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Abstract— This paper proposes an Automatic Power Ex-
change (APEX) that enables monetization of underutilized
distribution system energy resources. APEX features an open-
gate forward market design to incorporate uncertainty from
variable resources, and an explicit flexibility market that
schedules flexible resources based on information submitted
by users through a simple yet expressive order format. We
study the non-convex non-preemptive scheduling problem in
APEX, proposing polynomial time algorithms with finite and
asymptotic performance guarantees. We then analyze the prop-
erties of marginal pricing, generalized to fit the APEX context
with forward markets and distribution network constraints.
We establish that it is revenue adequate but may lead to
inadmissible prices for flexible orders. We then suggest a simple
pricing mechanism that provably produces admissible prices for
users and adequate revenue for APEX if implemented together
with the proposed scheduling algorithms.

I. INTRODUCTION

A. Background

Wholesale electricity markets have long enabled efficient

trading of bulk energy and services at the transmission

scale. But there are many significant resources and assets

connected to the distribution network that have not been

fully monetized [1]. Novel distribution system markets that

match the local intermittent supply with flexible demand can

potentially greatly increase the utilization of these assets.

However, designing such markets is challenging for a

number of reasons. First, many distributed energy resources

are variable resulting in intermittent and uncertain power

generation that introduces both quantity risk (e.g., not enough

supply to meet demand) and price risk (e.g., consumers

may be charged highly volatile prices) into the market.

Managing such risks require a sophisticated distribution

system operator (DSO) solving stochastic dispatch programs,

or forward markets in which the market participants can

trade to hedge against uncertainty [2]–[4]. Second, although

demand flexibility is ubiquitous, unlocking it usually requires

upfront capital investments from users (e.g. for installing

smart appliances and/or building energy management sys-

tems [5], [6]) that need to be justified by a clear expectation

of (financial) benefits. Existing proposals around real time

pricing could potentially provide such an expectation, but it
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may be blurred by difficulties in forecasting prices driven

by both exogenous uncertainty (e.g. renewable generation)

and endogenous uncertainty (e.g. other market participants’

behaviors). Explicit flexibility markets that schedule flexible

demand on behalf of the users could significantly reduce

the burden of users and provide clear incentives for users to

engage, reveal and trade their flexibility. Finally, as the mar-

ket outcomes induce physical power flow on the distribution

network, physical network constraints need to be managed

to ensure the reliability of the distribution network.

B. Contributions

In this paper, we propose a scalable market platform,

referred to as Automatic Power Exchange (APEX), that en-

ables monetization of these underutilized distribution system

assets. Our APEX platform allows distribution system partic-

ipants to trade energy and services. It incorporates variable

distributed energy resources by an open-gate forward market

design. That is, for each delivery period, users can submit

orders in anytime inside of a trading time window, which

if possible will be cleared as submitted. Effectively, this

introduces a continuum of forward markets, where users

can hedge against uncertainty through adjustment orders

based on most updated information. APEX also arranges an

explicit flexibility market. Distribution system participants

can submit the availability information of their flexible loads,

and APEX will schedule these flexible loads on behalf of

the participants. APEX will respect distribution network

constraints on the flow of electricity either by directly man-

aging the distribution network or by following a coordinated

trading protocol [7], [8] operated by a third-party distribution

system operator.

This paper contributes to the literature in the following

ways. (i) We propose a novel design for a distribution system

market that addresses uncertainty from Distributed Energy

Resources (DERs) using an open-gate forward market de-

sign and solicits demand flexibility by efficient in-market

flexible demand scheduling, while managing distribution

network constraints. (ii) We study the non-convex problem

for scheduling non-preemptive flexible loads and propose

provably efficient algorithms to ensure the scalability of

the APEX platform. (iii) We analyze the properties of a

natural marginal pricing mechanism in the APEX context,

establishing that it is revenue adequate but may lead to

inadmissible prices for flexible orders. We then suggest a

simple alternative that is guaranteed to produce admissible

prices for users and adequate revenue for APEX when used

together with the proposed scheduling algorithms.
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C. Literature

Forward markets have been implemented in many whole-

sale electricity markets. It is known that forward markets help

manage uncertainty and incorporate generation technologies

with different lead times [2]. When a sequence of forward

markets are available, risk sensitive consumers (suppliers)

may limit their risks by procuring from (offering to) mul-

tiple forward markets [9]. Although many of these studies

have focused on the wholesale market, empirical studies

demonstrate that for smaller consumers having the option

of participating in forward markets helps them to hedge

their bill volatility [3]. Open-gate forward markets, compared

to fixed-time forward markets such as day-ahead and hour-

ahead markets, are not common for electricity. Yet, they are

widely implemented in financial industries [10].

