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ABSTRACT: In this Article we describe the OpenMolcas
environment and invite the computational chemistry commun-
ity to collaborate. The open-source project already includes a
large number of new developments realized during the
transition from the commercial MOLCAS product to the
open-source platform. The paper initially describes the
technical details of the new software development platform.
This is followed by brief presentations of many new methods,
implementations, and features of the OpenMolcas program
suite. These developments include novel wave function
methods such as stochastic complete active space self-
consistent field, density matrix renormalization group
(DMRG) methods, and hybrid multiconfigurational wave
function and density functional theory models. Some of these implementations include an array of additional options and
functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we
present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics,
and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features
unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction
between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a
number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a
multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

1. INTRODUCTION
At the 4th MOLCAS developers’ workshop, 30 March−1 April
2016, in Vienna, Austria, the MOLCAS developer community
decided that the source code of the MOLCAS project would
be released, where the authors agree, as an open-source project
under the GNU Lesser General Public License (LGPL)1 − the
OpenMolcas project. This decision was followed by intensive
work to adapt to this new format and context. An open-source
repository was established September 2017. In late 2018 the
transition to the new open-source format and integration
platform was completed. The history of the OpenMolcas
codebase dates back much earlier in time, and for a summary
of it we refer to previous MOLCAS publications.2−8 Here we
report on the new and recent developments and options
available in OpenMolcas.
OpenMolcas is a software package capable of performing

state-of-the-art quantum chemical calculations, but it is not the
only one. Other packages, some of them open source, with
similar or overlapping capabilities are (a necessarily non-
exhaustive list) as follows: ACES,9 ADF,10 BAGEL,11

BigDFT,12 CFOUR,13 Columbus,14 Dalton,15 deMon2k,16

DIRAC,17 Firefly,18 GAMESS,19 GAMESS-UK,20 Gaussian,21

HONDOPLUS,22 Jaguar,23 Molpro,24 MRCC,25 NWChem,26

NRLMOL,27 ORCA,28 PQS,29 Psi4,30 PySCF,31 Q-Chem,32

TeraChem,33 Turbomole.34 A more comprehensive relation,
but restricted to open-source programs, can be found in ref 35.
A detailed comparison of the OpenMolcas features with these
other packages is out of the scope of this report, but it can be

stated that the main strength and focus of OpenMolcas is on
multiconfigurational wave function methods, and applications
and properties for which these methods are appropriately
suited, as reflected in the contents of this article.
Apart from scientific and methodological improvements, the

release of OpenMolcas incorporates a series of changes in code
management and tools. These changes, as presented here, are
aimed at an optimal interface for software accessibility for new
developers and facilitating interaction with other codes. In this
report the new developments are subdivided into five different
categories: novel wave function and density functional
methods, approaches to explore potential energy surfaces
(PESs), implementations associated with various types of
spectroscopy, tools for postanalysis of orbitals and wave
functions, and finally a set of some miscellaneous develop-
ments.
On the issue of resolving the prohibitive exponential scaling

of the multiconfigurational wave function a number of new
techniques have been introduced to eliminate this bottleneck.
In particular, the Stochastic-CASSCF method has been
implemented. Furthermore, two interfaces are introduced−
with the CheMPS2 and QCMAQUIS programs−that greatly
expand the potential of multiconfigurational wave functions by
allowing much larger active spaces as well as speeding up
calculations with usual active spaces. This is achieved by
supplementing the full configuration interaction (full CI, FCI)
solver in the RASSCF module by the density matrix
renormalization group (DMRG). With these interfaces it is
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possible to perform DMRG-SCF, DMRG-CASPT2, and
DMRG-NEVPT2 calculations, obtain analytical DMRG-SCF
gradients, or compute state interaction. Moreover, the
multiconfiguration pair-density functional theory (MC-
PDFT) option has been further developed. This includes
translating several KS-DFT functionals not previously avail-
able, introducing analytical gradients for state-specific CAS-
PDFT, state-interaction PDFT (SI-PDFT) for situations where
two electronic states are strongly interacting and the use of
PDFT in association with DMRG technology.
The exploration of the PESs is a significant part of any

sophisticated tool for electronic structure calculations. In spite
of being a leading package for the computational study of
electronic excited states, MOLCAS has for a long time lacked
the ability of computing nonadiabatic coupling vectors. The
recent implementation of analytical nonadiabatic coupling
vectors for state-averaged CASSCF wave functions is now
available, together with practical methods for optimizing and
characterizing conical intersections, and the use in simulations
of nonadiabatic processes. Furthermore, simulating the time
evolution of matter in the vicinity of electronic degeneracy
regions is essential for understanding the rate and the product
distribution of photochemical reactions and for complement-
ing time-resolved experiments. Direct dynamics methods were
developed to avoid the required computation and fitting of the
PESs prior to dynamics simulations and to address the issue of
the exponential scaling with the system size. OpenMolcas now
supports three different tools for this. First, the DYNAMIX and
SURFACEHOP modules of OpenMolcas allow molecular
dynamics (MD) simulations of adiabatic and nonadiabatic
processes; there are now options for generating starting
conditions, adding external forces to the molecular system for
steered MD simulations, and simulating isotope effects.
Second, the SHARC−OpenMolcas interface allows the
simulation of nonadiabatic trajectory surface hopping dynam-
ics including any arbitrary coupling; this means it can deal with
photochemical events involving internal conversion and
intersystem crossing on the same footing. Third, we report
here a new interface to the Quantics package. Dynamics code
for classical nuclei is rather straightforward since information is
only needed at a given position in space; a quantum
description of the nuclei has more problems because of
delocalization of the wavepacket. The new interface with the
Quantics code allows a quantum mechanical treatment of both
electronic and nuclear dynamics via the direct-dynamics
variational multiconfiguration Gaussian (DD-vMCG) method.
The OpenMolcas package can generate operator matrix

elements between spin−orbit-coupled electronic states and is
thus frequently used in simulation of various spectroscopic
processes. Recently, these tools have been improved. For high-
energy photons the short wavelength means that the electric
field can no longer be treated as constant−as in the dipole
approximation−and electric-dipole forbidden transitions can
be observed. The solution, as presented here, is to either
introduce higher orders in the multipole expansion or, more
elegantly, use the exact exponential form of the wave vector.
Core-hole states are notoriously problematic to handle in
standard computations, since these states are high up in
energy. Now there is a simple option to use projection during
the CI optimization to prevent the core-hole being filled.
Moreover, spectroscopy typically involves transitions between
an initial state and several final states. The standard CI
algorithms are designed to calculate ground and a relatively

small number of low-lying excited states. However, to simulate
experiments as X-ray spectroscopy, hundreds of high-energy
states are needed. A new approach to the CI problem, which
efficiently handles this case, is presented here. We report also
the implementation of multiconfigurational Dyson orbitals for
accurate simulations of molecular ionization processes.
Another example is magnetic circular dichroism (MCD) as
one of the prime tools to study the electronic states of
complicated metal complexes and metalloproteins. Software
tools have now been created for the easy generation of MCD
spectral intensities with OpenMolcas. We will also discuss the
computation of magnetic properties for transition metal and
lanthanide compounds. Moreover, an example in which the
OpenMolcas platform has been used as an alternative to
experiments, to generate microhartree accuracy of ionization
potentials, is given.
Any quantum chemical simulation needs the support of

postcalculation analysis tools to render the simulations to be
more than just the matter of computing a numerical value of
the energy or some other molecular property. Such tools
enable the scientist to make qualitative conclusions from the
simulations and to obtain insight in addition to quantitative
predictions. They typically involve the generation of orbitals,
which could be natural, canonical, or localized, and the
graphical representation of these. In that respect, OpenMolcas
has recently been enhanced with the following new utilities.
The graphical user interface LUSCUS is a next generation of
GV (Graphical Viewer) code; it is a lightweight viewer of input
and output data produced by various quantum chemical codes,
in particular the OpenMolcas program suite. One of the
bottlenecks in the graphical visualization procedure is the size
of the intermediate data. The ability to on-demand compute
the data for visualization is now implemented in a stand-alone
code, SAGIT. Furthermore, Pegamoid is a new orbital viewer
that can read and write the native OpenMolcas orbital formats,
simplifying the process of selecting and analyzing the active
space for MCSCF calculations. Moreover, binatural orbitals,
also called natural transition orbitals, are now available in order
to characterize the nature of an electronic excitation. This can
be computed by singular value decomposition of a transition
density matrix using RASSCF wave functions in the RASSI
module. Finally, the WFA (wave function analysis) module not
only provides visualization tools but also computes quantitative
descriptors, which allow for a rigorous and completely
automatized analysis of excited-state computations.
In addition, as listed below, miscellaneous utilities and

functionalities have been added to the program suite. The
relativistic ANO-RCC basis set has been the spearhead of the
MOLCAS/OpenMolcas program since its introduction a
decade ago. It is now accompanied by an extremely small
relativistic alternative, the ANO-XS basis set. The small size of
ANO-XS greatly reduces integral computation times yet still
predicts, e.g., geometries or excitation energies with only small
differences as compared to the larger ANO-RCC basis sets.
Moreover, OpenMolcas is adapted to use point groups beyond
D2h. Thus, for highly symmetrical molecules OpenMolcas can
occasionally generate wave functions with broken symmetry. It
is a problematic programming task to adapt a computational
code to use higher point groups. However, a code for a
posteriori symmetrization of the wave function, msym, has
been developed and implemented in OpenMolcas. As a further
development we report on the ability to simulate muonic
atoms and molecules, i.e., systems containing one muon−a
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Fermion with a mass about 207 times heavier than an electron.
This includes developments of muonic basis sets, bookkeeping
of two types of Fermionic particles and basis sets in integral
and wave function code, diagonal finite mass correction, and
analysis of parameters associated with the finite-nucleus
approximation. Finally, a new method for multiscale electronic
structure calculations has been implemented which is based on
frozen-density embedding theory (FDET).
Thus, below we will in some detail describe and discuss

these new tools in the OpenMolcas program suite. The
structure of the Article will in all respects follow the order as
presented above. This will be followed with a brief summary.

2. CODE DEVELOPMENT AND TOOLS
The tools and culture in software development have changed
dramatically in the last three decades since the initial versions
of MOLCAS. The original code “would only run on the IBM
3090 computers under the JCL operating system”,6 and
although later versions made it more versatile and user-
friendly, it remained for a long time a project developed mainly
in Lund (Sweden), using a set of custom-written tools for
debugging, configuring, updating, and documenting the code.5

In the past few years, particularly since the establishment of
annual MOLCAS developers workshops in 2013, the
MOLCAS project has become a much more international
and collaborative project and has tried to keep up with the
times and embrace the new tools and technologies that are
available for code management. Perhaps the most significant of
the changes, and the one that triggers the need for this
publication, is the choice of an open-source model, as
discussed in the Introduction.
The main codebase of OpenMolcas is written in Fortran

language, something that reflects its history and background
and the popularity of Fortran in scientific programming. Newer
code is increasingly written in other languages: a number of
libraries and interfaces recently added to OpenMolcas are
written in C or C++, and the main input parser and driver has
been rewritten in Python. The most significant changes
introduced in OpenMolcas with respect to the development
environment are the use of third-party open-source tools for
code management, compilation, and testing. Already in 2013 it
was decided to use git36 as a version control system for
MOLCAS; in connection with the release of OpenMolcas, it
was considered important to have a source code repository that
is publicly accessible and not only for developers. As a build
and configuration system, OpenMolcas now uses CMake,37 a
system that also simplifies the combination of different
packages such as some of the interfaces reported in this
paper. For testing, OpenMolcas uses the verification tools (test
suite and scripts) that were already available in MOLCAS, but
it additionally benefits from the continuous integration
facilities in GitLab,38 the chosen hosting platform, to ensure
fast and reliable test runs with minimal maintenance from
OpenMolcas developers.
Historically, communication between the different programs

in MOLCAS has been mostly done through files, in text or
binary format. MOLCAS users will be familiar with names like
“RunFile”, “InpOrb”, or “JobIph”. These files have the
inconvenience that they are specific to MOLCAS and in
some cases incompatible between different versions and/or
platforms. With the release of OpenMolcas there is also an
increased effort to make use of more portable and standardized
file formats for transferring data between programs and for

storing the results of calculations−orbital and CI coefficients,
geometries, and energies. In particular, the most important
results can now be stored in the HDF5 (hierarchical data
format) format,39 which allows efficient storage and access of
structured data, including its description. HDF5 files can then
be accessed in any platform without knowledge of the program
that generated them, since the size and structure of the data are
also part of the format. We consider this an important step
forward toward interoperability with other scientific codes.

3. MULTICONFIGURATIONAL WAVE FUNCTION
METHODS

Important conceptual bases for understanding the motivations
for some of the most important features of OpenMolcas are
provided by the definition of configuration and the distinction
between static correlation and dynamic correlation. A
configuration is a particular way to assign electrons to orbitals,
which may be doubly occupied, singly occupied, or
unoccupied, and a configuration state function (CSF) is an
approximate wave function with appropriate spin symmetry
(singlet, doublet, etc.) and a definite set of orbital occupancies.
Static correlation is also called near-degeneracy correlation,
left−right correlation, and strong correlation, and it is due to
the interaction of nearly degenerate configurations. A good
zeroth-order wave function for a system with significant static
correlation will have appreciable coefficients for two or more
CSFs. Dynamic correlation is the rest of the correlation energy;
it includes a variety of correlation effects ranging from very
short-range (due to the cusp in the correct many-electron wave
function when two electrons approach one another) to very
long-range (as in dispersion interactions). The slow con-
vergence of dynamic correlation with respect to adding more
CSFs is often the bottleneck in making accurate calculations,
and the most common way to calculate dynamic correlation is
usually to optimize the orbitals with a self-consistent-field
(SCF) calculation and then include dynamic correlation by
adding CSFs that are excited from a reference SCF wave
function (single excitations, double excitations, triple excita-
tions, etc.); the addition of excited CSFs may be done by
perturbation theory, configuration interaction, or coupled
cluster40−42 theory. When static correlation is negligible,
good results can often be obtained with a single-CSF reference
wave function (typically a Hartree−Fock,43−46 HF, wave
function); methods employing this scheme are called single-
reference methods. For strongly correlated systems, this
method might be inaccurate unless one uses very high
excitation levels (quadruple excitations or higher), which are
often unaffordable. A more efficient way to treat strongly
correlated systems is to use a multiconfiguration reference
wave function; such methods are called multireference
methods. Systems well treated by single-reference methods
with low levels of excitation are sometimes called single-
reference systems, and systems that are much more efficiently
treated with multiconfiguration reference wave functions are
sometimes called multireference systems or strongly correlated
systems. Because many chemical systems of practical interest
feature electronic structures dominated by more than one
electronic configuration in their ground or excited states, as
well as along reaction pathways in which they are involved, the
development of efficient methods for multiconfiguration wave
functions and multireference correlation methods is a key
challenge for quantum chemistry; it was one of the primary
motivations for the original development of MOLCAS, and it
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remains a key strength of OpenMolcas. Multiconfigurational
self-consistent field (MCSCF) methods, capable of dealing
with these cases, have been known since the early days of
quantum chemistry, but they gained popularity only when the
complete active space self-consistent field method (CASSCF)
was developed.47−50

