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Abstract—1In the classical risk limiting dispatch (RLD) for-
mulation, the system operator dispatches generators relying on
information about the distribution of demand. In practice, such
information is not readily available and therefore is estimated
using historical demand and auxiliary information (or features)
such as weather forecasts. In this paper, instead of using a
separated estimation and optimization procedure, we propose
learning methods that directly compute the RLD decision rule
based on historical data. Using tools from statistical learning
theory, we then develop generalization bounds and sample
complexity results of the proposed methods. These algorithms
and performance guarantees, developed for the single-bus
network, are then extended to a general network setting for
the uniform reserve case.

I. INTRODUCTION

With the deepening penetration of renewable energy re-
sources, it becomes increasingly important for electric power
system operators to manage the uncertainty associated with
these energy resources. This requires modeling the uncer-
tainty using historical data and controlling resources in a way
that balances economic costs and system risks. In practice,
this process has been treated in two separate steps:

o estimation or learning step that identifies a model of
the uncertain parameters, and

e optimization or control step that uses the uncertainty
model to select the dispatch decisions by optimizing
certain criteria subject to power network constraints.

The merits of this separated estimation and optimization
procedure include the fact that it leads to tractable formula-
tions and efficient algorithms for each subproblem. However
this procedure may result in inefficient dispatch decision
because of potential inconsistencies between these two steps.
In particular, without using the actual cost information for
the system, the estimation step cannot weight different errors
properly (e.g. forecast errors that lead to insufficient gener-
ation v.s. excessive generation); without knowing how the
estimation step obtains the model of uncertainty, a control
procedure that takes the model as given can only perform
well with respect to the model, without guarantees with
respect to the actual system that generates the data used to
produce the model.

Meanwhile, with the recent data deluge and interest in
applying machine learning and artificial intelligence tech-
niques for engineering problems, a question of debate is
whether these learning techniques are capable of controlling
the most complex man-made machine, namely, the electric
power grid [1], [2]. A basic step in answering this question
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is to understand how learning methods can be rigorously
applied in the context of controlling engineering systems, in
a way that gives end-fo-end performance guarantees for the
resulting control decisions based on attributes of the initial
dataset. To this end, we will need to merge the estimation
and optimization steps, and directly obtain the decisions from
the data.

In this paper, we propose such a direct data-driven method
for dispatching generators in a power network under un-
certainty. In particular, we consider the problem of risk
limiting dispatch (RLD), a stochastic control formulation that
optimally balances the economic costs and system risks. The
classical RLD formulation focuses on the optimization step,
assuming a model of the uncertainty. Thus we first extend the
formulation to a data-driven setting, where the system oper-
ator is given the initial data that are used to obtain the uncer-
tainty model instead of the model itself. This dataset contains
historical net demand (demand less renewable generation)
and auxiliary information (a.k.a. features or covariates) such
as weather forecasts. We then propose learning algorithms for
the data-driven RLD problem that directly map the data into
the optimal dispatch decisions. This is done by modifying
existing learning algorithms (including regularized linear
regression, kernel regression and neural networks) and can
be implemented in practice. Utilizing recent finite-sample
tools from statistical learning theory, we develop end-to-end
performance guarantees for using these learning algorithms
to solve data-driven RLD. For ease of exposition, we focus
most of our development on a single-bus network setup
without power network constraints. The single-bus results
are then extended to general network settings under the
restriction that the reserve levels are identical across the
network.

A. Contribution and paper organization

This paper contributes to the literature in the following
ways. First, it formulates the data-driven RLD as a learning
problem (Section II). Second, it introduces a systematic
procedure for modifying standard learning algorithms to
solve the data-driven RLD problem (Section III). Third, it de-
velops end-to-end performance guarantees for the proposed
procedure, establishing that the resulting learning algorithms
are probably approximated correct (PAC) with respect to
the RLD costs by bounding their sample complexities (Sec-
tion IV). Finally, these results are extended to the setting
with general power network for the case of uniform reserve,
providing efficient and rigorous approaches for dispatching
generators under uncertainty and power network constraints
(Section V).
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B. Literature

Many papers address either the estimation step or the
optimization step. For the estimation step, see [3], [4] and
references therein on load forecasting, and [5], [6], [7] and
references therein on wind and solar forecasting. For the
optimization step, different methods have been proposed
based on different types of uncertainty models produced in
the estimation step. For example, see [8] for model predictive
control, [9] for stochastic programming based economic
dispatch, [10] for robust optimization based approaches.

