

Lie algebras

Action of Weyl group on zero-weight space

Action du groupe de Weyl sur l'espace de poids nul

Bruno Le Floch^a, Ilia Smilga^b

^a Princeton Center for Theoretical Science, Princeton, NJ 08544, USA

^b Yale University Mathematics Department, PO Box 208283, New Haven, CT 06520-8283, USA

ARTICLE INFO

Article history:

Received 31 May 2018

Accepted after revision 26 June 2018

Available online 13 July 2018

Presented by Michèle Vergne

ABSTRACT

For any simple complex Lie group, we classify irreducible finite-dimensional representations ρ for which the longest element w_0 of the Weyl group acts non-trivially on the zero-weight space. Among irreducible representations that have zero among their weights, w_0 acts by $\pm \text{Id}$ if and only if the highest weight of ρ is a multiple of a fundamental weight, with a coefficient less than a bound that depends on the group and on the fundamental weight.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Pour tout groupe de Lie complexe simple, nous classifions les représentations irréductibles ρ de dimension finie telles que le plus long mot w_0 du groupe de Weyl agisse non trivialement sur l'espace de poids nul. Parmi les représentations irréductibles dont zéro est un poids, w_0 agit par $\pm \text{Id}$ si et seulement si le plus haut poids de ρ est un multiple d'un poids fondamental, avec un coefficient plus petit qu'une borne qui dépend du groupe et du poids fondamental.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main theorem

Consider a reductive complex Lie algebra \mathfrak{g} . Let \tilde{G} be the corresponding simply-connected Lie group.

We choose in \mathfrak{g} a Cartan subalgebra \mathfrak{h} . Let Δ be the set of roots of \mathfrak{g} in \mathfrak{h}^* . We call Λ the root lattice, i.e. the abelian subgroup of \mathfrak{h}^* generated by Δ . We choose in Δ a system Δ^+ of positive roots; let $\Pi = \{\alpha_1, \dots, \alpha_r\}$ be the set of simple roots in Δ^+ . Let $\varpi_1, \dots, \varpi_r$ be the corresponding fundamental weights. Let $W := N_{\tilde{G}}(\mathfrak{h})/Z_{\tilde{G}}(\mathfrak{h})$ be the Weyl group, and let w_0 be its longest element (defined by $w_0(\Delta^+) = -\Delta^+$).

E-mail addresses: blefloch@princeton.edu (B. Le Floch), ilia.smilga@normalesup.org (I. Smilga).

URL: <http://gauss.math.yale.edu/~is362/index.html> (I. Smilga).

For each simple Lie algebra, we call (e_1, e_2, \dots) the vectors called $(\varepsilon_1, \varepsilon_2, \dots)$ in the appendix to [2], which form a convenient basis of a vector space containing \mathfrak{h}^* . Throughout the paper, we use the Bourbaki conventions [2] for the numbering of simple roots and their expressions in the coordinates e_i .

In the sequel, all representations are supposed to be complex and finite-dimensional. We call ρ_λ (resp. V_λ) the irreducible representation of \mathfrak{g} with highest weight λ (resp. the space on which it acts). Given a representation (ρ, V) of \mathfrak{g} , we call V^λ the weight subspace of V corresponding to the weight λ .

Definition 1.1. We say that a weight $\lambda \in \mathfrak{h}^*$ is *radical* if $\lambda \in \Lambda$.

Remark 1. An irreducible representation (ρ, V) has non-trivial zero-weight space V^0 if and only if its highest weight is radical.

Definition 1.2. Let (ρ, V) be a representation of \mathfrak{g} . The action of $W = N_{\tilde{G}}(\mathfrak{h})/Z_{\tilde{G}}(\mathfrak{h})$ on V^0 is well-defined, since V^0 is by definition fixed by \mathfrak{h} , hence by $Z_{\tilde{G}}(\mathfrak{h})$. Thus w_0 induces a linear involution on V^0 . Let p (resp. q) be the dimension of the subspace of V^0 fixed by w_0 (resp. by $-w_0$). We say that (p, q) is the w_0 -signature of the representation ρ and that the representation is:

- w_0 -pure if $pq = 0$ (of sign +1 if $q = 0$ and of sign -1 if $p = 0$);
- w_0 -mixed if $pq > 0$.

Remark 2. Replacing \tilde{G} by any other connected group G with Lie algebra \mathfrak{g} (with a well-defined action on V) does not change the definition. Indeed the center of \tilde{G} is contained in $Z_{\tilde{G}}(\mathfrak{h})$, so acts trivially on V^0 .

Our interest in this property originates in the study of free affine groups acting properly discontinuously (see [7]). We prove the following complete classification. To the best of our knowledge, this specific question has not been studied before; see [4] for a survey of prior work on related, but distinct, questions about the action of the Weyl group on the zero-weight space.

Theorem 1.3. Let \mathfrak{g} be any simple complex Lie algebra; let r be its rank. For every index $1 \leq i \leq r$, we denote by p_i the smallest positive integer such that $p_i \varpi_i \in \Lambda$. For every such i , let the “maximal value” $m_i \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$ and the “sign” $\sigma_i \in \{\pm 1\}$ be as given in Table 1 on page 854.

Let λ be a dominant weight.

- (i) If $\lambda \notin \Lambda$, then the w_0 -signature of the representation ρ_λ is $(0, 0)$.
- (ii) If $\lambda = kp_i \varpi_i$ for some $1 \leq i \leq r$ and $0 \leq k \leq m_i$, then ρ_λ is w_0 -pure of sign $(\sigma_i)^k$.
- (iii) Finally, if $\lambda \in \Lambda$ but is not of the form $\lambda = kp_i \varpi_i$ for any $1 \leq i \leq r$ and $0 \leq k \leq m_i$, then ρ_λ is w_0 -mixed.

