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ABSTRACT

Processing high-volume, high-velocity data streams is an important
big data problem in many sciences, engineering, and technology
domains. There are many open-source distributed stream process-
ing and cloud platforms that offer low-latency stream processing
at scale, but the visualization and user-interaction components
of these systems are limited to visualizing the outcome of stream
processing results. Visual analysis represents a new form of anal-
ysis where the user has more control and interactive capabilities
either to dynamically change the visualization, analytics or data
management processes. VAStream provides an environment for big
data stream processing along with interactive visualization capabil-
ities. The system environment consists of hardware and software
modules to optimize streaming data workflow (that includes data
ingest, pre-processing, analytics, visualization, and collaboration
components). The system environment is evaluated for two real-
time streaming applications. The real-time event detection using
social media streams uses text data arriving from sources such as
Twitter to detect emerging events of interest. The real-time river
sensor network analysis project uses unsupervised classification
methods to classify sensor network streams arriving from the US
river network to detect water quality problems. We discuss imple-
mentation details and provide performance comparison results of
various individual stream processing operations for both stream
processing applications.
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1 INTRODUCTION

Streaming data from sensors, video and social media streams is
becoming increasingly common in many science, engineering and
industry segments especially with the prevalence of both low-cost
sensors and internet connectivity [1-3]. These high-velocity data
streams should be processed in near-real time. These streams may
also change with respect to the change in environment (i.e. volatil-
ity). There are several stream processing architectures and com-
mercial cloud platforms such as Amazon Kinesis ™, Google Data
Flow™, and Microsoft Azure™ stream analytics that provide in-
terfaces for users to both build and efficiently manage stream pro-
cessing workflows. There are still three main challenges from in
dealing with these data streams at the infrastructure (hardware
and software) level: 1) How to reduce the latency while achieving
high-throughput for end-to-end processing from data consumption
to visualization (2) How to adapt to changing workloads or failures,
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and also (3) How to provide flexibility in the infrastructure to adapt
to changing nature of data or user demands.

Visual analysis represents a form of analysis where the user
has more control over the visualization, analytics or data manage-
ment processes [4]. Achieving desirable performance for streaming
applications in terms of accuracy, latency or efficiency requires
optimization of many components including data engineering, ma-
chine learning techniques, and distributed processing components
[5-8]. A typical end-to-end pipeline for processing streaming data
includes pre-processing (to transform noisy data to clean data),
analysis (that includes statistical or machine learning techniques
or numerical simulations), storage, visualization, and user interac-
tion components. Many of these processes may be performed in
a distributed environment where the computational workload is
shared among several nodes [9-11]. There are many programming
frameworks such as Spark, Flink, Storm that facilitate in-memory
processing of various stream processing tasks [1, 12, 13]. These
existing systems offer low-latency stream processing at scale to
extract relevant information or knowledge from the data streams
that are presented to the user for visualization. Achieving end-to-
end latency while maintaining throughput still remains a challenge.
Also, many stream processing frameworks offer some adaptivity
in terms of changing workloads or failures at the infrastructure
level or application level. When dealing with streaming workloads
multi-dimensional and multi-relational (e.g: graph streams) data,
how to provide fault-tolerance and adaptivity remains a major re-
search challenge. Finally, with data streams there is volatility (i.e.
change in the nature of data). This volatility could be due to change
in data sources or change in data (e.g. change in distribution such
as concept drift) that requires changing models or adjusting the
parameters of the model. Providing more control to data scien-
tists in terms of the ability to change the data sources, processing
techniques, adjusting analytics or machine learning models and
visualizing techniques will help address some of the challenges.
For example, sampling data can have a huge impact on both the
model performance (in terms of accuracy), and computational per-
formance (i.e. latency, throughput), and resource cost. Similarly
choosing a model that needs to be updated frequently (i.e. a regres-
sion versus deep-learning model) or choosing features have similar
effect on both model and computational performance.