The utilization of flexible energy resources in distribution

networks has been studied in a number of papers. Existing

studies usually exploit the flexibility in restrictive settings

where only one attribute of the flexible resources is allowed

to vary. Such treatments lead to interesting control and pric-

ing problems for electricity services that are differentiated

according to that particular attribute [11]–[13]. It is usually

assumed in these papers that these services are organized and

provided by aggregators instead of a flexibility market that

matches flexible resources with other resources. Furthermore,

in our flexibility market, the flexible orders are allowed to

simultaneously have many different attributes, thus bridging

a gap between prior studies and practical implementations.

As a whole package, APEX provides a novel design for

distribution system electricity market with significant DER

penetration. Existing alternative proposals for distribution

system markets can be roughly categorized into central-

ized and transactive. Centralized designs seek to modify

or augment existing utility companies’ rate structures to

align DERs’ power consumption/production with wholesale

price signals. Notable examples include real time pricing

(RTP) and its variants (cf. [14]–[17] and references therein).

The benefits of centralized design include tight manage-

ment of distribution network through utility companies and

the fact that they are relatively easy to implement given

today’s institutional structures of retail electricity markets.

Such designs, nevertheless, are inflexible as it is difficult

to incorporate differentiated electricity services. In contrast,

transactive designs rely on bilateral or multilateral transac-

tions (or contracts) among individual participants (cf. [18],

[19] and references therein). As the terms and conditions in

the contracts can be tailored according to individual needs, it

is very easy to incorporate various flexible resources in trans-

active market designs. However, these designs represent a big

structural departure from today’s utility-managed distribution

markets, require coordination to ensure reliability of the

distribution network, [7] and may impose significant search

costs on the participants. Compared to these two classes of

distinct designs, we view APEX as a middle ground where

flexible resources are incorporated by an explicit flexibility

market and an expressive alphabet of standard commodities,

and distribution network constraints are tightly managed

(possibly by a coordinated trading protocol). Participants’

search costs are also largely reduced in APEX.

Many of our technical results extend the growing liter-

ature on scheduling non-preemptive deferrable loads [20]–

[22]. Most of these prior studies focus on an aggregator

setting while we consider scheduling in a two-sided market.

Furthermore, the fluid relaxation based scheduling algorithm

that we propose is novel and well-suited for the region

where there is a large number of flexible loads. As the

scheduling problem is non-convex, the problem of pricing

these flexible loads with distribution network constraints is

challenging and understudied in the literature. Our results on

understanding the properties of marginal pricing with sub-

optimal scheduling algorithms may pave the way for future

development on this topic.

D. Organization

The rest of the paper is organized as follows. Section II

describes the APEX market platform and states the order

matching problem in APEX. Section III proposes efficient

algorithms for the combinatorial optimization of scheduling

non-preemptive flexible orders and establishes their perfor-

mance guarantees. The associated pricing problem for APEX

order matching is then considered in Section IV. Section V

concludes the paper.

II. APEX PLATFORM

In a nutshell, APEX receives orders (Section II-C) from

users (Section II-B), forms and maintains an orderbook (Sec-

tion II-D), and solves an order matching problem (Section II-

E) that fulfills standing orders in the orderbook by matching

supply with demand respecting distribution network con-

straints (Section II-A). The schematic of the trading process

in APEX is demonstrated in Figure 1.

Order Book

Matching Engine

• Economic efficiency

• Power flow constraints

Users

Orders

Orders

Orders

Order execution information

Fig. 1. Trading process in APEX.

Trading in APEX happens within the following temporal

structure. Time is slotted into time intervals of ∆t length

(e.g., ∆t can be 5 minutes). Power delivery in each of these

time intervals is traded. We thus work with a discrete time

model, using t ∈ Z to denote each time period. At any

time instance t, users can submit orders regarding power

delivery in any future time intervals belonging to a trading

time window Tt that includes T time intervals. The trading

time window may start with the next time interval t+1 and
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ends 24 hours after the next time interval, i.e., in this case

T is 24 hours/∆t. As a result, orders regarding the power

delivery in any time interval t′ can be submitted at any t such

that t′ ∈ Tt. This implements an open-gate forward market.

Figure 2 gives an example of the open-gate forward markets

and trading windows for two delivery intervals.

