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Abstract— This paper studies rooftop solar photovoltaic (PV)
investment decisions of households. Two cases are considered:
(a) the status quo of net-metering, and (b) a new sharing
economy model. Under net-metering, households can sell back
their excess generation to the utility at their retail tariff subject
to the prevalent constraint that they cannot be net producers of
electricity on an annual basis. In our sharing economy model,
households can pool their excess PV generation and trade it in
a spot market among themselves, but the collective cannot sell
electricity back to the utility. Our objective in studying these
two cases is that net-metering programs are under threat and
being phased out, which places future residential PV investment
at risk. In the event of this contingency, we argue that the
sharing economy model offers a pathway to preserve and even
accelerate residential PV investment.

We derive expressions for the optimal investment decisions
in each case assuming that households are rational and wish to
minimize their costs. We characterize the random clearing price
in the spot market for excess PV generation under the sharing
model. We show that the optimal investment decisions are
determined by a simple threshold policy. Households whose PV
productivity metric exceeds this threshold invest the maximum
possible, while those that fall below the threshold do not invest.
We offer a convergent algorithm to compute this threshold.
We close with a small-scale simulation study that reveals
the favorable properties of the sharing economy model for
residential PV investments.

Index Terms— Sharing Economy, Photovoltaic Generation,
Optimal Investment, Net-metering.

I. INTRODUCTION

Investment in photovoltaic (PV) systems has seen dramatic
growth worldwide. For example, in the U.S. PV has expe-
rienced an average annual growth of 68% [1] over the last
decade. In the five-year period between 2012 and 2017, U.S.
solar industry related employment grew by 16% annually,
adding 131,000 jobs. One in every 100 new jobs was a solar
job [2]. Much of this dramatic growth has come from small-
scale residential systems.

Three key factors drive growth in behind-the-meter PV
systems. First, the integrated costs of PV have fallen by 50%
over the last 6 years [3], and levelized electricity costs are
now below $0.16 per kWh for distributed rooftop systems
in many regions [4]. Second, state and federal subsidies
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improve the private economics of PV — for example the
federal investment tax credit (equal to 30% of installation
costs) [5]. Third, net-metering policies — in which utilities
credit customers for hourly production in excess of their
consumption — effectively mandate utilities to purchase ex-
cess distributed solar PV production at retail rates, which are
much higher than utilities’ avoided cost of purchasing energy
from wholesale generators.

However, subsidies and tax credits are being phased out,
and utilities strenuously oppose net-metering because it
enables customers to avoid the true costs of infrastructure,
reserves, and reliability. In some of the sunniest states
(Arizona and Hawaii), net-metering programs are weakening
or disappearing altogether [6].

Are there feasible and sensible strategies to sustain the fu-
ture growth in behind-the-meter PV in the face of these chal-
lenges? We submit that the sharing economy business model
offers a plausible pathway. Sharing has already transformed
housing and transportation markets by allowing individuals
to offer underutilized products like ridesharing (Uber, Lyft)
and unoccupied real estate (Airbnb) on peer-to-peer plat-
forms. In this paper we explore how connected communities
of homes could share excess electricity generation. In our
earlier work, we have explored a sharing economy business
model in the context of firms sharing installed electricity
storage to arbitrage against time-of-use tariffs [7].

There is an important precedent for solar sharing in the
United States: at least 16 states have “virtual net-metering”
programs that allow owners of one solar system to distribute
net-metering credits to the bills of other customers [8], [9],
[10]. In some states these programs are limited to individual
properties (for example multi-tenant housing), but in other
states all customers are eligible to pool credits with other
customers. These programs extend net-metering to aggrega-
tions of buildings but continue to rely on the notion of reverse
flow receiving the same credit as consumption. In addition,
several pilot programs that allow peer-to-peer transactions
among users are appearing [11]. Projects like the Brooklyn
Microgrid in the US, expecting around 1000 users by the end
of 2018 [12], or the NRGcoin project in Europe, are cases on
which energy trade among users has been implemented using
a blockchain-based framework. Here we investigate a model
that could persist if the concept of net-metering is eliminated,
in which groups of customers pool their hourly consumption
and production, with pooled hourly net reverse flow receiving
no utility credit. We analyze the PV investment decisions
of individual homes under a sharing economy model, and
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compare them to decisions that would occur in the status
quo net-metering case.

