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RESUME

Pour tout groupe de Lie complexe simple, nous classifions les représentations irréductibles
p de dimension finie telles que le plus long mot wy du groupe de Weyl agisse non
trivialement sur I'espace de poids nul. Parmi les représentations irréductibles dont zéro
est un poids, wy agit par £1d si et seulement si le plus haut poids de p est un multiple
d’un poids fondamental, avec un coefficient plus petit qu'une borne qui dépend du groupe
et du poids fondamental.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main theorem

Consider a reductive complex Lie algebra g. Let G be the corresponding simply-connected Lie group.

We choose in g a Cartan subalgebra h. Let A be the set of roots of g in h*. We call A the root lattice, i.e. the abelian
subgroup of h* generated by A. We choose in A a system A¥ of positive roots; let IT = {«q, ..., a;} be the set of simple
roots in At. Let @1, ..., @w; be the corresponding fundamental weights. Let W := Nz(h)/Zz(h) be the Weyl group, and let
wo be its longest element (defined by wo(AT) = —AT).

E-mail addresses: blefloch@princeton.edu (B. Le Floch), ilia.smilga@normalesup.org (I. Smilga).
URL: http://gauss.math.yale.edu/~is362/index.html (I. Smilga).
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For each simple Lie algebra, we call (e1, ez, ...) the vectors called (¢1, €2, ...) in the appendix to [2], which form a con-
venient basis of a vector space containing h*. Throughout the paper, we use the Bourbaki conventions [2] for the numbering
of simple roots and their expressions in the coordinates e;.

In the sequel, all representations are supposed to be complex and finite-dimensional. We call p, (resp. V) the irreducible
representation of g with highest weight A (resp. the space on which it acts). Given a representation (p, V) of g, we call V*
the weight subspace of V corresponding to the weight A.

Definition 1.1. We say that a weight A € h* is radical if A € A.

Remark 1. An irreducible representation (o, V) has non-trivial zero-weight space V© if and only if its highest weight is
radical.

Definition 1.2. Let (p, V) be a representation of g. The action of W = Nz (h)/Zz(h) on VO is well-defined, since V° is by
definition fixed by b, hence by Z(h). Thus wo induces a linear involution on VO, Let p (resp. q) be the dimension of the
subspace of VO fixed by wyq (resp. by —wyg). We say that (p,q) is the wo-signature of the representation p and that the
representation is:

- wo-pure if pq =0 (of sign +1 if ¢ =0 and of sign —1 if p =0);
- wo-mixed if pq > 0.

Remark 2. Replacing G by any other connected group G with Lie algebra g (with a well-defined action on V) does not
change the definition. Indeed the center of G is contained in Zx(bh), so acts trivially on vO.

Our interest in this property originates in the study of free affine groups acting properly discontinuously (see [7]). We
prove the following complete classification. To the best of our knowledge, this specific question has not been studied before;
see [4] for a survey of prior work on related, but distinct, questions about the action of the Weyl group on the zero-weight
space.

Theorem 1.3. Let g be any simple complex Lie algebra; let r be its rank. For every index 1 < i <r, we denote by p; the smallest positive
integer such that p;w; € A. For every such i, let the “maximal value” m; € Z=o U {oo} and the “sign” o; € {£1} be as given in Table 1
on page 854.

Let X be a dominant weight.

(i) If A ¢ A, then the wo-signature of the representation p;, is (0, 0).
(ii) If » = kp;w; for some 1 <i <rand 0 <k <m;, then p;_ is wo-pure of sign (o})¥.
(iii) Finally, if A € A but is not of the form . = kp;w; forany 1 <i <r and 0 <k <m;, then p; is wo-mixed.

Example 1. Any irreducible representation of SL(2, C) is isomorphic to S¥C2 (the k-th symmetric power of the standard
representation) for some k € Z=q. Its wg-signature is (0,0) if k is odd, (1,0) if k is divisible by 4 and (0, 1) if k is 2
modulo 4. This confirms the A; entries (p1,m1,01) = (2,00, —1) of Table 1.