Density functional theory presents a similar but conceptually
distinct scenario. Kohn−Sham density functional theory (KS-
DFT)51 does not involve a wave function for the system under
study, but it does involve a Slater determinant that has the
same electron density as the system under study. This Slater
determinant may be considered to be a reference wave
function, and in that sense KS-DFT is a single-reference
theory. Unlike Hartree−Fock theory, though, KS-DFT is in
principle exact, in that there is an existence theorem for an
exact density functional that would yield the correct electron
density and energy. However, this density functional is
unknown and probably unknowable. We must rely on
approximate density functionals (ADFs), and currently
available ADFs are less accurate for strongly correlated systems
than for single-reference systems.52,53 One way to overcome
this is to develop density functional theories that use
multiconfigurational reference wave functions, and Open-
Molcas includes multiconfiguration pair-density functional
theory (MC-PDFT)54 as an example of this kind of theory.
MOLCAS8 (and now OpenMolcas) has always had a strong

focus in multiconfigurational wave function methods and has
pioneered the development of cutting-edge methods aiming at
circumventing the exponential scaling limitation in CASSCF.
The restricted active space (RAS) SCF,55,56 the generalized
active space (GAS)57 SCF, and the SplitGAS58 methods are
examples.
Multiconfigurational SCF methods, such as the above,

explicitly recover electron correlation within the active space
and, via the self-consistent orbital relaxation procedure, part of
the electron correlation outside the active space. In this respect
it is to be noticed that the orbital relaxation in MCSCF
procedures is not to be compared to the self-consistent orbital
optimization in the single-reference HF procedure, as the
MCSCF orbital gradient directly depends on the multi-
configurational wave function via the generalized Fock
operator. Correlation effects not included at the MCSCF
level are usually recovered by a posteriori treatments that use
the preceding MCSCF wave function as reference. Examples of
these methods within the OpenMolcas package are the
multiconfiguration pair-density functional theory, MC-
PDFT,54,59−61 and second-order perturbation theory methods,
such as CASPT2, RASPT2,62−64 and NEVPT2.65−71 Despite
their broad applicability, these methods rely on the qualitative
correctness of the reference wave function, or, in the case of
MC-PDFT, its electron density, on-top pair-density, and the
ratio of these two.72

The rest of this section describes with more detail some of
the newest approaches implemented in OpenMolcas to work
around the exponential scaling of CASSCF, while keeping its
conceptual simplicity. In particular, the Stochastic-CASSCF
method (section 3.1) uses a Monte Carlo algorithm to solve
the CI problem in the active space; the density matrix
renormalization group (DMRG)−for which two different
interfaces are presented (section 3.2)−expresses the wave
function as a product of matrices, with a reduced number of
free parameters with respect to a linear combination of
configuration state functions. In addition, the MC-PDFT

capabilities in OpenMolcas (section 3.3) are enhanced with
analytic gradients and state-interaction functionalities.

3.1. The Stochastic-CASSCF Approach. The Stochastic-
CASSCF73−76 has been developed since 2015, initially for
MOLCAS,8 and is now available in OpenMolcas. The method
retains the simplicity of CASSCF, while circumventing the
exponential scaling of the latter. This is obtained by replacing
the Davidson diagonalization technique,77 in its direct-CI
implementation,55,78 with the full-CI quantum Monte Carlo
(FCIQMC) algorithm,79−87 while the Super-CI method47−50

is used for the orbital optimization. Starting from the decoupled
two-step Newton−Raphson method88 for the optimization of
the orbitals and CI coefficients, the Stochastic-CASSCF
procedure can be summarized in two conceptually simple
steps−(i) the FCIQMC approach to optimize the CI-
coefficients and obtain the one- and two-body density matrices
and (ii) the Super-CI algorithm for the orbital coefficients
optimization. The Super-CI step is done according to standard
procedures47,48,50 and will not be described here. The
FCIQMC approach for the optimization of the CI coefficients,
instead, will be described below in more detail.
The FCIQMC algorithm is a projector technique based on

the imaginary-time Schrödinger equation

τ
∂Ψ
∂ = − ̂ − ΨH E( )S (1)

In this equation the term ES is an energy offset, referred to as
the shif t, that is updated iteratively, converging to the ground-
state correlation energy. In the context of FCIQMC, ES plays
the role of population control. Expanding the wave function,
Ψ(τ), into a linear combination of Slater determinants, and
integrating eq 1, with a short time step, Δτ, such that the full

propagator τ− ̂ −e H E( )S can be approximated to first-order, an
iterable working equation is obtained

∑
τ τ τ τ τ

τ τ
+ Δ = − Δ −

− Δ
≠

C C H E C

H C

( ) ( ) ( ) ( )

( )
i i ii i

j i
ij j

S

(2)

A deterministic update of the CI vector from the time τ to
(τ+Δτ) would require the storage of several arrays of the size
of the CI vector and would face the same exponential scaling
limitation of the standard direct-CI approach. Instead, in
FCIQMC the concept of walkers is introduced. Walkers are
signed Kronecker delta functions that reside on a specific
determinant. We define δi,iα as the αth walker residing on
determinant i . A sign is assigned to each walker, sα = ±1,
associated with it. Thus, the signed number of walkers, Ni,
which reside on i is given by Ni = ∑αsαδi,iα. The total number
of walkers residing in all relevant determinants is kept to a fixed
value, Nw = ∑i|Ni|. This value is to be considered an
optimization parameter in addition to the basis set and the
active space. The larger the total number of walkers, the
smaller the error due to the initiator approximation.80 In
practice, this parameter is gradually increased until con-
vergence over the energy estimate is reached.
The key point of FCIQMC is to allocate memory only for

the populated determinants, instead of allocating memory for
the entire CI vector. The purpose of FCIQMC is to generate
distributions of walkers such that for a large number of total
walkers and long imaginary time limit the expectation value of
the number of walkers on each determinant becomes
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proportional to the CI coefficient of that determinant, Ci ∝
⟨Ni⟩τ. In FCIQMC, walker population dynamics simulates the
imaginary-time evolution as given in eq 2. The dynamics
consists of three steps. In the spawning step child particles are
generated from their parents into various locations of the
Hilbert space. In the death step parent walkers are
stochastically removed from the simulation. In the annihilation
step parents and newly created walkers residing on the same
determinant with opposite sign are eliminated.
The expectation value of the number of walkers on each

determinant in practical calculations is never explicitly
calculated. Instead derived properties are accumulated once
the walker population has reached a dynamical equilibrium.
One of these properties is the projected energy

=
∑ ̂

⟨ ⟩
τ

τ
E

N D H D

N
i i i

P
0

0 (3)

where the numerator and denominator are accumulated and
averaged separately, D0 is the reference determinant, and ⟨N0⟩τ
is the time-averaged number of walkers on D0. One- and two-
body reduced density matrices (RDMs) are similarly
accumulated82 to evaluate the CASSCF energy as the
expectation value of the Hamiltonian operator and to compute
the matrices required for the orbital optimization step.
Electron correlation outside the active space, also known as

dynamic correlation, can be recovered via MC-PDFT,54,59−61

using the Stochastic-CASSCF wave function as reference.
3.1.1. Technical Details. The Stochastic-CASSCF method

in OpenMolcas relies on the interface of the NECI program,
responsible for the FCIQMC CI algorithm, and the RASSCF
program of OpenMolcas, responsible for the Super-CI method
as an orbital optimizer. In principle, two installation protocols
can be adopted that are referred to as embedded and uncoupled
forms. In the embedded form, the NECI program is treated as a
subroutine of the RASSCF program. This form effectively leads
to an automatized version of the Stochastic-CASSCF within
the OpenMolcas software. In the uncoupled form of Stochastic-
CASSCF, NECI is installed as a stand-alone program, and the
OpenMolcas−NECI interface is controlled manually by the
user. Dedicated keywords are required in the OpenMolcas
input file to let OpenMolcas produce the relevant files, namely
the file containing one- and two-electron integrals in the MO
basis (FCIDUMP) and an input file for the NECI program
(see section S1). FCIQMC is then started externally, and the
population is grown and stabilized before one- and two-body
density matrices are accumulated. Walker population and other
parameters can be tuned at this stage within the FCIQMC
calculation if necessary. Density matrices are then transferred
back to OpenMolcas and used to evaluate the Fock matrices
necessary for the Super-CI step. After orbitals have been
rotated, the integral file is updated, and a new FCIQMC
dynamics in the active space can be performed. The embedded
OpenMolcas−NECI form is the recommended form for simple
cases (small active spaces, small number of walkers, loose
convergence). The uncoupled OpenMolcas−NECI form is the
recommended form for difficult applications (large active
spaces, large number of walkers, tight convergence).
Geometry, spatial symmetry, AO integral evaluation, scalar

relativistic effects, and additional external potentials are
evaluated at the OpenMolcas level, and corrections are made
to the FCIDUMP provided to the NECI program.

With the choice of the FCIQMC algorithm as CI
eigensolver, the Stochastic-CASSCF method can be applied
to larger active spaces, when compared to the deterministic
analog. Active spaces containing up to 40 electrons and 38
orbitals have been reported.75 Integral evaluations and AO−
MO transformations can be carried out via resolution-of-
identity (RI) Cholesky decomposition (CD) techniques,89−93

available within the OpenMolcas package. The choice of the
Super-CI method for the orbital relaxation together with the
density fitting techniques enable Stochastic-CASSCF calcu-
lations easily with up to 5000 basis functions.

3.1.2. Applications of the Stochastic-CASSCF Method.
The Stochastic-CASSCF method has been applied to a number
of chemical problems. Two very recent cases will be
summarized in this section, namely the correlation mechanism
leading to the large effective antiferromagnetic spin coupling, J,
in corner-sharing cuprate solids and the enhanced σ-donation/
π-back-donation mechanism that explains the stabilization of
the intermediate spin-states over the high spin-states in Fe(II)-
porphyrin model systems. For a more detailed description of
these systems and the strategy used within the Stochastic-
CASSCF framework we refer to the literature.74−76

Corner-sharing cuprates are of great interest, as they host
high-temperature superconductivity upon doping.94 Magnetic
properties of undoped cuprates have been rationalized on the
basis of the Heisenberg−Dirac−Van Vleck Hamiltonian with
antiferromagnetic nearest-neighbor magnetic coupling con-
stant J. The values of J in these systems are among the largest
known, with some variations upon rather small geometrical
differences.95 From a quantum-chemical standpoint under-
standing how J directly depends on electron correlation is a
challenging problem that has been investigated by several
research groups.96−100 Conventional wave function theory
treatment greatly underestimates the J value. The Stochastic-
CASSCF method has been used to investigate this aspect. A
cluster containing two CuO4 (or CuO6) units and all adjacent
Cu2+ and Sr2+ (or La2+) ions has been employed in these
calculations. The rest of the solid has been modeled by an
array of point charges fitted to reproduce the Madelung
potential due to infinite crystal in the cluster region. It has been
demonstrated that to capture the essential elements of the
superexchange mechanism it is necessary to explicitly correlate
the 20 valence 3d and double-shell d′ orbitals on the Cu sites
together with the six 2p and p′ orbitals on the bridging O ion,
with a total of 24 electrons, resulting in a CAS(24,26).
Calculations with this size of active space would be impossible
with standard CASSCF technology, the corresponding CI wave
function containing ∼9 × 1013 Slater determinants. The
calculation is carried out with ease using the Stochastic-
CASSCF method.76

Metal-porphyrins are crucial active sites in many enzymes
responsible for electron transfer, oxygen transport and oxygen
reduction. For example, the Fe(II)-porphyrin is the active
species in cytochrome P450, that binds molecular oxygen and
reduces it, leading to P450 Compound 1, responsible for the
hydroxylation reaction (insertion of an oxygen atom in a C−H
bond) in alkyl chains. In spite of the numerous experimental
and theoretical data, a definitive understanding of the ground-
state electronic structure and its changes along the reaction
pathway remain ambiguous, and an electronic explanation for
the relative ordering of the low-lying spin-states remains
unknown. Via large Stochastic-CASSCF(32,34) calculations,74

a complex mechanism has been proposed that demonstrates
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the differential stability of the intermediate triplet spin-state
over the quintet spin-state in a model system of the Fe(II)-
porphyrin. This mechanism involves ring correlation at the
level of the π-system, a correlated breathing process at the
metal center and charge-density redistribution. The large
(32,34) active space includes the entire π-system and nitrogen
lone pairs, the 3d and d′ orbitals at the metal center, and the
(4s4p) shell. It has been demonstrated that ring correlation
reduces the electron repulsion among the π electrons, making
the macrocycle a better electron acceptor. The correlating d′
orbitals provide the necessary flexibility for the orbital
relaxation induced by charge-transfer processes from the
lone-pairs of the ligand to the metal center. They also account
for radial correlation, responsible for a lower on-site electron
repulsion at the level of the metal center, and provide a larger
overlap with the π orbitals thus favoring charge-transfer from
the metal center to the ligand. This complex mechanism can be
related to a correlation enhanced σ-donation/π-back-donation
process and it is stronger for the triplet spin-state. It was
suggested in ref 74 that smaller active spaces, even upon
second-order perturbative correction, such as in the conven-
tional CASPT2(8,11) are not capable of fully capturing this
mechanism (see section 3.2.5 for further discussion). The
Stochastic-CASSCF technique has been also used to under-
stand the role of semicore electrons. This analysis has been
performed via a large CAS(40,38) active space.75

3.2. Density Matrix Renormalization Group Inter-
faces. After White proposed the DMRG101,102 in 1992,
subsequent work103−109 established that DMRG optimizes a
matrix product state (MPS). The flexible nature of MPSs
allows one to calculate excited states in an efficient manner110

and provides easy access to higher-order reduced density
matrices and the evaluation of arbitrary correlation functions.
The standard definition of an MPS describing a state over L
orbitals or sites is given by

∑ ∑ σψ = ···
σ

σ σ σ

−
−

M M M
a a

a a a a
,...,

1 1
L

L
L

1 1

1
1

1 2
2

1
(4)

with basis states σ σσ = ,..., L1 and σ = ↑↓l , ↑ , ↓ , 0 for
spatial orbitals. In systems with symmetries, the matrix indices
al are complemented with a quantum number label al →
qlαl,

111 leading to a block-sparse structure. Matrix product
states will encode a full CI wave function exactly if the matrix
dimension m (the maximum size of the indices al, called
“number of renormalized block states” or “bond dimension”) is
allowed to grow unrestrictedly. In practice, a finite m is chosen
which limits the amount of entanglement that the resulting
MPS is able to describe between any bipartition of an L-orbital
active space. For one-dimensional systems, so-called area
laws112,113 prove that the amount of entanglement is constant
irrespective of L and that limiting m is therefore a good
approximation. For the general case in quantum chemistry, the
convergence rate in m depends on molecular topology and the
choice of the orbital basis, influencing the sparsity of the one-
and two-electron integrals.114

Analogously to MPS, matrix product operators
(MPOs)110,115,116 are defined as

> ∑ ∑ σ σ̂ = ··· ··· ′
σσ

σ σ σ σ σ σ

′

′ ′ ′

−
− −

W W W
b b

b b b b
,...,

1 1
L

l l
l l

L
L L

1 1

1
1 1

1 1
(5)

The efficient determination of the W matrices for
Hamiltonian operators with long-range interactions such as
Coulomb interactions is a nontrivial task.117−119 The DMRG
algorithm formulated explicitly in terms of MPS and MPO is
sometimes referred to as second-generation DMRG. Com-
pared to the original formulation, a pure MPS/MPO
implementation provides additional flexibility by allowing
arithmetic operations to be performed on wave functions
and operators independently. These properties are exploited,
for instance, to implement a fully relativistic DMRG variant120

in QCMAQUIS (the first such implementation was presented
earlier121), for interfacing with multireference perturbation