Time 8:00 

of day 1

7:55 

of day 1

8:00 

of day 0

8:05 

of day 1

(Gate 

open)

(Gate 

closure)

8:10 

of day 1

8:05 

of day 0

(Gate 

open)

(Gate 

closure)

Fig. 2. Example of APEX trading windows

We proceed to introduce individual components of the

APEX platform.

A. Distribution network model

Consider a distribution network specified by a graph with

buses N = {1, . . . , N} and lines E . As distribution systems

are usually radial, the graph has a tree structure so that |E| =
N−1. For the bulk of the paper, we focus on real power flow

and adopt the Simplified DistFlow model [23] that allows us

to write the nodal voltage v ∈ R
N and the branch flow

ℓ ∈ R
N−1 as linear functions of the nodal power injection

p ∈ R
N :

v =v̂ +Rp, (1a)

ℓ =Hp, (1b)

where v̂ ∈ R
N+1 is the vector of reference voltages that

include the substation voltage and the voltage contribution

from reactive power injections, R ∈ R
N×N is a matrix that

depends on the topology of the distribution network and the

line resistances (see [24] for more details), H ∈ R
(N−1)×N

is the shift-factor matrix for the network.

Operational constraints for the distribution network usually

include bounds on the nodal voltages and line flows (to avoid

transformer overloading). Under (1), these constraints specify

a polyhedral real power injection region for a distribution

network

PD := {p ∈ R
N : 1⊤p = 0, v ≤ v̂+Rp ≤ v, ℓ ≤ Hp ≤ ℓ},

where 1 ∈ R
N is the all-one vector, v and v are the voltage

bounds, and ℓ and ℓ are the line flow bounds. As is common

the case in practice, we assume v ≤ v̂ ≤ v and ℓ ≤ 0 ≤ ℓ,

and therefore 0 ∈ PD.

B. User model

We denote the set of users by I := {1, . . . , I}. Let the

bus that user i ∈ I resides be denoted by ni and the set of

users located at bus n be denoted by In. Each user may

model an individual home, a commercial building, or an

aggregation of many buildings coordinated by an aggregator

or as a micro-grid. In this paper, APEX is agnostic to the

level of aggregation inside of each user.

C. Order formats

At any instance in time, referred to as t = 0, a participant

located at bus n (i.e. i ∈ In) can submit buy or sell orders

for a trading window of time periods t ∈ T := Tt =
{1, . . . , T }. Considering typical supply-side and demand-

side characteristics, we allow buy and sell orders in the

formats specified as follows.

Definition 1 (Simple sell order): A simple sell order from

participant i ∈ In is a tuple

s = (n, t, q, π),

where n is the bus index, t ∈ T is time of electricity delivery,

q ∈ R+ is the maximum amount of electricity to be sold and

π ∈ R+ is the minimum acceptable price of electricity for

the sell order.

Symmetrically, we have simple buy order defined.

Definition 2 (Simple buy order): A simple buy order

from participant i ∈ In is a tuple

b = (n, t, q, π),

where n is the bus index, t ∈ T is time of electricity delivery,

q ∈ R+ is the maximum amount of electricity to be bought

and π ∈ R+ is the maximum acceptable price of electricity

for the buy order.

Simple orders may not be expressive enough to incorporate

certain flexible loads such as non-preemptive shiftable loads.

Many such loads consume pre-defined load shapes but are

indifferent to the time at which the loads are served as long

as they are served in a certain time window. This motivates

us to incorporate flexible buy order as follows.

Definition 3 (Flexible buy order): A flexible buy order

from participant i ∈ In is a tuple

f = (n, tES, tLC, τD, q̂, π),

where n is the bus index, tES ∈ T , tLC ∈ T and τD ∈ T
denote the earliest starting time, latest completion time and

duration of the flexible load, respectively, q̂ ∈ R
τD

+ is the

load shape to be consumed, and π ∈ R+ is the maximum

acceptable price of electricity1 for the buy order.

Figure 3 depicts the parameters used to define a flexible

buy order.

Time t
ES

Duration τ
D

t
LC

Earliest starting
time

Latest completion
time

Load shape q̂

t
S

t
C

Starting
time

Completion
time

T1

Flexibility window

Trading window

Fig. 3. Parameters of a flexible buy order

1The maximum amount of payment associated with the order is π1⊤q̂.
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D. Orderbook

In practice, buy and sell orders arrive continuously in

time. Whenever a new order arrives, APEX runs an efficient

matching algorithm with all the standing orders and the

newly arrived order, which determines the fulfillment of a

subset of these orders. All unfulfilled orders, which cannot

be matched due to (i) lack of supply for a buy order or lack

of demand for a sell order, (ii) lack of a mutually acceptable

price, and (iii) network constraints, remain standing and are

recorded into an orderbook.

