, rumors, etc.), where individuals

can merely observe their immediate neighbors.

Definition 1. Cascade Graph. Suppose we have n posts,
P =

{
pi, i ∈

[
1, n

]}
. An evolving cascade graph for

a given message post pi, is a sequence Ci(t) =
[(Ui(t1), Ei(t1)), . . . , (Ui(tm), Ei(tm))] where Ui(tj) is a set
of nodes and Ei(tj) ⊂ Ui(tj) × Ui(tj) is a set of edges,
corresponding to the nodes and edges of Ci(t) that are
associated with pi at time-instant tj . Thus, the cascade graphs
are evolving sequences of directed acyclic graphs (DAG).

t0 t1 t2 t3 t4 t5

V0

V1

V2

V3

V4

V5

Fig. 1. The cascade graph of a post pi. Node V0 initiates the original message
pi.

We use g
tj
i =

{
U

tj
i , E

tj
i , tj

}
as a shorthand for the

snapshot of cascade graph Ci(t) that reflecting the diffusion

status of post pi at tj . For example: a node x ∈ U
tj
i

represents a user who tweets or re-tweets the post pi from

some sources (e.g., other users) in Twitter or a paper in

the citation networks; an edge
(
x, y

) ∈ E
tj
i represents a

relationship between x and y (e.g., re-tweet or citation);

and tj represents the time-instant when the re-tweeting or

citation behavior occurs. Fig. 1 illustrates how the cascade

graph can be represented as gt0i = {(V0) , {∅} , t0} , gt1i =
{(V0, V1) , {(V0, V1)} , t1} , · · · , gt5i = {(V0, V1, V2, V3,
V4, V5) , {(V0, V1) , (V0, V2) , (V1, V3) , (V1, V4) , (V3, V5)} , t5}.

Given a cascade graph Ci(t) of a post pi within an

observation time window T , we can get different snapshots

772

g
tj
i of Ci(t), which form a sequence of sub-cascade graphs

GT
i . In this paper, our task is to predict the increment size

ΔSi regarding the post pi for a fixed time interval Δt, i.e.,

ΔSi =
∣∣UT+Δt

i

∣∣− ∣∣UT
i

∣∣.
Definition 2. The cascade size predictor is a function f

(
·
)

that is to be learned, mapping GT
i to ΔSi:

GT
i =

{
gt0i , · · · , gtm−1

i ; tj ∈ [0, T)
}

f(·)−→ ΔSi (1)

B. Recurrent Neural Network & Graph Convolution Networks
The common method to model temporal dependencies is to

leverage recurrent neural networks (RNNs), typically including

popular Long Short-Term Memory (LSTM) [47] and Gated

Recurrent Units (GRU) [48]. In particular, LSTM has been

proven stable and powerful for modeling long-range dependen-

cies in various general-purpose sequence modeling tasks [49]–

[51] and cascade prediction [8], [31].
We model the structural information of cascades using Def-

ferrards graph convNet [41] – a popular Graph Convolutional

Network (GCN) method that defines a spectral formulation

in Fourier domain for the convolution operator on graphs

∗G. More specifically, given a graph signal x ∈ R
n×dx (a

graph signal can be a node or a graph), and the corresponding

weighted adjacency matrix W ∈ R
n×n and diagonal degree

matrix D ∈ R
n×n with Dii =

∑
j Wij , the normalized

graph Laplacian is constructed as L = D− 1
2 (D −W)D− 1

2 =
I − D− 1

2WD− 1
2 . The spectral convolutions on graphs are

defined as:

y = gθ ∗ Gx = gθ (L)x = gθ
(
UΛUT

)
x = Ugθ (Λ)U

Tx,

where gθ = diag (θ) is a filter parameterized by θ ∈ R
n in

the Fourier domain, U = [u0, u1 · · · , un−1] ∈ R
n×n is the

matrix of eigenvectors of L, Λ = [λ0, λ1, · · · , λn−1] ∈ R
n×n

is the diagonal matrix of eigenvalues of L. The Laplacian

can be diagonalized as L = UΛUT ∈ R
n×n with UTx

is the graph Fourier transform of graph signal x. However,

computing the eigen-decomposition of L in the first place

might be prohibitively expensive for large graphs and the

complexity of multiplication with U is O (
n2

)
. Defferrard

et al. [41] approximate gθ (Λ) with a truncated expansion in

terms of Chebyshev polynomials Tk (x) up to Kth order:

gθ
′ (Λ) ≈

K∑
k=0

θ
′
kTk

(
Λ̃
)
, (2)

with Λ̃ = 2
λmax

Λ− IN (λmax denotes the largest eigenvalue

of L), identity matrix IN ∈ R
n×n and a vector of Chebyshev

coefficients θ
′
k. The Chebyshev polynomials of order K are

recursively defined as Tk (x) = 2xTk−1 (x) − Tk−2 (x), with

T0 (x) = 1 and T1 (x) = x. The graph filtering operation can

now be written as:

y ≈ gθ
′ (L)x ≈

K∑
k=0

θ
′
kTk

(
L̃
)
x, (3)

where L̃ = 2
λmax

L− IN . Note that as Eq.(3) is now an order

K polynomial of the Laplacian, the complexity is reduced to

O (K |ε|). We refer the readers to [41] for details and an in-

depth discussion.

IV. CASCN: MODEL, APPROACH AND PROPERTIES

Our deep learning framework CasCN takes a cascade graph

Ci(t) as an input and predicts the increment size ΔSi re-

garding certain information (e.g., a post) pi. CasCN leverages

LSTM and GCN to fully extract temporal and structural

information from the cascade graph. After an overview of

CasCN, we focus on the details in the respective sub-sections.

An end-to-end type of framework, CasCN consists of three

basic components, depicted in Fig. 2: (1) Cascade graph

sampling: dynamically samples a sequence of sub-cascade

graphs from the original cascade graph, and then represents

sub-cascade graphs as a sequence of adjacency matrices; (2)

Structural and temporal modeling: feeds the adjacency matrix

sequences and the structural information of cascade graphs

(i.e., the Laplacian matrices of cascade graphs) within an ob-

servation window into a neural network. It combines recurrent

neural networks and graph convolutional networks with time

decay function to learn the representation of cascades; (3)

Prediction network: a Multi-Layer Perceptron (MLP) is used to

predict the increment cascade size based on the representation

learned from previous steps.