We note that there is a substantial amount of research on
optimal sizing and siting of distributed generation. This work
focuses on engineering impacts, cost minimization or utility
profit maximization; for example [13], [14], [15], [16], [17],
[18]. In addition, game theoretical approaches, e.g. [19], [20],
[21], study different peer-to-peer energy trading schemes
among producers and consumers. However, research in this
space takes the perspective of individual customers or of
distribution system operators. We are unaware of efforts to
evaluate how optimal decisions change when customers are
able to share, or aggregate, their hourly production. While
the core idea of aggregating variable energy production has
been applied in other contexts, e.g. [22], [23], [24], [25], [26],
researchers have yet to leverage aggregation as an alternative
to net energy metering for individual customers.

Contributions: In this paper we formulate solar invest-
ment decisions under various pricing and sharing schemes
as optimization problems that explicitly model uncertainty
arising from behind-the-meter energy consumption and solar
production. We show that investment decisions in the shared
solar case can be cast as a game that admits a unique, social
welfare supporting Nash equilibrium. We also derive a simple
optimal investment threshold policy for individual customers
participating in the shared setting. We then use numerical
experiments to show that investment outcomes differ strongly
between the standalone and sharing economy cases, with
total investment levels in the shared case exceeding those
in the standalone case. We also show that some standalone
customers will over-invest and others will under-invest, rela-
tive to the social-welfare maximizing decisions of the shared
solar case.

NOTATION

We write 7 to mean max{z,0}, and E[X] for the
expectation of the random variable X . For random sequences
X(t),Y(t), t=1,---,T, we write the average expectations
as

E[X] = =Y E[X(1)

EXY] = Y EXE@ V().

k household or firm index

t time index

n number of households

T number of time slots

ak panel area investment decision for home k

mp max area available to install PV panels for home &

wi(t) | effective irradiance at firm & in time slot ¢

£ (t) | load of firm k in time slot ¢
m amortized capital cost of PV per m? per time slot
e retail electricity tariff

«"™ | net-metering price

II. PROBLEM SET-UP

Imagine we have a connected community of n households
or firms indexed by k. These homes are considering installa-
tion of rooftop solar PV. The investment decision for home &
is the panel area ay, for its PV system. We consider a multi-
year investment horizon broken into small time intervals
(e.g., 5 min, 15 min, or 1 hr), and time slots are indexed
by ¢t. We use a simple linear model of investment costs: the
price of PV panels amortized over their lifetime is 75 $/m?
per time slot. This can be derived by combining commonly
used $/watt PV levelized cost figures with production models
(see Section V).

Home k receives irradiance wy () in slot ¢. If it invests
in ap of panel area, this home generates ajwy(t) kWh
of electricity in slot ¢. Thus, wy(t) captures the effective
irradiance including factors such as panel efficiency, inverter
efficiency and relative declination of incident sunlight. It
varies with time of day and technology choice. The electricity
demand for home k in slot ¢ is ¢ (¢). We treat £, and wy,
as non-stationary random sequences. The household demand
£(t) is first served by its own local PV production. The deficit
or net-load (£(t) —aw(t))" is bought from the utility at the
retail tariff €. In some situations, any surplus may be sold
back to the utility through its net-metering program at the
net-metering price m"™. For the likely future scenario where
net-metering programs are phased out, we can set 7" = (.
The situation we consider is shown in Figure 1.

l— aw
net-load

irradiance
w

load ¢
PV gen

Fig. 1: Set-up: irradiance, PV generation, and net-load for a
home.

III. STANDALONE INVESTMENT DECISIONS

In this section, we analyze the PV investment decisions of
a household under the status quo. The situation we consider
is shown in Figure 2.

Utility

Fig. 2: Standalone investment model with net-metering
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Households act independently and do not trade excess
generation with each other. They participate in conventional
net-metering programs under which excess PV generation is
sold back to to the utility at a fixed price 7™™. This is often
the retail electricity price 7€. Most importantly, there is an
annual cap that limits PV investments: households cannot be
net energy producers over the course of a year.