Example 1. Any irreducible representation of $\mathrm{SL}(2, \mathbb{C})$ is isomorphic to $S^k \mathbb{C}^2$ (the k -th symmetric power of the standard representation) for some $k \in \mathbb{Z}_{\geq 0}$. Its w_0 -signature is $(0, 0)$ if k is odd, $(1, 0)$ if k is divisible by 4 and $(0, 1)$ if k is 2 modulo 4. This confirms the A_1 entries $(p_1, m_1, \sigma_1) = (2, \infty, -1)$ of Table 1.

Table 1 also gives the values of p_i . These are not a new result; they are immediate to compute from the known descriptions of the simple roots and fundamental weights (given e.g. in [2]).

Point (i) is an immediate consequence of Remark 1.

For point (ii), we show in Section 3 that certain symmetric and antisymmetric powers of defining representations of classical groups are w_0 -pure, and that almost all representations listed in point (ii) are sub-representations of these powers. The finitely many exceptions are treated by an algorithm described in Section 2.

For point (iii), we prove in Section 4 that the set of highest weights of w_0 -mixed representations of a given group is an ideal of the monoid of dominant radical weights. For any fixed group, this reduces the problem to checking w_0 -mixedness of finitely many representations. In Section 5, we immediately conclude for exceptional groups and for low-rank classical groups by the algorithm of Section 2; we proceed by induction on rank for the remaining classical groups.

2. An algorithm to compute explicitly the w_0 -signature of a given representation

Proposition 2.1. Any simple complex Lie group G admits a reductive subgroup S whose Lie algebra is isomorphic to $\mathfrak{sl}(2, \mathbb{C})^s \times \mathbb{C}^t$, where (t, s) is the w_0 -signature of the adjoint representation of G , and whose w_0 element is compatible with that of G , in the sense that some representative of the w_0 element of S is a representative of the w_0 element of G . This subgroup S can be explicitly described.

Note that $s + t = r$ (the rank of G) and that $t = 0$ except for A_n ($t = \lfloor \frac{n}{2} \rfloor$), D_{2n+1} ($t = 1$) and E_6 ($t = 2$).

Table 1

Values of (p_i, m_i, σ_i) for simple Lie algebras. Theorem 1.3 states that among irreducible representations with a highest weight λ that is radical, only those with λ of the form $kp_i\varpi_i$ with $k \leq m_i$ are w_0 -pure, with a sign given by σ_i^k . We write N.A. for σ_i sign entries that are not defined due to $m_i = 0$. Since $A_1 \simeq B_1 \simeq C_1$ and $B_2 \simeq C_2$ and $A_3 \simeq D_3$, the results match up to reordering simple roots (namely reordering $i = 1, \dots, r$).

Values of i and r		p_i	m_i	σ_i	Values of i	p_i	m_i	σ_i
$A_{r \geq 1}$	$i = 1$ or r	$r + 1$	∞	$(-1)^{\lfloor (r+1)/2 \rfloor}$	E_6	$i = 1, 3, 5, 6$	3	N.A.
	$1 < i < r$	$r = 3$	$\frac{r+1}{\gcd(i, r+1)}$	∞		$i = 2, 4$	1	N.A.
		$r > 3$	0	N.A.				
$B_{r \geq 1}$	$i = 1$	$r > 1$	1	∞	$i = 1$	1	2	-1
	$i = 2$	$r > 2$	1	2	$i = 2, 5$	2	0	N.A.
	$2 < i < r$		1	1	$i = 3, 4$	1	0	N.A.
$C_{r \geq 1}$	$i = r$	$r = 1, 2$	2	∞	$i = 6$	1	1	+1
		$r > 2$		1	$i = 7$	2	1	-1
	$i = 1$		2	∞				
$D_{r \geq 3}$ $r \text{ odd}$	$i = 2$	$r = 2$	1	∞	E_8	$i = 1$	1	+1
		$r > 2$		2		$1 < i < 8$	1	N.A.
	$i \text{ odd} > 2$	$i = r = 3$	2	1		$i = 8$	1	-1
$D_{r \geq 4}$ $r \text{ even}$	$i \text{ even} > 2$	$i = r = 4$	1	2	F_4	$i = 1$	2	-1
		$r > 4$		1		$i = 2, 3$	1	N.A.
	$i = 1$		2	∞		$i = 4$	1	+1
$D_{r \geq 4}$ $r \text{ even}$	$i = 2$		1	2	G_2	$i = 1, 2$	1	-1
	$2 < i < r - 1$	$i \text{ odd}$	2	0				
	$i = r - 1 \text{ or } r$	$r = 3$	4	∞				
$D_{r \geq 4}$ $r \text{ even}$		$r > 3$		0				
	$i = 1$		2	∞				
	$i = 2$		1	2				
$D_{r \geq 4}$ $r \text{ even}$	$2 < i < r - 1$	$i \text{ odd}$	2	0				
		$i \text{ even}$	1	1				
	$i = r - 1 \text{ or } r$	$r = 4$	2	∞				
$D_{r \geq 4}$ $r \text{ even}$		$r > 4$		1				

Table 2

Sets of strongly orthogonal roots that span the vector space $(\mathfrak{h}^*)^{-w_0}$. We chose them among the positive roots.

A_n	$\{e_i - e_{n+2-i} \mid 1 \leq i \leq \lfloor (n+1)/2 \rfloor\}$	E_6	$\{-e_1 + e_4, -e_2 + e_3, \pm \frac{1}{2}(e_1 + e_2 + e_3 + e_4) + \frac{1}{2}(e_5 - e_6 - e_7 + e_8)\}$
B_{2n}	$\{e_{2i-1} \pm e_{2i} \mid 1 \leq i \leq n\}$	E_7	$\{\pm e_1 + e_2, \pm e_3 + e_4, \pm e_5 + e_6, -e_7 + e_8\}$
B_{2n+1}	$\{e_{2i-1} \pm e_{2i} \mid 1 \leq i \leq n\} \cup \{e_{2n+1}\}$	E_8	$\{\pm e_1 + e_2, \pm e_3 + e_4, \pm e_5 + e_6, \pm e_7 + e_8\}$
C_n	$\{2e_i \mid 1 \leq i \leq n\}$	F_4	$\{e_1 \pm e_2, e_3 \pm e_4\}$
D_n	$\{e_{2i-1} \pm e_{2i} \mid 1 \leq i \leq \lfloor n/2 \rfloor\}$	G_2	$\{e_1 - e_2, -e_1 - e_2 + 2e_3\}$