Definition 4 (Orderbook): The orderbook at time t is de-

fined to be the triple (B,S,F), where B is the collection of

standing simple buy orders, S is the collection of standing

simple sell orders, and F is the collection of standing flexible

buy orders.

In the order matching process, some simple orders might

be partially fulfilled. These orders remain in orderbook with

the desirable quantities (qb or qs) updated by subtracting the

fulfilled amounts.

E. Order matching problem

To fulfill the orders in the orderbook (B,S,F), the order

matching process aim to determine an admissible schedule

and an admissible price for each (partially) fulfilled order in

the orderbook.

Definition 5 (Admissible schedule): A power production

or consumption schedule q ∈ R
T over the trading window

T is deemed admissible, if the following conditions hold.

• For simple sell order s = (n, t, q, π):

q = qs ∈ Qs := {q1t ∈ R
T : 0 ≤ q ≤ q},

where 1t ∈ R
T is the elementary vector with a 1 at t-th

element and 0’s elsewhere.

• For simple buy order b = (n, t, q, π):

q = qb ∈ Qb := {q1t ∈ R
T : 0 ≤ q ≤ q}.

• For flexible buy order f = (n, tES, tLC, τD, q̂, π):

q = qf ∈ Qf ,

where Qf is defined as the set of power profiles q ∈
R

T such that there exists a starting time tS so (q, tS)
satisfies

tS ∈ {tES, . . . , tLC − τD + 1}, (2a)

q(t) =

{
q̂(t− tS + 1), if tS ≤ t < tS + τD,

0, otherwise.
(2b)

If the order is not to be scheduled, we denote tS = 0
and so 0 ∈ Qf by definition.

Definition 6 (Admissible price): For a (partially) sched-

uled order (i.e., q 6= 0), a clearing price π ∈ R is deemed

admissible, if the following conditions hold.

• For simple sell order s = (n, t, q, π): π ≥ π.
• For simple buy order b = (n, t, q, π): π ≤ π.
• For flexible buy order f = (n, tES, tLC, τD, q̂, π):

π ≤ π.

In the order matching problem, we try to identify ad-

missible fulfillment of all orders ({qs}, {qb}, {qf}) :=
({qs}s∈S , {qb}b∈B, {qf}f∈F) in a way that maximizes cer-

tain criteria designed by the operator of APEX, denoted

by U({qs}, {qb}, {qf}), while respecting the distribution

network constraints. This can be written as the following

optimization problem

max
{qs},{qb},{qf}

U
(
{qs}, {qb}, {qf}

)
(3a)

s.t. qs ∈ Qs, s ∈ S, (3b)

qb ∈ Qb, b ∈ B, (3c)

qf ∈ Qf , f ∈ F , (3d)

pn =
∑

s∈Sn

qs −
∑

b∈Bn

qb −
∑

f∈Fn

qf , n ∈ N ,

(3e)

p(t) ∈ PD, t ∈ T . (3f)

where (3e) is the local power balance equation at each node

n, with Sn, Bn and Fn denoting the set of simple sell orders,

simple buy order and flexible buy order submitted by users

at bus n, respectively.

APEX may optimize different criteria in the order match-

ing problem depending on its real-world implementation

(e.g., whether it is implemented by a for-profit platform

company or by a regulated utility company). Here we list

two possible objective functions to optimize.

• Total surplus:

U({qs}, {qb}, {qf}) (4)

=
∑

b∈B

πb1
⊤qb +

∑

f∈F

πf1
⊤qf −

∑

s∈S

πs1
⊤qs.

• Total volume:

U({qs}, {qb}, {qf}) =
∑

b∈B

1⊤qb +
∑

f∈F

1⊤qf . (5)

We note that with criteria (4) or (5), the order matching

problem has a linear objective function. Meanwhile, con-

straints (3b), (3c), (3e) and (3f) are all linear inequality or

equality constraints. However, (3) is challenging to solve

due to non-convex constraint (3d). In fact, the combinatorial

nature is evident if we return to the characterization of Qf

using the starting times (2). Next section introduces two

algorithms solve (3) approximately.