Figure 1. Schematic representation of a DMRG-SCF/DMRG-CASPT2 calculation performed by the OpenMolcas−CheMPS2 interface. Only the
number of renormalized states m must be specified. The user can define optional parameters to speed up the calculation, e.g., orbital ordering,
occupation guess, the matrix product state (MPS) checkpoint files from a previous calculation, etc.
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theory122,123 (see section 3.2.3) and for MPS state-
interaction124 (see section 3.2.4).
This section presents the interface of OpenMolcas with two

established DMRG codes: the CheMPS2 library,125 a first-
generation DMRG implementation, based on a MPS
representation of wave functions (eq 4), and QCMA-

QUIS,111,117,126 a second-generation program that additionally
makes use of a MPO representation of operators (eq 5). In a
nutshell, both interfaces can replace the FCI solver from
CASSCF with a DMRG implementation and be used to obtain
state-specific or state-averaged DMRG-SCF wave functions
and perform single-state DMRG-CASPT2 calculations,127

while QCMAQUIS also supports DMRG-NEVPT2, MPSSI,
and analytical state-specific gradients for DMRG-SCF, support
for the recently published analytical state-averaged DMRG-
SCF gradients128 will be added in the near future.
The CheMPS2 library is a free open-source spin-adapted

implementation of DMRG for ab initio quantum chemistry. It
is designed for high-performance computing, allowing for
hybrid MPI and OpenMP parallellization, and can handle a
general active space up to 40 electrons in 40 orbitals in a
DMRG-SCF calculation. In a DMRG-CASPT2 calcula-
tion122,127,129,130 requiring the 2- and 3-particle reduced
density matrices (2- and 3-RDM) as well as the generalized
Fock matrix contracted with the 4-RDM (F.4-RDM), an active
space of ∼30 active orbitals can be treated. Figure 1 illustrates
a schematic representation of a DMRG-SCF/DMRG-CASPT2
calculation performed by the OpenMolcas−CheMPS2 inter-
face. DMRG-SCF calculations are performed in a manner
similar to standard CASSCF calculations except that the
number of renormalized state m must be provided by the user.
Additionally, other parameters controlling the cost and
accuracy of the calculations, e.g., the initial guess of the matrix
product state, the orbital ordering, the MPS checkpoint files,
etc., can be optionally specified. The shared-memory (OMP)
CheMPS2 binary is then called and executed. CheMPS2
outputs, such as the 2-RDM, are then fed to the RASSCF
module, allowing the active orbitals to be optimized with the
super-CI method. If a subsequent DMRG-CASPT2 calculation
is required, the active orbitals are transformed into
pseudocanonical orbitals in the last DMRG-SCF iteration,
and the 3-RDM and F.4-RDM are calculated by CheMPS2
based on this pseudocanonical orbital basis. Because the
generalized Fock matrix is diagonal in the pseudocanonical
orbital basis, the calculation of the full 4-RDM is avoided,
which drastically reduces the computational cost.122

Regarding the other DMRG interface described in this
paper, the OpenMolcas−QCMAQUIS interface, it has been
designed to (i) steer a DMRG calculation with the MPS/MPO
program QCMAQUIS

111,117,126 and (ii) exchange data such as
N-particle reduced density matrices (N-RDMs), from
QCMAQUIS to OpenMolcas. Figure 2 illustrates the capabilities
of the OpenMolcas−QCMAQUIS interface. DMRG-SCF
calculations with QCMAQUIS are enabled in OpenMolcas
within the DMRGSCF module by specifying the Active-
SpaceOptimizer=QCMaquis keyword which sets
QCMAQUIS as default active space solver. Note that the
DMRGSCF module shares the same subset of keywords, e.g.,
for the wave function model specification, orbital-optimizer
convergence acceleration, and MO analysis, that are available
in OpenMolcas within the complete active space SCF
optimizer module RASSCF. The core of the OpenMolcas−
QCMAQUIS interface comprises a subset of Fortran90 modules

which (i) “translate” in an automated fashion the user-provided
wave function input data of OpenMolcas into the correspond-
ing DMRG input for QCMAQUIS, (ii) generate on the fly the
one- and two-electron integrals in the MO basis in the
commonly used format defined by Knowles and Handy,131

(iii) invoke the actual DMRG wave function optimization with
QCMAQUIS, and (iv) convert any (user-)requested N-RDM or
N′-particle reduced transition density matrix (with N =
{1,2,3,4} and N′ = {1,2,3}) from QCMAQUIS to OpenMolcas
format. The complete MPS wave function, optimization input,
and output data as well as all molecular properties calculated
by QCMAQUIS are stored in external files in HDF5 format and
are therefore available in OpenMolcas for further external
processing.

3.2.1. Active Space Selection Based on Entanglement
Measures. The selection of an appropriate active space for
multiconfigurational calculations is a task as important as it is
difficult. While several guidelines exist for this selection,132−136

it still requires expertise with trial and error and, hence,
constitutes a considerable entry barrier to such calculations.137

An automated protocol has been proposed138 and imple-
mented in combination with the OpenMolcas−QCMAQUIS

interface, which selects orbitals for the active space based on
orbital entanglement entropies139,140 from a partially con-
verged DMRG calculation. This protocol has become possible
owing to (i) the feature of DMRG that allows one to consider
large active spaces in an exploratory fashion through limiting
the number of sweeps and the block dimension and owing to
(ii) the spread of entanglement measures defined for one or a
pair of orbitals so that rather robust thresholds can be defined
that separate strongly from weakly correlated orbitals, the
former to be chosen for an active space in a final well-
converged DMRG or CASSCF calculation.
The orbital entanglement entropies are calculated from the

one- and two-orbital reduced density matrices. The elements of
these matrices can be expressed as expectation values of strings
of creation and annihilation operators and are efficiently
calculated within a DMRG algorithm. The explicit equation for
the single-orbital entropy, on which the selection protocol is
based, reads

∑= −
α

α α
=

s w w(1) lni i i
1

4

, ,
(6)

Figure 2. Schematic representation of the capabilities of the
OpenMolcas−QCMAQUIS interface. OpenMolcas modules that are
interfaced with QCMAQUIS are listed on the left, and the properties
that can be obtained are listed on the right.
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whereas the two-orbital entropy follows in close analogy as

∑= −
α

α α
=

s w w(2) lnij ij ij
1

16

, ,
(7)

In these equations, wα,i and wα,ij are the eigenvalues of the one-
and two-orbital reduced density matrices, respectively, i,j are
orbital indices, and α is one of the four (or 16) possible
occupations of a spatial orbital (or a pair of spatial orbitals).
Both quantities can be combined to give the mutual
information which quantifies the entanglement of an orbital
pair

δ= [ + − ] −I s s s1
2

(1) (1) (2) (1 )ij i j ij ij (8)

Both the mutual information and the single-orbital entropies
are collected in entanglement diagrams such as the one in
Figure 3 that provide an intuitive interpretation of the orbital
entanglement.
It was demonstrated that CAS wave functions calculated

from these automatically selected active spaces are suitable
zeroth-order wave functions for subsequent CASPT2 calcu-
lations.141 Furthermore, consistent active spaces for several
electronic states and along reaction coordinates can be
identified.142 The automated active orbital space selection
has been implemented as a graphical user interface (GUI)
called AUTOCAS143,144 that drives OpenMolcas and QCMA-

QUIS. AUTOCAS is the first computer program that allows one to
run multiconfigurational calculations, for which an active space
must be selected, in a fully automated way. It can be

downloaded separately free of charge from the SCINE Web
page.145

3.2.2. Analytic Ground- and Excited-State DMRG-SCF
Gradients. A central feature of the traditional multiconfigura-
tional wave function toolbox of OpenMolcas is the availability
of analytic energy gradients (with respect to the nuclear
coordinates) for a single (“state-specific”) or an ensemble
(“state-averaged”) of electronic states.146−148 State-specific and
state-averaged gradients are, for instance, key for the
calculation of ground- and excited-state equilibrium structures,
reaction paths, and for molecular dynamics simulations.
Likewise, excited-state gradients are vital for modeling a wide
range of photochemical phenomena, such as photochemical
and photophysical pathways or resonance Raman spectra.
Whereas a state-specific DMRG-SCF gradient is rather
straightforward to implement,149 a formalism for state-
averaged DMRG-SCF gradient theory has only been recently
presented and applied to an optimization of a conical
intersection in the study of the photochemistry of 1,2-
dioxetanone.128 The applicability of state-specific DMRG-
SCF gradients has been demonstrated for optical spectroscopy,
in particular, for resonance Raman spectroscopy,150 and that of
the state-averaged DMRG-SCF gradients in a conical
intersection optimization.128

In analogy to CASSCF, the calculation of a state-specific
DMRG-SCF analytic gradient, available with the Open-
Molcas−QCMAQUIS interface, requires the one- and two-
particle reduced density matrices for a given target state in
addition to the derivatives of the Hamiltonian, i.e., the
derivatives of one- and two-electron integrals, with respect to
the nuclear coordinates.149,150 The latter quantities can be
calculated independently of the parent multiconfigurational
wave function. Their calculation is carried out most efficiently
in the AO-basis (to which the reduced density matrices are
backtransformed from the MO basis) which is implemented in
the ALASKA module of the OpenMolcas framework.

3.2.3. Perturbation Theory with DMRG Reference. While
DMRG-SCF is capable of describing static correlation for large
active spaces, a significant contribution to electron correlation
required for quantitative results, namely the dynamic
correlation, must be accounted for separately. Traditionally,
second-order perturbation theory with a zeroth-order Hamil-
tonian that describes the static correlation effects has been
most popular (but coupled-cluster models combined with a
DMRG reference have also been considered151−153). Multi-
configurational second-order perturbation theory in the form
of CASSCF/CASPT2 became the flagship method of the
(Open)Molcas quantum chemistry package.154 In the early
2000s, Angeli et al.65−68 introduced another formulation of a
CAS-based multireference perturbation theory, the (second-
order) n-electron valence state perturbation theory
(NEVPT2). The main difference of NEVPT2 with respect to
CASPT2 is the definition of the zeroth-order Hamiltonian:
NEVPT2 uses the Dyall Hamiltonian as a model Hamil-
tonian,155 which explicitly considers two-electron interactions
among the electrons in the active space. The two-electron
interactions in the reference ensure that NEVPT2 is intruder-
state free and size consistent.71 NEVPT2 allows for two
different contraction schemes to construct the first-order wave
function: the partially contracted (PC) scheme is identical to
the one in CASPT2, while the strongly contracted (SC) scheme
introduces additional contractions, further simplifying the
formalism.

Figure 3. Entanglement diagram obtained from a DMRG wave
function optimized with the QCMAQUIS program with m = 250 and 10
sweeps including all valence orbitals of butadiene that were obtained
from a minimal basis Hartree−Fock calculation. A circle with an area
proportional to the single-orbital entropy is associated with each
orbital. The thickness of the connecting lines is proportional to the
mutual information of an orbital pair. The π-orbitals are those with
numbers 10−13 and would be selected by the automated protocol as
implemented in AUTOCAS.
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The majority of the DMRG-based perturbation-theory
methods encompass DMRG-CASPT2122,130 (available with
both the OpenMolcas−CheMPS2 and OpenMolcas−QCMA-

QUIS interfaces) and DMRG-NEVPT2123,156 (available with the
OpenMolcas−QCMAQUIS interface). One of the major draw-
backs of these approaches (or rather of the internal contraction
formalism157−159 on which these theories are based) is their
dependence on higher-order N-RDMs (N > 2), whose
evaluation scales as 6 L( )N2 with the number of active orbitals
L. For instance, in the case of the four-particle RDM, its
evaluation scales formally as 6 L( )8 . While for small active
spaces (small L) this is not a problem, the fourth-order RDM
evaluation becomes quickly the computational bottleneck for
active spaces of more than 20 to 22 orbitals.
Apart from the RDM scaling problem, the ability to deal

with large basis sets is crucial for increasing active space sizes.
In particular, the transformation of the two-electron integrals
from the AO to the MO basis becomes a bottleneck. One of
the flagship features of the OpenMolcas program package is
the Cholesky decomposition of the two-electron integral
matrix, initially proposed by Beebe and Linderberg160 and
developed over the years by Aquilante, Lindh, Pedersen, and
co-workers for various single- and multireference electronic
structure methods.90,93,161,162 The DMRG-NEVPT2 imple-
mentation in QCMAQUIS

123 and the DMRG-CASPT2
calculations with the OpenMolcas−CheMPS2 and Open-
Molcas−QCMAQUIS interfaces take full advantage of the
Cholesky decomposition to handle the two-electron inte-
grals162 and the DMRG reference wave function (CD-DMRG-
NEVPT2, CD-DMRG-CASPT2).
3.2.4. State Interaction for Matrix Product States. In the

restricted active space state-interaction (RASSI) approach of
Malmqvist,163 sets of spin-free (SF) eigenstates can be coupled
under the influence of the spin−orbit (SO) coupling, and a
variety of highly important molecular properties can be
evaluated. A critically important feature of the RASSI program
is that the state interaction can be performed among different
sets of SF states with different spin or spatial symmetry, with
the molecular orbitals (MOs) optimized for each set of states
individually. This implies mutual nonorthogonality of the
respective MO bases and requires the transformation of pairs
of MO sets to a biorthonormal basis.163 These nonunitary
transformations require a countertransformation of the
representations of the wave functions such that the physical
content of the latter remains intact. This feature was, until
recently, only available for CI-type wave functions but not for
MPSs.
The formalism and implementation for MPS-based state

interaction (MPSSI) within QCMAQUIS
124 includes the critical

capability to work with nonorthogonal MO sets. The approach
differs considerably from Malmqvist’s but is likewise based on
constructing biorthogonal MO bases and concomitant
countertransformations of the MPSs. An MPSSI flowchart
for generating SO-coupled wave functions and matrix elements
of operators for molecular properties is shown in Figure 4.
Very importantly, the MPSs serve as a complete substitute for
the CI-type states in calculations of SO-coupled wave functions
as well as SF and SO molecular properties with the RASSI
program. For instance, ref 124 reported relative SF and SO
valence state energies and state compositions for Te2, NpO2

2+,
and PuO2

2+, as well as EPR g-factors for the actinyl species,
from MPS-SO calculations with QCMAQUIS and the RASSI

program. The MPSSI results were in full agreement with
CASSCF and CASPT2.164 Therefore, the full suite of SO-level
molecular properties and spectra previously available in the
RASSI program can now be calculated with the potentially very
large active spaces that are accessible with MPS wave
functions.