Risk limiting dispatch [11] is a stochastic optimal control
formulation for the optimization step. It leads to efficient and
easy-to-implement dispatch rules that balances generation
costs and the operation risk of potential loss of load. It
has been generalized to incorporate multiple forward mar-
kets [12], stochastic prices [13], storage [14], and network
constraints [15]. All prior work on this topic has assumed the
knowledge of the probability distributions of the demand.

Our performance guarantees are related to but different
from those of methods based on sample average approxima-
tion (SAA), cf. [16] and [17]. Performance guarantees for
SAA are usually asymptotic, while we obtain bounds for
the performance of our algorithms that holds with a finite
number of sample points.

II. FORMULATION
A. Notations

For an Euclidean space R™, we use 1 € R" to denote the
all-one vector. Given arbitrary sets X and ), we use V¥ to
denote the set of all functions from X to ).

B. Classical risk limiting dispatch

In the classical risk limiting dispatch setting [11], the
system operator dispatches generation one day ahead to meet
an unknown net demand defined to be the actual demand less
the renewable generation. As the day-ahead forecast errors
for renewable generation are usually substantial, explicitly
accounting for the uncertainty in the dispatch process is
necessary.

Mathematically, given the probability distribution of net
demand D ~ Pp supported on [D™" D™aX] the classical
risk limiting dispatch solves

u*(Pp) = argmin Ep.p,[c(u, D)], (1)
ueU

where the function
c(uyd) = au+ B(d — u);

captures the cost of scheduling generation in the day-ahead
market au and the operational risk of not having enough
generation to cover the real-time net demand ((d — u)q.
The constant coefficient & > 0 models the average price of
purchasing from day-ahead market, and 5 > « models the
value of loss load in real time'. For simplicity, we assume
Uu=R=R

'Parameter 8 may also be interpreted as the price for purchasing power
from fast ramping generators in real time.

In practice, Pp is not known a priori and needs to be
learned from data. Thus in a separated estimation and opti-
mization (SEO) paradigm, one first estimates a distribution
Pp from data, and then solves (1) with Pp in place of
the gctual but unknown distribution Pp. While the solutAion
u*(Pp) is the optimal dispatch for demand distribution Pp,
it is in general suboptimal for Pp. Furthermore, it is unclear
in SEO how to gauge the true performance of the dispatch,
ie.,

Ep~p, [c (u*(]IADD), D)} ,

as Pp will be different from @D when the sample size is
limited.

C. Data-driven risk limiting dispatch

In the data-driven setting, we aim to directly determine
the dispatch with the given dataset. For this purpose, we
consider a rather general and practical setup, where we are
given observations of the net demand over historical hours,
together with other relevant data that we refer to as features.
For instance, for a historical hour ¢, we may have records
of the net demand D; and a vector of features X; with its
entries recording forecasts of the temperature, wind speed,
and other relevant information about hour ¢, as well as some
nonlinear transformations of certain features. As the features
and the net demand are generally correlated, these features
could contain useful information about the net demand. We
emphasize that for the purpose of our dispatch problem, the
feature X; is available at the time when dispatch decision
regarding D; is made.

Denote the historical data set by

Sn = {Zl = (X1>D1)7"'7Z’n = (X’n7D’n)}7

where Z; € Z := X x D with X C RP with p being the
number of features, and D = [D™i, D™aX] We also refer to
S, as the training set, because it is the dataset that is used
to “train” the dispatch decision rule.

We are also given features of the delivery hour for which
we are making a dispatch decision. We denote these features
by X. € RP. In the learning theory terminology, X. is
referred to as the test inputs/features. The net demand D,
for the delivery hour is not known at the time of dispatch.

In the data-driven risk limiting dispatch problem, we aim
to identify a dispatch rule h, a.k.a. hypothesis in learning
theory, that is a mapping from X" to U/ using the historical
data set S,, that minimizes the RLD cost:

h* = argmin Ep_~p, [c(h(X,), Ds)], (2)
heH

where H C U¥ is the hypothesis class, i.e, a subset of all
functions from X to U/ in which we are searching for a good
dispatch rule. The resulting dispatch is then w, = h*(X,).

Following assumptions are in force for the rest of the
paper.
Al S, contains i.i.d. samples from an unknown distribution

Py.