In this paper, we present the design, system architecture, and
performance results of VAStream: a visual analytics sandbox envi-
ronment for processing high-volume, high-velocity data streams.
The system is designed to support multiple big data projects as part
of the NSF Center for Visual and Decision Informatics [14]. We



Table 1: Hardware Configuration for VAStream

Node Type | Nodes | RAM (S;gle) HDD GPU
Visualization | 1 128 GB 3.2TB 2TB P6000
Analytics 1 448 GB 3.2TB 2TB 2x P100
Streaming 6 256 GB 3.2TB 2TB P100
Management | 3 128 GB N/A 10.8 TB | N/A
Storage 1 32 GB N/A 192TB | N/A
8xP100
Total 12 2272GB | 25.6 TB | 218 TB 1xP6000

present the overall hardware architecture, software stack, and clus-
ter management infrastructure to support stream processing and
visualization workflows. We discuss two different projects within
the context of this framework - namely event detection from social
media streams and classification of US river network streams. We
also discuss the different analysis and visualization tasks from the
user’s side inspired by the Manifold framework [15] and present
the performance measurements for these projects.

2 VASTREAM SYSTEM ARCHITECTURE

The goal of the VAStream system is to support (1) subscription to
multiple live data streams, (2) distributed in-memory stream pro-
cessing and analysis, (3) analytics and machine learning on data
streams, (4) visualization and user interaction across multiple de-
vices (i.e. browsers, Virtual Reality (VR) and multi-touch devices), (5)
cluster management tools to support monitoring, resource manage-
ment and interactive capabilities for users to change visualization,
analysis techniques (querying, pattern matching or unsupervised
machine learning) or data pre-processing modules. The overall sys-
tem architecture consists of both hardware and software to support
in-memory stream processing, analytics, visualization and interac-
tion with multiple devices.

2.1 Hardware

The instrument’s hardware is customized to support high-performance

stream processing, analytics operations, fast machine learning and
visualization of both static and continuous data streams. The major
design goals of the system are driven by the performance demands
of various ongoing big data related projects that fall in the visual
analytics category, and also the need for some customizability on
the system to run multiple analytics workloads while keeping a
standardized architecture.

The cluster consists of 11 dual socket Intel Broadwell based nodes.
These nodes are categorized as streaming, analytics, visualization,
and infrastructure nodes based on some customization of memory
or GPU’s. The streaming nodes are designed to perform basic data
cleaning and feature extraction on streaming data in near-real time.
The analytics node is equipped to handle large in-memory data
and trained models. The visualization node handles the real-time
rendering of visualizations based on the outputs generated from
the analytics node. Finally, the infrastructure nodes are dedicated
to handle the basic operation of the cluster and are responsible for
the resource management of the cluster.

All the nodes use Dell PE r730/xd motherboard and have 2x14-
core 2.4 GHz processor with DDR4-2440 RAM with 32Kb L2 cache
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Figure 1: Software Stack on VAStream

and 35MB (1.9 MB per core). The systems have NVMe SSD as
their primary storage to support low-latency data management
operations. There are 8 P100 GPU’s in total to support fast machine
learning for multiple users. Each of the GPU contains 3584 cores and
delivers over 9.3 TFLOPS of FP16 processing power. 2 of the GPU’s
are placed in the analytics node to support fast graph traversal
and deep learning. The analytics node has 448GB RAM to support
low-latency data access. The visualization node is equipped with a
P6000 GPU for fast rendering and visual layout generation. There
is also NFS storage to store large data sets. The NFS is primarily
used to store data for offline analysis rather than stream-processing.
The nodes are connected with a 10Gbps Ethernet connection. The
system is connected to the university’s science DMZ and has 40G
connectivity. Table 1 provides a the hardware of VAStream.

2.2 Software

Figure 1 shows the different components of VAStream software
stack. We used the standard Cloudera stack to further customize the
system [16]. Cloudera provides many tools and packages to manage
a big data cluster. Cloudera Manager provides basic functionality
to configure the cluster, monitor the resources, jobs and health of
the system, track and manage resources, and diagnose any issues
with the cluster [17]. We customized our cluster configuration
to be suitable for stream processing. First, the HDFS file system
is not used for stream processing as this adds additional latency.
Second, several open source data management tools were installed
in the data storage layer to serve each of the stream processing,
analysis and visualization applications. Third, we developed in-
house libraries to support stream processing, analytics, visualization
and user interaction across multiple device.