3.2.5. Applications of DMRG-MRPT2. The case of the spin
states of Fe(II)-porphyrin (FeP) has already been mentioned
in the context of Stochastic-CASSCF (section 3.1.2), where it
was proposed (for a smaller model system) that a small
CAS(8,11) active space might be insufficient and a much larger
active space, including all ligand π as well as extra nitrogen
orbitals and the 4s4p shell on the metal center, is needed.74

Here we discuss a series of DMRG-SCF and DMRG-CASPT2
calculations performed on the lowest triplet (3A2g) and quintet
(5A1g) states of FeP with the OpenMolcas−CheMPS2
interface. The active space used is CAS(26,27), containing,
next to the CAS(8,11) space, 16 P (π,π*) orbitals (all but the
2pz of the β carbons of the pyrrole rings). The best DMRG
calculations, using m = 10000 for the CAS(26,27) active space,
differ by less than 0.4 kJ/mol from the CAS(8,11) results,
giving a quintet−triplet gap of −68.53 kJ/mol with DMRG-
SCF and −19.46 kJ/mol with DMRG-CASPT2. The
conclusion is that including the P (π,π*) orbitals on top of
the CAS(8,11) space has a minor impact on the CASSCF/
CASPT2 description of the spin state energetics in FeP. In refs
165 and 166 it was shown that an improved description should
instead come from more extensive basis sets (extrapolated to
the complete basis set limit) as well as a special (CCSD(T))
treatment of the Fe (3s,3p) semicore electrons. All details of
the calculations, a plot of the active natural orbitals, and a
discussion on the convergence and performance can be found
in the SI.
Another example of the OpenMolcas−CheMPS2 interface

shown in the SI is the geometry optimization of ferrocene
(Fe(C5H5)2 or FeCp2) at the DMRG-CASPT2 level; this
demonstrates that the interface can easily be coupled with
other modules that require either the 2-RDM or CASPT2 total
energy. The equilibrium structure of FeCp2 was optimized

Figure 4. Flowchart illustrating the MPS state-interaction (MPSSI)
approach to calculate property matrix elements of spin-free and spin−
orbit coupled MPS wave functions according to ref 124.
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(with numerical gradients) employing both standard CASPT2,
with a CAS(10,10) active space, and DMRG-CASPT2, with an
extended CAS(14,18) active space. The number of renormal-

ized states m is 1000, which gives converged DMRG-CASPT2
energies for medium-sized active spaces.129 Further computa-
tional details and active natural orbitals can be found in the SI.
The key structural parameters of ferrocene, calculated with
CASPT2, DMRG-CASPT2, and CCSD(T),167 are shown in
Table 1. Interestingly, the results indicate that CASPT2 and
DMRG-CASPT2 give almost the same structure. As compared
to CASPT2, DMRG-CASPT2 predicts slightly longer Fe−C
and Fe−Cp bond distances by less than 0.005 Å. The results
imply that in this simple case, the size of the active space has a
minor impact on the optimized geometry. As compared to the
CCSD(T) results,167 both CASPT2 and DMRG-CASPT2
predict the same d(C−C) and d(C−H), whereas they
underestimate the Fe−C and Fe−Cp bond distances by
∼0.03 Å. All calculations were performed on a single Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50 GHz machine, 256GB
RAM, and 16 MPI processes. A numerical gradient calculation
with the CAS(10,10) active space finishes in around 2 h, while
it takes ∼9 h for the DMRG CAS(14,18) active space. For

comparison purposes, a standard CASPT2 calculation employ-
ing the large active space requires a fairly large amount of
memory (∼20GB per process), consequently, only 12 MPI
processes can fit the machine, and a numerical gradient
calculation takes almost 8 days with this setting. It is also worth
noting that a geometry optimization cycle using CCSD(T)
analytical gradients can take almost 9 days.167

As an example of a DMRG-NEVPT2 calculation with the
OpenMolcas−QCMAQUIS interface, we show here results of
CD-DMRG-NEVPT2 for the energy gaps between the lowest
quintet, triplet, and singlet states of a large iron(II) complex,
FeN2C72H100, shown in Figure 5. This complex was chosen by
Guo et al. in reference calculations168 for their DLPNO-
NEVPT2 approach169 and by Coughtrie et al. in their paper on
embedded multireference coupled cluster theory.170 As the
PC-variant of the CD-DMRG-NEVPT2 approach is known to
be unreliable for large active spaces and small bond dimensions
m (due to the incomplete convergence of the zeroth-order
wave function),123 the CD-DMRG-SC-NEVPT2 variant was
applied, given that it is much less sensitive to the convergence
of the zeroth-order wave function. The active orbitals for the
initial DMRG-SCF step were determined with the automated
active space selection protocol138 using the AUTOCAS program
(see section 3.2.1). The active spaces for all spin states must be
equal and, according to the selection protocol, comprise the
union of the active spaces selected for the individual spin
states. In this way, 17 orbitals were selected by the protocol,
resulting in an active space of 14 electrons in 17 orbitals.
However, upon orbital optimization of the triplet wave
function, one orbital rotated out of the active space, and
hence, the active spaces for different spin states would no
longer be consistent, so the orbital was removed from the
active space for all spin states, resulting in an active space of 14
electrons in 16 orbitals. In all calculations, the maximum bond
dimension was set to m = 512. Although this is a rather small
value for the bond dimension, it was found to be a suitable
approximation in certain cases,123,156 especially if an accuracy

Table 1. Structural Parameters of the Eclipsed
Conformation of Ferrocenea

CASPT2b DMRG-CASPT2c CCSD(T)d

d(Fe−Cp) (Å) 1.610 1.615 1.648
d(Fe−C) (Å) 2.016 2.020 2.047
d(C−C) (Å) 1.426 1.426 1.427
d(C−H) (Å) 1.077 1.076 1.079
∠(Cp−H) (deg)e 0.89 1.08 0.52

aIn CASPT2, DMRG-CASPT2, and CCSD(T) calculations, the cc-
pwCVTZ basis set (672 basis functions) was used, and all 96
electrons were correlated. bStandard CASPT2 calculation with
CAS(10,10). cDMRG-CASPT2[m = 1000] calculation with CAS-
(14,18). dReference 167. eAngle between hydrogens and cyclo-
pentadienyl ring, positive values mean hydrogen is bent toward metal.

Figure 5. Lewis and molecular structure of the FeN2C72H100 complex in ref 169 (Cartesian coordinates were taken from that reference). Color
code: turquoise−carbon, white−hydrogen.
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of about 8 kJ/mol is considered to be sufficient. Further
computational details are available in the SI.
Table 2 contains the quintet−triplet and quintet−singlet

excitation energies calculated with CD-DMRG-SC-NEVPT2
and DMRG-SCF along with results from refs 169 and 170
obtained with several NEVPT2 and embedded MRCC
variants. The quintet−triplet gap of 165.8 kJ/mol deviates
only by approximately 10 kJ/mol from the embedded ic-
MRCCSD(T) result from ref 170 which may be attributed to
the different basis sets (ANO-RCC-VDZP/VQZP vs def2-
TZVP) and the different active orbital spaces from which the
reference wave function was constructed. The quality of the
reference wave function may be assessed from a comparison of
the CASSCF and DMRG-SCF excitation energies with the
final results that include the NEVPT2 contribution: DMRG-
SCF excitation energies show a significantly smaller deviation
from the DMRG-SCF plus NEVPT2 results than their
CASSCF counterparts, which indicates that NEVPT2 benefits
from an improved active space for the reference wave function
calculation and that this can be provided by the suggested
automated active-orbital selection algorithm. However, the
quintet−singlet excitation shows a much larger discrepancy
between the DMRG-NEVPT2 results and those from the
literature. First of all, the CASSCF result for the small active
space deviates even more from the DMRG-SCF result than
what was observed for the quintet−triplet excitation.
Unfortunately, no NEVPT2 reference data are available for
this higher excitation. Still, the embedded NEVPT2 result from
Coughtrie et al.170 is about 30 kJ/mol larger that the
embedded MRCC result, whereas they were very similar in
the singlet−triplet case. This may also be taken as an indication
that the CAS of the reference was too small because the
MRCC approach may compensate for a small-CAS reference
wave function through the coupled-cluster excitation hierarchy.
Accordingly, the DMRG-NEVPT2 result obtained for the
larger active space is only about 20 kJ/mol smaller than the
embedded MRCC result.
3.3. Multiconfiguration Pair-Density Functional

Theory. Multiconfiguration pair-density functional theory
(MC-PDFT)54,61 combines the advantages of wave function
theory and density functional theory to provide a method for
efficient evaluation of the electronic energy of strongly
correlated systems. In MC-PDFT the first step is to calculate
a multiconfiguration wave function, and in OpenMolcas, this
wave function may be calculated by CASSCF,47 RASSCF,56

GASSCF,57 CAS-CI,55 RAS-CI,55 GAS-CI,171 stochastic-
CASSCF73 (section 3.1), and DMRG101,102,109,172,173 (section
3.2). CASSCF, RASSCF, and GASSCF are special cases of the
multiconfiguration self-consistent-field (MCSCF) method, and
one can use either state-specific174 SCF or state-averaged175,176

SCF. The total MC-PDFT energy is expressed as

ρ= + Ψ ̂ Ψ + + + [ Π]E V T V V E ,Cnn
MC MC

ne ot (9)

where the first term corresponds to the nuclear−nuclear
interaction; the second, the third, and the fourth terms,
respectively, correspond to the kinetic energy, the nuclear−
electron attraction, and the classical Coulomb interaction of
the electronic charge cloud with itself; and the final term is the
on-top energy. In eq 9 the kinetic energy and the classical
electrostatic energy (nuclear−nuclear repulsion energy,
nuclear−electron attraction energy, and classical electron−
electron Coulomb energy) are directly obtained from the
multiconfigurational wave function, Ψ, while the rest of the
electronic energy is calculated from an on-top density
functional that is a functional of the electron density ρ and
on-top pair density Π (which represents the probability of
finding two electrons on top of each other) of that reference
wave function.
Computationally, eq 9 reduces to

∑ ∑ ρ ρ= + + + [ Π ∇ ∇Π]E V h D g D D E1
2

, , ,
pq

pq pq
pqrs

pqrs pq rsnn ot

(10)

where D is the one-electron density matrix, h and g contain
respectively the one- and two-electron integrals, and p, q, r, and
s are general orbital indices including inactive and active
orbitals. An MC-PDFT calculation involves two steps: (1)
calculation of the multiconfiguration wave function and (2)
calculation of the on-top density functional energy. Because
the postself-consistent-field step is a calculation based on a
density functional, the computational effort for step 2 is
generally negligible compared to the cost of step 1, and this
makes MC-PDFT computationally more affordable than other
multireference methods such as those based on perturbation
theory or multireference configuration interaction.
An MC-PDFT calculation always uses multiconfiguration

wave functions that are spin eigenfunctions. MC-PDFT is free
from delocalization error,177 which is sometimes considered to
be the most fundamental source of error in KS-DFT with
approximate exchange−correlation functionals. MC-PDFT is
also less prone than KS-DFT to self-interaction error.178

The decomposition of the MC-PDFT energy expression of
eq 9 into its individual components is sometimes important for
understanding chemical and physical phenomena in molecular
systems.72,179 This decomposition is available in OpenMolcas,
along with the tabulation of ρ and Π in Cartesian coordinates
for plotting and visualization.

3.3.1. On-Top Functionals for MC-PDFT. Due to the
symmetry dilemma, the spin-polarized exchange−correlation
functionals of KS-DFT are not compatible with the spin
densities of a multiconfiguration wave function. To bypass the
symmetry dilemma, one uses translated54 and fully translated60

on-top functionals, which are obtained by translation of KS-
DFT exchange−correlation functionals of the spin densities
and their gradients. Translated functionals are denoted with
the prefix “t”, and fully translated functionals are denoted with
the prefix “ft”. If Exc[ρα(r),ρβ(r),∇ρα(r),∇ρβ(r)] denotes a KS-

Table 2. Excitation Energy in kJ/mol Relative to the Quintet (A5) Ground State of FeN2C72H100
a

St
DMRG-SC-NEVPT2

this work
SC-NEVPT2

ref 169
DLPNO-SC-

NEVPT2 ref 169
NEVPT2 emb
CASSCF ref 170

ic-MRCCSD(T) emb PNO-
CASPT2 ref 170

CASSCF
ref 170

DMRG-SCF
this work

A3 165.8 177.2 178.6 178.4 176.6 218.6 146.3
A1 241.7 290.3 262.4 346.1 197.8

aResults in refs 169 and 170 were obtained with a CAS(6,5) (and with a def2-TZVP basis set), whereas we chose a CAS(14,16) (and an ANO
basis set; see text for further discussion) for the CD-DMRG-SC-NEVPT2 and DMRG-SCF calculations. Abbreviation: “emb”, “embedded in”.
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DFT exchange−correlation functional, in which ρσ is the spin
density (σ = α,β), and ∇ρσ is the gradient of the density, the
translated functional is given by

ρ ρ ρ ρ ρ ρ[ |∇ | Π ] = [ ∇ ∇ ]α β α βr r r r r r rE E( ), ( ) , ( ) ( ), ( ), ( ), ( )t t t t
ot xc (11)

where

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ
ρ

= + Π ∇ = ∇ + Π

= − Π ∇ = ∇ − Π

Π = − Π

α α

β β

ikjjjjj y{zzzzz

r r

r r

f f

f f

f

( )
2

(1 ( , )) ( )
2

(1 ( , ))

( )
2

(1 ( , )) ( )
2

(1 ( , ))

( , ) max 0,1 4

t t

t t

2

in which ∇ρ is the gradient of that spin density. For a single-
determinant wave function, ≤ρ

Π 14
2 in all space. However, for a

multiconfiguration wave function, this ratio can be greater than
one. Notice that the translated functionals depend on Π but
not on its gradient and that the left and right derivatives of f are
not equal at =ρ

Π 14
2 , making the gradient of f discontinuous.

Fully translated functionals also depend on ∇Π, and the first
and the second derivatives of the functional are continuous.
Both kinds of functionals have been found to give reasonably
good results for multireference systems.
OpenMolcas supports the use of several different on-top

functionals, including a translated local spin-density approx-
imation (LSDA), various translated generalized gradient
approximations, and various fully translated generalized
gradient approximations. The following is a list of currently
supported functionals: tLSDA,54,180,181 ftLSDA,60,180,181

tPBE,54,182 ftPBE,60,182 trevPBE,183,184 ftrevPBE,183,184

tBLYP,54,185,186 ftBLYP,60,185,186 tOPBE,182,187,188 and
ftOPBE.60,182,187,188

OpenMolcas also supports functionals obtained by scaling
the exchange and/or correlation components of the exchange−
correlation functionals prior to translation. The scaling factors
may be input by the user. This allows the functionals to be
modified into an HLE-type functional,189,190 where the
standard scaling factors are 1.25 for exchange and 0.5 for
correlation, but other scaling factors may be chosen.
3.3.2. Performance of MC-PDFT. MC-PDFT generally

produces results that are comparable in accuracy to complete
active space second-order perturbation theory (CASPT2) but
at significantly lower computational cost191 for bond
energies,59,60,177,192,193 spin-multiplet splittings,194−197 and
other excitation energies.198−201 These results are summarized
in Table 3. A review containing references for tests and
validations on electronically excited states up to mid-2018 is
available in ref 202.
3.3.3. Analytical Gradients for SS-CAS-PDFT. OpenMolcas

includes analytical gradients for MC-PDFT when a state-
specific CASSCF (SS-CASSCF) wave function is used as a
reference (SS-CAS-PDFT), and these gradients enable the fast
and efficient determination of equilibrium and transition state
structures.205 Because MC-PDFT is a nonvariational method,
the computation of the gradient requires the construction of a
Lagrangian. In general, the computation of analytical gradients
can be performed at least an order of magnitude faster than the
corresponding gradient calculation using a numerical finite-
difference method. SS-CAS-PDFT shows good accuracy
compared to experimental data for both equilibrium and

transition-state structures. Some illustrative single-processor
timings for MC-PDFT calculations employing the tPBE on-top
functional are shown in Table 4.