A. Cascade Graph as Sub-cascade Graph Sequences

Given a post pi, the first step in CasCN is to initialize

the representation of its corresponding cascading graph, Ci(t).
Existing methods typically treat the graph in two ways: either

sampling the graph as a bag of nodes, which ignores both local

and global structural information, or denoting the graph as a

set of paths. For example, DeepCas [8] samples a set of paths

from each cascade. The sampling process could be generalized

as performing a random walk over a cascade graph similar

to DeepWalk which, however, fails to consider dynamics of

cascades – one of the most important factors in information

diffusion. DeepHawkes [6] transforms the cascade graph into

a set of diffusion paths according to the diffusion time, each

of which depicts the process of information propagation be-

tween users within the observation time; however, this method

ignores the structural information of cascade graphs.

Our approach samples the cascade graph Ci(t) to obtain a

sequence of sub-cascade graphs GT
i which is used to represent

cascades within the observation time T . GT
i is denoted as:

GT
i =

{
gt1i , gt2i , · · · , gtm−1

i

}
, tj ∈ [0, T) and j ∈ [1,m) .

The sampling process is illustrated in Fig. 3, where each

sub-cascade graph is represented by an adjacency matrix: the

rows correspond to the alphabetical order of nodes’ labels (top

to bottom) and the columns correspond to edges, as illustrated

above each instance of the adjacency matrix. The first sub-

cascade graph in GT
i only contains one single node because

it is the generator of the post pi, so we add a self-connection

for this initiator. Thus, GT
i is represented with a sequence of

adjacency matrices AT
i =

{
at1i , at2i , · · · , atm−1

i

}
.

773

� �

GT
i

AT
i

at1i

at3i

at6i x1 x3

h3

x6

h6h1

h
′
1 h

′
3 h

′
6

ΔSi

Δc
Ci(t)

h
′
(Ci(t))

Fig. 2. Overview of CasCN: (a) The input is a cascade graph Ci(t) for a given time window T and a certain post pi. (b) We obtain a sequence of sub-cascade

graphs from Ci(t), and use an adjacency matrix to represent instances of sub-cascade graph g
tj
i . Thus, we have AT

i = {at1i , at2i , · · · }, referred as signals.

(c) We feed the signals and the Laplacian matrix Δc of cascade Ci(t) into CasCN. The output ht of CasCN is transformed to a new representation h
′
t by

multiplying a time decay factor. All h
′
t ’s will be assembled via a sum pooling to new Ci(t) representation: h

′
(Ci(t)). (d) Finally, we use a MLP to predict

the increment size of cascade (ΔSi) for a fixed time interval Δt.

t1 t2 t3 t4 t5

GT
i

AT
i

at2iat1i at3i at4i at5i

gt5igt4igt3igt2igt1i

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
5×5

⎡
⎢⎢⎢⎢⎣

1 1 1 0 1
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
5×5

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
5×5

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
5×5

⎡
⎢⎢⎢⎢⎣

1 1 1 0 1
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
5×5

Ci(t)

Fig. 3. Illustration of sampling and representation of sub-cascade graph sequence.

B. Laplacian Transformation of Cascades

CasCN is inspired by GCN [41] in the sense of using

spectral graph theory to define a convolutional operator. How-

ever, classical GCN methods cannot be applied for cascades

modeling since they focus on fixed and undirected graphs

which, in turn, cannot consider the temporal information of

cascade evolution. In contrast, cascade graphs in our problem

are dynamic directed graphs (DAGs). As mentioned, the graph

Laplacian for an undirected graph is a symmetric difference

operator L = D −W , where D is the degree matrix and W
is the weight matrix of the graph, which cannot be adapted in

DAGs.

Recently, Li et al. [46] propose DCRNN to model the traffic

flow as a diffusion process on a fixed DAG (a directed sensor

graph), and define a diffusion convolution as:

y = gθ ∗ Gx =
K∑

k=0

(
θk,1

(
D−1

O W
)K

+ θk,2
(
D−1

I WT
)K)

x

where −D−1W is the random walk matrix used to replace

Laplacian L̃ in Eq.(3). This operation is actually a diffusion

process convolution proposed by Atwood and Towsley [52]

where the diffusion process is modeled as Markov process

and may converge to a stationary distribution P ∈ R
n×n after

many steps, and the ith row Pi;: ∈ R
n represents the likelihood

of diffusion from node vi.

In our settings, various cascades are different DAGs, all

of which require incorporating special structure and direction

information rather than a single and fixed sensor network

in [46]. To overcome this challenge, we introduce Laplacian

of cascade Δc, called CasLaplacian, for modeling the convo-

lution operation over a single cascade signal X as:

y = gθ ∗ GX =
K∑

k=0

θkTk

(
Δ̃c

)
X (4)

where Δ̃c =
2

λmax
Δc − IN is a scaled Laplacian.

Now we introduce the way of computing Laplacian of cas-

cade Δc, which can capture special structural and directional

characteristics of different cascades. For a directed graph, we

define the normalized directed Laplacian as:

L = I − Φ
1
2PΦ− 1

2 +Φ− 1
2PTΦ

1
2

2
, (5)

(cf. [53]) where P is a transition probability matrix, Φ is

a diagonal matrix with entries Φ (v, v) = φ (v), and φ =
[φi]1≤i≤n is the column vector of the stationary probabilities

distribution of P .

774

However, such a symmetrical L can not capture the unique

characteristic of the random walk on the different cascades.

For example, given a cascade with transition probability matrix

Pc, there exist cascades which have the same stationary

distribution matrix Pc, such that all these cascades have the

same Laplacian matrix. To solve this problem, we relied on

Diplacian [54] which computes Laplacian of DAGs as:

Γ = Φ
1
2 (I − P) Φ− 1

2 (6)

where the transition probability matrix P was defined as

P = D−1W with the hypothesis that the graph is strongly

connected graphs (SCGs) [54]. In contrast, our cascade graphs

are not SCGs. Thus, we define a transition probability matrix

Pc of given cascade graph as:

Pc = (1− α)
E

n
+ α

(
D−1W

)
, (7)

where E ∈ R
n×n is an all–one matrix and α ∈ (0, 1) is an

initial probability, used to restrict the state transition matrix

D−1W to be a strongly connected matrix without 0 anywhere.