A2 || Xi]loo < X™2x 4 e {1,...,n,x}.
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Assumption Al can be relieved but not completely re-
moved. In particular, if process {Z; : i = 1,...,n} exhibits
periodic structures corresponding to e.g. different times of
the day, similar treatment in this paper may be carried
out on samples grouped according to the periodic cycles.
Fundamentally we need a form of stationarity so that past
data indeed contains distributional information for the future.
Assumption A1 is the simplest such assumption. Assumption
A2 is made without loss of practicality as all features are
bounded physical quantities in our application.

Problem (2) is challenging for two reasons. First, since the
objective function involves taking expectation with respect
to an unknown distribution for which we only have a finite
sample, it is unrealistic to hope for identifying the exact
minimizer of (2). We thus seek to identify an approximate
solution A such that, for some small € > 0,

Ep, [c(h(X4), Di)] < Ep, [c(h*(X.),D.)] +e. (3)

Furthermore, since our solution h depends on dataset S,
which is a random sample of size n from distribution P,
there is always a chance of getting a bad sample that does
not represent the population P. Thus any solution can only
be probably correct so that there will be a small probability
0 > 0 of failure (i.e., resulting in high costs). In summary,
an efficient algorithm for (2) identifies a hypothesis h that
is probably approximately correct (PAC), i.e. h satisfies (3)
with a large probability 1 — 4.

III. LEARNING ALGORITHMS

A learning algorithm determines the dispatch rule h (i.e.,
a map from features in the testing hour to the amount of gen-
eration to dispatch for that hour) based on the given training
set Sy,. In this section, we will provide specialized learning
algorithms for the data-driven risk limiting dispatch problem.
Just like when these learning algorithms are applied to
common machine learning tasks, these specialized learning
algorithms are efficient as they rely only on solving simple
convex programs (except neural networks) and are easy-
to-implement. We will also show in Section IV that these
algorithms have nice theoretical performance guarantees as
they are PAC.

In statistical learning theory, the principled approach to
tackling problems similar to (2) is through empirical risk
minimization (ERM). The idea is to replace the population
mean in (2) with the empirical mean, and then solve the
following optimization

~ 1
h = argmin — c(h(X;), D;).
thH n;(( i), Di)

“4)

Although all algorithms that we introduce in this section
take the form of (4), their implementation can be rather dif-
ferent due to differences in the hypothesis classes. Compared
to their standard learning counterparts, the algorithms below
use a specialized cost function that arises from the RLD
application. Therefore, these algorithms can also be imple-
mented by simply customizing existing learning solvers.

1) 4y regularized linear regression (ERM-L2): Consider
linear hypotheses with weights that have bounded ¢ norm:
HY2 = {z = w'z 1w € RP, |jw|s < Wi}, Without
the norm constraint on weights, this is equivalent to linear
regression with RLD cost in places of the sum of squared
residuals. The norm constraint on weights serves as a form
a regularization, which is especially useful when the number
of features p is large. The resulting optimization is

n

1 T
- leD’L
LS X0

min
weRP ¢
=1
st Jlwls < Wmex,

2) {1 regularized linear regression (ERM-LI): Consider
linear hypotheses with weights that have bounded ¢; norm:
HY = {z — w'z : w € RP, |Jw|y < Wmax}, This is
the same as ERM-L2 except the ¢; norm bound encourages
sparsity in the weights therefore it performs a form of
automatic feature selection.

3) Kernel method (ERM-K): For a Reproducing Kernel
Hilbert Space (RKHS)? H with its associated kernel function
k: X x X — R that is bounded sup, ,.cr \/k(z,2") <
K™ax we consider hypothesis class HX = {h € H :
Ihllg < Vmax} Let K € R™™ be the kernel matrix
defined for the training set .S,,, i.e., K;; = k(Xi,Xj). Then
problem (4) with H = H¥ takes the form of

1 n n
EZC ZUjKiiji
i=1 j=1

st v Ko < (V7max)?,

min
vER™

Given the solution v*, the resulting dispatch is u = K v*,
where K, € R is defined as (K,); = k(X., X;).