Table 1 also gives the values of p;. These are not a new result; they are immediate to compute from the known descrip-
tions of the simple roots and fundamental weights (given e.g. in [2]).

Point (i) is an immediate consequence of Remark 1.

For point (ii), we show in Section 3 that certain symmetric and antisymmetric powers of defining representations of
classical groups are wo-pure, and that almost all representations listed in point (ii) are sub-representations of these powers.
The finitely many exceptions are treated by an algorithm described in Section 2.

For point (iii), we prove in Section 4 that the set of highest weights of wo-mixed representations of a given group is an
ideal of the monoid of dominant radical weights. For any fixed group, this reduces the problem to checking wg-mixedness
of finitely many representations. In Section 5, we immediately conclude for exceptional groups and for low-rank classical
groups by the algorithm of Section 2; we proceed by induction on rank for the remaining classical groups.

2. An algorithm to compute explicitly the wy-signature of a given representation
Proposition 2.1. Any simple complex Lie group G admits a reductive subgroup S whose Lie algebra is isomorphic to s{(2, C)* x Ct,
where (t, s) is the wq-signature of the adjoint representation of G, and whose wq element is compatible with that of G, in the sense

that some representative of the wq element of S is a representative of the wq element of G. This subgroup S can be explicitly described.

Note that s+t =r (the rank of G) and that t = 0 except for A, (t = L%J), Dontq (t=1) and Eg (t =2).
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Table 1

Values of (p;, mj, o7) for simple Lie algebras. Theorem 1.3 states that among irreducible representations with a highest weight A
that is radical, only those with 2 of the form kp;z; with k <m; are wo-pure, with a sign given by oik. We write N.A. for o; sign
entries that are not defined due to m; = 0. Since A; ~ By >~ C; and By ~ C; and A3z =~ D3, the results match up to reordering

simple roots (namely reordering i =1,...,r).
Values of i and r Di m; o Values of i Di m; o
i=lorr r+1 00 (=1)Lr+1/2] E i=1,3,5,6 3 0 NA.
6 .
Arx1 oy — " ~ 11 i=2,4 1 0 NA.
<t<r r>3 gd@rth 0 NA. i=1 1 2 -1
1 1 1 - i=25 2 0 NA
5 - 5 E7 i=3,4 1 0 NA.
i= 1 =
By ! r> (—1yi-lir2) i=6 1 1 +1
- 2<i<r 1 1 i=7 2 1 -1
i=r r=1,2 5 00 i= 1 1 +1
- r>2 1 Eg 1<i<8 1 0 N.A.
=8 1 2 -1
i=1 2 0 -1 !
i=1 1 2 -1
i=2 r=2 1 © Fy  i=2.3 1 0 NA
Crat r>2 2 i=4 12 +1
i=r=3 1 -1 X
i G i=1,2 1 2 -1
iodd >2 >3 2 0 NA. 2
. i=r=4 2
i even > 2 r>4 1 1 +1
i=1 2 00 +1
Dy>3 . i even 1
I odd 1<i<r-—1 i odd 5 0 N.A.
i r=3 [e%s) +1
i=r—torr 3 4 0 NA
i=1 2 o] +1
i=2 1 2 -1
I’Dg/‘én 2<i<r—1 i odd 2 0 NA.
i even 1 1 (-1)i/2
P r=4 oo 2
i=r—1lorr r>4 2 1 (-1)
Table 2
Sets of strongly orthogonal roots that span the vector space (h*)~"°. We chose them among the positive roots.
An {ei —enjo—i | 1 <i< [(n+1)/2]} Ee  {—e1+es, —ex+es, £1(e1+es+es+es)+ S(es—es—es+es))
Bon {ezic1 £ez |1 <i<n} E7  {Zeq +ey, +e3 +eyq, tes +eg, —e7 +eg)
Bont1  {e2i1Eezi |1<i<n}U{eamt1} Es  {Le1+ez, +e3 +es, tes +ep, Le7 +eg)
Cn {2e; |1 <i<n} F4 {e1 £ ey, e3 tes}
Dy {e2ic1 £ez |1 <i<|n/2]} G2 f{e1—e2, —e1 —ez +2e3}