Then the transition matrix Pc is irreducible, and has a unique

stationary probability distribution {φi|φi > 0, 1 ≤ i ≤ n}. The

stationary distribution vector {φi} can be obtained by solving

an eigenvalue problem φTPc = φT subject to a normalized

equation φT e = 1, where e ∈ R
n is an all-one vector.

Finally, we can compute CasLaplacian as:

Δc = Φ
1
2 (I − Pc) Φ

− 1
2 . (8)

Relationship with GCN: We now explain the relationship

between our directed CasLaplacian and the normalized one in

GCN, as well as the rationale behind CasLaplacian.

A random walk on undirected graph G is a Markov

chain defined on G with the transition probability matrix

P = D−1A, and there exists a unique stationary distribution

{φ1, φ2, . . . , φn}. Let φ = [φi]1≤i≤n be the column vector

of the stationary probabilities, where φTP = φT . Note that,

as for undirected graph, the normalized Laplacian L can be

transformed as:

L = D− 1
2 (D −A)D− 1

2 = D
1
2 (I − P)D− 1

2 . (9)

Also, the φ of undirected graph can be caculated as

φi =
di∑
k dk

=
di
d
, i = 1, 2, · · · , n, (10)

and Φ
1
2 =

√
diag(φ), where φ = [φ1, φ2, · · · , φn]

T
, which

can be used to approximate degree matrix D:

L = D
1
2 (I − P)D− 1

2 ≈ Φ
1
2 (I − P) Φ− 1

2 . (11)

Algorithm 1 formalizes the process of constructing the

Laplacian of cascades.

Algorithm 1 Laplacian of cascade.

Input: A cascade graph C, initial probability α.
Output: CasLaplacian–Laplacian of cascade Δc.
1: Compute degree matrix D and weighted adjacency matrix W of a cascade

graph C.
2: Compute transition probability matrix Pc of cascade graph according to

Eq.(7) .
3: Solve the eigenvalue problem φTPc = φT subject to a normalized

equation φT e = 1 to get {φi}.
4: Φ = diag (φ).
5: Compute CasLaplacian Δc according to Eq.(8).

C. Structural and Temporal Modeling

We represent and model the cascade graph in a structural-

temporal way. After obtaining the adjacency representation of

sub-cascade graph sequence AT
i and the Laplacian matrix Δc

for each cascade graph, CasCN turns to learn the structural

and temporal patterns via the combination of classical LSTM

and GCN.

We leverage the RNNs to model the temporal dependence of

diffusion – in particular, using the Long Short-Term Memory

(LSTM) [47], which is a stable and powerful variant of RNNs.

We replace the multiplications by dense matrices W with

graph convolutions to incorporate the structural information:

it = σ (Wi ∗ GXt + Ui ∗ Ght−1 + Vi � ct−1 + bi)

ft = σ (Wf ∗ GXt + Uf ∗ Ght−1 + Vf � ct−1 + bf)

ot = σ (Wo ∗ GXt + Uo ∗ Ght−1 + Vo � ct + bo)

(12)

where ∗G denotes the graph convolution defined in Eq.(4),

signal Xt is the cascade graph sequences AT
i ∈ R

dT×n×n,

dT denotes the number of diffusion time steps of post pi. We

leverage Wi ∗ GXt to mean a graph convolution of signal Xt

with dh×n filters which are functions of the graph Laplacian L
parametrized by K Chebyshev coefficients. σ (·) is the logistic

sigmoid function and it, ft, ot, b∗ are respectively the input

gate, forget gate, output gate and bias vector. The matrices

W ∈ R
K×n×dh , U ∈ R

K×dh×dh and V ∈ R
n×dh are the

different gate parameters, and n denotes the number of nodes

in a cascade graph, and dh is the size of cell states.
In particular, the memory cell ct is updated by replacing the

existing memory unit with a new cell ct as:

ct = ft � ct−1 + it � tanh (Wc ∗ GXt + Uc ∗ Ght−1 + bc) (13)

The hidden state is then updated by

ht = ot � tanh (ct) (14)

where tanh (·) refer to the hyperbolic tangent function, and �
is the entry-wise product.

D. Cascades Size Prediction

Previous works [29], [30] have shown the existence of

time decay effect – i.e., that the influence of a node on

other nodes will decrease over time. Various time decay

functions have been defined: (1) power-low functions φt (T) =

(T + c)
−(1+θ)

; (2) exponential functions φe (T) = e−θT ;

(3) Reyleigh functions φT (T) = e−
1
2 θT

2

. In practice, the

choice of such function varies for different scenarios, e.g.,

775

exponential functions are suitable for financial data while

Reyleigh functions perform better for epidemiology and power

law functions are more applicable in geophysics and social

networks [55], [56].
However, all the above time-decay functions have the

limitation of parametric assumption which is greatly in-
fluenced by assumed prior distribution (and intuition). In
this paper, we employ a non-parametric way to define the
time decay function. More specifically, we assume that
the time window of the observed cascade is [0, T], and
then split the time window into l disjoint time intervals
{[t0 = 0, t1) , [t1, t2) , [t2, t3) , · · · , [tl−1, tl = T]} to make the
continuously time window into discrete. It not only allocates
each diffusion time a corresponding interval, but also allows
us to learn the discrete variable of time decay effect λ =
{λm,m ∈ (1, 2, · · · , l)}. Therefore, we define a function to
compute the corresponding time interval m of time decay
effect for a re-tweet at time t:

m = � (t− t0)

�T/l� � (15)

Where t0 is the time of original post, l is the number of time

interval, 	·
 and �· � are floor and ceiling operation.
For a cascade graph Ci(t) regarding post pi within the

observation time window [0, T], we get the hidden states
{h1, h2, · · · , hT } and we multiply a time decay effect λm

for each hidden state to obtain
{
h

′
1, h

′
2, · · · , h

′
T

}
by:

h
′
t = λmht (16)

summed up to get the representation vector for the cascade
graph Ci(t):

h
′
(Ci(t)) =

dT∑
t=1

h
′
t (17)

The last component of CasCN is a multi-layer perceptron

(MLP) with one final output unit. Given the representation

h
′
(Ci(t)), we calculate the increment size ΔSi as:

ΔSi = f (Ci(t)) = MLP
(
h

′
(Ci(t))

)
(18)

Our ultimate task is to predict the increment size for a fixed

time interval, which can be done by minimizing the following

loss function:

	
(
ΔSi,ΔS̃i

)
=

1

P

P∑
i=1

(
logΔSi − logΔS̃i

)2

(19)

where P is the number of posts, ΔSi is the predicted incre-

mental size for post pi, and ΔS̃i is the ground truth.