The streaming data is originally served by multiple streaming
data sources through RSS or JSON feeds which are aggregated by
Kafka before being sent to VAStream. The VAStream system could
consume multiple data streams into the data ingestion layer. The
type of data that is currently consumed include weather, river net-
work, live video, social media streams. But this could potentially
consume multiple types of data streams relevant to infrastructures,
traffic, and disasters. Kafka provides basic light weight stream pro-
cessing such as filtering and aggregation on these streams. For
example, one may want to create a new tuple by joining two differ-
ent streams such as rainfall data and water stage sensor data from
USGS.



The system supports multiple stream processing frameworks,
namely Spark, Flink and Storm [1, 12, 13]. There are two cate-
gories of streaming, namely native streaming that does continu-
ous processing of streams as they arrive and processing data in
micro-batchs. Native streaming is typically applied for event-based
processing, and microbatch-based processing involves processing
few records every few seconds. Each streaming framework has its
own advantages and offer trade-offs in terms of performance and
features [2]. Spark is micro-batch based streaming, whereas Storm
and Flink are native stream-processing frameworks. The primary
advantage of Spark is wide-spread adoption and integration with
several machine learning packages and data management tools.
Cloudera has the ability to manage multiple streaming jobs at the
same time. Our use cases are limited to Spark streaming in this
paper. The streaming applications use various pre-processing &
transformation libraries for data transformations prior to analysis.
For example, transforming Twitter streams to features required for
machine learning models (applied for sentiment analysis or event
detection) requires human-written text to be translated to machine
readable form. Similarly, streaming data, whether it is time-series
data or video data, requires libraries for filtering, sampling, and
transformations. The Analytics packages on VAStream has various
machine learning libraries. MLib for instance has several machine
learning algorithms such as classification, regression, decision trees,
clustering, etc. and is the most popular machine learning package
for Spark. Many of our ongoing projects are graph-based. GraphX
and Gelly provide graph processing on streaming graphs for Spark
and Flink respectively. There are also several visualization libraries
for graph-layout, VR-based visualization and multi-touch interac-
tion. In addition to the existing machine learning libraries, VAS-
tream has custom-built general purpose pre-processing, analysis,
and visualization applications that can be used by the user.

The Data storage layer provides storage for low latency streaming
and visualization pipelines. The in-memory data-storage is handled
through a combination of Redis, Cassandra, and HBase [18-20].
In addition to these databases, VAStream also handles specialized
databases like JanusGraph and InfluxDB to handle graph data and
time-series data [21, 22]. These databases enable us to store the
data at different stages of the stream processing pipeline (raw data,
intermediary data, and outcomes from analysis). They support
queries on both historical and streaming data.

The system also has various visualization libraries to support
graph layout and graph sampling and summarization. These include
OpenSceneGraph (3D graphics API), OGDF (graph drawing) and
Python Bottle (a micro web-framework). Also, the visualization and
user interaction component is handled both through existing tools
(i.e. Hue and Zepplin), and custom built user interaction modules.

All the software and frameworks mentioned in this section can be
integrated into the user’s workflow using Apache Airflow. Airflow
is a platform to programmatically author, schedule, and monitor
workflows. The user can execute an existing workflow or design
their own workflow based on his/her requirement. Figure 2 displays
a workflow designed using airflow to detect events from social me-
dia streams. This capability enables the user to interact with the
data and modify various modules in the data analysis pipeline. How-
ever, the direct acyclic graph (DAG) based work-flow scheduling
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| |
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Create_JSON_from_Redis_based_on_Recent_Events

Figure 2: Workflow designed in Apache Airflow to detect
events from social media data

does not strictly work with streaming data, so the job is scheduled
to run at regular intervals as a batch job.

Cloudera manager provides the monitoring of the server re-
sources and deployment of various packages. Job scheduling and
resource management is handled through YARN. A user’s job is
scheduled to run in the VAStream environment if there are a mini-
mum amount of resources available. If the required resources are
not available the job is added to the scheduler and is executed when
the resources are available.