Proof. Let (h*)~"o be the —1 eigenspace of wg. Recall that two roots o and B are called strongly orthogonal if (e, B) =0
and neither @ 4+ 8 nor @ — 8 is a root. Table 2 exhibits pairwise strongly orthogonal roots {a1, ..., s} C A spanning (h*)~ "o
as a vector space. (Our sets are conjugate to those of [1], but these authors did not need the elements wg to match.) We
then set

s=ho@ (e e ),

i=1

where g% denotes the root space corresponding to ¢. This is a Lie subalgebra of g, as follows from [g%, g?1 C g®*# and from
strong orthogonality of the «;. It is isomorphic to sl(2, C)* x C!, because it has Cartan subalgebra b of dimension r =s +t
and a root system of type Aj. We define S to be the connected subgroup of G with algebra s.

Let o; := exp[%(Xai —Yy)1 €S, where for every «, X, and Y, denote the elements of g introduced in [3, Theorem 7.19].
We claim that o :=[]; 07 is a representative of the wg element of S and of the wq element of G. By [3, Proposition 11.35],
0; is a representative of the reflection sq,, which shows the first statement. Now since the «; are orthogonal, the product of
Sq; acts by —Id on their span (h*)~"° and acts trivially on its orthogonal complement, like wo. O

Then the wp-signature of any representation p of G is equal to that of its restriction p|s to S. We use branching rules
to decompose p|s = ®;p; into irreducible representations of S. The total wg-signature is then the sum of those of the p;.
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Each p; is a tensor product p; 1 ® --- ® pis ® pi b, Where p; j for 1 < j <s is an irreducible representation of the factor
sj~sl(2,C), and pj ap is an irreducible representation of the abelian factor isomorphic to C'. The wg-signature of p; is
then the “product” of those of these factors, according to the rule (p,q) ® (p’,q") = (pp’ +qq’, pq’ +qp’). The wp-signatures
of all irreducible representations of sl(2, C) have been described in Example 1; the wo-signature of p; ap is just (1, 0) if the
representation is trivial and (0, 0) otherwise.

Branching rules are provided by several software packages. We implemented our algorithm separately in LiE [10] and in
Sage [8]. In Sage, we used the Branching Rules module [9], largely written by Daniel Bump.

3. Proof of (ii): that some representations are wg-pure

We must prove that representations of highest weight A = kp;@;, k <m; are wqg-pure of sign O’,-k (with data pj, m;j, o;
given in Table 1). We denote by [J the defining representation of each classical group (C"*! for A,, C?**! for B,, C*" for
Cp and D), and introduce a basis of it: for every € € {—1,0, 1} and i such that ¢e; (or for A, its orthogonal projection onto
h*) is a weight of [J, we call h; some nonzero vector in the corresponding weight space.

For exceptional groups, all m; are finite, so the algorithm of Section 2 suffices; we also use it for the representations
with highest weight 2zo3 of C3 and 2wy of Cy4.

Most other cases are subrepresentations of S™1 of A, or D41, or one of ™ or A™ or S2(A20) of B, or C, or Doy,
all of which will prove to be wy-pure. Here S™p and A™p denote the symmetric and the antisymmetric tensor powers
of a representation p. The remaining cases are mapped to these by the isomorphisms B, >~ C; and A3 >~ D3 and the outer
automorphisms Z/27Z of A, and &3 of Dgy.

