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Automatic Power Exchange for Distributed Energy Resource Networks:
Flexibility Scheduling and Pricing

Junjie Qin, Jonathan Mather, Jhi-Young Joo, Ram Rajagopal, Kameshwar Poolla and Pravin Varaiya

Abstract— This paper proposes an Automatic Power Ex-
change (APEX) that enables monetization of underutilized
distribution system energy resources. APEX features an open-
gate forward market design to incorporate uncertainty from
variable resources, and an explicit flexibility market that
schedules flexible resources based on information submitted
by users through a simple yet expressive order format. We
study the non-convex non-preemptive scheduling problem in
APEX, proposing polynomial time algorithms with finite and
asymptotic performance guarantees. We then analyze the prop-
erties of marginal pricing, generalized to fit the APEX context
with forward markets and distribution network constraints.
We establish that it is revenue adequate but may lead to
inadmissible prices for flexible orders. We then suggest a simple
pricing mechanism that provably produces admissible prices for
users and adequate revenue for APEX if implemented together
with the proposed scheduling algorithms.

I. INTRODUCTION
A. Background

Wholesale electricity markets have long enabled efficient
trading of bulk energy and services at the transmission
scale. But there are many significant resources and assets
connected to the distribution network that have not been
fully monetized [1]. Novel distribution system markets that
match the local intermittent supply with flexible demand can
potentially greatly increase the utilization of these assets.

However, designing such markets is challenging for a
number of reasons. First, many distributed energy resources
are variable resulting in intermittent and uncertain power
generation that introduces both quantity risk (e.g., not enough
supply to meet demand) and price risk (e.g., consumers
may be charged highly volatile prices) into the market.
Managing such risks require a sophisticated distribution
system operator (DSO) solving stochastic dispatch programs,
or forward markets in which the market participants can
trade to hedge against uncertainty [2]-[4]. Second, although
demand flexibility is ubiquitous, unlocking it usually requires
upfront capital investments from users (e.g. for installing
smart appliances and/or building energy management sys-
tems [5], [6]) that need to be justified by a clear expectation
of (financial) benefits. Existing proposals around real time
pricing could potentially provide such an expectation, but it
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may be blurred by difficulties in forecasting prices driven
by both exogenous uncertainty (e.g. renewable generation)
and endogenous uncertainty (e.g. other market participants’
behaviors). Explicit flexibility markets that schedule flexible
demand on behalf of the users could significantly reduce
the burden of users and provide clear incentives for users to
engage, reveal and trade their flexibility. Finally, as the mar-
ket outcomes induce physical power flow on the distribution
network, physical network constraints need to be managed
to ensure the reliability of the distribution network.

B. Contributions

In this paper, we propose a scalable market platform,
referred to as Automatic Power Exchange (APEX), that en-
ables monetization of these underutilized distribution system
assets. Our APEX platform allows distribution system partic-
ipants to trade energy and services. It incorporates variable
distributed energy resources by an open-gate forward market
design. That is, for each delivery period, users can submit
orders in anytime inside of a trading time window, which
if possible will be cleared as submitted. Effectively, this
introduces a continuum of forward markets, where users
can hedge against uncertainty through adjustment orders
based on most updated information. APEX also arranges an
explicit flexibility market. Distribution system participants
can submit the availability information of their flexible loads,
and APEX will schedule these flexible loads on behalf of
the participants. APEX will respect distribution network
constraints on the flow of electricity either by directly man-
aging the distribution network or by following a coordinated
trading protocol [7], [8] operated by a third-party distribution
system operator.

This paper contributes to the literature in the following
ways. (i) We propose a novel design for a distribution system
market that addresses uncertainty from Distributed Energy
Resources (DERs) using an open-gate forward market de-
sign and solicits demand flexibility by efficient in-market
flexible demand scheduling, while managing distribution
network constraints. (ii)) We study the non-convex problem
for scheduling non-preemptive flexible loads and propose
provably efficient algorithms to ensure the scalability of
the APEX platform. (iii) We analyze the properties of a
natural marginal pricing mechanism in the APEX context,
establishing that it is revenue adequate but may lead to
inadmissible prices for flexible orders. We then suggest a
simple alternative that is guaranteed to produce admissible
prices for users and adequate revenue for APEX when used
together with the proposed scheduling algorithms.
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C. Literature