Proof. Let $(\mathfrak{h}^*)^{-w_0}$ be the -1 eigenspace of w_0 . Recall that two roots α and β are called *strongly orthogonal* if $\langle \alpha, \beta \rangle = 0$ and neither $\alpha + \beta$ nor $\alpha - \beta$ is a root. Table 2 exhibits pairwise strongly orthogonal roots $\{\alpha_1, \dots, \alpha_s\} \subset \Delta$ spanning $(\mathfrak{h}^*)^{-w_0}$ as a vector space. (Our sets are conjugate to those of [1], but these authors did not need the elements w_0 to match.) We then set

$$\mathfrak{s} := \mathfrak{h} \oplus \bigoplus_{i=1}^s (\mathfrak{g}^{\alpha_i} \oplus \mathfrak{g}^{-\alpha_i}),$$

where \mathfrak{g}^α denotes the root space corresponding to α . This is a Lie subalgebra of \mathfrak{g} , as follows from $[\mathfrak{g}^\alpha, \mathfrak{g}^\beta] \subset \mathfrak{g}^{\alpha+\beta}$ and from strong orthogonality of the α_i . It is isomorphic to $\mathfrak{sl}(2, \mathbb{C})^s \times \mathbb{C}^t$, because it has Cartan subalgebra \mathfrak{h} of dimension $r = s + t$ and a root system of type A_1^s . We define S to be the connected subgroup of G with algebra \mathfrak{s} .

Let $\overline{\sigma}_i := \exp[\frac{\pi}{2}(X_{\alpha_i} - Y_{\alpha_i})] \in S$, where for every α , X_α and Y_α denote the elements of \mathfrak{g} introduced in [3, Theorem 7.19]. We claim that $\overline{\sigma} := \prod_i \overline{\sigma}_i$ is a representative of the w_0 element of S and of the w_0 element of G . By [3, Proposition 11.35], $\overline{\sigma}_i$ is a representative of the reflection s_{α_i} , which shows the first statement. Now since the α_i are orthogonal, the product of s_{α_i} acts by $-\text{Id}$ on their span $(\mathfrak{h}^*)^{-w_0}$ and acts trivially on its orthogonal complement, like w_0 . \square

Then the w_0 -signature of any representation ρ of G is equal to that of its restriction $\rho|_S$ to S . We use branching rules to decompose $\rho|_S = \bigoplus_i \rho_i$ into irreducible representations of S . The total w_0 -signature is then the sum of those of the ρ_i .

Each ρ_i is a tensor product $\rho_{i,1} \otimes \cdots \otimes \rho_{i,s} \otimes \rho_{i,\text{Ab}}$, where $\rho_{i,j}$ for $1 \leq j \leq s$ is an irreducible representation of the factor $\mathfrak{sl}(2, \mathbb{C})$, and $\rho_{i,\text{Ab}}$ is an irreducible representation of the abelian factor isomorphic to \mathbb{C}^t . The w_0 -signature of ρ_i is then the “product” of those of these factors, according to the rule $(p, q) \otimes (p', q') = (pp' + qq', pq' + qp')$. The w_0 -signatures of all irreducible representations of $\mathfrak{sl}(2, \mathbb{C})$ have been described in Example 1; the w_0 -signature of $\rho_{i,\text{Ab}}$ is just $(1, 0)$ if the representation is trivial and $(0, 0)$ otherwise.

Branching rules are provided by several software packages. We implemented our algorithm separately in LiE [10] and in Sage [8]. In Sage, we used the Branching Rules module [9], largely written by Daniel Bump.

3. Proof of (ii): that some representations are w_0 -pure

We must prove that representations of highest weight $\lambda = kp_i\varpi_i$, $k \leq m_i$ are w_0 -pure of sign σ_i^k (with data p_i , m_i , σ_i given in Table 1). We denote by \square the defining representation of each classical group (\mathbb{C}^{n+1} for A_n , \mathbb{C}^{2n+1} for B_n , \mathbb{C}^{2n} for C_n and D_n), and introduce a basis of it: for every $\varepsilon \in \{-1, 0, 1\}$ and i such that εe_i (or for A_n its orthogonal projection onto \mathfrak{h}^*) is a weight of \square , we call $h_{\varepsilon i}$ some nonzero vector in the corresponding weight space.

For exceptional groups, all m_i are finite, so the algorithm of Section 2 suffices; we also use it for the representations with highest weight $2\varpi_3$ of C_3 and $2\varpi_4$ of C_4 .

Most other cases are subrepresentations of $S^m\square$ of A_n or D_{2n+1} , or one of $S^m\square$ or $\Lambda^m\square$ or $S^2(\Lambda^2\square)$ of B_n or C_n or D_{2n} , all of which will prove to be w_0 -pure. Here $S^m\rho$ and $\Lambda^m\rho$ denote the symmetric and the antisymmetric tensor powers of a representation ρ . The remaining cases are mapped to these by the isomorphisms $B_2 \simeq C_2$ and $A_3 \simeq D_3$ and the outer automorphisms $\mathbb{Z}/2\mathbb{Z}$ of A_n and \mathfrak{S}_3 of D_4 .