While solving (3) gives an admissible schedule for each

order in the orderbook, it does not provide admissible prices.

Thus the second part of the order matching problem is to

identify an admissible price for each fulfilled order. Given the

non-convex nature of (3) and the fact that we can only obtain

approximate solutions of (3) in practice, the pricing problem

for APEX is challenging. In particular, the natural application

of the marginal pricing idea to this context requires a

re-examination because its nice properties established for

convex settings may no longer hold (see Section IV).
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III. SCHEDULING ALGORITHMS

Fixing the schedule of flexible buy orders, the order match-

ing problem is a linear program thus efficiently solvable. We

therefore denote

J({qf}) :=

max
{qs},{qb}

U({qs}, {qb}, {qf}) (6a)

s.t. qs ∈ Qs, s ∈ S, (6b)

qb ∈ Qb, b ∈ B, (6c)

pn =
∑

s∈Sn

qs −
∑

b∈Bn

qb −
∑

f∈Fn

qf , n ∈ N ,

(6d)

p(t) ∈ PD, t ∈ T . (6e)

and focus on the optimization for scheduling flexible orders:

max
{qf}

J({qf}) (7a)

s.t. qf ∈ Qf , f ∈ F . (7b)

We proceed to describe a way to solve this problem based

on a greedy heuristic.

A. Greedy scheduling

We start by reformulating (7) to a set function maximiza-

tion. Let tS ∈ T |F| be the vector of starting times of all

flexible buy orders which uniquely determines the schedule

of all flexible buy orders {qf}. Denote the value of (7) with

some fixed tS by V (tS), i.e.,

V (tS) =

{
J({qf (t

S
f )}), if qf (t

S
f ) ∈ Qf , f ∈ F ,

−∞, otherwise,

where qf (t
S
f ) is the power consumption profile induced by

starting time tSf . Consider the pairs of flexible buy orders

and their starting times in the set

Ω = {(f, tSf ) : f ∈ F , tSf ∈ T ∪ {0}}. (8)

Notice that any feasible scheduling can be represented by a

subset of Ω; conversely, subsets of Ω that select no more

than one starting time for each flexible buy order f can

represent all feasible scheduling decisions. Define set-to-

matrix mapping I : 2Ω 7→ R
|F|×T

[I(X)]f,t =

{
1, if (f, t) ∈ X,

0, otherwise,
(9)

and normalized objective function g(X) = V (I(X)δ) −
V (I(∅)δ), where δ ∈ R

T×1 is such that δt = t, and the

matrix vector product I(X)δ converts a subset X ⊂ Ω
into the corresponding starting time vector tS. With these

definitions, problem (7) is equivalent to the following subset

selection problem:

max
X⊂Ω

g(X), (10a)

s.t.

T∑

t=1

[I(X)]f,t ≤ 1, f ∈ F , (10b)

where the constraint ensures that X selects at most one

starting time for each flexible buy order. The problem in

general is NP hard as the number of subsets is 2|Ω|.

The greedy approach for solving (11) amounts to schedul-

ing flexible orders one-by-one according to the incremen-

tal benefit that scheduling a new order brings as mea-

sured by function g(X). Algorithm 1 lists the steps for

greedy scheduling. After this algorithm terminates, admis-

sible schedules for flexible buy orders are obtained. We can

then obtain admissible schedules for simple orders by solving

(6) with the resulting {qf} from the greedy algorithm.

Algorithm 1: Greedy scheduling

1 FS = ∅, FTBS = F ;
2 X ← ∅;
3 while FTBS 6= ∅ do

4 C ← {(f, tS) : f ∈ FTBS, tS ∈ {tES
f , . . . , tLC

f +1−τD
f }};

5 (f̂ , t̂S)← argmax(f,tS)∈C g(X ∪ {(f, tS)})− g(X);

6 if g(X ∪ {(f̂ , t̂S)}) > g(X) then

7 X ← X ∪ {(f̂ , t̂S)};

8 FS ← FS ∪ {f̂}, FTBS ← FTBS\{f̂}
9 else

10 break;
11 end
12 end

B. Fluid relaxation

Although the complexity of greedy scheduling is polyno-

mial in the number of flexible orders, it becomes relatively

slow when there are a large number of orders because it

needs to loop over the remaining orders and their feasible

starting times in each step. In this section, we consider an

alternative scheduling algorithm based on relaxing the non-

convex constraint qf ∈ Qf . In particular, it first relaxes the

requirement that each load shape needs to follow the exact

load shape q̂f submitted by the user, solves a convex opti-

mization to determine the schedule q̃f , and then “projects”

the schedule q̃f to a feasible schedule ΠQf
(q̃f ) ∈ Qf . As

the key step in this algorithm is to remove the load shape

requirement by allowing any profile to be scheduled in the

time window {tES
f , . . . , tLCf }, we refer to this algorithm as

fluid relaxation. Similar ideas have been used to develop

approximation algorithms for job shop scheduling problems

(cf. [25]).