Forward markets have been implemented in many whole-
sale electricity markets. It is known that forward markets help
manage uncertainty and incorporate generation technologies
with different lead times [2]. When a sequence of forward
markets are available, risk sensitive consumers (suppliers)
may limit their risks by procuring from (offering to) mul-
tiple forward markets [9]. Although many of these studies
have focused on the wholesale market, empirical studies
demonstrate that for smaller consumers having the option
of participating in forward markets helps them to hedge
their bill volatility [3]. Open-gate forward markets, compared
to fixed-time forward markets such as day-ahead and hour-
ahead markets, are not common for electricity. Yet, they are
widely implemented in financial industries [10].

The utilization of flexible energy resources in distribution
networks has been studied in a number of papers. Existing
studies usually exploit the flexibility in restrictive settings
where only one attribute of the flexible resources is allowed
to vary. Such treatments lead to interesting control and pric-
ing problems for electricity services that are differentiated
according to that particular attribute [11]-[13]. It is usually
assumed in these papers that these services are organized and
provided by aggregators instead of a flexibility market that
matches flexible resources with other resources. Furthermore,
in our flexibility market, the flexible orders are allowed to
simultaneously have many different attributes, thus bridging
a gap between prior studies and practical implementations.

As a whole package, APEX provides a novel design for
distribution system electricity market with significant DER
penetration. Existing alternative proposals for distribution
system markets can be roughly categorized into central-
ized and transactive. Centralized designs seek to modify
or augment existing utility companies’ rate structures to
align DERs’ power consumption/production with wholesale
price signals. Notable examples include real time pricing
(RTP) and its variants (cf. [14]-[17] and references therein).
The benefits of centralized design include tight manage-
ment of distribution network through utility companies and
the fact that they are relatively easy to implement given
today’s institutional structures of retail electricity markets.
Such designs, nevertheless, are inflexible as it is difficult
to incorporate differentiated electricity services. In contrast,
transactive designs rely on bilateral or multilateral transac-
tions (or contracts) among individual participants (cf. [18],
[19] and references therein). As the terms and conditions in
the contracts can be tailored according to individual needs, it
is very easy to incorporate various flexible resources in trans-
active market designs. However, these designs represent a big
structural departure from today’s utility-managed distribution
markets, require coordination to ensure reliability of the
distribution network, [7] and may impose significant search
costs on the participants. Compared to these two classes of
distinct designs, we view APEX as a middle ground where
flexible resources are incorporated by an explicit flexibility
market and an expressive alphabet of standard commodities,

and distribution network constraints are tightly managed
(possibly by a coordinated trading protocol). Participants’
search costs are also largely reduced in APEX.

Many of our technical results extend the growing liter-
ature on scheduling non-preemptive deferrable loads [20]—
[22]. Most of these prior studies focus on an aggregator
setting while we consider scheduling in a two-sided market.
Furthermore, the fluid relaxation based scheduling algorithm
that we propose is novel and well-suited for the region
where there is a large number of flexible loads. As the
scheduling problem is non-convex, the problem of pricing
these flexible loads with distribution network constraints is
challenging and understudied in the literature. Our results on
understanding the properties of marginal pricing with sub-
optimal scheduling algorithms may pave the way for future
development on this topic.

D. Organization

The rest of the paper is organized as follows. Section II
describes the APEX market platform and states the order
matching problem in APEX. Section III proposes efficient
algorithms for the combinatorial optimization of scheduling
non-preemptive flexible orders and establishes their perfor-
mance guarantees. The associated pricing problem for APEX
order matching is then considered in Section IV. Section V
concludes the paper.

II. APEX PLATFORM

In a nutshell, APEX receives orders (Section II-C) from
users (Section II-B), forms and maintains an orderbook (Sec-
tion II-D), and solves an order matching problem (Section II-
E) that fulfills standing orders in the orderbook by matching
supply with demand respecting distribution network con-
straints (Section II-A). The schematic of the trading process
in APEX is demonstrated in Figure 1.

Users
00 %‘
Matching Engine
29 __Orders | Order Book e Economic efficiency
/ e Power flow constraints
00 Orders
(==

Order execution information

Fig. 1. Trading process in APEX.