For $A_n = \mathfrak{sl}(n+1, \mathbb{C})$, the defining representation is $\square = \mathbb{C}^{n+1} = \text{Span}\{h_1, \dots, h_{n+1}\}$. A representative $\overline{w_0} \in \text{SL}(n+1, \mathbb{C})$ of w_0 acts on \square by $h_j \mapsto h_{n+2-j}$ for $1 \leq j < n+1$ and by $h_{n+1} \mapsto \sigma_1 h_1$ where $\sigma_1 = (-1)^{\lfloor (n+1)/2 \rfloor}$, the sign being such that $\det \overline{w_0} = +1$. We consider the representation $S^{k(n+1)}\square$. Its zero-weight space V^0 is spanned by symmetrized tensor products $h_{j_1} \otimes \cdots \otimes h_{j_{k(n+1)}}$ in which each h_j appears equally many times, namely k times. Hence, V^0 is one-dimensional (the representation is thus w_0 -pure) and spanned by the symmetrization of $v = h_1^{\otimes k} \otimes h_2^{\otimes k} \otimes \cdots \otimes h_{n+1}^{\otimes k}$. We compute $\overline{w_0} \cdot v = h_{n+1}^{\otimes k} \otimes \cdots \otimes h_2^{\otimes k} \otimes (\sigma_1 h_1)^{\otimes k}$, whose symmetrization is equal to σ_1^k times that of v ; this gives the announced sign σ_1^k .

For $D_{2n+1} = \mathfrak{so}(4n+2, \mathbb{C})$, the defining representation is $\square = \mathbb{C}^{4n+2} = \text{Span}\{h_{\pm j} \mid 1 \leq j \leq 2n+1\}$ and $\overline{w_0}$ maps $h_{\pm j} \mapsto h_{\mp j}$ for $1 \leq j \leq 2n$, but fixes $h_{\pm(2n+1)}$. The zero-weight space V^0 of $S^{2k}\square$ is spanned by symmetrizations of $h_{j_1} \otimes h_{-j_1} \otimes \cdots \otimes h_{j_k} \otimes h_{-j_k}$, each of which is fixed by $\overline{w_0}$. The representation is w_0 -pure with $\sigma_1 = +1$, as announced.

The cases of $B_n = \mathfrak{so}(2n+1, \mathbb{C})$, $C_n = \mathfrak{sp}(2n, \mathbb{C})$ and D_n even $= \mathfrak{so}(2n, \mathbb{C})$ are treated together:

- B_n has $\square = \mathbb{C}^{2n+1} = \text{Span}\{h_j \mid -n \leq j \leq n\}$ and $\overline{w_0}$ acts by $h_j \mapsto h_{-j}$ for $j \neq 0$ and $h_0 \mapsto (-1)^n h_0$;
- C_n has $\square = \mathbb{C}^{2n} = \text{Span}\{h_{\pm j} \mid 1 \leq j \leq n\}$ and $\overline{w_0}$ acts by $h_j \mapsto h_{-j}$ and $h_{-j} \mapsto -h_j$ for $j > 0$;
- D_n has $\square = \mathbb{C}^{2n} = \text{Span}\{h_{\pm j} \mid 1 \leq j \leq n\}$ and, for n even, $\overline{w_0}$ acts by $h_j \mapsto h_{-j}$ for all j .

First consider $\Lambda^m\square$ and $S^m\square$. Their zero-weight spaces are spanned by (anti)symmetrizations of $h_{j_1} \otimes h_{-j_1} \otimes \cdots \otimes h_{j_k} \otimes h_{-j_k} \otimes h_0^{\otimes l}$, where $2k + l = m$. Each of these vectors is fixed by $\overline{w_0}$ up to a sign that only depends on the group, the representation, and on (k, l) or equivalently (l, m) . For C_n and D_n we have $l = 0$ so for each m the representation is w_0 -pure, with a sign $(-1)^k$ for $S^{2k}\square$ of C_n and $\Lambda^{2k}\square$ of D_n , and no sign otherwise. For $\Lambda^m\square$ of B_n we note that $l \in \{0, 1\}$ is fixed by the parity of m so the representation is w_0 -pure; its sign is $(-1)^{nl+k} = (-1)^{nm+[m/2]} = \sigma_m$. For $S^m\square$ of B_n , only the parity of l is fixed, but the sign $(-1)^{nl} = (-1)^{nm} = \sigma_1^m$ still only depends on the representation; it confirms the data of Table 1. Finally, consider the representation $S^2(\Lambda^2\square)$. Its zero-weight space is spanned by symmetrizations of $(h_j \wedge h_{-j}) \otimes (h_k \wedge h_{-k})$ and $(h_j \wedge h_k) \otimes (h_{-j} \wedge h_{-k})$ all of which are fixed by $\overline{w_0}$.

4. Cartan product: w_0 -mixed representations form an ideal

Let G be a simply-connected simple complex Lie group and N a maximal unipotent subgroup of G . Define $\mathbb{C}[G/N]$ the space of regular (i.e. polynomial) functions on G/N . Pointwise multiplication of functions is G -equivariant and makes $\mathbb{C}[G/N]$ into a \mathbb{C} -algebra without zero divisors (because G/N is irreducible as an algebraic variety).

Theorem 4.1 ([6, (3.20)–(3.21)]). *Each finite-dimensional representation of G (or equivalently of its Lie algebra \mathfrak{g}) occurs exactly once as a direct summand of the representation $\mathbb{C}[G/N]$. The \mathbb{C} -algebra $\mathbb{C}[G/N]$ is graded in two ways:*

- by the highest weight λ , in the sense that the product of a vector in V_λ by a vector in V_μ lies in $V_{\lambda+\mu}$ (where V_λ stands here for the subrepresentation of $\mathbb{C}[G/N]$ with highest weight λ);
- by the actual weight λ , in the sense that the product of a weight vector with weight λ by a weight vector with weight μ is still a weight vector, with weight $\lambda + \mu$.

For given λ and μ , we call *Cartan product* the induced bilinear map $\odot : V_\lambda \times V_\mu \rightarrow V_{\lambda+\mu}$. Given $u \in V_\lambda$ and $v \in V_\mu$, this defines $u \odot v \in V_{\lambda+\mu}$ as the projection of $u \otimes v \in V_\lambda \otimes V_\mu = V_{\lambda+\mu} \oplus \dots$. Since $\mathbb{C}[G/N]$ has no zero divisor, $u \odot v \neq 0$ whenever $u \neq 0$ and $v \neq 0$. We deduce the following.