3.3.4. Density Matrix Renormalization Group Pair-Density
Functional Theory (DMRG-PDFT). DMRG (see section 3.2) is
a powerful method to treat static correlation, especially in
molecular systems requiring large active spaces. MC-PDFT can
be used in conjunction with DMRG to add additional dynamic
correlation in an inexpensive way. The first applications206,207

of DMRG-PDFT were based on an interface between the
existing MC-PDFT code in OpenMolcas and the DMRG code
in the QCMAQUIS

117,126,208 program. An illustrative example206

of singlet−triplet gaps in polyacenes is shown in Figure 6. The
tPBE/6-31G+(d,p) combination of on-top functional and basis
set was used.

3.3.5. State-Interaction Pair-Density Functional Theory.
The accurate description of ground- and excited-state PESs in
cases where two electronic states are strongly interacting (such
as near conical intersections or locally avoided crossings) is a
challenge for many electronic structure methods. A new
framework, called state-interaction PDFT (SI-PDFT),209 has

Table 3. Mean Unsigned Error (MUE) of MC-PDFT Using
the tPBE Functional and CASPT2

MUE (eV)

ref system/property PT2 tPBE

54 6 covalent or ionic diatomics/ 0.3 0.3
dissociation energy

59 10 transition metals with ligand/ 0.24 0.19
average bond energy

194 11 n-acenes (from naphthalene to dodecacene)/ 0.06a 0.13a

singlet−triplet gap
193 13 main-group atoms or compounds/ 0.12b 0.24b

singlet−triplet gap
196 8 organic rings/ 0.01b 0.10b

singlet−triplet gap
199 19 main-group atoms/ 0.22 0.42

first excitation energy
201 10 doublet radicals/ 0.14 0.19

first 5 vertical excitation energies
aThe reference wave function is optimized from a GASSCF
calculation.57,203 bThe active space for the reference wave function
uses the correlated-participating-orbital (CPO) scheme.204

Table 4. Illustrative Timings (in s) for a Single Gradient
Computationa Using a Single Processor

cc-pVDZ cc-pVTZ

active
space symmetry CASPT2 tPBE CASPT2 tPBE

NH3 (6,6) Cs 16 7 32 14
HCN (8,8) C2v 9 4 17 10
CH2O (12,9) C2v 29 9 29 15
HCCH (10,10) D2h 20 6 20 11
oxirane (10,10) C2v 55 27 136 45
pyrrole (6,5) C2v 87 39 1082 212
acrolein (4,4) Cs 558 117 3390 160
butadiene (4,4) C2h 85 29 933 137
pyridine (6,6) C2v 183 32 2256 156
maleic
anhydride

(8,7) C2v 123 36 1148 218

aCASPT2: numerical gradient. tPBE: analytical MC-PDFT gradient.
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been introduced to handle these situations in the case of MC-
PDFT. This has been recently implemented in OpenMolcas
and successfully applied to several cases, such as the
dissociation of LiF209 and the charge-transfer reaction path
of a mixed-valence compound.210 SI-PDFT is an extension of
MC-PDFT that involves the diagonalization of an N × N

effective Hamiltonian to generate a new set of N electronic
states with proper PES topology in regions of strong state
interaction. This method is similar in objectives and
application to the “perturb-then-diagonalize” approaches in
multireference perturbation theories such as MS-
CASPT2211,212 or MC-QDPT.213,214 An illustrative example
is shown in Figure 7. The tPBE functional was used for both a
standard MC-PDFT calculation and a SI-PDFT calculation.
While unphysical curve crossings are present in the standard
MC-PDFT treatment, these vanish when the SI-PDFT
methodology is used because the final step in the SI-PDFT
method is a diagonalization.

4. EXPLORATION OF POTENTIAL ENERGY SURFACES
Understanding the mechanism, rate, and yield of chemical
reactions requires exploring the potential energy surfaces of

interest. A photochemical reaction involves by definition
several PESs; the strong coupling between the different
electronic states promotes efficient nonradiative electronic
transitions.215,216 One distinguishes between internal conversion
caused by nonadiabatic coupling between states of same spin
multiplicity and intersystem crossing caused by spin−orbit
coupling between states of different spin multiplicity.
Exploration of PESs can be performed either through
optimization of specific geometries and paths along the
reaction or through simulations of the actual dynamics of the
reaction in time.
Regarding optimization calculations, OpenMolcas allows

one to optimize minima and transition states, as well as
minimum-energy paths and intrinsic reaction paths, using the
SLAPAF program. Since recently, it is also possible to optimize
conical intersections thanks to the implementation of the
nonadiabatic coupling vector. This new feature is detailed in
section 4.1. We mention in passing that the SHARC suite
(described in section 4.3) provides a module, alternative to the
SLAPAF program in OpenMolcas, that allows the optimization
of excited-state minima, minimum-energy crossing points, and
conical intersections, using OpenMolcas for calculating the
needed electronic quantities.
Regarding dynamics simulations, direct methods calculate

the PESs as needed along trajectories, sampling only the
relevant regions of the PESs. These nuclear trajectories are
then used to describe the nuclear wavepacket motion. One
major feature that differentiates the several direct methods able
to describe (nonadiabatic) dynamics is the treatment of the
nuclear motion through the basis of nuclear trajectories.217

OpenMolcas allows one to simulate Born−Oppenheimer and
surface-hopping dynamics, by treating the nuclei classically.
New features presented in section 4.2 include thermal
sampling of the initial conditions, application of external
mechanical forces, and study of isotopic effects. As an
electronic structure package, OpenMolcas is also interfaced
to other open-source dynamics codes. The interfaces to
SHARC and Quantics are presented in sections 4.3 and 4.4,
respectively. SHARC contains a general surface-hopping
algorithm with arbitrary couplings such as the spin−orbit
coupling, while Quantics allows a quantum treatment of the
nuclear motion with the direct dynamics variational multi-
configuration Gaussian (DD-vMCG) method.

4.1. Conical Intersection Optimization and Character-
ization. A key quantity for describing photochemical
processes and near-degeneracy between electronic states is
the nonadiabatic or derivative coupling vector. However, until
now it was not possible to obtain this quantity with the
MOLCAS package, and some approximations had to be
employed for nonadiabatic molecular dynamics8 or for the
location of conical intersections.218

Since its release, OpenMolcas includes analytical non-
adiabatic couplings between state-average CASSCF wave
functions, as described in ref 219. The implementation is
based on the algorithm used for energy gradients,146,148,220 and
it is compatible with both conventional and density-fitted two-
electron integrals. The availability of nonadiatabic couplings
allows the use of the projected constrained optimization
(PCO) method221,222 for locating minimum-energy conical
intersections (MECI). From the user’s perspective, the only
change with respect to a single-surface geometry optimization
is the addition of an energy difference constraint−gradients,
and nonadiabatic couplings are computed automatically as

Figure 6. Singlet−triplet gaps in polyacenes.

Figure 7. Dissociation of LiF calculated with a (6e,6o) active space.
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needed. Furthermore, the first-order conical intersection
characterization proposed in ref 219 is also reported upon
convergence, allowing the unambiguous description and
comparison of conical intersection topographies. The meaning
of the characterization parameters is illustrated in Figure 8.
From these, it is possible to determine whether the intersection
is peaked or sloped−in the latter case, it is not a minimum on
the upper surface−and this is available in the output as well.
4.2. Dynamics Simulations within OpenMolcas.

Born−Oppenheimer and nonadiabatic dynamics can be
performed within OpenMolcas using the DYNAMIX and
SURFACEHOP modules. Transitions between different
electronic states can be treated by two different approaches:
(a) according to the quantification of the temporal rate of
mixing between electronic states223 and (b) following Tully’s
fewest switches approach224 where the initial population
density matrix is defined at the beginning of the propagation.
The modular structure of OpenMolcas allows combining other
features in OpenMolcas with dynamics simulations. For
example, the ESPF module enables hybrid quantum
mechanics/molecular mechanics (QM/MM) simulations, or
any other electronic structure method available in OpenMolcas
can be used to obtain the energy and gradients. Recent
developments for molecular dynamics simulations have been
included in OpenMolcas. They are summarized below.
4.2.1. Initial Thermal Sampling. In order to obtain

statistically significant predictions using molecular dynamics
simulations, an ensemble of trajectories has to be computed
(usually hundreds of trajectories, even in simple reactions like
trans−cis photoisomerization225−230). The initial state of the
system has to be appropriately sampled in order to get a good
representation of nuclear positions and momenta. OpenMolcas
allows sampling of the phase-space for a thermally equilibrated
state according to the Boltzmann distribution. Given the
minimum energy structure of the system, the absolute
temperature, and a second-order expansion of the potential
energy as determined with a frequency calculation, initial
conditions (i.e., nuclear coordinates and momenta) are
generated; they can be subsequently used for running
individual trajectories.
4.2.2. Steered Molecular Dynamics. DYNAMIX has the

possibility of including multiple external force pairs, each one
applied on a specific couple of nuclei. The external forces are

added to the molecular force field defined by the electronic
state. This new feature allows the user to simulate the action of
external forces (i.e., mechanical effects) acting over a molecular
system. The magnitude of each force pair is defined as the
magnitude of each force vector acting on each of the two
atoms. Many force pairs can be added, generating a final
external force vector by summing up all the components on
each atom. Finally, the applied force pairs can be defined as
extension or compression forces. In this way different
mechanochemical setups (e.g., polymer mechanochemistry,
sonochemistry, or force probes) can be simulated, in a first
approach, by adding external forces.
Steered molecular dynamics can be performed in ground

and excited states, permitting the study of photochemical
processes in strained systems. Photochemistry of mechanically
affected systems, i.e., mechanophotochemistry, still remains
quite unexplored, and only a few studies show the interesting
properties of these processes. In this regard, it has been shown
that photochemistry can be effectively modified by mechanical
means,231 where the interplay between excited-state dynamics
and external forces is far from being simple and intuitive, as is
the case of a trans to cis photoisomerization of a retinal model
system, where an extension force, expected to oppose the
formation of the cis isomer, is found to enhance the
photoisomerization, significantly increasing the photoreaction
quantum yield.229

4.2.3. Isotope Effect. DYNAMIX is making use of the
isotope feature in OpenMolcas which enables the consid-
eration of specific isotopes in molecular dynamics simulations.
Typically, replacing an atom with an isotope is associated with
a kinetic isotope effect which affects the reaction rate of a
chemical process.

In a recent study of the photoisomerization in rhodopsin,
the new feature helped to reveal a new type of kinetic isotope
effect.232 In this specific case, the hydrogen atoms of the 11-cis
isomerizing double bond were replaced by deuterium in three
different ways: at both hydrogens and at the hydrogen at either
the 11 or 12 position (Figure 9). The molecular dynamics
simulations together with time-resolved measurements showed
that while the reaction rate was mainly unaffected, the
isomerization quantum yield was significantly altered by the
deuterium replacements. In fact, remarkably, the quantum
yield was found to decrease and increase in the monodeu-
terated and bideuterated cases, respectively. This study
provided further evidence on the importance of the “hydrogen

Figure 8. Illustration of the parameters characterizing a conical
intersection. The red disc represents the horizontal plane E = E×. (a)
Energy differences in the x ̂ and ŷ directions define the pitch δgh and
asymmetry Δgh. (b) The green disc represents the average energy
plane, as indicated by the small circles on its edge, and the amount
and orientation of its maximum deviation from the red disc define the
relative tilt σ and the tilt heading θs.

Figure 9. 11-cis-Retinal protonated Schiff base and the three studied
isotopomers.
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out of plane” mode for the description of the reaction
coordinate of the photoisomerization of the 11-cis-retinal
protonated Schiff base chromophore of vertebrate visual
rhodopsins.233,234

Changing the masses of atoms to “artificial” values may also
be a useful simulation tool to get insights into the factors that
determine the yield of chemical reactions. In a recent study of
the dissociation of dioxetane compounds, this functionality was
used to understand the effect of methylation.235 Substitution of
hydrogen atoms by methyl groups in dioxetane had been
shown to lead to a longer dissociation time, and it had been
previously suggested that this was due to the increase in the
number of degrees of freedom. To investigate further the effect
of methylation, dynamics was simulated for the unmethylated
1,2-dioxetane, but where the mass of the four hydrogen atoms
was increased to reproduce the moment of inertia of the
methyl groups. The simulations suggest that approximately
75% of the increase in the dissociation time is actually due to a
pure mass effect (in contrast to the hypothesis put forward in a
previous theoretical study).
4.3. Nonadiabatic Semiclassical Dynamics Interface.

OpenMolcas is interfaced with the ab initio molecular
dynamics software suite SHARC (Surface Hopping including
ARbitrary Couplings).236−240 Through this interface, non-
adiabatic dynamics can be carried out based on the CASSCF
and CASPT2 electronic structure methods of OpenMolcas.
SHARC is a generalization of the surface hopping

method.224 This allows describing processes such as inter-
system crossing or laser-induced transitions, which is not
possible with standard Tully surface hopping. Furthermore, the
SHARC software suite can manage large trajectory ensembles
and features many analysis tools.
The interface between SHARC and OpenMolcas is based on

file communication between the two programs, see the
flowchart in Figure 10. The SHARC dynamics driver (the
master process) writes a request file at each simulation time
step, containing the current geometry and a list of required
electronic quantities, such as energies, gradients, spin−orbit
couplings, etc. The interface, a Python script, combines the
request information with the electronic structure settings and

computational parameters. The interface writes the Open-
Molcas input files, allowing for computation of multiple
gradients or displacements for numerical gradients in a task
parallel fashion. The automatically generated OpenMolcas
input employs the GATEWAY and SEWARD modules for
setup and integrals, the RASSCF module for wave functions
and energies, RASSI for transition dipole moments, spin−orbit
couplings, and wave function overlaps (for nonadiabatic
interactions, see below), and MCLR and ALASKA for
gradients. For CASPT2 or MS-CASPT2, the calculation of
numerical gradients is directly controlled by the SHARC−
OpenMolcas interface, allowing a simultaneous calculation of
all gradients of all states and the derivatives of dipole moments
and spin−orbit couplings in a single loop. The nonadiabatic
interaction between the different states is described by
employing wave function overlaps241 from the RASSI module
or by nonadiabatic coupling vectors from MCLR/ALASKA.
QM/MM dynamics (CASSCF/force fields) can also be
performed through the OpenMolcas−Tinker interface. All
collected electronic structure data is finally communicated
back through the interface to the dynamics driver, which
propagates the trajectory to the next time step.
It is noted that the SHARC−OpenMolcas interface can also

produce Dyson norms to approximately describe ionization
probabilities (see also section 5.3) by feeding the relevant wave
function data into the WFOVERLAP program242 within the
SHARC suite.