Trading in APEX happens within the following temporal
structure. Time is slotted into time intervals of At length
(e.g., At can be 5 minutes). Power delivery in each of these
time intervals is traded. We thus work with a discrete time
model, using t € Z to denote each time period. At any
time instance ¢, users can submit orders regarding power
delivery in any future time intervals belonging to a frading
time window Ty that includes T time intervals. The trading
time window may start with the next time interval ¢ + 1 and
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ends 24 hours after the next time interval, i.e., in this case
T is 24 hours/At. As a result, orders regarding the power
delivery in any time interval ¢’ can be submitted at any ¢ such
that ¢’ € T;. This implements an open-gate forward market.
Figure 2 gives an example of the open-gate forward markets
and trading windows for two delivery intervals.

8:00 8:05 7:55 8:00 8:05 8:10 Time
of day 0 of day 0 of day 1 of day 1 of day 1 of day 1
(Gate  (Gate (Gate  (Gate
open)  open) closure) closure)
Fig. 2. Example of APEX trading windows

We proceed to introduce individual components of the
APEX platform.

A. Distribution network model

Consider a distribution network specified by a graph with
buses N = {1,..., N} and lines £. As distribution systems
are usually radial, the graph has a tree structure so that |£] =
N —1. For the bulk of the paper, we focus on real power flow
and adopt the Simplified DistFlow model [23] that allows us
to write the nodal voltage v € RY and the branch flow
£ € RV~ as linear functions of the nodal power injection
p € RV:

v =V + Rp,
£ =Hp,

(1a)
(1b)

where v € RN*! is the vector of reference voltages that
include the substation voltage and the voltage contribution
from reactive power injections, R € RV*¥ is a matrix that
depends on the topology of the distribution network and the
line resistances (see [24] for more details), H € RN-1xN
is the shift-factor matrix for the network.

Operational constraints for the distribution network usually
include bounds on the nodal voltages and line flows (to avoid
transformer overloading). Under (1), these constraints specify
a polyhedral real power injection region for a distribution
network

Po:={peRY:1'p=0, v<V+Rp <V, £< Hp < £},

where 1 € RY is the all-one vector, v and ¥ are the voltage
bounds, and £ and £ are the line flow bounds. As is common
the case in practice, we assume v < v <vand £ <0 < Z,
and therefore 0 € Pp.

B. User model

We denote the set of users by Z := {1,...,I}. Let the
bus that user ¢ € 7 resides be denoted by n; and the set of
users located at bus n be denoted by Z,. Each user may
model an individual home, a commercial building, or an
aggregation of many buildings coordinated by an aggregator
or as a micro-grid. In this paper, APEX is agnostic to the
level of aggregation inside of each user.

C. Order formats

At any instance in time, referred to as ¢ = 0, a participant
located at bus n (i.e. 7 € Z,,) can submit buy or sell orders
for a trading window of time periods t € T := T, =
{1,...,T}. Considering typical supply-side and demand-
side characteristics, we allow buy and sell orders in the
formats specified as follows.

Definition 1 (Simple sell order): A simple sell order from
participant 7 € Z,, is a tuple

s = (TL, tu @ E)a

where n is the bus index, ¢ € 7 is time of electricity delivery,
7 € R, is the maximum amount of electricity to be sold and
m € Ry is the minimum acceptable price of electricity for
the sell order.
Symmetrically, we have simple buy order defined.
Definition 2 (Simple buy order): A simple buy order
from participant ¢ € Z,, is a tuple

b= (TL7 tu 67 ﬁ)u

where n is the bus index, ¢ € 7 is time of electricity delivery,
7 € R is the maximum amount of electricity to be bought
and 7 € Ry is the maximum acceptable price of electricity
for the buy order.

Simple orders may not be expressive enough to incorporate
certain flexible loads such as non-preemptive shiftable loads.
Many such loads consume pre-defined load shapes but are
indifferent to the time at which the loads are served as long
as they are served in a certain time window. This motivates
us to incorporate flexible buy order as follows.