Lemma 4.2. *The set of highest weights of w_0 -mixed irreducible representations of \mathfrak{g} is an ideal $\mathcal{I}_{\mathfrak{g}}$ of the additive monoid \mathcal{M} of dominant elements of the root lattice.*

Proof. Consider a w_0 -mixed representation V_λ and a representation V_μ whose highest weight is radical. We can choose u_+ and u_- in the zero-weight space of V_λ such that $w_0 \cdot u_+ = u_+$ and $w_0 \cdot u_- = -u_-$, and choose v in the zero-weight space of V_μ such that $w_0 \cdot v = \pm v$ for some sign. Then $u_+ \odot v$ and $u_- \odot v$ are non-zero elements of the zero-weight space of $V_{\lambda+\mu}$ on which w_0 acts by opposite signs. \square

5. Proof of (iii): that other representations are w_0 -mixed

Let $\mathcal{I}_{\mathfrak{g}}^{\text{Table}}$ be the set of dominant radical weights that are not of the form $\lambda = kp_i \varpi_i$, $k \leq m_i$ (with data p_i, m_i given in Table 1). Observe that $\mathcal{I}_{\mathfrak{g}}^{\text{Table}}$ is an ideal of \mathcal{M} . In Section 3 we showed $\mathcal{I}_{\mathfrak{g}} \subset \mathcal{I}_{\mathfrak{g}}^{\text{Table}}$. We now show that $\mathcal{I}_{\mathfrak{g}}^{\text{Table}} \subset \mathcal{I}_{\mathfrak{g}}$, namely that V_λ is w_0 -mixed for radical λ other than those described by Table 1. By Lemma 4.2, it is enough to show this for the basis of $\mathcal{I}_{\mathfrak{g}}^{\text{Table}}$. For any given group, $\mathcal{I}_{\mathfrak{g}}^{\text{Table}}$ has a finite basis, so we simply used the algorithm of Section 2 to conclude for $A_{\leq 5}, B_{\leq 4}, C_{\leq 5}, D_{\leq 6}$ and all exceptional groups.

Now let \mathfrak{g} be one of $A_{>5}, B_{>4}, C_{>5}, D_{>6}$ and λ be in $\mathcal{I}_{\mathfrak{g}}^{\text{Table}}$. We proceed by induction on the rank of \mathfrak{g} .

Define as follows a reductive Lie subalgebra $\mathfrak{f} \times \mathfrak{g}' \subset \mathfrak{g}$:

- if $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, we choose $\mathfrak{f} \times \mathfrak{g}' \simeq (\mathfrak{gl}(1, \mathbb{C}) \times \mathfrak{sl}(2, \mathbb{C})) \times \mathfrak{sl}(n-2, \mathbb{C})$, where \mathfrak{f} has the roots $\pm(e_1 - e_n)$ and \mathfrak{g}' has the roots $\pm(e_i - e_j)$ for $1 < i < j < n$;
- if $\mathfrak{g} = \mathfrak{so}(n, \mathbb{C})$, we choose $\mathfrak{f} \times \mathfrak{g}' \simeq \mathfrak{so}(4, \mathbb{C}) \times \mathfrak{so}(n-4, \mathbb{C})$, where \mathfrak{f} has the roots $\pm e_1 \pm e_2$ and \mathfrak{g}' has the roots $\pm e_i \pm e_j$ for $3 \leq i < j \leq n$;
- if $\mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C})$, we choose $\mathfrak{f} \times \mathfrak{g}' \simeq \mathfrak{sp}(2, \mathbb{C}) \times \mathfrak{sp}(2n-2, \mathbb{C})$, where \mathfrak{f} has the roots $\pm 2e_1$ and \mathfrak{g}' has the roots $\pm e_i \pm e_j$ for $2 \leq i < j \leq n$ and $\pm 2e_i$ for $2 \leq i \leq n$.

In all three cases, $\mathfrak{f} \times \mathfrak{g}'$ and \mathfrak{g} share their Cartan subalgebra, hence restricting a representation V of \mathfrak{g} to $\mathfrak{f} \times \mathfrak{g}'$ does not change the zero-weight space V^0 . Additionally, consider any connected Lie group G with Lie algebra \mathfrak{g} : then the w_0 elements of the connected subgroup of G with Lie algebra $\mathfrak{f} \times \mathfrak{g}'$ and of G itself coincide, or more precisely have a common representative in G , because the Lie algebras have the same Lie subalgebra \mathfrak{s} defined in Proposition 2.1. It follows that a representation of \mathfrak{g} is w_0 -mixed if and only if its restriction to $\mathfrak{f} \times \mathfrak{g}'$ is.

Next, decompose $V_\lambda = \bigoplus_\iota (V_{\xi_\iota} \otimes V_{\mu_\iota})$ into irreducible representations of $\mathfrak{f} \times \mathfrak{g}'$, where ξ_ι and μ_ι are dominant weights of \mathfrak{f} and \mathfrak{g}' , respectively. Consider the subspace

$$V_\lambda^{(0,\bullet)} := \bigoplus_\iota (V_{\xi_\iota}^0 \otimes V_{\mu_\iota}) \subset V_\lambda \quad (1)$$

fixed by the Cartan algebra of \mathfrak{f} . It is a representation of \mathfrak{g}' whose zero-weight subspace coincides with that of V_λ . The direct sum obviously restricts to radical ξ_ι , and $\dim V_{\xi_\iota}^0 = 1$ because we chose \mathfrak{f} to be a product of $\mathfrak{sl}(2, \mathbb{C})$ and $\mathfrak{gl}(1, \mathbb{C})$ factors. Thus the w_0 element of \mathfrak{g} acts on $V_{\xi_\iota}^0 \otimes V_{\mu_\iota}$ in the same way, up to a sign, as the w_0 element of \mathfrak{g}' acts on V_{μ_ι} . Lemma 5.2 shows that $V_\lambda^{(0,\bullet)}$ has an irreducible subrepresentation V_ν such that $\nu \in \mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$. By the induction hypothesis, V_ν is then w_0 -mixed hence w_0 has both eigenvalues ± 1 on the zero-weight space $V_\lambda^0 \subset V_\lambda^{(0,\bullet)}$, namely V_λ is w_0 -mixed.