4) {5 regularized neural networks (ERM-NN2): Consider
densely connected deep neural networks [19] with m layers
and d; units in the jth layer. Such neural networks can
represent functions of the form

hw ()
_ m) (Wun)U(m—l) ( N (W<2>a(1) (W“’x)) . )) :

where W = {W](é)[m]} WU e RExdi—1 j =1,... m,
with do := p and d,,, := 1, and () : R% 5 R% is defined
as

Y11 Yid;
@) : : —

o(y11) o(y1d,)

Yd;1 Yd;d; U(ydj 1) U(ydj dj)

with o being a 1-Lipschitz activation function such that
o(0) = 0 (e.g. o(y) = tanh(y) and o(y) = max{y,0},
i.e., the rectified linear unit (ReL.U)). We consider hypothesis
class HNN2 = {z 5 hy(z) @ WD), < Wiax, j =

N
1,...,m, r =1,...,d;}, where (W,EJ)) is the rth row

2See [18] for a nice review of kernel methods.

3996



of matrix W), The optimization for finding the best neural
network coefficients takes the form of

n

1
in — hw(X;), D;
i 5 3 clhw(X). D)

st WDl <WE 5 =1,....m, r=1,...,d;.

This optimization is nonconvex but empirical success has
been observed in using stochastic gradient descent for prob-
lems of this form [20].

5) ¢y regularized neural networks (ERM-NN1): We con-
sider the same model as in ERM-NN2, except that the {5
norm constraints are replaced by ¢; norm constraints to
promote sparsity in the coefficients: HNN! = {z — hy (z) :
Wy < Wmex 5 =1,...,m, r=1,...,d;}.

IV. PERFORMANCE
A. Preliminaries

We start by introducing basic notations and concepts in
learning theory that are essential for developing our analysis
of the learning algorithms’ performance.

Given a data point z = (x, d) and a hypothesis h, the loss
function is defined as

L(h,2) = c(h(x),d),

which characterizes the cost of the dispatch rule & for a given
realization of feature x and demand d in our setting. The
main quantity that we are interested in is the generalization
cost of an algorithm A acting on dataset S, defined as

L(A,S5) = Ez [((As, 2)],

where the expectation is taken over the population distribu-
tion of Z, Pz. Also of interest is the empirical cost, defined
as

~ 1 &
L(4,5) =~ > U(As, Zy),
=1

for dataset .S containing Z;, i = 1,...,n. When the training
dataset S is clear from the context, we will simply write
L(A) and L(A). When the algorithm is clear from context
or is not of concern, we also denote the generalization cost
and empirical cost of a given hypothesis h by, respectively,

L(h) =Ez[((h,Z)] and L(h)= %ié(h,Zi).

Most of our theoretical analysis centers around the notion
of excess cost of a hypothesis h = Ag, which is the
additional generalization cost of h compared to the optimal
one:

L(h) — L(h).

Bounds on this quantity control the suboptimality of h.
Such bounds, as mentioned in Section II, cannot hold with
probability one. Thus we hope to show that the proposed
algorithms are probably approximately correct, defined as
follows.

Definition 1 (PAC): A learning algorithm is probably ap-
proximately correct with parameters 6 € (0,1) and € > 0 if
the hypothesis produced by it, denoted by h, satisfies

L(h) — L(h*) <,
with probability at least 1 — 4.

B. Main results

We now provide the performance guarantees for the
learning algorithms proposed in Section III, showing that
they are PAC. The tools for establishing these results are
introduced in Section IV-C. For convenience, we denote
C™a* = max{a, f — a}, which is the (globally) Lipschitz
coefficient for the mapping h — £¢(-,h) in the RLD loss
function ¢(z, h) = ah(z) + B(d — h(x))4+.

Theorem 1 (PAC for ERM): Every algorithm introduced
in Section III is PAC, with any § € (0,1) and € no larger
than the corresponding bound in Table I.

TABLE I
EXCESS COST BOUNDS FOR ERM ALGORITHMS
ERM Bound
I S e 2To(2/9)
L2 Vn 2 + \/ n
4cmameaxW1max\/2 10g(2p) \/2 10g(2/5)
H v + n

4O Max | max femax [210g(2/5)

27n+1 Winax m cmameax\/E 21 2/
NN2 H;ﬂ:1 /d]' ( 2 )\/ﬁ + OgT(L /%)
gm+1 (Winax)mcmaxxmax\/2 log(2p) \/2 log(2/3)
NN1 — + (

Many observations can be made regarding Theorem 1. De-
note the excess cost bound in Theorem 1 for each algorithm
by €(n, 0, p). The first observation is that for any fixed p and
0 (even if § is arbitrarily close to 0),

lim €(n,d,p) = 0.

n—oQ

We thus have the following corollary.