Definition 3 (Flexible buy order): A flexible buy order
from participant ¢ € Z,, is a tuple

f=n, t*, *¢ P q, 7),

where 7 is the bus index, t¥5 € T, t*C € T and 7° € T
denote the earliest starting time, latest completion t1'1)me and
duration of the flexible load, respectively, q € R7 " is the
load shape to be consumed, and 7 € Ry is the maximum
acceptable price of electricity' for the buy order.

Figure 3 depicts the parameters used to define a flexible
buy order.

Trading window

Flexibility window

D

Duration 7

Load shape a

1 tES tS tC tLC T Time
Earliest starting Starting Completion Latest completion
time time time time
Fig. 3. Parameters of a flexible buy order

The maximum amount of payment associated with the order is 71T q.
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D. Orderbook

In practice, buy and sell orders arrive continuously in
time. Whenever a new order arrives, APEX runs an efficient
matching algorithm with all the standing orders and the
newly arrived order, which determines the fulfillment of a
subset of these orders. All unfulfilled orders, which cannot
be matched due to (i) lack of supply for a buy order or lack
of demand for a sell order, (ii) lack of a mutually acceptable
price, and (iii) network constraints, remain standing and are
recorded into an orderbook.

Definition 4 (Orderbook): The orderbook at time ¢ is de-
fined to be the triple (B, S, F), where B is the collection of
standing simple buy orders, S is the collection of standing
simple sell orders, and F is the collection of standing flexible
buy orders.

In the order matching process, some simple orders might
be partially fulfilled. These orders remain in orderbook with
the desirable quantities (g, or g,) updated by subtracting the
fulfilled amounts.

E. Order matching problem

To fulfill the orders in the orderbook (B, S, F), the order
matching process aim to determine an admissible schedule
and an admissible price for each (partially) fulfilled order in
the orderbook.

Definition 5 (Admissible schedule): A power production
or consumption schedule q € RT over the trading window
T is deemed admissible, if the following conditions hold.

o For simple sell order s = (n, ¢, g, m):
d=qs € Q,:={q1, eRT:0< ¢ <7},

where 1; € R is the elementary vector with a 1 at ¢-th
element and 0’s elsewhere.
o For simple buy order b = (n, t, g, 7):

a=q € Q:={ql, eRT: 0< ¢ < 7.
o For flexible buy order f = (n, 5, t+¢ 7P q, 7):
q=gqy € 9y,

where Q; is defined as the set of power profiles q €
RT such that there exists a starting time 5 so (q, )
satisfies

t5 e {tB5, . *C — 1D 41}, (2a)
qit —t5+1), iftS<t<tS4+7P,

at) =@ ) | (2b)
0, otherwise.

If the order is not to be scheduled, we denote t5 = 0
and so 0 € Qy by definition.

Definition 6 (Admissible price): For a (partially) sched-
uled order (i.e., q # 0), a clearing price 7 € R is deemed
admissible, if the following conditions hold.

o For simple sell order s = (n, t, g, m): ™ > 7.

o For simple buy order b = (n, t, g, 7): © < 7.

o For flexible buy order f = (n, t®S, t*C 7P q, 7):

T <T.

In the order matching problem, we try to identify ad-
missible fulfillment of all orders ({qs},{av},{ar}) =
({ds}ses, {avtven. {as} rer) in a way that maximizes cer-
tain criteria designed by the operator of APEX, denoted
by U({ds},{as},{as}), while respecting the distribution
network constraints. This can be written as the following
optimization problem

max U({as}, , 3a
@iy Ulad{a) tar}) G
s.t. q; € 95, s€S§, (3b)
a € Q, beDB, (3c)
qr € Qy, fEeF, (3d)
pnzzqs—qu—ZQj,NGN,

SESn beB, FeFn
(e)
p(t) €Pp, teT. (31)

where (3e) is the local power balance equation at each node
n, with S,,, B,, and F,, denoting the set of simple sell orders,
simple buy order and flexible buy order submitted by users
at bus n, respectively.