This concludes the proof of Theorem 1.3.

There remains to state and prove two lemmas. Let \mathfrak{g} be A_{n-1}, B_n, C_n or D_n and let λ be a dominant radical weight of \mathfrak{g} . It can then be expressed in the standard basis e_1, \dots, e_n as $\lambda = \sum_{i=1}^n \lambda_i e_i$ where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ are integers subject to: for A_{n-1} , $\sum_i \lambda_i = 0$; for B_n , $\lambda_n \geq 0$; for C_n , $\lambda_n \geq 0$ and $\sum_i \lambda_i \in 2\mathbb{Z}$; for D_n , $\lambda_{n-1} \geq |\lambda_n|$ and $\sum_i \lambda_i \in 2\mathbb{Z}$. In addition, let $\mathfrak{f} \times \mathfrak{g}' \subset \mathfrak{g}$ be the subalgebra defined above. We identify weights of \mathfrak{g}' with the corresponding weights of \mathfrak{g} (acting trivially on the Cartan subalgebra of \mathfrak{f}). Note that this introduces a shift in their coordinates: the dual of the Cartan subalgebra of \mathfrak{g}' is spanned by a subset of the vectors e_i (corresponding to \mathfrak{g}) that starts at e_2 or e_3 , not at e_1 as expected.

Lemma 5.1. *Let μ be the dominant weight of \mathfrak{g}' defined as follows:*

- for A_{n-1} , $\mu = (\sum_{i=1}^{\ell-1} \lambda_i e_{i+1}) + \lambda_\ell e_\ell + (\sum_{i=\ell+1}^n \lambda_i e_{i-1})$ where $1 < \ell < n$ is an index such that $\lambda_{\ell-1} + \lambda_\ell \geq 0 \geq \lambda_\ell + \lambda_{\ell+1}$ (when several ℓ obey this, μ does not depend on the choice);
- for B_n , $\mu = \sum_{i=1}^{n-2} \lambda_i e_{i+2}$;

- for C_n , $\mu = \sum_{i=1}^{n-1} \lambda_i e_{i+1} - \eta e_n$ where $\eta \in \{0, 1\}$ obeys $\eta \equiv \lambda_n \pmod{2}$;
- for D_n , $\mu = \sum_{i=1}^{n-2} \lambda_i e_{i+2} - \eta e_n$ where $\eta \in \{0, 1\}$ obeys $\eta \equiv \lambda_{n+1} + \lambda_n \pmod{2}$.

Then V_μ is a sub-representation of the space $V_\lambda^{(0, \bullet)}$ defined earlier.

Proof for A_{n-1} . Let $\nu = \sum_{i=2}^{n-1} \nu_i e_i$ be a dominant radical weight of \mathfrak{g}' . The weight ν is among weights of $V_\lambda^{(0, \bullet)}$ if and only if it is among weights of V_λ . The condition is that $\langle \lambda - \tilde{\nu}, \varpi_k \rangle \geq 0$ for all k , where $\tilde{\nu}$ is the unique dominant weight of \mathfrak{g} in the orbit of ν under the Weyl group of \mathfrak{g} .

Explicitly, $\tilde{\nu} = (\sum_{i=1}^{p-1} \nu_{i+1} e_i) + \sum_{i=p+2}^n \nu_{i-1} e_i$, where p is any index such that $\nu_p \geq 0 \geq \nu_{p+1}$. Then the condition is $\sum_{i=1}^k \lambda_i \geq \sum_{i=2}^{k+1} \nu_i$ for $1 \leq k < p$ and $\sum_{i=1}^p \lambda_i \geq \sum_{i=2}^p \nu_i$ and $\sum_{i=1}^k \lambda_i \geq \sum_{i=2}^{k-1} \nu_i$ for $p < k < n$. Let us show that this is equivalent to

$$\sum_{i=2}^k \nu_i \leq \min \left(\sum_{i=1}^{k-1} \lambda_i, \sum_{i=1}^{k+1} \lambda_i \right) \text{ for all } 2 \leq k \leq n-2. \quad (2)$$

In one direction, the only non-trivial statement is that $2 \sum_{i=1}^p \lambda_i \geq \sum_{i=1}^{p-1} \lambda_i + \sum_{i=1}^{p+1} \lambda_i \geq 2 \sum_{i=2}^p \nu_i$, where we used $2\lambda_p \geq \lambda_p + \lambda_{p+1}$. In the other direction, we check $\sum_{i=2}^k \nu_i \leq \sum_{i=2}^{\min(p, k+2)} \nu_i \leq \sum_{i=1}^{k+1} \lambda_i$ for $k \leq p-1$ using $\nu_2 \geq \dots \geq \nu_p \geq 0$, and similarly for $p+1 \leq k$ using $0 \geq \nu_{p+1} \geq \dots \geq \nu_{n-1}$.