4.4. Quantum Dynamics Interface. While implementing
a direct dynamics code for classical nuclei is rather
straightforward since information is only needed at a given
position in space, a quantum description of the nuclei has more
problems. We report here a new interface between Open-
Molcas and the Quantics package243 (grown out of the
Heidelberg MCTDH package244), which allows a quantum
mechanical treatment of both electronic and nuclear dynamics
via the direct dynamics variational multiconfiguration Gaussian
(DD-vMCG) method.217,245,246 In practice, Quantics uses
OpenMolcas to build a local harmonic approximation of the
coupled PESs, as represented in Figure 11. The dynamics can
be run either in Cartesian coordinates or in normal modes. If

Figure 10. Flowchart of the SHARC−OpenMolcas interface. In step (1), the SHARC dynamics driver sharc.x writes a file with the current
geometry and requests for quantities (e.g., energies E, spin−orbit couplings (SOC)). This file is read by the interface, together with the template
and resource files that define the level of theory and the computational parameters, respectively. In step (2), all necessary OpenMolcas input files
are written, and step (3) executes the pymolcas driver. The resulting output files are parsed for all requested quantities. Optionally (4), the
WFOVERLAP program is executed to obtain Dyson norms. Finally (5), all obtained results are handed back to the SHARC driver.
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the latter, transformation matrices between the two systems of
coordinates are set up by reading the output file of a frequency
calculation (using the MCKINLEY module with Open-
Molcas).
Along the dynamics simulation, Quantics writes input files

from a template input file to run OpenMolcas and compute the
adiabatic energies, gradients, Hessians, and couplings for all
electronic states involved. The electronic structure calculations
are performed at the center point of each Gaussian basis
function, and subroutines in Quantics parse the OpenMolcas
output files to extract the relevant information.247 Currently
possible electronic structures methods are HF, CASSCF, and
CASPT2. In the latter case, it is only the CASPT2 potential
energies that are used, while the corresponding energy
derivatives and couplings are approximated with their values
at the CASSCF level.
If several electronic states are included in the simulation, the

dynamics is performed in a diabatic basis in order to avoid
singularity issues. A diabatization operation is then realized to
transform the adiabatic quantities provided by OpenMolcas
into diabatic ones. Two diabatization schemes are available:
the regularization diabatization method,248 which limits the
application to two electronic states, and the propagation
diabatization method implemented more recently.249 The
former method requires information about a reference conical
intersection geometry (which can be optimized using the
SLAPAF module with OpenMolcas). The latter method
requires the calculation of the nonadiabatic coupling vector
(which can be done using the ALASKA module with
OpenMolcas) at every new electronic structure point. When
dealing with states of different spin multiplicity, a diabatization

is performed in each spin-multiplicity subset, and internal
conversion within each subset is accounted for as usual in
same-spin dynamics. Intersystem crossing is treated by
calculating the spin−orbit coupling terms (which can be
done using the RASSI module in OpenMolcas) at every new
electronic structure point.163

In order to save time and avoid redundant electronic
structure calculations, the electronic quantities calculated by
OpenMolcas are stored in a database. New database points are
only calculated if the new nuclear geometry differs by some
predetermined amount from all database geometries (right
basis function in Figure 11). If it is close enough to some
database points (left basis function in Figure 11), the quantities
are interpolated from the values present in the database.250 It is
noted that the molecular orbital coefficients of the CASSCF
calculations are also stored in the database and used as initial
guesses for new electronic structure calculations. Also, instead
of calculating the Hessian at every point, after the first point, an
update procedure can be performed using the database
according to the Powell method.246,251 By running the
dynamics calculation several times, more and more points
are added to the database. The database “grows” iteratively and
reaches convergence once no new database points are needed.

5. SPECTROSCOPIC AND MAGNETIC PROPERTIES
The strong focus of the OpenMolcas package in multi-
configurational wave function methods makes it an excellent
tool for the computational study of systems where multiple
electronic states play an important role. An obvious case is the
study of electronic spectra, involving transitions between
different electronic states. A paradigmatic example is the study
of transition metal complexes, where the presence of partially
filled d and/or f shells gives rise to many close-lying electronic
states of various spin multiplicities.
The workhorse for these investigations, once accurate spin-

adapted wave functions and energies are obtained, is the
RASSI program.163 This program can compute the spin−orbit
interaction to yield a set of spin−orbit eigenstates, with the use
of atomic mean-field integrals,252 as well as transition
properties between different wave functions.
In this section we report some recent developments and

improvements for the computation of spectroscopic and
magnetic properties in OpenMolcas, from the exact semi-
classical treatment of light−matter interaction (section 5.1) to
applications in X-ray spectroscopy (section 5.2), photoelectron
spectroscopy (section 5.3), magnetic circular dichroism
(section 5.4), molecular magnetism (section 5.5), and in the
context of ultra-accurate calculations (section 5.6).

5.1. Light−Matter Interaction and beyond the Multi-
pole Expansion. All spectroscopies depend on the interaction
between the system and an external electromagnetic field. For
weak fields that can be treated as perturbations, the oscillator
strength for a transition from an initial state i to a final state f is

ω δ ω ω∝ ̂ −f i U f( ) ( )if if
2

(12)

where ωif = (Ef−Ei)/ℏ is the resonance angular frequency, and
Û is the time-independent part of the electromagnetic
perturbation. Usually, the field is described by a plane wave,
and using only terms linear in field strength Û then becomes

∑ ε ε̂ ∝ · · ̂ + · × · ̂ +
ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑk r p k r k sU

g
exp(i )( ) i

2
exp(i )( ) c.c.

j
j j j j

(13)

Figure 11. Quantics−OpenMolcas interface. At each time step, the
database of previously run quantum chemistry calculations is probed
to build model coupled potential energy surfaces (PESs). If suitable
points exist around the desired geometry (Gaussian basis function on
the left-hand side of the figure), a representation of the PES is
constructed using those points. If that region of the coordinate space
has not been previously explored (right-hand side), an OpenMolcas
calculation is performed, and information about this new point is
added to the database.
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where the sum goes over all the electrons, k is the wave vector,
rj is the position, ε is the polarization vector, p̂j is the
momentum operator, g is the electronic spin g-factor, and sĵ is
the spin operator, and c.c. is the complex conjugate of the
previous terms.
Traditionally, the integrals in eq 12 are evaluated using a

multipole expansion of the electromagnetic wave:

· = + · − · +k r k r k rexp(i ) 1 i( ) 1
2

( ) ...j j j
2

(14)

For the transition moments, taking only the zeroth-order
term amounts to the electric dipole approximation, while the
first-order term is associated with electric quadrupole and
magnetic dipole interactions. The multipole expansion leads to
well-recognized selection rules that for certain systems and
specific choices of coordinate systems can be directly related to
electronic structure. While the dipole approximation is often
sufficient for the low-energy photons in the optical region,
high-energy photons have large k vectors, rapidly oscillating
fields, and higher-order terms in the multipole expansion
cannot be ignored. These higher-order terms depend on the
choice of origin, at least in cases where there are nonzero terms
of lower order. For weak fields the problem of origin
dependence was recently solved by Bernadotte et al., by
including all terms to the same order in the oscillator strength
and not in the transition moments, which for the second order
requires calculations up to magnetic quadrupoles and electric
octupoles.253 The complete second-order expansion is
implemented in OpenMolcas and has been used to calculate
X-ray spectra of several mono- and binuclear iron com-
plexes.254,255 Although origin independence was first proven
for the velocity gauge,253 origin independence in a finite basis
set can also be accomplished in the length gauge.256 However,
what is usually referred to as the length gauge is actually a
mixed gauge, with the electric components in the length gauge
and magnetic components in the velocity gauge.256 Origin
independence, in finite basis sets, is not conserved in this
mixed gauge.257 Furthermore, when using the complete
second-order expansion the increased basis set requirements
for higher-order terms in the multipole expansion must be
considered.257

A solution to the problems with the multipole expansion is
to instead use the plane-wave form of the wave vector directly:
the exact semiclassical light−matter interaction258 is origin
independent, cannot give negative oscillator strengths, and
gives what all terms in the multipole expansion ideally should
converge to.258 Further, it shows better numerical stability with
respect to the choice of basis set.259 OpenMolcas now includes
an elegant and efficient procedure using a standard Gauß−
Hermite quadrature to evaluate the integrals in eq 12 in this
formalism.259 Both electric and magnetic terms are calculated
this way, with the spin-magnetic term in eq 13 being nonzero
when the spin−orbit operator in the RASSI module is used.
With the exact operator OpenMolcas now calculates the

angular dependence on the transition intensities with respect
to both polarization and wave propagation direction. This can
be used to simulate experiments where the system is oriented
relative to the photon beam, e.g., in single crystals or molecules
on surfaces. Although no closed formula for the isotropically
tensor averaged oscillator strengths is known, the exact value
can be approximated by averaging over different directions
using a Lebedev grid.259,260 Although the averaging over a grid
increases the computational time compared to the multipole

expansion, this will only rarely affect the timing of the full
electronic structure calculation. To illustrate the capabilities of
the exact operator, the angular dependence of the single Cu 1s
→ 3d transition in single-crystal [CuCl4]2− has been calculated
and compared to the experimental values, see Figure 12.259

The experimental intensity is distinguished by a 4-fold
periodicity, which was used to assign the electric quadrupole
contributions.261 Further, the orientation of the peak maxima
can also be used to identify the symmetry of the singly
occupied 3d orbital. Calculations with the exact operator show
the same angular dependence, including the 4-fold periodicity,
which illustrates how the exact operator includes any
information that traditionally has been assigned to multipole
contributions.

5.2. X-ray Spectroscopy and Calculations of Many
Core-Hole Excited States. X-ray spectroscopy involves core-
hole states that are at least hundreds of eV higher in energy
than the valence excited states. In a complete-active-space
approach, these states can be included in the CI expansion by
placing the relevant core orbitals in the active space. As the
number of excitations from these orbitals can be restricted to
one, it is convenient to use a restricted active space (RAS)
wave function to simulate X-ray spectra.262−265 For such
processes, the usual bottom-up approach that includes all states
is problematic because to reach core-hole excited states all
possible valence excited configurations must be calculated first.
A few strategies for generating core-hole states are available, for
example, for some systems where it is possible to use symmetry
considerations or for very small active spaces.266 However, for
a standard-size active space there can be millions of valence
states. Strategies that only reach core-hole states are needed.
Two of them recently implemented in OpenMolcas are
reported here.
A convenient solution to this problem is to define a fixed

orbital function χ and a parameter λ and add a term to the
molecular Hamiltonian

λ χ̂ = ̂ + [̂ ]H H Psh (15)

Here, Ĥsh is the shifted Hamiltonian, and P̂[χ] is an orthogonal
projection on the space of wave functions where orbital χ is
doubly occupied. This is multiplied by λ and can be

Figure 12. Angular dependence of the 1s → 3d copper K pre-edge
transition in [CuCl4]

2−. Experimental data are normalized K pre-edge
peak heights.261 Calculated values are from the exact semiclassical
light−matter interaction with intensity uniformly scaled to match
experiment.259 The isotropic contributions are due to vibronic
coupling, which are not included in the calculations.
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implemented by modifying the two-electron MO integrals at
the CI step. These integrals are recomputed at each
macroiteration while the added term is using the same fixed
function χ all the time. The penalty term has the effect of
raising the energy of those configurations with a filled core-
hole to be above those with a single hole, which are now the
lowest in energy. Our experience shows that it is easy to find a
suitable shift λ, such that this scheme is stable across changing
orbitals and structure, and it has been observed to give only a
slight energy variation with the input shift parameter.
Obviously, special basis functions may have to be supplied to
allow the orbitals of the core-hole states to relax accurately, or
if inner-valence correlation is important, e.g., for Auger. The
following example shows the calculation of core−valence
excitations for H2O close to equilibrium, using a specifically
prepared basis set. Two calculations were performed: one
without the projected shift and the other with the shift. The
orbital energies in Table 5 show large differences between

without and with the core-hole present. The results of the
subsequent RASSI calculation are displayed in Table 6,
showing that it is possible to access states very high in energy
(compared with typical valence excitations). For other
examples, please see the online poster in ref 267.
For the general case, another simple technique is to remove

from the CI all configurations with fully occupied core orbitals,
the so-called core−valence separation (CVS).268 Because of
the large energy separation between configurations with and
without core-holes, the latter do not contribute significantly to
the core-hole excited states. For active-space methods the CVS
is closely related to the generalized active space method.57

Using the special case of RAS, the core orbitals can be placed
in RAS1 allowing at least singles, for single-core-hole excited
states, or doubles, for double-core-hole excited states. The
core-hole excited states are found by applying a core-hole (ch)
projection operator Pch

Ψ = ΨPch ch (16)

on the RASSCF calculation, which for single-core-hole excited
states removes all configurations in Ψ that are fully occupied in
RAS1.254,269 This ensures that the lowest-energy state in Ψch is
a core-hole excited state in the RASSCF optimization. It is
noted that although the core-hole and valence states are
calculated separately and are thus not orthogonal, transition

intensities can still be calculated in the RASSI module163,270

since the different wave functions use the same CI expansion.
In X-ray spectroscopy, even if the computation of all valence

states can be avoided using one of the two strategies discussed
above, the number of excited states needed to describe the
process of interest can be very large. In transition metal
complexes, the density of states is very high so that, for an X-
ray absorption spectrum that typically spans 10 eV, several
hundred final states are required.266 This creates difficulties for
standard techniques such as a multiroot Davidson77 or
Davidson−Olsen algorithm.271 A modified CI algorithm has
therefore been implemented to allow for more efficient
calculations of a large number of states.
The Davidson−Olsen algorithm is the quasi-Newton

method applied to the CI problem. It uses an approximate
Hamiltonian H0, typically diagonal, to compute successive
corrections to an approximate CI vector Cj

(i). The next CI
vector Cj

(i+1) is then found by diagonalizing a small
Hamiltonian in the basis of all CI vectors at the current
iteration and their corresponding correction vectors. To
improve convergence, the correction vectors of a few previous
iterations are often included. When calculating a very large
number of states, this scheme (hereafter called Version 1)
encounters some problems. First, storing several hundred CI or
correction vectors from a few iterations can put severe
constraints on memory. Second, the higher-lying states
typically get increasingly difficult to converge, which leads to
a large number of CI iterations and makes the CI calculation
very costly. Finally, as the number of previous correction
vectors stored increases, they tend to have significant linear
dependence, which can lead to numerical instability during the
orthonormalization and sometimes even divergence.
The OpenMolcas CI algorithm has been significantly

improved for calculations with hundreds of states. The first
aim was to improve stability of the algorithm to better deal
with linear dependencies in the correction vectors. A simple
and quick fix in order to have a more reliable (but slower)
convergence was to reduce the number of past iterations for
which the CI vectors were saved to two instead of five. This
version of the algorithm is called hereafter Version 2. As a
more general alternative to this, a more comprehensive change
of the code was realized. While the original implementation
(Version 1) saved the last five correction vectors for each state,
this new implementation instead sets an upper limit to the total
number of correction vectors to around 400, which was found
to be the best compromise between speed, flexibility, and
stability. Improvements were also made to reduce the risk of
divergence in case of near-linear dependency by performing
additional orthogonalizations and normalizations. This leads to
what we call Version 3 of the algorithm. Finally, a very
important improvement is to stop computing correction
vectors for converged states. As lower roots converge
significantly faster than the higher ones, this leads to a drastic
reduction of the number of vectors to compute during the
majority of the Davidson−Olsen iterations. This final version is

Table 5. Orbitals Used for H2O
a

1a′ 2a′ 3a′ 4a′ 5a′* 6a′* 7a′* 1a″ 2a′′*
ground −20.6 −1.36 −0.72 −0.59 0.03 0.03 0.04 −0.51 0.04
excited −21.3 −1.78 −1.13 −1.02 −0.07 −0.01 0.01 −0.97 0.01

aAsterisked are valence/Rydberg orbitals, unoccupied in the ground state. Orbital energies (Eh), for the ground state and for the excited states
(average, hence approximate).