In this standalone scenario, the PV investment decisions
of households are decoupled. Home k decides how much PV
panel area ay, to install based on the joint statistics of its own
load and irradiance, together with panel costs and electricity
prices. The cost function for firm k is

Jelar) = map + mEE[(0(t) — apwi(t))"]

capital cost

cost of buying deficit
— " E[(axwy(t) — (t))"]

revenue from selling surplus

It is simple to verify that this cost function is convex in the
scalar decision variable ay,.

We now explore constraints on ai. The maximum panel
area supported at household k is my. Net-metering riders
constrain households to be net consumers of electricity on
an annual basis. Let Ey;[-] denote the average expectation
conducted over year ¢. This constraint reduces to

Eyz'[fk(t) — akU}k-(t)] Z 0, for i = 1,2, e
Equivalently, we obtain

< LEYz' [0k (2)]
Eyiw(t)]

Using representative historical load and production data, we
can compute these annual cap constraints. Other distribu-
tion system constraints (ex: reverse power flow, transformer
sizing) also impose limits on ag. All these constraints can
be combined into a single upper bound a < ap®™. We
shall see in Section V, that most often it is the annual cap
constraints (1) and not the physical panel area constraints
that are binding.

fori=1,2,- (1)

The optimal investment a;, of home k is determined by
solving

aj, = argmin Ji(ag) subject to 0 < aj < ap™
Theorem 1: Assume 7"™ = w®. Then, the optimal PV
investment decisions of household & under the standalone
model are given by the threshold policy:
max : i S /g
N { ay if Elwg] > 7% /7 @)

= 0 else

Proof: If the net-metering price is pegged to the retail
electricity price, i.e. 7" = 78, the cost function simplifies
to

Jk(ak) = rlay + ﬂ'gE[(gk(t) — akwk(t))]

Observing that this is linear in a;, with slope (7° —7¢E[wy]),
yields the result.

In the general case of discounted net-metering prices
7" < 7€ we can show that the cost function (while not
linear) is convex. We can derive a closed form for the optimal
investment decisions. In any event, these optimal PV invest-
ment decisions aj, for each household can be easily computed
using historical data to form empirical expectations.

IV. INVESTMENT DECISIONS UNDER SHARING

In this section, we analyze the PV investment decisions of
a household under a sharing economy model. The situation
we consider is shown in Figure 3.

Utility

Collective of homes

))) <

- J

Fig. 3: Sharing economy investment model with no net-
metering

A home may have a deficit of net-load (¢ — apwg)™ in
some time slots. This can be purchased from homes who have
a surplus, or from the utility at the fixed price 7 $/kWh.
The utility is the supplier of last resort. Homes may also
have an excess net generation (apwy — )" in some time
slots. This can be sold to other homes, or returned to the
utility under net-metering. To simplify our exposition, from
this point forward we shall consider the sharing economy
investment model with no net-metering, i.e. we set

™ =0 3)

Indeed, our objective is to argue that the sharing economy
model can supplant net-metering in some (likely) future
scenario when utilities withdraw these programs. We will
argue that under the sharing economy model, investment in
residential PV will continue to thrive.

Remark 1: We stress that traditional net-metering is not
sharing. True resource sharing would pool excess PV gen-
eration and trade this over a spot market. We next analyze
a stylized model of this spot market.

A. Spot Market for Sharing Excess PV Generation

We explore a simple spot market model for sharing excess
PV generation from households. The collective supply S and
demand D of shared electricity are

S = Z(akwk - fk)-i_, D= Z(fk — akwk)+.
k k
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Fig. 4: Clearing price for shared electricity: (a) left panel
S > D, (b) right panel S < D.

Consider time slot ¢. If the collective supply S(t) in this
time slot exceeds the collective demand D(¢), homes with
excess PV generation will compete against each other. As
a result, this shared electricity will trade at the floor price
offered by the utility under net-metering 7"™ (which we have
set to 0). If the collective demand D(t) exceeds the collective
supply S(t), homes with a net deficit of electricity will
compete against each other. As a result, this shared electricity
will trade at the ceiling price imposed by the utility 7%. These
effects are illustrated in Figure 4.

In summary, the spot market price for shared electricity is:

Weq{w =0 if S>D @)

e else

This clearing price is random - it depends on market
conditions in each time slot.