APEX may optimize different criteria in the order match-
ing problem depending on its real-world implementation
(e.g., whether it is implemented by a for-profit platform
company or by a regulated utility company). Here we list
two possible objective functions to optimize.

o Total surplus:

= Zﬁbl—rqb + Z ffl—rqf - ZES]-TQS-
beB feF seES

o Total volume:

U{ash fash {ar) =D 1Tap+ Y 1Taqs. 9

beB fer

We note that with criteria (4) or (5), the order matching
problem has a linear objective function. Meanwhile, con-
straints (3b), (3¢), (3e) and (3f) are all linear inequality or
equality constraints. However, (3) is challenging to solve
due to non-convex constraint (3d). In fact, the combinatorial
nature is evident if we return to the characterization of Q¢
using the starting times (2). Next section introduces two
algorithms solve (3) approximately.

While solving (3) gives an admissible schedule for each
order in the orderbook, it does not provide admissible prices.
Thus the second part of the order matching problem is to
identify an admissible price for each fulfilled order. Given the
non-convex nature of (3) and the fact that we can only obtain
approximate solutions of (3) in practice, the pricing problem
for APEX is challenging. In particular, the natural application
of the marginal pricing idea to this context requires a
re-examination because its nice properties established for
convex settings may no longer hold (see Section IV).
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III. SCHEDULING ALGORITHMS

Fixing the schedule of flexible buy orders, the order match-
ing problem is a linear program thus efficiently solvable. We
therefore denote

J({ar}) =
max  U({as}, {ap}, {as}) (6a)
{QS}v{qb}
s.t. q; € 95, s€S, (6b)
a € D, beDB, (6¢)
:ZQS_ZQb_ZQﬁWENa
$ESn beB, fEF
(6d)
p(t) € Pp, teT. (6e)

and focus on the optimization for scheduling flexible orders:

max  J({ar}) (Ta)
{ar}
st. qreQyp, feF. (7b)

We proceed to describe a way to solve this problem based
on a greedy heuristic.

A. Greedy scheduling

We start by reformulating (7) to a set function maximiza-
tion. Let t5 € 717! be the vector of starting times of all
flexible buy orders which uniquely determines the schedule
of all flexible buy orders {q}. Denote the value of (7) with
some fixed t5 by V(t5), i.e

V) = {iqqf(t?)}),

where qy (tS) is the power consumption profile induced by
starting time t? Consider the pairs of flexible buy orders
and their starting times in the set

Q={(f.13): f € F,t] € TU{0}}. (8)

Notice that any feasible scheduling can be represented by a
subset of {2; conversely, subsets of ) that select no more
than one starting time for each flexible buy order f can
represent all feasible scheduling decisions. Define set-to-
matrix mapping I : 29 — RIZIXT

if qs(t}) € Qy, f € F,
otherwise,

1, if(ft)eX
I(X = 9
X)) 1. {0, otherwise, ©)
and normalized objective function g(X) = V(I(X)d) —
V(I(0)8), where 6 € RT*1 is such that ; = ¢, and the

matrix vector product I(X)d converts a subset X C Q
into the corresponding starting time vector ¢5. With these
definitions, problem (7) is equivalent to the following subset
selection problem:

max  g(X), (10a)
T

st. Y [I(X)pe <1, feF, (10b)
t=1

where the constraint ensures that X selects at most one
starting time for each flexible buy order. The problem in
general is NP hard as the number of subsets is 2!/,

The greedy approach for solving (11) amounts to schedul-
ing flexible orders one-by-one according to the incremen-
tal benefit that scheduling a new order brings as mea-
sured by function g(X). Algorithm 1 lists the steps for
greedy scheduling. After this algorithm terminates, admis-
sible schedules for flexible buy orders are obtained. We can
then obtain admissible schedules for simple orders by solving
(6) with the resulting {qs} from the greedy algorithm.

Algorithm 1: Greedy scheduling
1 73 =0, F = F;

2 X 0

3 while FT55 £ () do

4 C<—{(f,ts) feFms 5 e (1 YCtr1-7P1h
s | (F.15) argmax g ;s)ec 9(X U {(f7 ts)}) 9(X);

6 | ifg(XU{(F,5)}) > g(X) then

7 X+ XU {(f ts)}

8 FS e FSU{f}, FTB8  FTE8\{f}

9 else

10 | break;

11 end

12 end

B. Fluid relaxation

Although the complexity of greedy scheduling is polyno-
mial in the number of flexible orders, it becomes relatively
slow when there are a large number of orders because it
needs to loop over the remaining orders and their feasible
starting times in each step. In this section, we consider an
alternative scheduling algorithm based on relaxing the non-
convex constraint gy € Qy. In particular, it first relaxes the
requirement that each load shape needs to follow the exact
load shape §; submitted by the user, solves a convex opti-
mization to determine the schedule qy, and then “projects”
the schedule q; to a feasible schedule ITg,(qy) € Qy. As
the key step in this algorithm is to remove the load shape
requirement by allowing any profile to be scheduled in the
time window {t}75, ... #°}, we refer to this algorithm as
fluid relaxation. Similar ideas have been used to develop
approximation algorithms for job shop scheduling problems
(cf. [25]).