Now, $\lambda_{\ell-1} + \lambda_\ell \geq 0 \geq \lambda_\ell + \lambda_{\ell+1}$ implies $\lambda_{\ell-2} \geq \lambda_{\ell-1} \geq \lambda_{\ell-1} + \lambda_\ell + \lambda_{\ell+1} \geq \lambda_{\ell+1} \geq \lambda_{\ell+2}$, so μ is a dominant weight of \mathfrak{g}' . It is radical because $\sum_{i=2}^{n-1} \mu_i = \sum_{i=1}^n \lambda_i = 0$. Furthermore, μ saturates all bounds (2) (with ν replaced by μ), as seen using $\lambda_k + \lambda_{k+1} \geq 0$ or ≤ 0 for $k < \ell$ or $k \geq \ell$ respectively. In particular, we deduce that μ is among the weights of $V_\lambda^{(0, \bullet)}$, hence of some irreducible summand $V_\nu \subset V_\lambda^{(0, \bullet)}$. The dominant radical weight ν of \mathfrak{g}' must also obey (2), namely $\sum_{i=2}^k \nu_i \leq \sum_{i=2}^k \mu_i$ (due to the aforementioned saturation). Since μ is dominant and among weights of V_ν , we must also have $\langle \nu - \mu, \varpi'_k \rangle \geq 0$ for all fundamental weights ϖ'_k of \mathfrak{g}' . This is precisely the reverse inequality $\sum_{i=2}^k \nu_i \geq \sum_{i=2}^k \mu_i$. We conclude that $\mu = \nu$. \square

Proof for B_n , C_n , D_n . Let $\varepsilon = 1$ for C_n and otherwise $\varepsilon = 2$. Again, a dominant radical weight $\nu = \sum_{i=1+\varepsilon}^n (\nu_i e_i)$ of \mathfrak{g}' is a weight of $V_\lambda^{(0, \bullet)}$ if and only if all $\langle \lambda - \tilde{\nu}, \varpi_k \rangle \geq 0$, where $\tilde{\nu}$ is the unique dominant weight of \mathfrak{g} in the Weyl orbit of ν . In all three cases, $\tilde{\nu} = \sum_{i=1}^{n-\varepsilon} |\nu_{i+\varepsilon}| e_i$, where the absolute value is only useful for the ν_n component for D_n . The condition is worked out to be $\sum_{i=1}^k \lambda_i \geq \sum_{i=1}^k |\nu_{i+\varepsilon}|$ for $1 \leq k \leq n-\varepsilon$. It is easy to check that μ is a dominant radical weight of \mathfrak{g}' and that it obeys these conditions.

Consider now an irreducible summand $V_\nu \subset V_\lambda^{(0, \bullet)}$ that has μ among its weights. On the one hand, $\sum_{i=1}^k \lambda_i \geq \sum_{i=1}^k |\nu_{i+\varepsilon}|$ for $1 \leq k \leq n-\varepsilon$, where the absolute value is only useful for ν_n for D_n . On the other hand, $\langle \nu - \mu, \varpi'_k \rangle \geq 0$ for all dominant weights ϖ'_k of \mathfrak{g}' (in particular $e_{1+\varepsilon} + \dots + e_{k+\varepsilon}$), so $\sum_{i=1}^k \nu_{i+\varepsilon} \geq \sum_{i=1}^k \mu_{i+\varepsilon}$ for $1 \leq k \leq n-\varepsilon$. The two inequalities fix $\nu_i = \mu_i$ for all i , except $i = n$ when $\eta = 1$ for C_n and D_n : in these cases, we conclude by using $\sum_i \nu_i - \sum_i \mu_i \in 2\mathbb{Z}$, since both weights are radical. \square

Lemma 5.2. For any $\lambda \in \mathcal{I}_{\mathfrak{g}}^{\text{Table}}$, there exists $\nu \in \mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$ such that the representation of \mathfrak{g}' with highest weight ν is a subrepresentation of $V_\lambda^{(\bullet, 0)}$.

Proof for A_{n-1} with $n \geq 7$. If the weight μ defined by Lemma 5.1 is in $\mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$, we are done. Otherwise, $\mu = m(n-2)\varpi'_1$ or $\mu = m(n-2)\varpi'_{n-3}$. By symmetry under $e_i \mapsto -e_{n+1-i}$, it is enough to consider the second case, so $\mu = \sum_{i=2}^{n-1} \mu_i e_i$ with $\mu_i = m$ for $2 \leq i \leq n-2$ and $\mu_{n-1} = -m(n-3)$. By the construction of μ in terms of λ , we know that there exists $1 < \ell < n$ such that $\mu_i = \lambda_{i-1} \geq 0$ for $1 < i < \ell$ and $\lambda_{\ell-1} \geq \mu_\ell = \lambda_{\ell-1} + \lambda_\ell + \lambda_{\ell+1} \geq \lambda_{\ell+1}$ and $\mu_i = \lambda_{i+1} \leq 0$ for $\ell < i < n$. Since only $\mu_{n-1} \leq 0$, the last constraint sets $\ell = n-2$ or $\ell = n-1$. In the first case, we learn that $\lambda_i = m$ for $1 \leq i \leq n-4$, but also that $m = \mu_{n-3} = \lambda_{n-4} \geq \lambda_{n-3} \geq \mu_{n-2} = m$ so $\lambda_{n-3} = m$, thus $\lambda_{n-2} + \lambda_{n-1} = \mu_{n-2} - \lambda_{n-3} = 0$, and we can change ℓ to $n-1$ (recall that the choice of ℓ such that $\lambda_{\ell-1} + \lambda_\ell \geq 0 \geq \lambda_\ell + \lambda_{\ell+1}$ does not affect μ). We are thus left with the case $\ell = n-1$, where $\lambda_i = m$ for $1 \leq i \leq n-3$, and where $\lambda_{n-2} + \lambda_{n-1} \geq 0$ and $m = \lambda_{n-3} \geq \lambda_{n-2}$.