In fluid relaxation, we replace the constraint qf ∈ Qf by

qf ∈ Q̃f , with Q̃f defined as the set of power consumption

profiles qf ∈ R
T satisfying the following constraints

1⊤qf ≤ 1⊤q̂f , (11a)

TV(qf ) ≤ TV(q̂f ), (11b)

qf (t) ≥ 0, t ∈ {tES
f , . . . , tLCf }, (11c)

qf (t) = 0, t 6∈ {tES
f , . . . , tLCf }, (11d)

where the total variation of a vector x ∈ R
d is defined as

TV(x) =

d+1∑

t=0

|x(d + 1)− x(t)|, x(0) = x(d + 1) := 0.
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In the definition of Q̃f , constraint (12a) requires that the

total energy of the scheduled consumption profile is no larger

than the total energy of the submitted consumption profile;

constraints (12c) and (12d) impose the non-negativity re-

quirement for the consumption profile and restrict the profile

can only have positive consumption in time periods specified

by the time window submitted by the user; constraint (12b)

controls the flexibility of the scheduled profile, by limiting

the total variation of the scheduled profile with that of the

submitted profile. It is easy to see that Qf ⊂ Q̃f .

As Q̃f is a convex polytope for each f , the resulting

convex relaxation for scheduling flexible orders is

max
{qf}

J({qf}) (12a)

s.t. qf ∈ Q̃f , f ∈ F , (12b)

whose solution is denoted by {q̃f}.

The solution of the convex relaxation may be infeasible

with respect to the original constraint qf ∈ Qf . One

possibility is that for some f , constraint (12a) may not hold

with equality at the solution q̃f . In this case, we simply round

down such that qf (t) = 0 for all t. If constraint (12a) holds

with equality at the solution and so the energy requirement

of the flexible load is satisfied, we identify a feasible starting

time tSf for each f ∈ F by finding the time window with τDf
periods that contains the maximum total power consumption

according to q̃f , i.e.,

tSf = argmax
tS
f
∈{tES

f
,...,tLC

f
−τD

f
+1}

tSf+τD

f −1∑

t=tS
f

q̃f (t). (13)

The “projected” power consumption schedule is thus the

power consumption profile induced by this starting time,

denoted by qf (t
S
f ):

ΠQf
(q̃f ) :=

{
qf (t

S
f ), if 1⊤q̃f = 1⊤q̂f ,

0, otherwise.
(14)

with tSf defined in (14).

C. Performance guarantees

In this section, we provide a stylized analysis of the

proposed scheduling algorithms for solving the non-convex

(combinatorial) optimization (7) with the following two

assumptions.

A1 The network can be represented as a single-bus network.

A2 The maximization criteria is the total surplus (4).

Assumption A1 allows us to focus on the combinatorial

nature of the problem rather than the network constraints.

We stress, however, both of the proposed algorithms result

in admissible schedules that respect distribution network

constraints for general networks. Analyzing the performance

of approximation algorithms with network constraints repre-

sents a major challenge and is left for future work. Assump-

tion A2 is introduced without loss of generality. In fact, the

total volume objective function (5) can be thought of as a

special case of the total surplus objective, with prices suitably

modified.

We start with the performance guarantee for the greedy

algorithm2. As is often the case, the greedy algorithm is (1−
1/e)-optimal if the underlying problem is submodular. For

our problem of scheduling flexible orders, by extending the

analysis in [21], we can show submodularity indeed holds

and therefore we have the following performance guarantee

for the greedy algorithm. Proofs are omitted due to the page

limit.

Lemma 1 (Greedy performance): Under Assumptions A1

and A2, the greedy scheduling algorithm is (1−1/e)-optimal:

J({qg
f})

J({q⋆
f )}

≥ 1−
1

e
, (15)

where {qg
f} is the greedy schedule and {q⋆

f} is the optimal

schedule.

One important feature of the performance bound (16) is

that it is independent of the problem instance. It is thus

referred to as an a priori bound as it can be stated before

seeing the actual problem data.