In fluid relaxation, we replace the constraint q; € Qf by
qr € Q s> with Q t defined as the set of power consumption
profiles gy € R” satisfying the following constraints

17q; <17qy, (11a)
TV(ay) < TV(ay), (11b)
ar(t) >0, te{tf®, ... 5}, (11¢)
qr(t) =0, t& {5 .. 7%}, (114d)

where the total variation of a vector x € R? is defined as

d+1
2(0)

TV(x) =Y |a(d+1) — (1)), =a(d+1):=0.
t=0
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In the definition of é f, constraint (12a) requires that the
total energy of the scheduled consumption profile is no larger
than the total energy of the submitted consumption profile;
constraints (12c) and (12d) impose the non-negativity re-
quirement for the consumption profile and restrict the profile
can only have positive consumption in time periods specified
by the time window submitted by the user; constraint (12b)
controls the flexibility of the scheduled profile, by limiting
the total variation of the scheduled profile with that of the
submitted profile. It is easy to see that Qy C Q.

As O ¢ is a convex polytope for each f, the resulting
convex relaxation for scheduling flexible orders is

max J({qy}) (12a)
{ar}
st. qreQp, feF, (12b)

whose solution is denoted by {qy}.

The solution of the convex relaxation may be infeasible
with respect to the original constraint q; € Qf. One
possibility is that for some f, constraint (12a) may not hold
with equality at the solution q . In this case, we simply round
down such that q¢(t) = 0 for all ¢. If constraint (12a) holds
with equality at the solution and so the energy requirement
of the flexible load is satisfied, we identify a feasible starting
time t? for each f € F by finding the time window with TJ]?
periods that contains the maximum total power consumption
according to qy, i.e.,

S, D
thrTf —1

> ).

—4S
t=t7

5 = argmax (13)

t?e{tES,...,tIfC—TJPH}
The “projected” power consumption schedule is thus the
power consumption profile induced by this starting time,
denoted by q (t9):

as(13), if 17qr =17gqy,

) (14)
0, otherwise.

HQf (aj) = {

with t? defined in (14).

C. Performance guarantees

In this section, we provide a stylized analysis of the
proposed scheduling algorithms for solving the non-convex
(combinatorial) optimization (7) with the following two
assumptions.

A1 The network can be represented as a single-bus network.
A2 The maximization criteria is the total surplus (4).

Assumption Al allows us to focus on the combinatorial
nature of the problem rather than the network constraints.
We stress, however, both of the proposed algorithms result
in admissible schedules that respect distribution network
constraints for general networks. Analyzing the performance
of approximation algorithms with network constraints repre-
sents a major challenge and is left for future work. Assump-
tion A2 is introduced without loss of generality. In fact, the
total volume objective function (5) can be thought of as a

special case of the total surplus objective, with prices suitably
modified.

We start with the performance guarantee for the greedy
algorithm?. As is often the case, the greedy algorithm is (1—
1/e)-optimal if the underlying problem is submodular. For
our problem of scheduling flexible orders, by extending the
analysis in [21], we can show submodularity indeed holds
and therefore we have the following performance guarantee
for the greedy algorithm. Proofs are omitted due to the page
limit.

Lemma 1 (Greedy performance): Under Assumptions Al
and A2, the greedy scheduling algorithm is (1—1/¢)-optimal:

g
AT Y
J{a})} e
where {q}} is the greedy schedule and {q7}} is the optimal
schedule.

One important feature of the performance bound (16) is
that it is independent of the problem instance. It is thus
referred to as an a priori bound as it can be stated before
seeing the actual problem data.