Fort=1,---,T, define the random sequences
L(t) = Y 4(t), G(t)=) apw(t)
E 2
X(t) = L(t)-G() (5)

Note that L(t) is the collective load, G(t) is the collective
generation, and X (t) is the collective net-load in time slot
t. Observe that

S—D = Z(akwk — )t — Z(& —apwg) "

k k
= Zakwkfék:GfL
k

As a result, the spot market price for shared electricity (4)
can be re-written as

7Teq_{o if  X<0

(6)

w&  else
B. Optimal Investment Decisions

The expected cost faced by household k (per time slot)
has three components:

Jelag |a_y) = 7ap +E [ﬂ'eq(gk - akwk.)Jr]

capital cost cost of buying deficit

—E [7*(wy — arli)™] (7

revenue from sharing surplus

Note that the objective function for household k£ depends
on the investment decisions a_j of other households. This
induces a PV investment game. The social cost is

J(ay, - -ap) = ij
k

We first consider the academic case of common irradiance
with no bound on maximum panel area supported at each
household. We can show the following:

Theorem 2: Assume all households receive common irra-
diance, i.e. wy, = w for all k. Then,

(a) the PV investment game admits a unique Nash equilib-
rium

(b) the optimal total investment A is the unique solution of
s 1
0=n°—nt- T ;E [p(®)w(t) | L(t) > Aw(t)]

where p(t) = Prob{L(t) > Aw(t)}

(c) at this Nash equilibrium, the optimal investment of
household & is

a;  E[f| L= Au]
A E[L|L=Au]

(d) this Nash equilibrium supports the social welfare

Proof: Omitted because of space considerations.

Under the much more realistic condition of diverse ir-
radiance, we can again show that there is a unique Nash
equilibrium for the PV investment game. We cannot offer
a closed form expression for this Nash equilibrium. Also,
this Nash equilibrium does not support the social welfare
(i.e. a social planner would have ordered households to
make alternate investment choices). The PV investment game
models Cournot competition as it accounts for the statistical
influence households have on the price 7°¢ of shared elec-
tricity.

Let us assume that home k can invest at most m; m?
of panel area due to physical limitations at the site. Also,
we assume that a large number n of households partici-
pate in PV sharing. With this realistic assumption, we will
have asymptotically (in n) perfect competition. The perfect
competition equilibrium concept is much easier to analyze
principally because no single firm can influence the statistics
of the clearing price 7.

We have our main result:

Theorem 3: In the sharing economy model, under the
perfect competition model and no net-metering the optimal
PV investment decisions of household k are given by the
threshold policy:

x mpg if
T 0 else
where X (t) is the netload random sequence,

p(t) = Prob{X(t) > 0}, and T is the number of time
slots.

7 Y, Elp(t)wi(t) | X(£) > 0] > ©°T

7325



Proof: With the simplifying assumption of no net-metering
(3), the cost function (7) can be written as

Jk(ak) = rtay, + E[ﬂ_eq(é — akwk)+]

— map + %g Et: POE[(t) — apwr(t) | X(t) > 0]

Note that because of the perfect competition model, the cost
function for household &k depends only on its own investment
decision aj. This cost function is linear in the decision
variable aj with slope

b=n T3 p(OEw(t) | X(2) > 0

As a result, the optimal investment is a; = 0 if this slope
¢ > 0, and aj, = my, otherwise. This can be rearranged to
yield the threshold policy of Theorem 3.

Remark 2: If we assume the load ¢, and irradiance w;,
are stationary random sequences, p(t) = p is independent of
t. In this case, the threshold policy of Theorem 3 becomes

* mg if /Lk:E[wk|L>G]>9
e = { 0 else ®)
where the threshold 6 is the unique solution of
ﬂ.S

0 = 9)

mep

The quantity py = E [wy, | L > G| captures the value of PV
for home k. This home will invest the maximum possible if
1 > 6, and not invest otherwise.

C. Computing the Threshold 0

Computation of the threshold # in (9) is not trivial: 6 de-
termines the PV investments of households, which influences
the statistics of the collective load L and generation G, and
this, in turn, affects #. We now offer an algorithm to compute
0. We treat the case where the load ¢, and irradiance wy,
are stationary random sequences, but our procedure readily
generalizes to the realistic case where these sequences are
non-stationary.