We conclude that $\lambda = m(\sum_{i=1}^{n-3} e_i) + le_{n-2} + ke_{n-1} - ((n-3)m + l + k)e_n$ for integers $m \geq l \geq |k|$, with the exclusion of the case $k = l = m$ because of $\lambda \in \mathcal{I}_{\mathfrak{g}}^{\text{Table}}$. For these dominant weights, the particular irreducible summand $V_\mu \subset V_\lambda^{(0, \bullet)}$ of Lemma 5.1 is w_0 -pure, but we now determine another summand that is w_0 -mixed. The branching rules from \mathfrak{g} to $\mathfrak{f} \times \mathfrak{g}'$ can easily be deduced from the classical branching rules from $\mathfrak{gl}(n, \mathbb{C})$ to $\mathfrak{gl}(n-1, \mathbb{C})$ (given for example in [5, Theorem 9.14]). Namely, consider the representation of $\mathfrak{gl}(n, \mathbb{C})$ on V_λ such that the diagonal $\mathfrak{gl}(1, \mathbb{C})$ acts by zero. Then $V_\lambda^{(0, \bullet)} \subset V_\lambda$ is the subspace on which all three $\mathfrak{gl}(1, \mathbb{C})$ factors of $\mathfrak{gl}(1, \mathbb{C}) \times \mathfrak{gl}(n-2, \mathbb{C}) \times \mathfrak{gl}(1, \mathbb{C}) \subset \mathfrak{gl}(n, \mathbb{C})$ act by zero. It decomposes into irreducible representations of $\mathfrak{g}' \cong \mathfrak{sl}(n-2, \mathbb{C})$ with highest weights $\lambda'' = \sum_{i=2}^{n-1} \lambda''_i e_i$ such that $\sum_i \lambda''_i = 0$ and such that there exists $\lambda'_1, \dots, \lambda'_{n-1}$ with $\sum_i \lambda'_i = 0$, and $\lambda_1 \geq \lambda'_1 \geq \lambda_2 \geq \dots \geq \lambda'_{n-1} \geq \lambda_n$ and $\lambda'_1 \geq \lambda''_2 \geq \lambda'_2 \geq \dots \geq \lambda''_{n-1} \geq \lambda'_{n-1}$. Concretely we

focus on the summand where $(\lambda_i)_{i=1}^n$ and $(\lambda'_i)_{i=1}^{n-1}$ and $(\lambda''_i)_{i=2}^{n-1}$ all take the form $(m, \dots, m, l, k, -S)$ where S is the sum of all other entries, with a different number of m in each case. Given that we started in rank at least 6, the resulting weight λ'' cannot be a multiple of a fundamental weight, hence $\lambda'' \in \mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$. \square

Proof for B_n with $n \geq 5$, C_n with $n \geq 6$, D_n with $n \geq 7$. We recall $\varepsilon = 1$ for C_n and otherwise $\varepsilon = 2$. If the weight μ defined by Lemma 5.1 is in $\mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$, we are done. Otherwise, μ can take a few possible forms because we took $\text{rank } \mathfrak{g}' = n - \varepsilon$ large enough to avoid special values listed in Table 1. Note that, by construction of $\mu = \sum_{i=1+\varepsilon}^n \mu_i e_i$, we have $\lambda_i = \mu_{i+\varepsilon}$ for $1 \leq i \leq n-3$ for D_n and $1 \leq i \leq n-2$ for B_n and C_n . The possible dominant radical weights not in $\mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$ are as follows.

- First, $\mu = m\varpi'_1 = me_{1+\varepsilon}$, where additionally m is even for C_n and D_n . Then $\lambda_1 = \mu_{1+\varepsilon} = m$ and $\lambda_2 = \mu_{2+\varepsilon} = 0$ fix $\lambda = m\varpi_1$, which is not in $\mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$.
- Second, $\mu = 2\varpi'_2 = 2(e_{1+\varepsilon} + e_{2+\varepsilon})$, except for D_n with odd n . Then $\lambda_1 = \lambda_2 = 2$ and $\lambda_3 = 0$ fix $\lambda = 2\varpi_2$, which is not in $\mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$.
- Third, $\mu = \sum_{i=1}^m e_{i+\varepsilon}$ for some $m \geq 2$, except for D_n with odd n , and where additionally m is even for D_n with even n and for C_n . Since $\lambda_1 = \mu_{1+\varepsilon} = 1$ and λ is dominant, we deduce that either $\lambda_1 = \dots = \lambda_p = 1$ for some p and all other $\lambda_i = 0$, or (only in the D_n case) $\lambda_1 = \dots = \lambda_{n-1} = 1 = -\lambda_n$. These weights λ are not in $\mathcal{I}_{\mathfrak{g}'}^{\text{Table}}$. Note, of course, that p and m are not independent; for example for $m \leq n-3$ one has $m = p$.
- Fourth, $\mu = (\sum_{i=1}^{n-3} e_{i+2}) - e_n$ for D_n with even n . This weight is not of the form of Lemma 5.1 because one would need $-1 = \lambda_{n-2} - \eta \geq -\eta \geq -1$; hence $\eta = 1$ and $\lambda_{n-2} = 0$, so $\lambda_{n-1} = \lambda_n = 0$ so $1 = \eta \equiv \lambda_{n-1} + \lambda_n = 0 \pmod{2}$. \square

Acknowledgements

We would like to thank Ernest Vinberg, who suggested the crucial idea of using Theorem 4.1 to prove Lemma 4.2; as well as Jeffrey Adams and Yifan Wang for some interesting discussions. The second author of the present paper was supported by the National Science Foundation grant DMS-1709952.

References

- [1] Y. Agaoka, E. Kaneda, On local isometric immersions of Riemannian symmetric spaces, *Tohoku Math. J.* 36 (1984) 107–140.
- [2] N. Bourbaki, *Éléments de mathématique, groupes et algèbres de Lie : chapitres 4, 5 et 6*, Hermann, 1968.
- [3] B.C. Hall, *Lie Groups, Lie Algebras and Representations: An Elementary Introduction*, second edition, Springer International Publishing, 2015.
- [4] J. Humphreys, Weyl group representations on zero weight spaces, <http://people.math.umass.edu/~jeh/pub/zero.pdf>, 2014.
- [5] A.W. Knapp, *Lie Groups Beyond an Introduction*, Birkhäuser, 1996.
- [6] V.L. Popov, E.B. Vinberg, *Invariant Theory*, Springer, 1994.
- [7] I. Smilga, Proper affine actions: a sufficient criterion, submitted, available at [arXiv:1612.08942](https://arxiv.org/abs/1612.08942).
- [8] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), 2017, <http://www.sagemath.org>.
- [9] The Sage Developers, Branching rules, http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/branching_rules.html.
- [10] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE, a package for Lie group computations, <http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/>, 2000.