For A, =sl(n+ 1,C), the defining representation is (1 = C"*! = Span{hy, ..., h;,1}. A representative Wg € SL(n + 1, C)
of wo acts on O by hj > hpio—j for 1 < j<n+1 and by hyy1 = o1hy where oy = (=1)LO+D/2] | the sign being such
that detwg = +1. We consider the representation SK"*D[. Its zero-weight space V° is spanned by symmetrized tensor
products hj, ®--- ® hj, ., In which each h; appears equally many times, namely k times. Hence, V0 is one-dimensional

(the representation is thus wg-pure) and spanned by the symmetrization of v = h?" ® h?" R ® h;@f]. We compute

Wo-Vv= hS?L R h?k ® (o1h1)®¥, whose symmetrization is equal to al" times that of v; this gives the announced sign
ok,

For Dyp41 =s0(4n+2, C), the defining representation is [ = CAnt2 = Spanfhyj|1<j<2n+1} and wg maps hij > h;
for 1 < j <2n, but fixes hton+1). The zero-weight space VO of S0 is spanned by symmetrizations of hjy ®h_j; ®---®
hj, ® h_j,, each of which is fixed by wg. The representation is wo-pure with o1 =41, as announced.

The cases of B, =so(2n+1,C), C, =sp(2n, C) and Dy even = s0(2n, C) are treated together:

- Bp has O=C?*! =Span{h; | —n < j <n} and Wg acts by hj — h_; for j# 0 and ho > (—1)"ho;
- CphasO=C* =Span{hy;|1<j<n}and wq acts by hj+— h_;j and h_; — —h; for j > 0;
- Dy has O=C?*" =Span{h+;|1< j<n} and, for n even, wg acts by hj+~ h_; for all j.

First consider A™ and S™. Their zero-weight spaces are spanned by (anti)symmetrizations of hj, ® h_j, ® ---®hj, ®
h_j ® h®! where 2k + [ = m. Each of these vectors is fixed by Wy up to a sign that only depends on the group, the
representation, and on (k, [) or equivalently (I, m). For C, and D, we have [ =0 so for each m the representation is wq-pure,
with a sign (—1)* for $2¥0 of C, and A%O of Dy, and no sign otherwise. For A™O of B, we note that I € {0, 1} is fixed by
the parity of m so the representation is wo-pure; its sign is (—1)M** = (=1)"™+m/2] = .. For $™0O of By, only the parity
of I is fixed, but the sign (—1)" = (—1)" = o" still only depends on the representation; it confirms the data of Table 1.
Finally, consider the representation S%(A200). Its zero-weight space is spanned by symmetrizations of (hjAnh_j) ® (hg Ah_y)
and (hj Ah) ® (h—j Ah_y) all of which are fixed by wo.

4. Cartan product: wo-mixed representations form an ideal

Let G be a simply-connected simple complex Lie group and N a maximal unipotent subgroup of G. Define C[G/N]
the space of regular (i.e. polynomial) functions on G/N. Pointwise multiplication of functions is G-equivariant and makes
C[G/N] into a C-algebra without zero divisors (because G/N is irreducible as an algebraic variety).

Theorem 4.1 ([6, (3.20)-(3.21)]). Each finite-dimensional representation of G (or equivalently of its Lie algebra g) occurs exactly once
as a direct summand of the representation C[G/N]. The C-algebra C[G/N] is graded in two ways:

- by the highest weight A, in the sense that the product of a vector in V, by a vector in V, liesin V;,,, (where V, stands here for
the subrepresentation of C[G/N] with highest weight A);

- by the actual weight 1, in the sense that the product of a weight vector with weight X by a weight vector with weight w is still a
weight vector, with weight A + (.
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For given A and u, we call Cartan product the induced bilinear map ©: Vy x V;, = V4. Given ue V, and v eV,
this defines u © v € V4, as the projection of u® ve Vy ® V, =V,4, &.... Since C[G/N] has no zero divisor, u ©@ v #0
whenever u #£ 0 and v # 0. We deduce the following.

Lemma 4.2. The set of highest weights of wo-mixed irreducible representations of g is an ideal Z, of the additive monoid M of
dominant elements of the root lattice.