Table 6. States, Excitation Energies (eV), Dipole and
Velocity Einstein A Coefficients (ps−1), and Polarization
(Cs)

excitation (RASSI) energy dipole velocity polarization

5a′←1a′ (O 1s) 537.2 0.124 0.139 A′
6a′←1a′ (O 1s) 539.1 0.316 0.289 A′
7a′←1a′ (O 1s) 539.8 0.065 0.052 A′
2a″←1a′ (O 1s) 537.7 0.075 0.065 A″
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referred to as Version 4 and is now the new default option in
OpenMolcas.
Savings in computational time with the modified CI

algorithm depend on the size of the system and the active
space. The improvement is most significant with a larger active
space because then the CI step dominates the computational
cost. As an example, we simulated the X-ray Kα emission
spectrum of [Fe(bmip)2]

2+, a calculation with ten valence and
four Fe 2p and 1s core orbitals in the active space (145404
CSFs for the ground state), using up to 90 core-hole excited
states in each irreducible representation, which was needed to
get the desired orbitals in the active space. The calculation
consists of 1 calculation of the initial 1s core-ionized state and
3 independent calculations of the 2p → 1s final states of
different irreducible representations. RASSCF failed to

converge in the old MOLCAS/OpenMolcas implementation
(Version 1) because of numerical instabilities. The new
algorithm does not suffer from such issues, and compared to
the Version 2 calculation, the number of CI iterations is
reduced by a factor of 3.6, while the saving in computational
time is a factor of 4, see Figure 13.269 Skipping the calculation
of correction vectors for the converged low-lying states reduces
significantly not only the computational time but also the
number of iterations. The reason is that as the lowest states
converge, more and more of the vectors used as basis for the
Davidson diagonalization correspond to the remaining higher
states, which can thus converge faster.
5.3. Photoelectron Spectroscopy and Dyson Orbitals.

For the simulation of molecular ionization processes and
photoelectron spectroscopy, it is routinely necessary to
evaluate integrals between wave functions with N and N−1
bound electrons. The information about the molecular system
may then be conveniently compressed into a one-electron
quantity

∫ϕ = Ψ Ψ ···−x N x x x x x x dx dx( ) ( , , ..., ) ( , , ..., )fi f
N

N i
N

N N
DO

1
1

2 3 1 2 2

(17)

commonly known as the Dyson orbital (DO). In the second
quantization formalism, the Dyson orbital ϕf i

DO may in a given
orbital basis ϕm be computed as

∑ϕ ϕ= cfi
m

fi m m
DO

,
(18)

= Ψ ̂ Ψ−c afi m f
N

m i
N

,
1

(19)

where am̂ annihilates a single electron from orbital ϕm.
A new feature now natively available in the RASSI module is

the calculation of multiconfigurational Dyson orbitals including
spin−orbit (SO) coupling, similarly to what has previously
been implemented with an external software.272,273 Within the
RASSI framework for spin-free (SF) states, eq 19 is efficiently
evaluated within a biorthonormal basis274 ϕA to obtain cf i,ASF . As
the basis ϕA may vary for different combinations of f and i, the
Dyson orbitals are subsequently re-expressed as cf i,ZSF in the
atomic basis ϕZ through standard transformations. Dyson
orbitals for spin−orbit coupled states are obtained as
superpositions of those computed for the spin-free states

∑ ξ ξ= *c cfi Z
k l

f k i l kl Z,
SO

,
, , ,

SF

(20)

where ξf,l denotes expansion coefficient l of spin−orbit state f
in the basis of the spin-free states.163 Both types of Dyson
orbitals are, optionally, exported in Molden format for further
use. The current implementation supports states obtained from
RASSCF and RASPT2 calculations, both with and without the
explicit use of symmetry.
Applied to photoelectron spectroscopy, the ionization cross

section σf i of the transition Ψi
N → Ψf

N−1 is within the dipole
approximation proportional to the squared photoelectron
matrix element |Dfi|2. Assuming a simple factorization ψk

elΨf
N−1

for the final state and the strong orthogonality condition,275 it
can be written as

σ ψ μ ψ μ ϕ∝ = Ψ ̂ Ψ = ̂−D str. orth.
k kfi fi f

N
i
N

fi

2 el 1 el DO 2

(21)

where ψk
el is the continuum wave function of the ejected

photoelectron. As ψk
el is currently not representable within

OpenMolcas, eq 21 cannot be directly evaluated. However,
assuming the transition dipole integral between ψk

el and the
normalized Dyson orbital to be constant, commonly called the
sudden approximation, the ionization cross section σf i can be
approximated by the squared norm of the Dyson orbital:

σ ϕ ψ μ
ϕ
ϕ

ϕ∝ | | = || || ̂
|| ||
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D kfi fi fi
fi

fi
fi

2 DO 2 el
DO

DO

2

constant

DO 2

(22)

The approximate cross sections obtained from eq 22 are in
the RASSI output referred to as Dyson amplitudes and provide
a direct estimate of the relative cross sections. Note that the
sudden approximation is inadvisable in cases where, e.g., the
photoelectron has a low kinetic energy or the Dyson orbitals of
the relevant transitions have strongly differing characters. Still,
Figure 14(a)−(c) illustrates how accurate photoelectron
spectra may be obtained even for complex molecules from

Figure 13. Total RASSCF time and total number of CI iterations for
the calculation of X-ray emission spectrum of [Fe(bmip)2]

2+. Version
1 refers to the original algorithm. In Version 2, the number of past
iterations for which the correction vectors are saved is reduced.
Version 3 contains stability improvements and a cap on the number of
stored vectors instead. Additionally, in Version 4, the corrections are
not computed for the already converged lower-energy states.
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the RASSI Dyson amplitudes. Figure 14(d) shows in addition
how the shape of the Dyson orbitals facilitates spectral
assignments. Recent publications have further demonstrated
the applicability of the Dyson orbitals for simulation and
analysis of photoelectron spectra,272,273,276−278 and we
expected them to find their use also for simulations of, for
instance, Auger-electron and nonresonant X-ray emission
spectra.
5.4. Magnetic Circular Dichroism Spectroscopy.

Magnetic circular dichroism280 (MCD) spectroscopy probes
the differential absorption coefficient Δε for left versus right
circular polarized light in the presence of a static magnetic field
B pointing in the light wave’s propagation direction. It may
reveal more information than regular absorption spectra,
especially when spectral bands overlap,281 because the MCD
intensities of different transitions may have different signs.
MCD is also able to provide information about the magnetic
properties of the electronic states. However, MCD spectra can
be complicated to analyze, and the analysis benefits greatly
from theoretical support. With commonly applied approx-
imations, the MCD for an electronic transition is given by

( ) *ε γΔ = − ∂
∂ + +

Ä
Ç
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ÑÑÑÑÑÑÑÑÑÑE

B
f E

E k T
f E

( ) 1 ( )
B (23)

Here, γ = 2μBNAπ
3 log e/(250hc) in Gaussian units, and f(E) is

a line shape function in terms of the photon energy E.
Equation 23 and the expressions for the (, ), and * terms
were provided by Buckingham and Stephens.282,283 We focus
here on the * term, which dominates the MCD for a molecule
with a degenerate ground state, especially at low temperature.

For a transition from a populated state A with components
Aa and degeneracy gA to state J with components λJ , the
isotropic * term in eq 23 reads280

* ∑ λ λ= − ⟨ ′| ̂ + |̂ ⟩·[⟨ | ̂| ⟩ × ⟨ | ̂| ′⟩]
λ′

L S D D
g

Aa Aa Aa J J Aai
3

2
A a a, , (24)

Here, L̂ and Ŝ are the dimensionless orbital and spin angular
momentum one-electron operators, and D̂ is the one-electron
electric dipole moment operator. The “nonrelativistic with
spin” level of theory used for the operators in eq 24 is
commonly applied in calculations of absorption spectra and
magnetic susceptibilities of compounds with even the heaviest
elements, and therefore it should be adequate for MCD as well.
An orbital angular momentum in the ground state is required
for a nonvanishing MCD *-term spectrum. Consequently, if
the ground state at the nonrelativistic or scalar relativistic (SR)
level has only spin degeneracy, the * term is zero. In such a
case, MCD * terms may appear via spin−orbit coupling
(SOC), if it mixes components of other−orbitally degenerate−
spin states into the ground state. Other systems may already
have a ground state orbital angular momentum in the
nonrelativistic limit.
The functionality of OpenMolcas is very powerful for

investigating MCD spectra theoretically.285 Reference 284
reported the first ab initio wave function-based MCD
calculation for an actinide complex, namely for the octahedral
5f1 system [UCl6]−, using RASSCF and multistate RASPT2
calculations followed by treating the SOC via state interaction.
[UCl6]− is one of the aforementioned cases where the * term
spectrum is entirely a relativistic effect, i.e., due to SOC. The
calculated and experimental UV−vis range MCD spectra are

Figure 14. Comparison of photoelectron spectra obtained from Dyson amplitudes as implemented in RASSI and from cited measurements. (a)
Valence extreme ultraviolet photoelectron spectrum of H2O (g).272 (b) Fe 2p X-ray photoelectron spectrum of [Fe(H2O)6]

2+.272 (c) I 4d X-ray
photoelectron spectrum of I3−.

279 (d) Dyson orbitals (real part) for selected transitions (53.6 and 56.8 eV) from the I3− calculation shown in panel
(c), clearly assigning the features to I 4d ionization from the central (53.6 eV) and terminal (56.8 eV) sites.
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compared in Figure 15. The PT2 spectrum, although
overcorrecting the blue-shifted SCF spectrum, is in reasonably
good agreement with the experimental MCD (also first
reported in ref 284). A collection of open-source utility
codes and scripts286 was developed for the purpose of
generating MCD intensities conveniently for a large number
of transitions from SO-RASSI calculations. When the keyword
PRPR is present in the RASSI input, the matrix elements for
the electric dipole moment, the electron spin, and the orbital
angular momentum for the calculated set of SO states are
printed to a set of files, which is convenient for postprocessing.
The MCD intensities for vertical transitions, and broadened
spectra, are then generated with the software tools of ref 286.
Code for ( and ) terms287 is also available in the repository.
5.5. Molecular Magnetic Properties. In the field of

molecular magnetism, the SINGLE_ANISO module8 has
allowed the computation of the parameters of all magnetic
Hamiltonians and the field- and temperature-dependent
thermodynamic properties for mononuclear complexes and
fragments. The POLY_ANISO module now allows the
computation of the magnetic properties of polynuclear
complexes using a semi-ab initio approach. The necessity for
such an approach is dictated by the current computational
difficulties with a full ab initio treatment of polynuclear
compounds containing several transition metals or lanthanide
ions. In the proposed approach, the first step consists of
dividing the investigated polynuclear compound in several
mononuclear fragments containing one magnetic center only.
This fragmentation does not imply that the ligand framework
needs to be altered: replacing a neighboring magnetic center
with its diamagnetic closely related metal ion suffices. For
example, the effect of a neighboring Er3+ site could be
reasonably well simulated by a diamagnetic Lu3+, containing a
completely filled 4f shell. Ab initio calculations using the
SINGLE_ANISO module are then performed for each of such
fragments. The features of POLY_ANISO can be divided into
three groups: modeling of magnetic exchange interactions,
decomposition of magnetic exchange interactions, and
computation of magnetic thermodynamic properties. Both
SINGLE_ANISO and POLY_ANISO also have the ability to

generate in an automatic way various plots, via an interface to
gnuplot utility.288

5.5.1. Modeling of Exchange. The total magnetic
interaction between two metal centers is a sum of the
anisotropic exchange interaction and dipole−dipole magnetic
interaction. The dipole−dipole magnetic interaction is
evaluated exactly by using the total magnetic dipole moment
matrix elements calculated on the basis of local multiplets of
the corresponding metal sites available from the fragment
SINGLE_ANISO calculations.
The easiest simulation of anisotropic exchange interaction is

achieved within the Lines model,289 involving one effective
exchange (Lines) parameter per interacting pair. This
parameter quantifies the hypothetical isotropic exchange
interaction between the ground-state spins of the correspond-
ing magnetic ions, which would arise in the absence of spin−
orbit coupling. The anisotropic exchange is modeled via the
projection of this effective isotropic model over chosen spin−
orbit multiplets of individual metal centers obtained in the
corresponding fragment SINGLE_ANISO calculations. The
Lines model is expected to be accurate in three cases: (i) the
two interacting sites have uniaxial (Ising) magnetic anisotropy
(reduces to generally noncollinear Ising exchange), (ii) the two
interacting sites are completely isotropic (obviously reduces to
Heisenberg exchange); and (iii) one site is isotropic while the
other possesses Ising magnetic anisotropy (reduces most often
to collinear Ising exchange).290 For all other cases of
intermediate anisotropy of interacting sites, the Lines model
is believed to be a reasonable approximation. The Lines
exchange parameters are the only unknown parameters in this
approach and are usually found from a least-squares fit of the
experimental magnetic data. Alternatively, the Lines exchange
parameters can be extracted/estimated from broken-symmetry
density functional theory calculations (BS-DFT).291,292 To this
end, the anisotropic magnetic ions are replaced by the closest
isotropic metal ions. Then the extracted BS-DFT exchange
parameters J12 for a given pair of ions (1,2) in such a
hypothetical complex is converted into the corresponding
Lines parameter J12L for the original complex with the formula
J12L = (Si1/Sa1)(Si2/Sa2)J12, where the terms Si and Sa stand for
the spin of the corresponding isotropic ion and the genealogic
spin of the anisotropic metal ion in the original compound,
respectively. This approach was validated on several com-
pounds.293

The POLY_ANISO module contains also several extensions
going beyond the simple Lines model: (i) the three-axes
exchange Hamiltonian containing three exchange parameters
for each interacting pair, corresponding to the diagonal form
(i.e., written in the main exchange axes) of symmetric
anisotropic exchange Hamiltonian;294 (ii) antisymmetric or
Dzyaloshinsky−Morya (DM) exchange interaction, requesting
three parameters (the DM vector); (iii) the general anisotropic
nine-parameter exchange model including both previous
interactions; and (iv) biquadratic terms in the exchange
interaction.294 Another extension of the Lines model concerns
more involved (many-parameter) effective exchange inter-
actions in the Lines approach instead of a single-parameter
one.
The total magnetic interaction matrix is then written

straightforwardly for the basis of the products of the on-site
eigenstates obtained in the fragment ab initio calculations and
then diagonalized.295 The obtained eigenstates alongside with
the spin and magnetic dipole moment integrals expanded in

Figure 15. MCD spectrum (5K) of [UCl6]−. MCD * term
calculations based on RASSCF and RASPT2 calculations of doublet
and quartet spin states and treatment of SOC by state interaction with
the RASSI module. Calculated Δε generated from Gaussian-
broadened vertical * term spectra. Experiment taken at 7T field
strength. Reprinted with permission from ref 284. Copyright 2017
PCCP Owner Societies.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00532
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

V

http://dx.doi.org/10.1021/acs.jctc.9b00532


the obtained exchange-coupled basis are then further employed
for the computation of the parameters of all magnetic
Hamiltonians and magnetic properties.
5.5.2. Full Decomposition of Magnetic Exchange Inter-

actions Using Irreducible Tensor Technique. The imple-
mented models of magnetic interaction (e.g., Lines model)
describe the exchange interaction between local pseudo-
spins.296,297 The Lines parameters are not directly transferable
between different compounds (given that their local
pseudospins might differ). In order to overcome this problem,
the full decomposition of all the interaction models
implemented in the POLY_ANISO program has been
developed and implemented using the irreducible tensor
technique,298 for all interacting pairs. This results in a set of
parameters J(k1,q1,k2,q2), where ki and qi represent the rank
and projection of the local irreducible tensor operator Oki,qi on
site i. The interaction Hamiltonian can be recovered exactly by
summing up all contributions (eq 25). The parameters are
given using the extended Stevens operator basis296,299,300 and
could be used directly in connection with the EasySpin
function in MATLAB.301

∑̂ =H J O O
k q k q

k q k q k q k qexch
1,2

, , ,
, , , , ,

1 1 2 2

1 1 2 2 1 1 2 2
(25)

5.5.3. Thermodynamic Magnetic Properties. The POLY_-
ANISO module is able to compute basic static magnetic
properties for polynuclear compounds. For the computation of
the molar magnetization, the Zeeman matrix is built on the
basis of several low-lying energy states (user-defined size) and
diagonalized. The resulting eigenstates are used to compute
molar magnetization where Zeeman states are being populated
according to the Boltzmann distribution law. Contribution to
the magnetization arising from the states which did not enter
explicitly into the Zeeman matrix is considered within the
second-order perturbation theory. The computation of molar
magnetization (and torque) takes into account also the
contribution of local excited states which were not accounted
for exchange coupling. Molar magnetic susceptibility (tensor
and powder) is computed using the zero-field limit of the
molar magnetization, where the implemented expressions do
not require the Zeeman Hamiltonian to be explicitly
computed, enabling significant speedup in computation of
these properties compared to the computation of molar
magnetization. The magnetic susceptibility is computed in
several formulations: (i) the derived formulas for zero-field
limit, (ii) using the “experimental” formulation as M/B
(inaccurate but employed quite often), and (iii) as derivative
of the magnetization with respect to applied field dM/dB (i.e.,
the rigorous definition). Intermolecular interactions are
accounted for in a mean-field approach, using a single
parameter (zJ). This parameter is usually quite small in
magnitude and influences magnetic susceptibility, torque, and
magnetization at very low temperatures. For each temperature
point, the main values and main axes of the susceptibility
tensor are given.
This methodology has been successfully applied for the

investigation of anisotropic magnetism in Dy3 triangles,
302 Co7

wheels,303 Ln−(N2)3−−Ln radical-bridged dilanthanides,304

and many other compounds (see Figure 16). POLY_ANISO
and SINGLE_ANISO are actively used also for the
investigation of the structure of blocking barriers of single-

molecular magnets, molecules which display magnetic
bistability of intramolecular origin.