The process of training CasCN is shown in Algorithm 2.

V. EXPERIMENTS

In this section, we compare the performance of our proposed

model CasCN with several state-of-the-art approaches that

we use as baselines, and a few variants of CasCN itself,

for cascade size prediction using two real-world datasets. To

allow readers to reproduce our results, we make supplemental

materials, implementation details and instructions available

online at https://github.com/ChenNed/CasCN.

Algorithm 2 Learning with CasCN.

Input: sequences of adjacency matrices of cascade graphs A =
{AT

1 , AT
2 , · · · } within an observation window T ; Laplacian sequence

for cascade graphs L = {L1, L2, · · · }, batch size b.
Output: Increment sizes ΔS = {S1, S2, · · · } of cascades.
1: repeat
2: b = 1, 2, ...
3: for adjacency matrix sequence AT

i and corespoding Laplacian Li in
batch b do

4: Compute the Structural and Temporal information ht of cascade
Ci(t) according to Eq.(12) - Eq.(14).

5: Multiply each hidden state ht with time decay effect λm to get h
′
t,

according to Eq.(16).

6: h
′
(Ci(t)) ← Aggregate

({
h
′
t, t ∈ [1, dT]

})

7: Feed h
′
(Ci(t)) into MLP to compute increment size ΔSi of

cascade, according to Eq.(18)
8: Use Adaptive moment estimation (Adam) to optimize the objective

function in Eq.(19) and update parameters in Eq.(12), (13), (15)
9: end for

10: until convergence;

TABLE II
STATISTICS OF DATASETS

Data
sets

Sina Weibo HEP-PH

posts-
papers

All 119,313 34,546

edges All 8,466,858 421,578
T 1hour 2hours 3hours 3years 5years 7years

cascad-
es

train 25,145 29,515 31,780 3,458 3467 3,478
val 5,386 6,324 6,810 837 839 848
test 5,386 6,324 6,810 837 839 848

Avg.
nodes

train 28.58 29.30 29.48 5.27 5.27 5.27
val 28.71 29.47 29.69 4.32 4.93 4.27
test 29.11 29.77 30.21 4.91 4.27 4.28

Avg.
edges

train 27.78 28.54 28.74 4.27 4.27 4.27
val 27.91 28.70 28.94 3.31 3.93 3.95
test 28.32 29.01 29.48 3.91 3.27 3.28

A. Datasets

We evaluate the effectiveness and generalizability of CasCN
on two scenarios of information cascade prediction, and com-

pare with previous works such as DeepCas and DeepHawkes

– using publicly available datasets. The first one is to forecast

the size of re-tweet cascades on Sina Weibo and the second

one is to predict the citation count of papers in Citation dataset

HEP-PH. The statistics of the datasets as shown in Table II.

• Sina Weibo (https://github.com/CaoQi92/DeepHawkes):

The first dataset is Sina Weibo, a popular Chinese microblog

platform, provided in [6] – which collects all original posts

generated on June 1st, 2016, and tracks all re-tweets of each

post within the next 24 hours. It includes 119, 313 posts in

total. Fig. 5(a) shows that the popularity of cascades saturates

after 24 hours since publishing. Fig. 4(a) shows the distribution

of cascade size (the number of re-tweets of each post). We

follow similar experimental setup as in DeepHawkes [6] –

i.e., the length T of the observation time window being

T = 1 hour, 2 hours and 3 hours, and the cascades with the

publication time before 8 am and after 6 pm being filtered out.

Finally, we sort the cascades in terms of their publication time

after preprocessing and choose the first 70% of cascades for

776

training and the rest for validation and testing via even split.

• HEP-PH (http://snap.stanford.edu/data/cit-HepPh.html):

HEP-PH dataset is from the e-print arXiv and covers papers

in the period from January 1993 to April 2003 (124 months).

If a paper i cites paper j, the graph contains a directed edge

from i to j. The data was originally released as a part of

2003 KDD Cup [57]. For the observation window, we choose

T = 3, 4 and 5 years corresponding to the year that the

popularity reaches about 50%, 60% and 70% of the final size,

as shown in Fig. 5(b). Then, we pick up 70% of cascades for

training and the rest for validation and testing via even split.

10
1

10
2

10
3

10
4

10
5

Sizes of cascades

10
0

10
1

10
2

10
3

10
4

N
u
m
b
e
r
o
f
c
a
s
c
a
d
e
s

(a) Weibo dataset

10
1

10
2

Sizes of cascades

10
0

10
1

10
2

10
3

N
u
m
b
e
r
o
f
c
a
s
c
a
d
e
s

(b) HEP-PH

Fig. 4. Distribution of cascades size, the X axis is the size of cascades, and
the Y axis is the number of cascades corresponding to the different sizes.

0 5 10 15 20

Time (hours)

0.2

0.4

0.6

0.8

1.0

N
u
m
b
e
r
o
f
c
a
s
c
a
d
e
s
(%

)

(a) Weibo dataset

0 2 4 6 8 10 12

Time (years)

0.0

0.2

0.4

0.6

0.8

1.0

N
u
m
b
e
r
o
f
c
a
s
c
a
d
e
s
(%

)

(b) HEP-PH

Fig. 5. Percentage distribution between time and the number of cascades

B. Baselines

In section II, we mentioned that existing relevant methods

for information cascade prediction are mainly falling into

four categories: (1) Diffusion Model-based approaches, (2)

Generative process approaches, (3) Feature-based approaches,

and (4) Deep learning-based approaches. Therefore, we se-

lect several methods in each group as baselines. For deep

learning methods, we select three representative methods:

DeepCas [8], DeepHawkes [6] and Topo-LSTM [31]. Note that

DeepHawkes is also regarded as a successful implementation

of Hawkes process – i.e., generative approaches. Furthermore,

we include a network representation method to enrich our ex-

periment – Node2Vec. The baselines and their implementation

details are as follows:

Feature-based: Recent studies [29], [33], [35], [39] show

that structural features, temporal features, and other features

(e.g., content features and user features) are informative for

information cascade prediction. In our implementations, we

include all features mentioned above that could be generalized

across datasets. These features include:

Structural features: We count the number of leaf nodes,

the average degree (both in-degree and out-degree), average

and max length of retweet path of cascades as measures of

structural features.