Proof. Consider a wo-mixed representation V; and a representation V, whose highest weight is radical. We can choose
u4 and u_ in the zero-weight space of V, such that wgo-u; =u4 and wp-u_ = —u_, and choose v in the zero-weight
space of V, such that wg - v ==v for some sign. Then u; © v and u_ © v are non-zero elements of the zero-weight space
of V4, on which wq acts by opposite signs. O

5. Proof of (iii): that other representations are wo-mixed

Let Igab'e be the set of dominant radical weights that are not of the form A = kp;w;, k <m; (with data p;, m; given in

Table 1). Observe that Z?!¢ is an ideal of M. In Section 3 we showed Z,; C Z?"!. We now show that Z}*"'¢ C 7, namely
that V, is wg-mixed for radical A other than those described by Table 1. By Lemma 4.2, it is enough to show this for the
basis of Z12"¢. For any given group, Z1?"'® has a finite basis, so we simply used the algorithm of Section 2 to conclude for
A<s, B<4, C<5, D<g and all exceptional groups.

Now let g be one of A.s5, B~4, C~5, D~g and A be in Zgable. We proceed by induction on the rank of g.

Define as follows a reductive Lie subalgebra § x g’ C g:

- if g =sl(n, C), we choose f x g’ ~ (g[(l, C) x sl(2, (C)) x sl(n — 2, C), where { has the roots +(e1 —ey) and g’ has the
roots £(e; —e;) for 1 <i < j<n;

- if g=so0(n, C), we choose f x g’ >~ s0(4, C) x so(n — 4, C), where § has the roots e +e; and g’ has the roots +e; te;
for3<i<j<n;

- if g==sp(2n, C), we choose f x g’ ~sp(2, C) x sp(2n — 2, C), where f has the roots +2eq and g’ has the roots +e; +e;
for2<i<j<nand £2e; for 2 <i<n.

In all three cases, f x g’ and g share their Cartan subalgebra, hence restricting a representation V of g to f x g’ does not
change the zero-weight space V°. Additionally, consider any connected Lie group G with Lie algebra g: then the wq ele-
ments of the connected subgroup of G with Lie algebra f x g’ and of G itself coincide, or more precisely have a common
representative in G, because the Lie algebras have the same Lie subalgebra s defined in Proposition 2.1. It follows that a
representation of g is wo-mixed if and only if its restriction to f x ¢’ is.

Next, decompose V) =, (Ve ® V,,) into irreducible representations of f x g’, where & and p, are dominant weights
of f and g¢’, respectively. Consider the subspace

Vs =PV ® V) Vs 1)
L

fixed by the Cartan algebra of f. It is a representation of g’ whose zero-weight subspace coincides with that of V,. The
direct sum obviously restricts to radical &, and dim Vg =1 because we chose f to be a product of sl(2,C) and gl(1, C)

factors. Thus the wo element of g acts on Vg ® V,, in the same way, up to a sign, as the wq element of g’ acts on V.
Lemma 5.2 shows that Vio") has an irreducible subrepresentation V, such that v € Ig,able. By the induction hypothesis,

V, is then wp-mixed hence wqg has both eigenvalues 1 on the zero-weight space Vf C Vio’” , namely V, is wo-mixed.

This concludes the proof of Theorem 1.3.

There remains to state and prove two lemmas. Let g be A;_1, By, Cy or D, and let A be a dominant radical weight of g.
It can then be expressed in the standard basis eq,...,e, as A = 2?21 Aie; where A1 > Xy > --- > ), are integers subject
to: for Ay—1, D> ;4 =0; for By, A5 > 0; for Cy, An >0 and Y_; A; € 2Z; for Dy, An—1 > |An| and )_; A; € 2Z. In addition, let
f x g’ C g be the subalgebra defined above. We identify weights of g’ with the corresponding weights of g (acting trivially
on the Cartan subalgebra of ). Note that this introduces a shift in their coordinates: the dual of the Cartan subalgebra of g’
is spanned by a subset of the vectors e; (corresponding to g) that starts at e, or es, not at e; as expected.