Define the index sets of households

S = homes that elect to invest in PV = {k : a;, = my}
T

homes that elect not to invest in PV ={k : a = 0}

Our algorithm iteratively updates S and T in order to
determine the threshold #. Convergence is guaranteed. The
algorithm initializes the set S, by adding the best firms
without considering the collective deficit, and initializes the
set T using the other ones. With this, an iterative process
starts, in which the threshold 6 is updated and the worst firm
k € S (firm with the minimum merit p; < ) is removed
from the set S and added to the set T. On the other hand,
the best firm k£ € T (firm with the maximum merit 5, > 0)
is removed from T and added to S. This process is repeated
until no changes of firms occur or the same changes are
occurring after two iterations.

Algorithm 1: Collective of firms investing in PV

1: Initialization: o

2: Compute maximum generation for each firm gi := E[mgws].

3: Sort the firms by gx on descending order.

4: Start with S = T = @ and add the upper half of the sorted
firms to the set S, while the bottom half to the set T.

5: for iteration ¢ = 1,... do

6:  Compute the collective generation G(t) = >, ¢ mrwi(t).

7:  Compute the probability of deficit p = Pr{L > G}.

8:  Update threshold 6 = 7°/(n®p).

9:  for firms k on S do B

0 Compute merit of site k as ux = E[wi|L > G]

1 If 3k : pup < 6, pick firm &~ with the minimum s and
remove it from the set S.

10:
11:

12:  end for

13:  for firms k£ on T do B

14: Compute merit of site k as ux := E[wi|L > G]

15: If 3k : py, > 6, pick firm k" with the maximum iy, and
remove it from the set T.

16:  end for

17:  Add firm k* to the set T and firm &k to set S.

18:  Halt if no firms are moving or the same moves are being
done after two iterations.

19: end for

20: Solve the standalone case for indecisive firms, that are the last
firms on changing between sets.

V. SIMULATION STUDY

If net-metering programs end, could shared solar maintain
current investment levels in photovoltaics? In this section we
use a variety of simulation experiments to explore how solar
adoption differs in a status quo net-metering policy landscape
versus a shared solar model. As we shall show, if sharing
is available as a policy tool, total solar investment could
be equal to or greater than what currently occurs with net-
metering. However the distribution of customers who invest
could change significantly, which could raise fairness and
equity concerns.

A. Data

Prices. Based on [3], we use a levelized cost of 2.80
$/Wpc for solar PV. A typical residential panel of 165 x
99 cm (1.64 m?) has a rated power of 300 Wpc [27] (cor-
responding to 18.3% efficiency at 1000 W/m? irradiance).
With that, an investment cost of 512.2 $/m? is required per
household. Considering a discount rate r of 5% and a time
horizon of 10 years, we obtain an annuity of 66.36 $/m?, that
yields a price of 7* = 0.0076 $/m? per hour. We use a retail
price 7¢ = 0.17 $/kWh and net-metering price 7"™ = 78
for the standalone model, with v € [0,1] depending on the
study case. In the sharing economy model we set 7™ = 0
(no net-metering), but no annual cap on production from
individual customers.

Load and Irradiance. In this initial simulation study
we use synthetic solar production and load data. In all
cases we simulate load for 1000 homes. These data are
generated with heterogeneity across homes in load patterns,
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solar resource availability and available roof area. We will
ultimately show simulation results from different scenarios
on available roof area, which is a key unknown parameter.
However because the data are synthetic, our results should
only be interpreted as suggestive of what is possible, and
this investigation should be followed by detailed simulations
using real customer demand and solar data.

To create load data, we begin with the 2016 aggregated
hourly profile for the San Francisco Bay Area load zone
define this time series at L£(t). We then set the aver-
age hourly consumption across all homes to be ((t) =
al(t)/(>°, L(t)), where o = 10766 kWh is the average
annual consumption for an American home [28]. To generate
a time series for each simulated home we add a unique white
noise time series €5 (t) to the scaled profile such that each
home’s simulated load is £y (t) = £(t) + ex(t).