3 VISUAL ANALYTICS ON DATA STREAMS

VAStream system supports continuous and low-latency end-to-end
processing of real-time streams where the outcomes of stream pro-
cessing are pushed to a visualization system. There are three main
drivers for the system to adopt visual analytics approach for data
streams. One, the ongoing research projects at the NSF Center for
Visual and Decision Informatics that have various visual analytics
components. Second, most of the users of the system are advanced
users i.e. students and researchers working in data science and vi-
sualization - so the system serves as an experimental platform. The
third reason, which is the most important driver is the nature of
streaming data — which is not only high-volume and high-velocity
but highly volatility. This means the uncertainty of use and avail-
ability of new data sources, the inherent nature of many sensor
streams that change distribution or properties and decisions on
data storage and management are primarily user driven. The Vi-
sual analytics system should provide the user flexibility to interact,
explore, and incorporate the user’s knowledge into the analysis
though an interface. Figure 3 provides an overview of a typical vi-
sual analytics workflow on data streams using various components
in the VAStream.

The input data is gathered from real-time data streams through
Apache Kafka. This input data is then ingested into the processing
pipeline. Once, ingested raw data is cleaned and meaningful fea-
tures are extracted from the cleaned data. These features are then
passed along to the analytics module to extract knowledge based on
supervised or unsupervised algorithms. This knowledge is usually
an outcome, like detected events, anomalies etc. These outcomes
are stored in an in-memory database to serve the visualizations to
the user.

A copy of data is stored in a database for post-hoc analysis.
This database is usually disk based to handle large amount of data.
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Figure 3: A representation of a typical visual analytics work-
flow

The intermediary data like features that are generated by the pre-
processing module are also stored in a temporary in-memory data-
base. All the data in this database is moved to longer term disk-based
storage after some time, which means that the data is no longer
required for further analysis.

In Figure 3, the arrows in blue (1 - 5) represent the traditional
streaming workflow. Red arrows (6) represent the inspection or
exploration phase of the visual analytics process. The arrows in
purple (7) represent the exploration or reasoning phase. Finally,
the green arrows (8) represent the refinement portion of the visual
analytics process. All the latter processes are initiated by the user
and are executed as batch jobs. The idea of inspection, explanation,
and refinement phases is based on the manifold framework by
Zhang et al. [15].

In the next section, we explain two different applications that
are built using the workflow template shown in Figure 3.

4 USE CASES

We discuss the implementation details and performance measure-
ments of two streaming application on VAStream. The social media
based event detection application uses unstructured text arriving
from Twitter to detect emerging events. The sensor stream clas-
sification application uses sensor streams arriving from US river
network to analyze water quality. We discuss the users design tasks,
techniques and tools used for pre-processing, analysis and visual-
ization along with performance. We generate representative data
streams to analyze the performance of both the applications with
respect to their total execution time for various tasks.

4.1 Event Detection from Social Media Streams

Event detection from social media streams refers to extracting
actual real-world events from social media conversations. Event
detection methods automatically find emerging topics of interest
based on these conversations without requiring keyword searches.
This is very useful for situations such as public safety incidents
or mass emergencies where events are rather unpredictable. One
approach to model event detection is using a word co-occurrence

graph. In a word co-occurrence graph, nodes represent words and
a link between two words appearing in a single Tweet [23]. Real-
time event detection on real-time social media streams require
construction of a co-occurrence graph for every micro-batch of data.
A typical micro-batch of one-minute data from Twitter Firehose
contains 300K tweets. The resulting graph has around 4.5 million
nodes and 24 million edges on average. One of the challenges with
event detection methods is the volatility of data both in terms of
changing content and noise. With the right user intervention, this
noise can be further minimized by adjusting the parameters to filter
important word pairs. Providing the right user interaction tools can
allow the user to evaluate bias vs. the natural distribution of data.

Table 2 summarizes the different user interaction tasks for the
event detection module based on the Manifold framework [15].
The investigation phase is for the end user of the event detection
application that is interested in the output of the event detection
model. The investigation phase includes (a) map layout that shows
various active events, their location and the keywords associated
with the event, (b) a force-directed network layout of word co-
occurrence graph for an individual event, and (c) a Sankey diagram
that displays the evolution of an event over time. Figure 4 provides
an overview of visualizations during the investigation phase.