For the fluid heuristic, we can derive general a posteriori
bounds based on the following observation:

Proposition 1: Let {qy} and {I1g,(qy)} be the solutions
of fluid relaxation (13) and its projected solution, respec-
tively. Then

J({Io, @N}) < J{ai}) < JHEr)-  (16)

This result bounds the unknown quantity J({q}}) by
quantities that are computable in the fluid relaxation steps.
This bound is general in that it holds without assuming A1
and A2. As such, given any problem instance and having
computed J({Ilg,(qy)}) and J({qs}), we can gauge the
(sub-)optimality of the solution by comparing these two
quantities. If they are close, we can assert a posteriori that
the fluid algorithm has produced a J({Ilg, (qs)})/J({ar})
optimal solution.

We can in fact show that the fluid heuristic is asymptoti-
cally optimal, with the following additional assumption:

A3 For all f € F, q¢(t) = g does not change with ¢,
t=1,..., T}D. Furthe.rmore, gmin < gy < @™ for all
f e F, where 0 < g™" < ™™ < 0.

A4 The supply is sufficient as for each period ¢t € T there is
a supply order with unbounded ¢ and a large acceptable
price w,, > maxses m,. Furthermore, among |F| flexible
orders, there are at least | F| flexible orders such that
T > m,, where o € (0,1).

Assumption A3 replaces possibly time-varying load
shapes by rectangles. This certainly limits the practicality
of our next result. Removing it is possible as any time-
varying load shapes can be approximated, with any desired

s)

2A slight modification (i.e., using a specific initialization of FS instead of
FS = () of the greedy algorithm presented in (1) may be needed due to the
knapsack constraint (11b). The modified greedy algorithm is still polynomial
time but is much slower due to the time-consuming initialization step. We
stated the simple greedy algorithm in Algorithm 1 because we have been
observing similar performances with and without the modification. See [26]
and [27] for more discussions.
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level of accuracy, by rectangles. Assumption A4 focuses our
analysis on the case where there is enough supply for each
future delivery interval. This can be the case when a utility
company (or load serving entity) participates in the platform
and offers to sell sufficient amount of energy at a relatively
high price 7 ,,. Under these assumptions, we can establish the
(weak) asymptotic optimality of the proposed fluid heuristic,
in the following sense.

Theorem 1 (Asymptotic optimality of fluid heuristic):
Under Assumptions A1-A4, consider a set of flexible orders
with increasing size |F| — co. For each F, there exists an
optimal schedule {q;} for the fluid relaxation (13) such

" e, @)
7))

where {q}} is an optimal schedule for the original prob-
lem (7).

The key intuition behind this theorem is that when the
number of flexible orders becomes large, individual load
shapes no longer play a significant role in the quality of
the solution because (with a single-bus network) it is the
aggregate load shape of all the flexible loads that matters in
the optimization (7).

=1, as |F|— oo, 17

IV. PRICING

Algorithms presented in Section III only provides admis-
sible schedules for orders in the orderbook, with clearing
prices to be determined. Denote the collection of prices for
orders by {7}, {m},{ms}. Basic requirements for these
prices include (i) admissible, as defined in Definition 6, and
(ii) revenue adequate so that the merchandising surplus of
the platform, denoted by MS, is non-negative:

MS=Y m1Tq+> m1'q—> m1lq, >0. (18)
beB feF sES

Without flexible orders, it can be shown that both require-
ments above can be met with a generalization of the simple
idea of marginal pricing. In the rest of this section, we first
state this generalization and then exam its properties when
used with the scheduling algorithms proposed in Section III.
A. Marginal pricing

Given any schedule of the flexible orders {qy}, we con-
sider the optimization for scheduling the remaining simple
orders (6). Denote the optimal dual variable associated with
constraint (6d) of the linear program by A, € RT, n € N.
This is a collection of N x T prices, one for each (bus,
future deliver time) pair. Thus these prices may be referred
to as temporal and locational marginal prices [28], which are
functions of the schedules of flexible orders in our setting.