We derive PV profiles from the average hourly solar irra-
diance (in kW/m?) in the San Francisco Bay Area in 2016.
Those irradiances are converted to a generic PV production
profile by scaling the irradiance by 18.3% panel efficiency
as defined above, and a balance of system efficiency of 93%.
For each user, we generate synthetic PV power per m? of roof
area, wg(t), by scaling the generic PV profile by a random
number drawn from a uniform distribution ~ 2/([0.6,1.1]).
This scaling represents heterogeneity across customers due
from roof orientation, shading and local climate effects.

To capture heterogeneity in available roof area, we also
draw panel area limits from a uniform distribution my ~
U([er, B]) where « and § vary in different scenarios. For the
standalone case we also include a constraint that installed
area cannot exceed

acap _ I_E[ék (t)]
b Elwe(t)]

to ensure that individuals in the standalone case are not net
producers over a year.

B. Results and Discussion

1. Small available panel area my. We first consider
investment decisions under both market structures for a case
with low maximum available roof area my ~ U([2,6]) m?.
This area distribution is small for single family homes, whith
floor space averaging roughly 220 m? in the U.S.; if only
10 percent of an average two-story home’s roof area were

available, about 11 m? of area would be available for solar.

Under this scenario, for different values of 7™ = yx9 in
the standalone case, both market structures yield nearly iden-
tical results. This equivalence results from the fact that if my
is small enough, ¢ (t) — mywy(t) > 0 for all time steps. For
standalone customers in that situation, the net-metering price
is irrelevant; they simply install as much solar as possible
(ar = my,) if the retail price compares favorably to the cost
of solar. Therefore in this case all standalone customers with
sufficiently high E[w(t)] install their maximum and all other
customers install none. Furthermore, if ¢ (t) —mywy () > 0

12 ‘
Lok T Colene
10 “\ ‘ ‘ i i A Standalone [——
N |
8| it
g
e | s
26 Difference represents
§ || under-investment in
£ standalone case
< 4
2
<
2
oL

0 100 200 300 400 500 600 700 800 960 1000
Houses sorted by average irradiance E[wy, (t)]

Fig. 5: Comparison of investment decision with v = 0.8 for
the mid-range maximum available panel area case. A low
rank on the horizontal axis corresponds to relatively high
irradiance.

12 ‘ ‘
10HH” | dHILH\\’M“u | “I\ I | \\‘ Ll I Collective

Standalone

o

(=)}

I

Area invested in m?

8]

100 200 300 400 500 600 700 800 900 1000
Houses sorted by average irradiance [E[wy,(t)]

Fig. 6: Comparison of investment decision with v = 0 for
the mid-range maximum available panel area case.

for most hours and customers, then L(t) — G(¢) > 0 for at
least as many hours, meaning virtually the same customers
install solar in the collective case as well.

2. Mid-range available area distribution: my, ~ U([5, 12])
m2. We view this distribution as a conservative, though not
overly so, estimate of the available roof area for typical single
family homes in the U.S. With this allowable area, customers
have the option to install enough capacity that their net-load
would be negative in some hours, meaning they are exposed
to the net-metering price in those hours.

Figure 5 depicts results with a standalone net-metering
price similar to the retail price (7 = 0.8). Here we begin to
see results differ in important ways. Standalone customers
install roughly 3% less capacity because their net-load is
negative in hours when the collective net-load is not; though
"™ is close to 79, the economics of reverse flow are slightly
worse and customers invest slightly less. Note, however, that
the set customers that choose to install solar is the same in
both the collective and standalone cases. This is because the
available roof area remains low enough that if all customers
with favorable solar availability invest to their maximum,
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Fig. 7: Comparison of investment decision with v = 0.8 for
the large maximum available panel area case.

the collective net-load L(t) — G(t) remains positive and the
collective equilibrium price is always the retail price. We will
see this condition change in the high available area case.

Figure 6 depicts a second case in which net-metering is
unavailable for standalone customers (i.e. ¥ = 0). Now the
impact of sharing is significant; though the same subset of
customers invest as before, all standalone customers invest
less because their economics have degraded.

3. Large maximum available panel area: my ~
U([25,50]) m?. We chose this area to correspond to what
might be available from large single story single family
homes’ roofs, or if customers choose to install ground
mounted solar on their property. Under this case, all homes
could produce more than their annual consumption if they
installed their maximum area available my; therefore in the

standalone case a;" is the binding area constraint.