Temporal features: We extract the time elapsed since the

initial post for each retweet, the cumulative growth and incre-

mental growth every 10 minutes for Sina Weibo and every 31

days for HEP-PH, for the reason that the time in Sina Weibo

can be accurate to minutes, and the unit in HEP-PH is a day.

Other features: We use node ids as node identity feature.

After we extracting all the cascade features, we use two

models, i.e., Feature-linear and Feature-deep, to perform

information cascade prediction. The label (incremental size of

cascade) has been logarithmically transformed before feeding

into models, so that the baseline of feature-based methods

optimizes the same loss function as CasCN.

• Feature-linear: We feed the features into a linear regres-

sion model with L2 regularization, and the details of the

L2-coefficient setting can be found in Section V-E.

• Feature-deep: For fairness of comparison of the perfor-

mance of the feature-based approaches with CasCN, we

propose a strong baseline denoted as Feature-deep, which

also uses a MLP model to predict the incremental size of

cascade with hand-craft feature vectors.

LIS [18]: LIS is a diffusion model-based approach. This

method models the cascade dynamics by learning two low-

dimensional latent vectors for messages from observed cas-

cades to capture their influence and susceptibility respectively.

Node2Vec [58]: Node2Vec is selected as a representative of

node embedding methods, and can be replaced with any other

embedding methods, e.g., DeepWalk [59] and LINE [60].

We conduct random walks from cascade graphs and generate

embedding vectors for each node. Next, the embeddings of

all nodes in a cascade graph are fed into MLP to make

predictions.

DeepCas [8]: The first deep learning architecture for informa-

tion cascades prediction, which represents a cascade graph as

a set of random walk paths and piped through bi-directional

GRU neural network with an attention mechanism to predict

the size of the cascade. It mainly utilizes the information of

structure and node identities for prediction.

DeepHawkes [6]: DeepHawkes model integrates the high

prediction power of end-to-end deep learning into interpretable

factors of Hawkes process for popularity prediction. The mar-

riage between deep learning technique and a well-established

interpretable process for modeling cascade dynamics bridges

the gap between prediction and understanding of information

cascades. This method belongs to both generative approaches

and deep learning-based approaches.

Topo-LSTM [31]: A novel topological recurrent neural net-

work which is a directed acyclic graph-structured (DAG-

structured) RNN takes dynamic DAGs as inputs and generates

a topology-aware embedding for each node in the DAGs as

outputs. The original application of Topo-LSTM is to predict

node activations. We replace the logistic classifier in Topo-

777

LSTM with a diffusion size regressor to predict the size of

cascades.

C. Variants of CasCN

In addition to comparison with existing baselines, we also

derive a few variants of CasCN:

CasCN-GL: CasCN-GL replaces the structural-temporal mod-

eling component of CasCN with the combination of GCN

and LSTM for modeling structural and temporal patterns,

respectively.

CasCN-GRU: This method replaces the LSTM of CasCN with

GRU. Similar to LSTM, CasCN with GRU models structural-

temporal information using extra gating units, but without

separated memory cells. Formally, we update the state of ht

by a linear interpolation between the last state ht−1 and the

candidate state h̃t.

CasCN-Path: In CasCN-Path, we use random walks to repre-

sent a cascade graph (shown in Fig. 6) rather than sub-cascade

graphs used in CasCN. Therefore, we first embed users into

a 50-dimensional space to represent the latent (re-tweeting)

relationships among users in a cascade graph. Next, we use

random walks to sample sufficient number of sequences for all

cascade graphs. Finally, we feed them to CasCN and predict

the size of information cascades.

CasCN-Undierected: In CasCN-Undierected, we regard the

cascade graphs as undirected graphs and calculate the normal-

ized Laplacian according to L = I −D− 1
2WD− 1

2 .

CasCN-Time: In CasCN-Time, we do not consider the time

decay effect of re-tweeting.

Fig. 6. Sampling the cascade graph as random walks.

D. Evaluation Metric
Following the existing works, we choose standard evaluation

metrics – MSLE (mean square log-transformed error) in our
experiments [6], [8], [31]. Note that the smaller MSLE, the
better the prediction performance. Specifically, MSLE is the
metric for evaluating the linking accuracy, defined as:

MSLE =
1

P

P∑
i=1

(
logΔSi − logΔS̃i

)
(20)

where P is the total number of posts, ΔSi is the predicted

incremental size for post pi, and ΔS̃i is the ground truth.

E. Hyper-parameter

Models mentioned above involve several hyper-parameters.

For example, L2 coefficient in Feature-linear are chosen from

{
1, 0.5, 0.1, 0.05, ..., 10−8

}
. For Feature-deep, parameters are

similar to deep learning-based approaches.

For LIS, we follow the work in [18], the maximum epoch

M is 1×105. We use random values to initialize regularization

parameters γI and γS .

For Node2Vec, we follow the work in [58], i.e., parameters

p and q are selected from {0.25, 0.50, 1, 2, 4}, the length of

walk is chosen from {10, 25, 50, 75, 100}, and the number of

walks per node varies from {5, 10, 15, 20}.

For DeepCas, DeepHawkes and Topo-LSTM, we follow

the setting of DeepCas [8], where the embedding dimension-

ality of users is 50, the hidden layer of each GRU has 32
units and the hidden dimensions of the two-layer MLP are 32
and 16, respectively. The learning rate for user embeddings is

5×10−4 and the learning rate for other variables is 5×10−3.