Corollary 1: Every algorithm introduced in Section III is
asymptotically optimal.

Furthermore, for all algorithms except ERM-K, we have
€(n,0,p) increasing with the number of features p as it
requires more samples to fit a richer model with more pa-
rameters to achieve the same level of accuracy. Dependence
on p is not explicit in the bound for the kernel method as in
kernel method the underlying feature space may be infinite
dimensional, whose richness is controlled by parameters
Kmax and Vmax.

Finally, we can invert the mapping €(n,d,p) to find the
number of samples required for each algorithm to achieve a
desired level of accuracy (4, €). We summarize these sample
complexity results in the following corollary.

Corollary 2: With the number of samples listed in Ta-
ble II, algorithms introduced in Section III have excess costs
no larger than e > 0 with probability at least 1 — 4 € (0, 1).

We note that although with the big-O notation linear
regression and neural networks have the same expression for
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TABLE I
SAMPLE COMPLEXITIES FOR ERM ALGORITHMS

ERM Sample complexity
1 1/6
L2, NN2 | O ( P‘*%é”)
1 1 1/6
L1,NNI | O (%ﬂ”)

K O (108S/5))

sample complexity, the hidden constants for these methods
are significantly different when the neural networks are deep.

C. Uniform convergence

The classical approach to establishing bounds for the
excess cost is called uniform convergence. That is, if for any
hypothesis h € H (including the hypothesis induced by an
algorithm A and the optimal hypothesis h*) we can bound
the right-hand-side quantity of

L(k) — L(h) < sup (L(h) = L(R)) = G,
heH

then we can bound the excess cost of ERM & by

P [L(ﬁ) —L(n*) > e} <P [Sup L(h) — f(h)‘ > 6]
heM 2
€ €
<IP>[ >f} IP’[ ’>7},
<P|G> 3 +P |G > 5
where G’ is defined analogously for the negative loss ¢/ =
—/.
The following quantity plays a key role in bounding G for
a wide range of loss functions and hypothesis classes.
Definition 2 (Rademacher complexity): Let F be a class
of real-valued functions f : Z — R. The Rademacher
complexity of F is defined as

n

R, (F)=E [sup 1 , 5)

feF iz

& f(Zy)
1

where 71, ..., Z, are i.i.d. samples from Pz, and &;,...&,
are drawn i.i.d. from the uniform distribution over {—1, +1}.

Remark 1 (Complexity measure): Rademacher complex-
ity is a measure of the richness of a function class with
respect to a data generating probability distribution. It is
closely related with other well-known notions of complexity
such as Vapnik-Chervonenkis dimension and covering num-
bers [21]. Its properties allow us to give a unified treatment
of many distinct learning algorithms.

We will develop most of our results based on the following
key theorem [22] from statistical learning theory that bounds
the excess cost of ERM using the Rademacher complexity of
the loss class, which is the composition of the loss function
with each of the hypothesis:

Ly ={z—€(z,h) :h€H}. (6)
TheoreiAn 2: With probability at least 1—§, the excess cost
of ERM h is bounded as
21og(2/0)

L(h) — L(h*) < ARu(Ly) +1| === (D)

To apply this theorem to the learning algorithms for data-
driven risk limiting dispatch problem, we need to bound
the Rademacher complexity for the loss classes induced by
the hypothesis class and the RLD cost. This is done in the
following lemma.

Lemma 1: Given the loss function ¢(z,h) = ah(z) +
B(d—h(z))+ with Lipschitz coefficient C™** = max{a, f—
a} for the mapping h — £(-,h), and training set S,, the
following bounds for the Rademacher complexity hold.

1) For the loss class £,z defined for the linear hypothesis

class with bounded ¢; norm H? = {z — w'z:w €
R, [fwlls < W),

CHlaX X max WzIIlaX \/ﬁ
vn ’
2) For the loss class £4;11 defined for the linear hypothesis

class with bounded ¢; norm H* = {z — w'x :w €
R?, flwlly < Wi,

CmameaXWI‘ﬂax 21 2
Rn (ﬂHLl) < 1 V Og( p) )
vn
3) For the loss class L3« defined for the RKHS hypothesis
class HX = {h € H : ||h|ly < Vmax},

R, (Lyr2) <

Cmaxvmameax
R, (L <
( 'HK) = \/ﬁ
4) For the loss class Lyn~2 defined for deep neural
networks with ¢, bounded weights: HN? = {2

hw(z) @ WDy < Wiex j = 1,...,m, r =

1,....d;},

m 2m71 (Wmax)mcmameax D
Ry (Lypne) < [T V4 2 7 VP
7j=1

5) For the loss class Lynvi defined for deep neural
networks with lfl bounded weights: HNNL — {z —
hw(z) « W < weex o= 1, m, r =
1,...,d;},

m— 1 max m max max
gm—1 (J/max)m Cmax X

R (;C’HNNI) < 2 10g(2p) .

n

Substituting Rademacher complexity bounds in Lemma 1
into Theorem 2 gives the PAC bounds in Theorem 1 stated
in Section I'V-B.