Lemma 5.1. Let (4 be the dominant weight of g’ defined as follows:

- for Ap—1, = (Zfz_l] Aieiy1) + Aeee 4+ (Xi_pyq Aiei—1) where 1 < € < n is an index such that kg—1 + A¢ > 0> Ay + Agq
(when several £ obey this, i does not depend on the choice);
~ for Bn, o= Y177 hieiso;
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- for Cp, 0 = Z’i:]] Aieiy1 — nep where n € {0, 1} obeys n = 1, (mod 2);

- for Dy, u = Z?;f Ai€iy2 — nep where 1) € {0, 1} obeys n = Apt1 + An (mod 2).
Then V, is a sub-representation of the space V;O”) defined earlier.
Proof for Ap,—q. Let v = Z;’;; vie; be a dominant radical weight of g'. The weight v is among weights of Vio") if and only
if it is among weights of V,. The condition is that (. — D, @) > 0 for all k, where ¥ is the unique dominant weight of g in
the orbit of v under the Weyl group of g.

Explicitly, U = (ZIPZT V1+1€i) + Z?:}H—Z vi_1e;, where p is any index such that v, > 0> v,41. Then the condition is

K =Yy for 1<k<pand Y 4 >=YP v and Y5 A = ¥ ) v for p <k <n. Let us show that this is
equivalent to

k—1 k+1

Zvlgmm(Zkl,ZA,) forall2<k<n-2 (2)

In one direction, the only non-trivial statement is that Zzp A > Zp_l ZP‘H A > ZZP v;, where we used 21, >

Ap + Ap+1. In the other direction, we check Z, Vi < me“’ k+2),

similarly for p+1 <k using 0> vpy1 >--- > vyp_1.

Now, Ap_1 +Xi¢e>0> Ay + )\.[+1 1mp1ies Ae—2 = hg—1 > A1+ Ag + Agp1 > Aggp1 = Aeg2, SO W is @ dominant weight
of g'. It is radical because Zl o Mi = Z?:l i = 0. Furthermore, p saturates all bounds (2) (with v replaced by w), as
seen using Ax + A1 >0 or <0 for k < £ or k > ¢ respectively. In particular, we deduce that p is among the weights of
Vﬁo"), hence of some irreducible summand V, C Vio’) . The dominant radical weight v of g’ must also obey (2), namely
ZE‘:Z Vi < Zifzz Mi (due to the aforementioned saturation). Since p is dominant and among weights of V,, we must also

have (v — ., @}) > 0 for all fundamental weights o, of g'. This is precisely the reverse inequality Zf:z v; > Z:‘;z Hi. We
conclude that u=v. O

Zkﬂ Aj for k<p—1using vy >--->v, >0, and

Proof for By, C,, Dy. Let ¢ =1 for C, and otherwise & = 2. Again, a dominant radical weight v = Z?=1+g(‘)i€i) of g is a
weight of Vio") if and only if all (A — VD, @y) > 0, where v is the unique dominant weight of g in the Weyl orbit of v. In
all three cases, V = Z’i:f |Vitelei, where the absolute value is only useful for the v, component for D,. The condition is
worked out to be Z{-;l Ai > Zifﬂ [Viye| for 1 <k <n—e¢. It is easy to check that w is a dominant radical weight of g’ and
that it obeys these conditions.

Consider now an irreducible summand V, C that has p among its weights. On the one hand, Zle Ai > Zi-‘:] [Vitel
for 1 <k <n— ¢, where the absolute value is only useful for v, for D,. On the other hand, (v — i, @’) > 0 for all dominant
weights @’ of ¢’ (in particular ejys + -+ + egre), SO Z, 1 Vige = Z, 1 Mite for 1 <k <n — ¢. The two inequalities fix
v; = wu; for all i, except i =n when n =1 for Cyp and Dy: in these cases, we conclude by using Y ; vi — >; i € 2Z, since
both weights are radical. O

©.9)
V}»

Lemma 5.2. For any A € Igable, there exists v € I;‘,’b’e such that the representation of g’ with highest weight v is a subrepresentation
of Vi"o).