The batch size for each iteration is 32 and the training process

will stop when the loss of validation set does not decline for

10 consecutive iterations. The time interval of DeepHawkes

is set to 10 minutes for Sina Weibo and 2 months for HEP-

PH. For CasCN, the basic parameters (e.g., learning rate and

batch size, etc.) are the same as above deep learning-based

approaches, except that we choose the support K = 2 of GCN

and calculate the max eigenvalue λmax of cascade Laplacian.

TABLE III
OVERALL PERFORMANCE COMPARISON OF INFORMATION CASCADES

PREDICTION AMONG DIFFERENT APPROACHES. M: MODEL; T:
OBSERVATION TIME WINDOW.

Datasets Weibo Dataset HEP-PH

Metric MSLE

M
T 1

hour
2

hours
3

hours
3

years
5

years
7

years

Features-deep 3.68 3.361 3.296 1.893 1.623 1.619

Features-linear 3.501 3.435 3.324 1.715 1.522 1.471

LIS 3.731 3.621 3.457 2.144 1.798 1.787

Node2Vec 3.795 3.523 3.513 2.479 2.157 2.096

DeepCas 2.958 2.689 2.647 1.765 1.538 1.462

Topo-LSTM 2.772 2.643 2.423 1.684 1.653 1.573

Deep-Hawkes 2.441 2.287 2.252 1.581 1.47 1.233

CasCN 2.242 2.036 1.91 1.353 1.164 0.851

TABLE IV
PERFORMANCE COMPARISON BETWEEN CASCN AND ITS VARIANTS. M:

MODEL; T: OBSERVATION TIME WINDOW.

Datasets Weibo Dataset HEP-PH

Metric MSLE

M
T 1

hour
2

hours
3

hours
3

years
5

years
7

years

CasCN 2.242 2.036 1.916 1.35 1.164 0.851
CasCN-GRU 2.288 2.052 1.965 1.347 1.166 0.874

CasCN-Path 2.557 2.483 2.404 1.664 1.437 1.332

CasCN-GL 2.312 2.028 1.942 1.364 1.357 1.302

CasCN-Undierected 2.309 2.132 1.978 1.562 1.425 1.118

CasCN-Time 2.652 2.547 2.363 1.732 1.512 1.451

F. Performance comparison

We first report the performance of various methods on

cascade size prediction. The results are illustrated in Table III.

Then we compare the performance of CasCN with a few

variants, and the results are shown in Table IV. Lastly, we

do some analyses with different parameter settings of CasCN,

778

and the results can be found in Table V. The following sections

will describe these empirical observations in details.

CasCN vs. Baselines: Table III summarizes the performance

comparison among CasCN and baselines on both Sina Weibo

dataset and HEP-PH dataset. In general, the proposed CasCN
model performs relatively well on information cascade pre-

diction for both datasets (post re-tweeting and paper citing).

It outperforms traditional approaches, e.g., feature-based and

generative approaches, as well as superior to the state-of-the-

art deep learning methods, with a statistically significant drop

of MSLE. Now we step into the details of comparison:

The performance gap between these Feature-deep and

Feature-linear is quite small meaning that if we have a set of

representative features of information cascades, deep learning

does not always perform better than traditional predicting

methods. However, as discussed earlier, the performance of

such methods heavily depend on hand-crafted features which

are difficult to select for different scenarios in practice.

For embedding methods, Node2Vec [58] does not perform

well. Through the comparison with DeepCas [8], it proves that

only taking the node embeddings as the graph representation is

not enough and is not comparable with representing the graph

as a set of random paths.

DeepCas, as the first proposed end-to-end deep learning

method for cascade size prediction, exhibits better perfor-

mance than feature-based approaches and traditional genera-

tive process-based approaches. But it still way worse than other

deep learning based approaches, because of failing to consider

temporal information and the topological structure of cascade

graphs. The latest method Topo-LSTM also lacks time feature,

so that it performs a little bit worse than DeepHawkes and our

model. DeepHawkes, while successful in modeling cascades

in a deep generative way, it does not perform the best due to

its weak ability to learn structural information.

Finally, our proposed CasCN model, which purely relies on

and fully explores structural and temporal information, sig-

nificantly outperforms all baselines. For example, it achieves

excellent prediction results with MSLE = 1.916 when ob-

serving for 3 hours in Sina Weibo and MSLE = 0.851 when

observing for 7 years in HEP-PH, respectively. It reduces the

prediction error by 15.2% and 30.9% comparing to the second

best DeepHawkes.

When comparing methods with different observation win-

dow T , we clearly see a general pattern that the larger the T ,

the easier to make a good prediction. It is mainly because of

the fact that longer T reveals more information for prediction.

CasCN with Variants: To investigate and demonstrate the

effectiveness of each component of our model (e.g., to under-

stand the effect of the sampling part of CasCN), we present

five variants of CasCN, where all are built upon the original

CasCN model with some components changed. Their details

can be found in Section V-C.

The experimental results are shown in Table IV, from which

we can see that original CasCN leads to a certain reduction

of prediction error when compared with other variants. From

the comparison to CasCN-Undierected and CasCN-Time, we

find that directionality and time decay effect are proved to be

indispensable for cascade size prediction. Similarly, CasCN-

Path brings a remarkable decrease of the prediction perfor-

mance, which tells the necessity and effectiveness of sampling

in CasCN. This indicates that the way to sample cascade graph

as sub-cascade graph sequence can better reflect the dynamics

of the cascade structure and the topological structure of each

diffusion time.

In summary, sub-graphs sampling and structural-temporal

modeling are critical components in CasCN, both of which

essentially improve the performance of information cascade

prediction as presented in the results.

TABLE V
ANALYSIS OF PARAMETER IMPACT ON PERFORMANCE.

Dataset Weibo Dataset
Metric MSLE

Parameter
T

1 hour 2 hours 3 hours

K=1 2.284 2.061 1.932
K=2 2.242 2.036 1.91
K=3 2.312 2.078 1.9386

λmax ≈ 2 2.418 2.217 2.046
λmax = real 2.242 2.036 1.91

5 10 15 20 25 30 35 40 45
Epochs

2

3
4

6
8

24

V
al

id
at

io
n

lo
ss

K=1
K=2
K=3

Fig. 7. Loss of CasCN on the validation set with varying K

Parameter analysis in CasCN: We now turn to investigating

whether the parameters of CasCN have impact on the perfor-

mance of cascade size prediction. Results are summarized in

Table V. We consider two vital parameters of graph convolu-

tional kernel, i.e., Chebyshev coefficients K and the largest

eigenvalue λmax of Laplacian matrix Δc. For Chebyshev

coefficients K we selected from {1, 2, 3}. To obtain λmax,

we have two ways: the first is to approximate it as λmax ≈ 2,

and the second is to compute the exact value of λmax for each

cascade graph. Table V shows that CasCN with K = 2 can

achieve better performance than K=1 and 3. And in Fig. 7,

the validation loss in each epoch steadily declines. There is no

evidence showing that a larger or smaller K is better than a

median one. Further, bigger K will increase the computational

cost. For the value of λmax, precise values can lead to better

prediction results.