In the explanation phase, the user is trying to understand the
influence of various features that are contributing to the output of
models. For example, the user may notice that the events are not
corresponding to actual ground-truth, which could be due to noise.
Here the user views a simple bar chart to understand the frequency
distribution of various word pairs. In this specific example, the
bar chart helps understand that the parameter thresholds need
to be changed. Figure 5 provides a sample visualization of word-
pair frequency distributions for event detection from social media
streams.

Finally, in the refinement stage, the user adjusts the streaming
workflow that includes adjusting the data source, features, or chang-
ing the model. This phase may involve adjusting the parameter
thresholds, changing the sampling rate, or tapping to a more re-
liable data source. Figure 6 shows visualization on a multi-touch
display and mobile devices. More information about multi-touch
visualization of this data is provided in [24].

4.1.1 Results. The experiments are conducted using a simulated
twitter steam that generated about 300k tweets per minute. The
streams are collected in one-minute intervals. The execution time
is measured from the time when the program starts to retrieve the
input data from the database or Kafka broker to the time the output
is rendered on the browser. Figure 7 shows the execution time for
each of the retrieval, pre-processing, analysis, and visualization
modules and the total time to accomplish the tasks presented in
Table 2. The latency for each module is computed by executing each
independent as a separate task. The input data for pre-processing
task is read from Kafka, and the output (if any) is written back to
Kafka. The latency of each task is computed between the time when
the input data is read from the Kafka broker to the time when the
data is written back to the Kafka broker.

Task 1 represents the original event detection workflow. The
original event detection takes 56.1 seconds to process 1-minute
worth of data. Pre-processing and analysis modules are the most



Table 2: Details about goals, design tasks, pre-processing, analysis, visualization, and data sources for event detection on social
media streams

Goal low level design task Source Pre-processing Analysis Storage Visualization
T1. Display emerging events Kafka stop word removal graph generation | Cassandra | map layout
word pair generation | graph clustering
Inspection word pair filtering text filtering
T1.1 select/filter events based Redis map layout
on location/keywords
T2. Display event evolution Redis graph generation graph similarity Sankey diagram
graph evolution
T2.1 Filter by time period Redis graph generation graph similarity force layout
. T3. Dlspla}{ frequency distribution Redis binning bar chart
Explanation | of word pairs
T4. Display change in frequency Redis binning bar chart

of active nodes

stop word removal

T5. Update parameters to improve graph generation

Refinement . Cassandra | word pair generation . map layout
event detection accuracy . . graph clustering
word pair filtering
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stop word removal, word pair generation, and word pair filtering.
All the word pairs need to be aggregated to filter them based on
divergence score which is resource intensive and scales with the
increase in the size of the data. The analysis phase involves graph
generation and graph clustering. Graph generation is an expensive
process compared to graph clustering with 78% of the time taken
by graph generation and 22% of the time for graph clustering. The visualization of the events detected during each time-period takes

Figure 7: Break down of time taken to each module for each
goal for event detection on social media streams
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on VAStream

about 2.8 seconds on average. The average number of events gen-
erated during each time-period is 27. Each event has 12 nodes and
29 edges on average. Task 5 follows a similar workflow to Task 1
and takes 56.8 seconds to execute. The time taken to retrieve tweet
data from Cassandra is 3.9 seconds. The data is stored in a NVMe
SSD which has lower retrieval time compared to traditional HDD.

Task 2 takes 0.38 seconds to retrieve all the events from the
previous 5 time periods from Redis datastore. The graphs are then
constructed during the pre-processing phase which takes 2.7 sec-
onds on average. These graphs are then analyzed to identify similar
graphs from consecutive time-periods. The total number of graph
comparisons are about 2917 on average. An evolution timeline is
generated based on birth, death, merge, and split operations on
these events. This evolution timeline is rendered as Sankey dia-
gram. The analysis and visualization tasks take 6.2 and 3.1 seconds
respectively. In total, the time to compute the evolution of an event
takes 14.3 seconds. The user can also the most similar event from
the previous time period, which is usually rendered using a force
layout. The time to render both the events is 3.2 seconds.