Proof for A, with n > 7. If the weight © defined by Lemma 5.1 is in I;?b'e, we are done. Otherwise, ;1 =m(n — 2)w,

or u=m(n—2)w, _3- By symmetry under e; = —ep1, it is enough to consider the second case, so u = Z?;z] uie; with
mi=mfor 2 <i<n-—2 and up—1 = —m(n—3). By the construction of w in terms of A, we know that there exists 1 < ¢ <n
such that u;j =2xj_1>0for 1 <i< € and Ap—1 > g = Ag—1 +Ag + Aet1 > Agy1 and w; = Aiyq <0 for £ <i <n. Since only
Mn—1 <0, the last constraint sets £ =n — 2 or £ =n — 1. In the first case, we learn that A; =m for 1 <i <n — 4, but also
that m = p—3 = An—a > Ap—3 > [p—2 =M SO Ay—_3 =m, thus Ap—3 + Ap—1 = Un—2 — An—3 =0, and we can change ¢ ton —1
(recall that the choice of ¢ such that Ay_1 + Xy >0 > Ay + A¢41 does not affect w). We are thus left with the case £ =n—1,
where A; =m for 1 <i<n— 3, and where A;_2 +Ay—1 >0 and m = XAy_3 > Ap_2.

We conclude that 2 =m(}"} 13e1) +len—3 + kep—1 — ((n — 3)m + 1+ k)e, for integers m > [ > |k|, with the exclusion of

the case k =1 =m because of A € Igame. For these dominant weights, the particular irreducible summand V,, C V/{O") of
Lemma 5.1 is wo-pure, but we now determine another summand that is wo-mixed. The branching rules from g to f x g’ can
easily be deduced from the classical branching rules from gl(n, C) to gl(n — 1, C) (given for example in [5, Theorem 9.14]).
Namely, consider the representation of gl(n, C) on V, such that the diagonal gl(1, C) acts by zero. Then Vio’) C V, is the
subspace on which all three gI(l C) factors of gl(1,C) x gl(n — 2,C) x gl(1, (C) C gl(n, C) act by zero. It decomposes into
irreducible representations of g’ ~ sl(n—2, C) with hlghest weights A" = Y17, )L”el such that Z, A{ =0 and such that there
exists Aj, ..., A,_; with 3 ;Ai=0,and Ay =] =2y >--- >4, _; > Ag and 1] > )J’ A== )Jf > Ay _;. Concretely we
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focus on the summand where (A;){_, and ()»;)’17;11 and (A;/)’i:z] all take the form (m,...,m,l,k, —S) where S is the sum of
all other entries, with a different number of m in each case. Given that we started in rank at least 6, the resulting weight

A" cannot be a multiple of a fundamental weight, hence 1" € Ig;‘ble. o

Proof for B;, with n > 5, C,, with n > 6, D,, with n > 7. We recall € =1 for C, and otherwise ¢ = 2. If the weight u defined
by Lemma 5.1 is in Ig‘?b'e, we are done. Otherwise, w can take a few possible forms because we took rankg’ =n — ¢ large

enough to avoid special values listed in Table 1. Note that, by construction of u = 2?21 1e Mi€i, we have A;j = i, for
1<i<n-—3for Dpand 1 <i<n-—2 for B, and C,. The possible dominant radical weights not in I;?ble are as follows.

- First, u = mw| = mey4,, where additionally m is even for C; and Dp. Then A1 = p14, =m and Ay = pp4e =0 fix
). = marq, which is not in Igable.

- Second, u = 2w2/ =2(e14¢ + €2+¢), except for D, with odd n. Then A1 =A; =2 and A3 =0 fix A = 2w, which is not
in Zable,

- Third, u = Z,m:] ei+e for some m > 2, except for D, with odd n, and where additionally m is even for D, with even n
and for Cp. Since A1 = (t14¢ =1 and A is dominant, we deduce that either A1 =-.- =21, =1 for some p and all other
Ai =0, or (only in the D, case) Ay =--- = Ays_1 =1 = —A,. These weights A are not in Igab'e. Note, of course, that p
and m are not independent; for example for m <n — 3 one has m = p.

- Fourth, u = (er.:f ei+2) —ep for D, with even n. This weight is not of the form of Lemma 5.1 because one would need
—1=Ai_2—n>=-n>—1;hencen=1and A, =0,50 Ap_1 =2y =0s0 1=n=A_1+ A1, =0 (mod 2). O
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