We also investigated the performance of CasCN when the

observed cascades are small – e.g., the size of the cascades is

within 10, 20. Fig. 8(a) gives the statistics of Weibo dataset

illustrating the average cascade size increasing with time.

Fig. 8(b) shows that the MSLE results for various size de-

779

5 10 15 20 25 30 35 40 45 50 55 60

Observation time (minutes)

0

10

20

30

40

50

60

A
v
g
.
s
iz
e
o
f
c
a
s
c
a
d
e
s

(a) Avg. cascade size distribution.

10 15 20 25 30 35 40

Epochs

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
S
L
E

Size < 10, MSLE* = 2.871

Size < 20, MSLE* = 2.744

Size < 30, MSLE* = 2.602

Size < 40, MSLE* = 2.413

Size < 50, MSLE* = 2.331

(b) Results.

Fig. 8. Impact of smaller-size observations.

crease with training epochs. Apparently, the larger of observed

cascade size, the lower MSLE value CasCN achieves.

Discussions on feature learning: Finally, we discuss and

demonstrate the capability of CasCN on feature learning in

a visual way. We use the latent representation of each cascade

graph Ci(t) : h
′
(Ci(t)) to plot a heatmap (as shown in Fig. 9).

The value in each dimension corresponds to some implicit

or explicit features related to predicting the cascade size.

Fig. 9 tells us that the latent representation varies with cascade

size. And surprisingly, there exists a clear pattern separation

between outbreak (larger cascades) and non-outbreak (smaller)

cascades, which indicates that CasCN is able to learn a good

latent representation of cascades with different sizes and thus

can be applied for outbreaking prediction.

Next, we try to understand/interpret the importance of some

hand-crafted features in cascade size prediction. First, we use

t-SNE [61] to project the vector representation summarized in

h
′
(Ci(t)) for the cascade graph Ci(t) to one data point in a

2-D space. Note that cascade graphs with similar vector repre-

sentations are placed closely. Second, we color each data point

(transformed from a cascade graph) using different strategies,

such as based on the value of a certain feature f (e.g., number

of leaf nodes, mean time, etc.), or the true increment size

(the ground-truth label). The distribution of colors suggests a

connection between the learned representations and network

properties. That is, if a colored plot based on a certain feature

f is well correlated with that of the true increment size,

this feature is positively useful for cascade size prediction.

Take the Weibo dataset as an example: Fig.9(c) and 9(e) have

similar color distributions with the true increment size 9(g) –

we believe that leaf nodes and mean time are two important

features for cascade size prediction.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel deep learning based framework –

CasCN – an end-to-end modeling framework for cascade

growth prediction that does not rely heavily on feature en-

gineering and can be easily generalized; and enabling the

information cascade prediction by exploiting both structural

and temporal information. The CasCN model can learn a better

latent representation for cascade graph with less information,

using structural and temporal information of cascades within

a deep learning framework. Incorporating the directionality of

cascades and time decay effect further improves the prediction

performance. Our experiments conducted on two scenarios,

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

Cascade vector dimension

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
7
7
7
7
7

C
a
s
c
a
d
e
s
s
iz
e

(a) Heatmap of Weibo

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

Cascade vector dimension

2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4

C
a
s
c
a
d
e
s
s
iz
e

(b) Heatmap of HEP-PH

(c) f : Leaf nodes plot for Weibo (d) f : Leaf nodes plot for HEP-PH

(e) f : Mean time plot for Weibo (f) f : Mean time plot for HEP-PH

(g) Increment size plot for Weibo (h) Increment size plot for HEP-PH

Fig. 9. Feature visualization. Figure (a) and (b) are learned representations
by CasCN. In (c) - (h), we layout the cascade graphs as data points in the test
set to a 2-D space using t-SNE. Every layout is colored using hand-crafted
network properties or the ground-truth (captioned “f : feature”).

i.e., forecasting the size of re-tweeting cascades in Sina Weibo

and predicting the citation of papers in HEP-PH, demonstrate

that CasCN outperforms various state-of-the-art methods.

Our future work focuses on three tasks: (1) introducing more

sophisticated training techniques (e.g., attention mechanism or

batch training), to transform CasCN to inductive model and

model larger graphs; (2) efficient incorporation of updates into

LSTM; and (3) investigating the potential coupling CasCN

with model-based approaches to improve the accuracy.

780

ACKNOWLEDGEMENTS

Work supported by National Natural Science Foundation of

China (Grants No.61602097 and No.61472064), NSF Grants

III 1213038 and CNS 1646107, ONR grant N00014-14-10215,

and the Fundamental Research Funds for the Central Univer-

sities (No.ZYGX2015J072).

REFERENCES

[1] H.-W. Shen, D. Wang, C. Song, and A.-L. Barabási, “Modeling and
predicting popularity dynamics via reinforced poisson processes.” in
AAAI, 2014.

[2] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins, “Information
diffusion through blogspace,” in WWW, 2004.

[3] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst,
“Cascading behavior in large blog graphs,” in ICDM, 2007.

[4] D. Liben-Nowell and J. Kleinberg, “Tracing information flow on a global
scale using internet chain-letter data,” PNAS, vol. 105, no. 12, 2008.

[5] B. Golub and M. O. Jackson, “Using selection bias to explain the
observed structure of internet diffusions,” PNAS, vol. 107, no. 24, 2010.

[6] Q. Cao, H. Shen, K. Cen, W. Ouyang, and X. Cheng, “Deephawkes:
Bridging the gap between prediction and understanding of information
cascades,” in CIKM, 2017.