The total time taken to achieve tasks 3 and 4 are 4.2 and 3.9
seconds respectively. Task 3 identifies the word-pair data from each
event and retrieves the frequency of the word pairs from Redis
data store. The data is then binned and displayed to the user. The
binning the word pairs takes 1.3 seconds. Similarly binning the
nodes for Task 5 takes about 1.2 seconds.

We also analyzed the wait time of multiple visual analytics work-
flows to evaluate how simultaneous execution of multiple stream
processing workflows affect total execution time. Various combi-
nation of tasks are associated with investigation, explanation, and
refining phases are used to simulate the workload. Figure 8 shows
the average wait time for multiple goals on VAStream. The wait
time is the time difference between the job submission and job
executing times. VAStream can execute 7 visual analytics jobs si-
multaneously with minimum impact to end-to-end latency. The
average waiting time increases to 15.3 seconds for 10 visual analyt-
ics jobs are submitted. The average wait time is 37.39 seconds for
20 visual analytics jobs submitted to VAStream. The average wait
time increases to 79.55, 183.47, and 391.32 seconds as the number
of jobs increases to 30, 40, and 50 respectively. The CPU utilization
of the cluster ranges from 75% to 90% for all the workloads. The
memory utilization ranges from 112 GB to 187GB.

Visual Analytics on River Streams
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Figure 9: Dashboard for classification of river network
streams
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Figure 10: A time series display of attribute of a single sensor

4.2 Classification of River Network Streams

Classification of river network data streams enable users to perform
interactive querying and analysis of real-time stream-flow status
and water quality issues. USGS National Water Information system
consists of 10,615 river gauge stations nationwide for inland and
coastal river networks with 15-60 minute update frequency [25].
With the current and historical water data for the nation, many ap-
plications such as flood monitoring & forecasting, water resources
management, and pollution control & monitoring can be done most
of time at local or regional scale. For example, eutrophication, ex-
cessive richness of nutrients and minerals in a water body inducing
excessive growth of algae, is a leading cause of impairment of fresh-
water [26]. We can classify the USGS river network sensory data
streams to see where is at risk of eutrophication problem. One
major challenge working with real-time sensor data is the concept
drift which causes the old model no longer valid. In this application,
users can determine which features are most critical in determining
the status of a sensor, update the model as needed and view the
status of the sensor.

We generated a representative sample data for 10 attributes
(water temperature, air pressure, water depth, water discharge,
flow velocity, PH, salinity, oxygen, nitrogen, and phosphorus) based
on real-data collected from. We generated data at a sampling rate
of 15 minutes from 10,615 sensors. The status of each sensor is
determined based on supervised or unsupervised model with inputs
of historical records for the same senor and real-time observations
from neighboring sensors upstream and downstream.

Table 3 provides a typical interaction of a user with the visual an-
alytics application to classify river network streams. The tasks are



Table 3: Details about goals, design tasks, pre-processing, analysis, visualization, and data sources for classification of river

network streams

Goal low level design task Source Pre-processing Analysis Storage | Visualization
T1. Display current status of sensors fix missing data
: . . . . L . InfluxDB
. T1.1 Classify using logistic regression Kafka anomaly detection | logistic regression . map layout
Inspection . . N . Redis
T1.2 Classify using k-means data normalization | k-means clustering
T2. Display historical status of sensor Redis time series
Explanation T3. Display distribution of sensor readings InfluxDB binning bar chart
P T4. Identify correlation between different features | InfluxDB binning bar chart
fix missing data
T5. Update logistic regression model InfluxDB | anomaly detection | logistic regression map layout
Refinement N
data normalization
fix missing data
T6. Apply k-means using selected features InfluxDB | anomaly detection | k-means clustering map layout
data normalization

Frequency

o4
30 35 40 45 50 55 60 65 70 75 80 B5 90 95 100 105 10 115 120 125 130 135 140 145 150 155 160 165 170 175
Discharge Value