In particular, for orders with non-zero cleared quantities,
we define marginal pricing rule as

s = M\(t), s=(n,t, g xm), (19a)

™ = A’n. (t)v b= (na ta qv ﬁ)a (19b)
T ES ,JLC D &

f ]-qu ) f (na ) y T A, 7T) (19¢)

Thus under the marginal pricing rule, simple orders are
paid or charged the locational marginal price for the future
delivery time interval. As flexible orders usually span mul-
tiple delivery time intervals, they are charged the average
locational marginal prices weighted by the amount of power
they consume in different time intervals.

B. Properties of marginal pricing

We analyze properties of the marginal pricing rule based
on Assumption A2, otherwise the dual variables of optimiza-
tion (6) may not have a clear economic meaning.

Using the KKT condition of the linear program (6) and
strong duality, we can establish the following property of the
marginal pricing rule, given any schedules for the flexible
orders {qys}:

Lemma 2 (Properties of marginal pricing): Under
Assumption A2, the marginal pricing rule is revenue
adequate and leads to admissible prices for simple buy
orders and simple sell orders.

As the schedules of flexible orders {qs} are not decision
variables of the optimization (6), little can be said about
whether the marginal prices will be admissible for flexible
orders without considering the actual algorithms used to
determine these schedules. Considering the algorithms pro-
posed in Section III, we have the following negative results
established using counter examples:

Lemma 3 (Inadmissibility for flexible orders): Under As-
sumption A2, the marginal pricing rule with greedy or fluid
schedule is not guaranteed to produce admissible prices for
flexible buy orders.

The observation above stems from the fundamental diffi-
culties in non-convex pricing problems and the fact that the
proposed algorithms use more than the marginal information
to determine the schedules of flexible orders. To be precise,
in each step of the greedy algorithm, it determines whether
to schedule a flexible order based on the total benefit
about which it brings measured by the change of function
value J({qy}) with and without the newly scheduled order.
Charging it with the marginal cost, which corresponds to
the cost of producing the last ¢ > 0 amount of power, may
result in a price higher than 7. For the fluid algorithm, the
projection step does not use price information and may result
in inadmissible prices.

While marginal pricing has many desirable properties
as studied in the transmission market literature (cf. [29]
and references therein), modifying it to extend some of
these properties to the non-convex setting here require much
additional work. Instead, in the next subsection, we provide
a simple mechanism that will ensure price admissibility and
budget adequacy.

C. Pay-as-bid mechanism

In the pay-as-bid mechanism, we simply pay or charge
users based on the prices they submit with their order
(20)

for all (partially) fulfilled orders. By definition, this pricing
mechanism produces admissible prices for all orders. We can

Mg =My, Ty =Ty, TNTf=TF¢,
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also show that revenue adequacy is achieved if we use greedy
scheduling algorithm with the total surplus objective:

Lemma 4: Under Assumption A2, the pay-as-bid mecha-
nism is revenue adequate with greedy scheduling.

It is an easy consequence of Theorem 1 that if we use
the fluid scheduling algorithm we are guaranteed revenue
adequacy in an asymptotic sense.

Corollary 1: Under the same assumptions of Theorem 1
and with the pay-as-bid mechanism, consider a set of flexible
orders with increasing size |F| — oo. For each F, there
exists an optimal schedule {qy} for the fluid relaxation (13)
such that the merchandizing surplus induced by the resulting
schedule {ITg(qy)} satisfies lim|z| o MS > 0.

In summary, both proposed scheduling algorithms result
in admissible and revenue-adequate prices if the pay-as-bid
mechanism is used.

V. CONCLUSION

In this paper, we propose APEX, a market platform that
enables monetization of underutilized distribution system
assets. It features an open-gate forward market design and
an explicit flexibility market. The forward markets help to
incorporate variable distributed energy resources and reduce
risks of market participants. In the flexibility market, re-
sources submit their flexibility information with a simple yet
expressive order format and APEX schedule these resources
on behalf of the users efficiently. All functionalities of APEX
are executed while ensuring the reliability of the distribution
network, either by directly managing the distribution system
constraints, or by communicating with a minDSO through a
coordinated trading protocol.

For the proposed market platform, we study the non-
convex problem of scheduling non-preemptive flexible re-
sources and propose polynomial time algorithms that have
finite or asymptotic performance guarantees. We then analyze
the properties of marginal pricing together with the proposed
algorithms and suggest a simple alternative that leads to
admissible prices for all users and guarantees adequate
revenue for the platform.
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