For the fluid heuristic, we can derive general a posteriori

bounds based on the following observation:

Proposition 1: Let {q̃f} and {ΠQf
(q̃f )} be the solutions

of fluid relaxation (13) and its projected solution, respec-

tively. Then

J({ΠQf
(q̃f )}) ≤ J({q⋆

f}) ≤ J({q̃f}). (16)

This result bounds the unknown quantity J({q⋆
f}) by

quantities that are computable in the fluid relaxation steps.

This bound is general in that it holds without assuming A1

and A2. As such, given any problem instance and having

computed J({ΠQf
(q̃f )}) and J({q̃f}), we can gauge the

(sub-)optimality of the solution by comparing these two

quantities. If they are close, we can assert a posteriori that

the fluid algorithm has produced a J({ΠQf
(q̃f )})/J({q̃f})

optimal solution.

We can in fact show that the fluid heuristic is asymptoti-

cally optimal, with the following additional assumption:

A3 For all f ∈ F , q̂f (t) ≡ q̄f does not change with t,
t = 1, . . . , τDf . Furthermore, q̄min ≤ q̄f ≤ q̄max for all

f ∈ F , where 0 < q̄min < q̄max < ∞.

A4 The supply is sufficient as for each period t ∈ T there is

a supply order with unbounded q̄ and a large acceptable

price πu ≥ maxs∈S πs. Furthermore, among |F| flexible

orders, there are at least α|F| flexible orders such that

πf ≥ πu, where α ∈ (0, 1).

Assumption A3 replaces possibly time-varying load

shapes by rectangles. This certainly limits the practicality

of our next result. Removing it is possible as any time-

varying load shapes can be approximated, with any desired

2A slight modification (i.e., using a specific initialization of FS instead of
FS

= ∅) of the greedy algorithm presented in (1) may be needed due to the
knapsack constraint (11b). The modified greedy algorithm is still polynomial
time but is much slower due to the time-consuming initialization step. We
stated the simple greedy algorithm in Algorithm 1 because we have been
observing similar performances with and without the modification. See [26]
and [27] for more discussions.
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level of accuracy, by rectangles. Assumption A4 focuses our

analysis on the case where there is enough supply for each

future delivery interval. This can be the case when a utility

company (or load serving entity) participates in the platform

and offers to sell sufficient amount of energy at a relatively

high price πu. Under these assumptions, we can establish the

(weak) asymptotic optimality of the proposed fluid heuristic,

in the following sense.

Theorem 1 (Asymptotic optimality of fluid heuristic):

Under Assumptions A1-A4, consider a set of flexible orders

with increasing size |F| → ∞. For each F , there exists an

optimal schedule {q̃f} for the fluid relaxation (13) such

that
J({ΠQf

(q̃f )})

J({q⋆
f})

→ 1, as |F| → ∞, (17)

where {q⋆
f} is an optimal schedule for the original prob-

lem (7).

The key intuition behind this theorem is that when the

number of flexible orders becomes large, individual load

shapes no longer play a significant role in the quality of

the solution because (with a single-bus network) it is the

aggregate load shape of all the flexible loads that matters in

the optimization (7).

IV. PRICING

Algorithms presented in Section III only provides admis-

sible schedules for orders in the orderbook, with clearing

prices to be determined. Denote the collection of prices for

orders by {πs}, {πb}, {πf}. Basic requirements for these

prices include (i) admissible, as defined in Definition 6, and

(ii) revenue adequate so that the merchandising surplus of

the platform, denoted by MS, is non-negative:

MS =
∑

b∈B

πb1
⊤qb+

∑

f∈F

πf1
⊤qf −

∑

s∈S

πs1
⊤qs ≥ 0. (18)

Without flexible orders, it can be shown that both require-

ments above can be met with a generalization of the simple

idea of marginal pricing. In the rest of this section, we first

state this generalization and then exam its properties when

used with the scheduling algorithms proposed in Section III.

A. Marginal pricing

Given any schedule of the flexible orders {qf}, we con-

sider the optimization for scheduling the remaining simple

orders (6). Denote the optimal dual variable associated with

constraint (6d) of the linear program by λn ∈ R
T , n ∈ N .

This is a collection of N × T prices, one for each (bus,

future deliver time) pair. Thus these prices may be referred

to as temporal and locational marginal prices [28], which are

functions of the schedules of flexible orders in our setting.