V. OPTIMAL UNIFORM RESERVE FOR POWER NETWORK

In this section, we present a simple extension of single-
bus results to a general network setting. In particular, the
power network has N buses with the power injection region
denoted by

where the first constraint models real power balance, and the
second constraint models line flow limit with matrix H being
the shift-factor matrix and f > 0 modeling line capacities.
We assume P is compact and has non-empty interior.

In the data-driven risk limiting dispatch problem for a
general network, we have a set of p features for each bus of
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the network. We can stack all these features and obtain our
training set

Sn = {Zl = (X17D1)a"'aZn = (Xnan)}a

where X; € RYP and D, € RY.

Instead of considering the general data-driven dispatch
rule, we focus on a uniform reserve case. In particular, we
assume that among the Np features there are conventional
demand forecasts d; € RY. These demand forecasts may
be obtained through simple methods such as autoregressive
models or produced by existing forecast software. They are
treated as exogenous variables for our purpose. Furthermore,
we focus on dispatch rule of the form

u:ngAl,

where v € RY, and A € R is the uniform reserve level the
system operator purchases for each bus of the network. We
note that although such a dispatch rule looks restrictive, it
is similar to what is implemented in today’s system to cope
with a limited amount of renewable generation.

The uniform reserve case of data-driven risk limiting
dispatch problem for general network takes the form of

min Ep. -z, [c (d* + h(X*)l,D*)} : ®)

where X/f € RNP is the test input vector, whose elements
include d, € R™. The cost function takes the form of

c(v,d) = min a'u+B"(9)4 ©)

st. g+u—deP, (10)

where a € Rf are the nodal prices of purchasing from
day-ahead market, while 5 € Rf are the nodal prices of
purchasing from real-time market.

All algorithms introduced in Section III extends to this
setting in a straightforward manner. We give the details of
the network case of ERM-L2 as an example below. Other
algorithms, i.e., ERM-L1, ERM-K, ERM-NN2, ERM-NNI1
can be similarly defined:

. 1 - T T
, ASe(iswrxnn)
st JJw]|e < WEReX,

which is equivalent to

min
weRNP
Vi, gi€RY
st. g+ C/i\l + (’LUTXl)]. —D,; eP,

oz < W3,

I, 77 Tx)aT T (g,
n;a di+ (w'X;) a1+ 8" (g:),
i € [n],

We proceed to show that all performance guarantees
presented in Section IV-B hold for the network setting. To
this end, we ﬁ,r\st show that the following function, defined
for any given d and d, is Lipschitz continuous:

&(A) = c(d + AL, d).

Proposition 1: There exists a finite constant Cmax guch
that for any Aq, Ay € R,

6(A1) — E(A2)] < C™¥|AL = Agf.

A way to obtain a value for C™?* is described in the proof.

We can now state our main results regarding using pro-
posed learning algorithms for network data-driven RLD
problem.

Theorem 3: Theorem 1 holds for the network data-driven
risk limiting dispatch problem (8), with the number of
features replaced with Np and the Lipschitz coefficient C™**
replaced with C™?*,

VI. CONCLUDING REMARKS

In this paper we study the data-driven risk limiting
dispatch problem, where the system operator learns the
optimal dispatch rule directly from the data. We present
learning algorithms for this problem and establish that they
are probably approximately correct. In this process, we
introduce a procedure for modifying learning methods to
solve data-driven stochastic optimization problems and tools
from statistical learning theory for rigorously analyzing the
performance of the resulting algorithms. We then extend our
learning algorithms and their performance guarantees to a
general network setting with power network constraints.