Figure 7 shows a standalone case with v = 0.8 in
comparison with a sharing economy model without net-
metering. As with medium available area, total investment
is greater in the collective case; these customers invest in
roughly 8% more total PV area and produce roughly 15%
more energy. And roughly the same standalone customers
invest in both the medium and high available area cases. But
in stark contrast to conditions with medium available area, in
the collective case the distribution of customers who invest
is much smaller. Only the customers with the most favorable
PV economics invest in the collective case, and these cus-
tomers become ‘“suppliers” for the remaining customers in
the collective. In other words, the threshold § becomes more
challenging to meet as available area increases. In Figure 8
the collective conditions are unchanged but net-metering is
no longer available to standalone customers (y = 0). In this
case the distribution of customers who invest is roughly the
same, but because their economics have degraded, standalone
customers invest even less.

Summary. Differences between investment in the stan-
dalone and shared solar cases are strongly influenced by
the area each customer has available for solar. When this
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Fig. 8: Comparison of investment decision with v = 0 for
the large maximum available panel area case.

area is low, customers whose standalone PV economics are
favorable to install their maximum in both the standalone
and shared cases. At intermediate areas, the set of customers
installing PV is the same for both cases, however customers
under-invest in the standalone case because their net-load is
negative in more hours than the collective. When available
area is high, the pattern we see in the standalone cases
is that a fraction of customers under-invests while others
over-invest relative to social-welfare maximizing decisions.
Standalone under-investors exist due to their annual pro-
duction cap (when net-metering is available) or a lack of
remuneration (when net-metering is unavailable). Standalone
over-investors exist because, although their merit is worse
than others in the community, for their private economics
solar remains cheaper than retail electricity.

VI. CONCLUSIONS

In this paper, we considered residential PV investment
decisions problems for households under two models: (a)
the standalone or status quo of net-metering with an annual
production cap, and (b) a sharing economy model where
households can trade their surplus generation in a spot
market. In the standalone model, the households make in-
dependent investment decisions. Under the sharing economy
model, investment decisions of households are coupled as
they collectively influence the clearing price for electricity
in the spot market. In this situation, for a large number
of households we have asymptotically perfect competition.
We have shown that the optimal investment decisions are
determined by a simple threshold policy. Households whose
PV productivity metric exceeds this threshold invest the
maximum possible, while those that fall below the threshold
do not invest. We offer a convergent algorithm to compute
this threshold.

We compare standalone and sharing economy models in a
small-scale simulation study. This study suggests that in the
likely future scenario where net-metering programs disap-
pear, the sharing economy could sustain or even increase total
behind-the-meter PV investment. Under the sharing economy
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model, customers collectively make larger investments in PV
and all customers see a modest reduction in their expected
average electricity costs as the spot market price is zero in
some hours. In this sense the sharing economy model can
be said to benefit all participating customers. However, it
is important to consider that, when available area is high,
some customers who would have invested in solar in the
standalone case will choose not to in the shared case. Though
these customers will see a modest reduction in energy costs
in the sharing case relative to a case without any solar, some
would receive greater private benefits in the standalone case.
These distributional implications need to be thought through
carefully.

To fully understand the merits of a sharing economy model
for solar, comprehensive simulation studies are needed.
These must be based on larger, and more realistic production
and load data. The maximum physical panel area can be
deduced from GIS databases. Detailed irradiance data is
available from meteorological databases. This future study
should consider (a) more detailed PV panel cost model
broken into fixed and variable components, (b) distribution
system constraints such as transformer capacity and reverse
power flow, (c) a fair payment to utilities for use of their
distribution infrastructure, and (d) more complex and widely
used retail pricing including time-of-use and volumetric
tariffs.

Many research questions remain open. These include (a)
developing the power-electronics technology necessary to
enable sharing of excess PV generation, (b) the market
infrastructure to support the sharing economy spot market,
(c) strategic behaviour from users when perfect competition
conditions are not satisfied, and (d) incentives to encourage
households to join sharing communities. Detailed studies are
necessary to understand the nature of connected communities
for whom sharing is economically beneficial, while address-
ing fairness and equity issues. These will be in terms of
community size, and statistical diversity of PV generation
and load between their participants. In long-term evolution,
we can even imagine communities participating directly in
wholesale markets where they collectively sell their genera-
tion surplus and purchase their consumption deficits.
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