In particular, for orders with non-zero cleared quantities,

we define marginal pricing rule as

πs = λn(t), s = (n, t, q, π), (19a)

πb = λn(t), b = (n, t, q, π), (19b)

πf =
λ⊤
nqf

1⊤qf

, f = (n, tES, tLC, τD, q̂, π). (19c)

Thus under the marginal pricing rule, simple orders are

paid or charged the locational marginal price for the future

delivery time interval. As flexible orders usually span mul-

tiple delivery time intervals, they are charged the average

locational marginal prices weighted by the amount of power

they consume in different time intervals.

B. Properties of marginal pricing

We analyze properties of the marginal pricing rule based

on Assumption A2, otherwise the dual variables of optimiza-

tion (6) may not have a clear economic meaning.

Using the KKT condition of the linear program (6) and

strong duality, we can establish the following property of the

marginal pricing rule, given any schedules for the flexible

orders {qf}:

Lemma 2 (Properties of marginal pricing): Under

Assumption A2, the marginal pricing rule is revenue

adequate and leads to admissible prices for simple buy

orders and simple sell orders.

As the schedules of flexible orders {qf} are not decision

variables of the optimization (6), little can be said about

whether the marginal prices will be admissible for flexible

orders without considering the actual algorithms used to

determine these schedules. Considering the algorithms pro-

posed in Section III, we have the following negative results

established using counter examples:

Lemma 3 (Inadmissibility for flexible orders): Under As-

sumption A2, the marginal pricing rule with greedy or fluid

schedule is not guaranteed to produce admissible prices for

flexible buy orders.

The observation above stems from the fundamental diffi-

culties in non-convex pricing problems and the fact that the

proposed algorithms use more than the marginal information

to determine the schedules of flexible orders. To be precise,

in each step of the greedy algorithm, it determines whether

to schedule a flexible order based on the total benefit

about which it brings measured by the change of function

value J({qf}) with and without the newly scheduled order.

Charging it with the marginal cost, which corresponds to

the cost of producing the last ǫ > 0 amount of power, may

result in a price higher than πf . For the fluid algorithm, the

projection step does not use price information and may result

in inadmissible prices.

While marginal pricing has many desirable properties

as studied in the transmission market literature (cf. [29]

and references therein), modifying it to extend some of

these properties to the non-convex setting here require much

additional work. Instead, in the next subsection, we provide

a simple mechanism that will ensure price admissibility and

budget adequacy.

C. Pay-as-bid mechanism

In the pay-as-bid mechanism, we simply pay or charge

users based on the prices they submit with their order

πs = πs, πb = πb, πf = πf , (20)

for all (partially) fulfilled orders. By definition, this pricing

mechanism produces admissible prices for all orders. We can
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also show that revenue adequacy is achieved if we use greedy

scheduling algorithm with the total surplus objective:

Lemma 4: Under Assumption A2, the pay-as-bid mecha-

nism is revenue adequate with greedy scheduling.

It is an easy consequence of Theorem 1 that if we use

the fluid scheduling algorithm we are guaranteed revenue

adequacy in an asymptotic sense.

Corollary 1: Under the same assumptions of Theorem 1

and with the pay-as-bid mechanism, consider a set of flexible

orders with increasing size |F| → ∞. For each F , there

exists an optimal schedule {q̃f} for the fluid relaxation (13)

such that the merchandizing surplus induced by the resulting

schedule {ΠQ(q̃f )} satisfies lim|F|→∞MS > 0.

In summary, both proposed scheduling algorithms result

in admissible and revenue-adequate prices if the pay-as-bid

mechanism is used.

V. CONCLUSION

In this paper, we propose APEX, a market platform that

enables monetization of underutilized distribution system

assets. It features an open-gate forward market design and

an explicit flexibility market. The forward markets help to

incorporate variable distributed energy resources and reduce

risks of market participants. In the flexibility market, re-

sources submit their flexibility information with a simple yet

expressive order format and APEX schedule these resources

on behalf of the users efficiently. All functionalities of APEX

are executed while ensuring the reliability of the distribution

network, either by directly managing the distribution system

constraints, or by communicating with a minDSO through a

coordinated trading protocol.

For the proposed market platform, we study the non-

convex problem of scheduling non-preemptive flexible re-

sources and propose polynomial time algorithms that have

finite or asymptotic performance guarantees. We then analyze

the properties of marginal pricing together with the proposed

algorithms and suggest a simple alternative that leads to

admissible prices for all users and guarantees adequate

revenue for the platform.
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