The performance guarantees that we obtain are in the
form of probabilistic bounds on L(h) — infpecy L(h), that
is common in learning theory setting but may not be seen
as the most ideal bounds one can obtain from a control
perspective. The ideal bound would be on the quantity
L(h) — infy, L(h) without the a priori limitation from the
hypothesis class. However, bounds on such quantity may not
always be obtainable. Moreover, in principle when we only
have a finite sample about the underlying uncertainty model,
optimizing in a hypothesis class that is too large may result
in overfitting. In fact, we can write

L(h)—l%f L(h) = L(h) — hlg’;f‘.-lL(h) —&-}%gqf{ L(h) — 1%fL(h),

generalization error approximation error

and observe that with a fixed sample size and a hypothesis
class of increasing richness, the generalization error increases
while the approximation error decreases. It is sometimes
possible to bound the approximation error for certain H, see
[23] for kernel methods with certain kernels (e.g. Gaussian
kernel) and [24] for neural networks.

Our treatment on the network data-driven risk limiting
dispatch problem demonstrates that our results can be carried
over to the network setting under the restriction that the
decision variable is a scalar. A complete solution to the
network version of the problem is an interesting direction
for future research.
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APPENDIX I
PROOF OF LEMMA 1

As the loss class is a composition of the hypothesis

class and the loss function modeling RLD cost, we use the
following composition property of Rademacher complexity,
adapted from [22]:

Proposition 2: Given a function class F and a Lipschitz

continuous function ¢ with Lipschitz constant Cs, we have

Rn(¢0]:) < C(bRn(]:)v

where po F ={z— ¢(f(2)): f € F}.

It remains to bound the Rademacher complexity of the

hypothesis classes for the proposed algorithms.

1) ERM-L2, L1: The Rademacher complexity bounds for

linear functions with bounded ¢5 or ¢; norm are established
in [25].

2) ERM-K: For H = HX, we have

1 n
R, (H) =E¢ | — sup h(X;
() =Ee | sup 360X
' "
=E¢ | — sup { h, k(- X
¢ B sup ;5 (-, X5)
_Vmax n n
=B | —— ( D&k, Xi), Y&k ( X)
L i=1 i—1
J/ max n n
S| Be [ D 6R( X0), D k(X
i=1 i=1
|/ max n
= | 2_ (R Xa), k(- X))
=1
max n
Y > k(X X))
n ;
i=1
max max max
SV n(KmaX)2:V K

n N

where line 3 is due to the Cauchy-Schwartz condition for
equality.

3) ERM-NN2, NNI: Let HD) = K2 Define recursively

4G+ —

WDy <wge
Vs, hgj) e H)



forany r=1,...,

R, (H(j+1))

dj+1' Then

1 n .
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¢ _n hG+1) e (G+1) ;fz ( z)
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Thus
R'n (HNNZ) ( Wmax H f HLQ)
and so
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Ry, (Lagnz) < (2Wgnaxym=t H Vd; 7 VP

Similarly, we can derive

Ry (Lopns) < (2wpesyn=t 70X maijn;x 2log(2p)
APPENDIX II
PROOF OF PROPOSITION 1
Consider the optimization parameterized by A,
min B(9)+ (11)
st. g+d+Al—deP, (12)

which is equivalent to (9) as the first term in the objective
function of (9) does not depend on the decision of the
optimization. Optimization (11) can be converted into a
linear program, by introducing variables for positive and
negative parts of g. By [26], we have for A;, Ay € R,
the corresponding solution of (11), denoted by g; and go,
satisfies

91 — g2llee < CF*[A1 — Ay,

with C’m”‘ finite defined as equation (2.19) of [26]. As
function g+ BT (g)+ is ||8||2-Lipschitz, we have

18T (g1)+ — B (92)+| < 1Bll2llgr — g21l2
< VN||B[2C5| Ay — Ay,

It follows that
6(A1) — ¢(A2)]
= [(A20"1+ 87 (g2),) — (Ara" 1457 (91),)|
< (a"1+ VN||B2C02) |Ag — Ay].

émax

APPENDIX III
PROOF OF THEOREM 3

For the network setting, the loss function is
0(h, 2) = c(d+ h1,d),

where z = (7, d) with z € RVP and d € RY, and d is part
of the entries of z. By Proposition 1, the loss class Ly =
{z+ £(z,h) : h € H} is a composition of a C™**-Lipschitz
function with the hypothesis class. Thus using the same lines
of argument in the proof of Lemma 1, we can bound the
Rademacher complexity of the loss classes associated with
all the proposed algorithms. Invoking Theorem 2 completes
the proof.
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