[7] M. Jenders, G. Kasneci, and F. Naumann, “Analyzing and predicting
viral tweets,” in WWW, 2013.

[8] C. Li, J. Ma, X. Guo, and Q. Mei, “Deepcas: An end-to-end predictor
of information cascades,” in WWW, 2017.

[9] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” TWEB, vol. 1, no. 1, 2007.

[10] J. Tang, X. Tang, X. Xiao, and J. Yuan, “Online processing algorithms
for influence maximization,” in SIGMOD, 2018.

[11] K. Huang, S. Wang, G. Bevilacqua, X. Xiao, and L. V. Lakshmanan,
“Revisiting the stop-and-stare algorithms for influence maximization,”
in VLDB, 2017.

[12] H. Li, X. Ma, F. Wang, J. Liu, and K. Xu, “On popularity prediction of
videos shared in online social networks,” in CIKM, 2013.

[13] S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news
online,” Science, vol. 359, no. 6380, 2018.

[14] C. Song, W. Hsu, and M. Lee, “Temporal influence blocking: Minimiz-
ing the effect of misinformation in social networks,” in ICDE, 2017.

[15] Y. Liu and Y. B. Wu, “Early detection of fake news on social media
through propagation path classification with recurrent and convolutional
networks,” in AAAI, 2018.

[16] M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf, “Modeling infor-
mation propagation with survival theory,” in ICML, 2013.

[17] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in SIGKDD, 2003.

[18] Y. Wang, H. Shen, S. Liu, and X. Cheng, “Learning user-specific latent
influence and susceptibility from information cascades,” in AAAI, 2015.

[19] N. Ohsaka, T. Sonobe, S. Fujita, and K. Kawarabayashi, “Coarsening
massive influence networks for scalable diffusion analysis,” in SIGMOD,
2017.

[20] D. M. Romero, C. Tan, and J. Ugander, “On the interplay between social
and topical structure,” in AAAI, 2013.

[21] P. Bao, H. W. Shen, J. Huang, and X. Q. Cheng, “Popularity prediction
in microblogging network: a case study on sina weibo,” in WWW, 2013.

[22] L. Weng, F. Menczer, and Y. Y. Ahn, “Predicting successful memes
using network and community structure,” in AAAI, 2014.

[23] O. Tsur and A. Rappoport, “What’s in a hashtag?: content based
prediction of the spread of ideas in microblogging communities,” in
WSDM, 2012.

[24] S. Petrovic, M. Osborne, and V. Lavrenko, “Rt to win! predicting
message propagation in twitter,” in AAAI, 2011.

[25] Z. Ma, A. Sun, and G. Cong, “On predicting the popularity of newly
emerging hashtags in twitter,” JASIST, vol. 64, no. 7, 2013.

[26] L. Hong, O. Dan, and B. D. Davison, “Predicting popular messages in
twitter,” in WWW, 2011.

[27] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Communications of the Acm, vol. 53, no. 8, 2008.

[28] H. Pinto and J. M. Almeida, “Using early view patterns to predict the
popularity of youtube videos,” in WSDM, 2013.

[29] S. Mishra, M. A. Rizoiu, and L. Xie, “Feature driven and point process
approaches for popularity prediction,” in CIKM, 2016.

[30] S. Gao, J. Ma, and Z. Chen, “Modeling and predicting retweeting
dynamics on microblogging platforms,” in WSDM, 2015.

[31] J. Wang, V. W. Zheng, Z. Liu, and C. C. Chang, “Topological recurrent
neural network for diffusion prediction,” in ICDM, 2017.

[32] Y. Wang, H. Shen, S. Liu, J. Gao, X. Cheng, Y. Wang, H. Shen, S. Liu,
J. Gao, and X. Cheng, “Cascade dynamics modeling with attention-based
recurrent neural network,” in IJCAI, 2017.

[33] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec, “Can
cascades be predicted?” in WWW, 2014.

[34] K. Wegrzycki, P. Sankowski, A. Pacuk, and P. Wygocki, “Why Do
Cascade Sizes Follow a Power-Law?” in WWW, 2017.

[35] P. Cui, S. Jin, L. Yu, F. Wang, W. Zhu, and S. Yang, “Cascading outbreak
prediction in networks:a data-driven approach,” in SIGKDD, 2013.

[36] J. Gao, H. Shen, S. Liu, and X. Cheng, “Modeling and predicting
retweeting dynamics via a mixture process,” in WWW, 2016.

[37] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on twitter,” in WSDM, 2011.

[38] K. Lerman and A. Galstyan, “Analysis of social voting patterns on digg,”
in WOSN, 2008.

[39] B. Shulman, A. Sharma, and D. Cosley, “Predictability of popularity:
Gaps between prediction and understanding.” in ICWSM, 2016.

[40] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” ICML, 2014.

[41] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in NIPS, 2016.

[42] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[43] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[44] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph
convolutional networks via importance sampling,” 2018.

[45] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” arXiv
preprint arXiv:1612.07659, 2016.

[46] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in ICLR, 2018.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, 1997.

[48] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” NIPS, 2014.

[49] A. Graves, “Generating sequences with recurrent neural networks,”
Computer Science, 2013.

[50] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-
ing of video representations using lstms,” in ICML, 2015.

[51] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014.

[52] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in NIPS, 2016.

[53] C. Fan, “Laplacians and the cheeger inequality for directed graphs,”
Annals of Combinatorics, vol. 9, no. 1, 2005.

[54] Y. Li and Z.-L. Zhang, “Digraph laplacian and the degree of asymmetry,”
Internet Mathematics, vol. 8, no. 4, 2012.

[55] D. Sornette, “Apparent criticality and calibration issues in the hawkes
self-excited point process model: application to high-frequency financial
data,” Social Science Electronic Publishing, no. 8, 2013.

[56] J. Wallinga and P. Teunis, “Different epidemic curves for severe acute
respiratory syndrome reveal similar impacts of control measures.” Amer-
ican Journal of Epidemiology, vol. 160, no. 6, 2004.

[57] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003 kdd
cup,” Acm SIGKDD Explorations Newsletter, vol. 5, no. 2, 2003.

[58] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD, 2016.

[59] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in SIGKDD, 2014.

[60] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015.

[61] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, 2008.

781