Figure 11: Binning of a specific features

E
=
@
‘S
1.5 °
' ()
o
1 4 [

<
oo

4.0 4.5 5.0 55 6.0 6.5 7.0 75 8.0

Discharge

Figure 12: Correlation analysis between depth and discharge
of a sensor

categorized into investigation, exploration, and refinement phases.
In the investigation phase, the user explores the status of the river
sensor network on a map-based interface. The interface is presented
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Figure 13: Break down of time taken to each module for each
task for classification of river networks

in Figure 9. The user can use either the logistic regression to calcu-
late the status of the sensor or use k-means clustering to identify
similar sensors. The user can also look at the historical status of the
sensor to get an additional context of the current value. A typical
historical sensor status interface is shown in Figure 10. This allows
the user to come up with a hypothesis if the current status of the
sensors is accurate or not.

In the explanation step, the user can look at the attributes associ-
ated with the sensors and can look at the distribution of attributes
(Figure 11) and correlation between different attributes (Figure 12)
to determine is a feature is important for grouping or classification.
In the refinement step, the user can request the model be rebuilt
based on a subset or superset of features to determine if the change
in model improves the classification or grouping of sensors.

4.2.1 Results. Classification of river networks application is evalu-
ated over 30 time-periods, and the results are averaged over the 30
time-periods. The time taken is computed based on the total time
taken from when the program starts to retrieve the input data from
the database or Kafka broker to the completion of the visualization.
The latency of each task is computed between the time when the
input data is read from the Kafka broker to the time when the data
is written back to the Kafka broker and are presented in Figure 13.

The total time required to read the data from the Kafka broker,
clean the data, apply logistic regression on each sensor, and finally
visualize the sensor status takes 2.2 seconds. The majority of the
time is consumed by applying logistic regression on each sensor,
which takes about 0.92 seconds. This time also includes the time
taken to include updating the logistic regression if the user labels
mis-classified data, if not all the data is used to train the data. The



time taken to clean the data is about .46 seconds, which includes the
time taken to identify missing data, identify anomalies, and perform
data normalization. In total, task 1.1 takes about 4.4 seconds. Task
1.2 takes 6.2 seconds with 3.1 seconds to perform k-means clustering
on the data. The time taken to view historical values of the sensors
takes 3.7 seconds with time taken to visualize the time series data
at 3.1 seconds.

The time taken for tasks 3 and 4 are about 3.4 seconds and 1.9 sec-
onds. The binning operation on one feature takes only 0.7 seconds
on average. On the other hand, the time to compute correlation
between two features take 0.9 seconds using spark data frames.
Time taken to train a new logistic regression model for task 5 is
about 1.9 seconds. The time taken to view a k-means clustering on
a new set of data takes 2.4 seconds.

5 CONCLUSION AND FUTURE WORK

This paper provides design, system architecture, and performance
analysis of VAStream - a visual analytics sandbox environment for
processing high-volume, high-velocity data streams. The system is
designed to support multiple big data projects as part of the NSF
Center for Visual and Decision Informatics [15]. We present the
overall hardware architecture, software stack, and cluster manage-
ment infrastructure to support stream processing and visualization.
The data management layer provides storage medium (in-memory,
disk, etc.) and databases (text, relational data, graphs, time-series)
to facilitate low-latency stream processing and visual analytics. We
also use Airflow - a workflow management tool that enables the
user to build, schedule, and execute custom workflows on data in
real-time enhances the visual analytics process. We presented both
the implementation details and performance measurements of two
streaming applications on VAStream.

We encountered many opportunities to improve the performance
of visual analysis on data streams. Our existing visualizations for
both the applications limited to browser given the size of the dataset.
However, big data visualization is computationally expensive and
rendering these datasets require distributed techniques for ren-
dering. Our existing work only covered the latency in terms of
execution time. But efficient resource management and throughput
analysis of heterogeneous streaming workflows still needs to be
investigated. There are several streaming data sources, machine
learning techniques, algorithms, and data management tools that
could be integrated into VAStreams. Finally, improvements can be
done with respect to managing the real-time stream processing
workflows for visual analytics.
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