5.6. Ultrahigh Precision Computer Spectroscopy. The
accuracy of computer simulations can challenge that of
experiments, suggesting that it may be worth computing rather
than measuring some properties. This alternative way to
achieve accurate reference data is pursued by some scientists
using the OpenMolcas platform. In this context we would like
to mention the open-ended implementation of the Open-
Molcas platform in handling one-particle electronic basis
functions with high angular momentum, allowing the
evaluation of electron repulsion integrals and their storage in
FCIDUMP format, using the same code used for the
Stochastic-CASSCF approach, discussed in section 3.1. This
feature has been used, for example, in the computational
prediction of the carbon atom’s first ionization energy to
within 1 cm−1 accuracy306 from computer spectroscopy.307

This calculation involved six fully correlated electrons in the
neutral carbon atom, with an aug-cc-pCV8Z basis set (569
basis functions, including up to l angular functions). In the
language of CAS spaces, this would be a CAS(6,569), which is
by far the largest CAS calculation ever done to microhartree
precision as far as we are aware.

6. ANALYSIS AND VISUALIZATION
As discussed above, OpenMolcas offers a broad range of
quantum-chemical methods to describe large molecules with
many correlated electrons and orbitals and to compute many
excited electronic states efficiently. Setting up these calcu-
lations is a nontrivial task, requiring input from the user, who
should have a sufficient understanding of the system under
study and the method being applied. The analysis can be
challenging if states with different characters mix, if multi-
configurational character and double excitations are present, or
if a large number of states are to be analyzed.
To help the user prepare and analyze calculations,

OpenMolcas contains, or is easily interfaced with, suitable
tools. Apart from widespread capabilities, like the computation
of Mulliken populations and electric multipole moments,

Figure 16. An example of application of the POLY_ANISO module
for the ab initio construction of magnetization blocking barrier of a
Co(II)−Gd(III)−Co(II) trinuclear complex.305 The magnetic
relaxation path, outlining the blocking barrier, is traced by the red
lines, whose intensity scales the transition magnetic dipole matrix
elements between the connected multiplet states.
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OpenMolcas includes, for example, the LOPROP program308

for computing local properties and supports the generation of
various types of orbitals−canonical, natural or localized with
several methods. The generated orbitals, in the form of lists of
coefficients, are usually not very informative, and some
visualization tool becomes necessary in order to better
appreciate the shape and structure of the orbitals. Traditionally
this has been done by exporting the orbital and basis-set
information in Molden309 format. However, it should be
pointed out that there are several different ways to choose the
orbitals (e.g., state-averaged and state-specific natural orbitals
and natural transition orbitals) and that it is not always clear
which orbital representation is optimally suited. Therefore, a
number of tools have been developed that allow easily
switching between these different representations.
Recent developments in OpenMolcas provide additional

tools to visualize and manipulate the orbitals (section 6.1), as
well as to analyze their properties (section 6.2), and more
options for the analysis of wave functions and transitions,
including tools that allow for a completely automatized analysis
of the wave function character and provide a rigorous route to
comparing the wave functions produced by different methods
(sections 6.3 and 6.4). In this section we describe the most
significant of these new capabilities.
6.1. Graphical Interface and Orbital Visualization.

OpenMolcas, as other high performance computing programs,
requires numeric data as input and can produce a vast quantity
of data as output. Raw numeric data (atomic coordinates,
orbital coefficients, electron populations, bond orders, etc.) are
often very difficult to comprehend. As a typical example, an
essential step in CASSCF and related calculations is selecting
the active space, a task for which an orbital viewer is of great
help. With MOLCAS, the tools of choice have been either
third-party programs capable of computing and rendering
isosurfaces “on the fly”, from the basis set and orbital
coefficients information (in Molden format), or more specific
programs which rely on the precalculation of the volumetric
data and use custom formats.
First, in order to make these tasks easier, a program with

GUI: LUSCUS has been developed310 as a stand-alone
program (distributed under the Academic Free License
(AFL) version 3.0311) convenient for manipulation and
visualization. Although some data produced by quantum
chemistry programs can be stored in standardized or well-

established formats, for complex data the formats are often
unique, and thus GUIs are strongly bound to the computa-
tional code. LUSCUS uses a native data format (see Figure 17)
to read or write visualizable data, which is supported by
OpenMolcas. Other chemical formats can be used with
LUSCUS since they are automatically converted to and from
LUSCUS data format by external plug-ins. Plug-ins convert
data on demand without the need of user intervention.
Therefore, from the user’s point of view, LUSCUS is capable of
manipulating a number of chemical formats, making it not only
a graphical front-end for OpenMolcas but also a powerful
general-purpose chemical viewer and editor.
Complementarily, a new stand-alone program has been

developed to generate precomputed volumetric data: SAGIT
(stand-alone grid independent transformer).312 This code is
operated via command line and can be useful to generate
volumetric data for many orbitals simultaneously or in batch
mode, where a GUI is not needed; it can also be used as a
plug-in for LUSCUS to visualize orbitals on the fly.
With the release of OpenMolcas, a new orbital viewer has

been developed which tries to suit the most typical needs of
OpenMolcas users. Pegamoid313 is written in Python and is
easily installable in modern computer systems. It can open
orbital or volumetric files in a variety of formats generated by
OpenMolcas. Most significantly, it can open, display, and save
orbital files in the new HDF5 format generated by Open-
Molcas, which has several advantages compared to other
formats: (i) as outlined in section 2, it is a portable self-
documented format that allows easy transfer and access of data,
(ii) it is directly usable by OpenMolcas programs, e.g., as
starting orbitals for the RASSCF program, and (iii) it is not
affected by limitations in the Molden format, like the
maximum angular momentum in basis functions or the
mixture of Cartesian and spherical harmonic type of functions.
With respect to formats with volumetric data, the main
advantage is that its size is not excessive even with large basis
sets and that the desired quantities to be visualized need not be
precomputed.
Apart from simply viewing the orbitals saved in a particular

file, Pegamoid (as well as LUSCUS) can also assign them to
different orbital spaces (frozen, inactive, RAS1, RAS2, RAS3,
secondary, deleted) and save them in a new file that can be
used as input for OpenMolcas programs. When the orbital file
contains the necessary information (e.g., an HDF5 file
generated by a state-average RASSCF run), it is also possible
to visualize, without further postprocessing, natural orbitals
and occupations for the different electronic states, electron
density differences, natural difference orbitals, and natural
transition (or binatural) orbitals between the states314 (see
Figure 18).
Pegamoid’s goal is to be a quick and convenient tool for

viewing orbitals, selecting active spaces and identifying states.
While it has options to control the display quality and features,
the generation of high-quality eye-catching pictures often
requires the use of other packages that offer a wider range of
options. For this purpose, Pegamoid can be used to save the
desired volumetric data in the Gaussian .cube format,21 which
can then be used by other programs to render pictures with
customized colors, textures, backgrounds, and additional
elements.

6.2. Property Integrals of Individual Orbitals. Open-
Molcas supports the computation of property integrals of
molecular orbitals in the SEWARD module, including the

Figure 17. Interaction of LUSCUS and various data files: LUSCUS
can only operate with .lus files (the native LUSCUS format) and
separate plug-ins (both simple and interactive) are used to convert the
data.
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multipole moments, Cartesian moments, electric potential,
electric field, electric field gradients, diamagnetic shielding,
one-electron Darwin contact term, etc. It supports any orbitals
calculated in SCF, RASSCF, CASPT2, or other modules. With
natural orbitals, the sum of the occupation-number-weighted
orbital property integral is the total electronic part of a
property integral, so the occupation-number-weighted orbital
property represents how much each orbital contributes to a
property integral of an electronic state. For analysis purposes,
one has the option of printing, for each molecular orbital, these
property integrals weighted by the occupation number of each
orbital or printing these property integrals for each orbital
without the weighting. In case one is interested in the property
integral for an unoccupied orbital, the nonweighted option is
required, as otherwise any property integral would trivially be
zero. This can be useful when analyzing Rydberg states to
determine which orbitals are Rydberg orbitals. It can also be
helpful when deciding which orbitals to include in the active
space of an MCSCF calculation and when determining
whether the excited states from different MCSCF calculations
correspond to the same state.315 For these examples, to
determine how diffuse each orbital is, the second Cartesian
moment ⟨r2⟩ and its components (⟨x2⟩, ⟨y2⟩, ⟨z2⟩, ⟨xy⟩, ⟨yz⟩,
⟨xz⟩) of each orbital can be calculated. An example input file
making use of this capability can be found in the Supporting
Information.
6.3. Binatural or Natural Transition Orbitals for

Excitation Characterization. There is a frequent need to
quantify the difference between two states and to visualize the
difference for easily understood characterization. Assuming we
have at hand correlated electronic wave functions, the usual
difference density is often insufficient. However, recalling that
the usual natural orbitals are the eigenfunctions of the one-
electron reduced density matrix of a single state, a simple
extension is to use the singular value decomposition (SVD) of
the transition density matrix of two states to characterize their
difference. This approach was used for single-determinant
wave functions316 and for TDDFT and CIS wave functions,317

where the orbitals were named natural transition orbitals, and
independently by Mayer.318 An SVD has also been used to
relate orbitals of fragments of a composite molecule.319 Prior
usage seems to have been proposed mostly for specific
applications, but in ref 320 it was suggested to use orbitals
computed as singular vectors of the one-electron transition
density matrix as a technical tool to analyze the difference of
pairs of general states, regardless of whether these were single-
determinant states or indeed if they were actually computed to
be eigenstates of any Hamiltonian. For general discussion of
the SVD itself, see, e.g., the articles by Stewart.321,322

The binatural orbitals, or natural transition orbitals, are
obtained as the left and right singular functions of the reduced
one-electron transition density matrix, γPQ. The binatural
orbitals and their associated amplitudes encode in a compact
way the whole γPQ and can be used to analyze the transition
between two electronic states.
The states would usually be either two noninteracting,

computed states, or they can be two different approximations.
They could also be, e.g., states computed with and without
some perturbation or indeed any two states that allowed us to
compute the transition density matrix in a suitable basis−
maybe but not necessarily obtained as an orbital basis that was
used for the two states. The transition density matrices and the
binatural orbitals are computed by the RASSI program within
OpenMolcas.
There is one limitation: what is obtained is the difference of

the states as expressed by a one-electron operator. One can
easily extend this to form two-particle “binatural geminals”.
Also, one might have use for “Dyson amplitudes”, as seen in
section 5.3, or “one-particle-two-holes” amplitudes, e.g., for
core-hole states.

6.4. Detailed Analysis of Multireference Wave
Functions. The wave function analysis module WFA323

does not only provide visualization methods but also computes
a number of quantitative descriptors with the aim of
eliminating personal bias in the assignment of state characters
and allowing for an automated analysis of large data sets. WFA
is based on the open-source wave function analysis package
libwfa.314,324 One focus of libwfa is the analysis of excited states
in terms of two-body electron−hole distributions within
exciton theory.325 To visualize the excitations in real space,
binatural or natural transition orbitals317,326 and the more
compact electron and hole densities314 are available. Electron−
hole correlation effects can be elucidated using population
analysis techniques.326,327 Central tools of libwfa are excited-
state descriptors quantifying spatial and statistical properties of
excited states such as exciton size,325 charge-transfer distance,
and correlation coefficient.324 Furthermore, it supports the
analysis of one-electron difference density matrices (1DDM)
between different states, which is particularly important to
study orbital relaxation effects.323,328,329 Finally, an effective
number of unpaired electrons330,331 can be computed from
natural orbital occupations. The WFA module is interfaced to
the SCF, RASSCF, and RASSI modules of OpenMolcas.
Through the RASSI interface, also other modules can be
accessed such as the CASPT2 module and QCMAQUIS

(DMRG and DMRG-NEVPT2, see section 3.2).
Previously, the described analysis methods were used to

analyze single-reference computations addressing a wide range
of phenomena, such as the analysis of electronic delocalization
in DNA,332 excitonic band structure in conjugated poly-
mers,327 and the visualization of solvent effects in push−pull

Figure 18. Pegamoid interface, showing the difference density
between two electronic states of uracil (an n → π* transition).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00532
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

Y

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00532/suppl_file/ct9b00532_si_002.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00532/suppl_file/ct9b00532_si_002.zip
http://dx.doi.org/10.1021/acs.jctc.9b00532


systems.333 We hope that through the new interface between
OpenMolcas and libwfa, enabling the use of multireference
methods, this scope can be significantly extended. Further-
more, the implemented analysis methods provide a rigorous
route toward benchmarking excited-state calculations334,335

and can give new insight into specific failures of the different
computational protocols employed.329,336

Presenting a practical application of the WFA module, the
excited states of the transition metal complex Re(CO)3(bpy)
Cl are analyzed (Figure 19). Computations were performed at
the MS-CASPT2 level using a CAS(12,12) active space
considering 19 singlet and 18 triplet states. The excitation
energies of these states are presented in Figure 19(b),
illustrating the high density of low-lying states in this system.
A direct analysis of these states in terms of canonical orbitals is
not only tedious but is also quite challenging as the effects of
different interacting configurations have to be disentangled.
Therefore, we present here three alternative routes of analyzing
these states, as implemented in the WFA module: a visual
analysis of electron and hole densities, a fragment-based
decomposition of the excitations, and an analysis in terms of
statistical descriptors.
As a first option, the densities of the excited electron and the

excitation hole, derived from the one-electron transition
density matrix (1TDM),314 are computed. These densities,
computed for the S1 state of the complex, are shown in Figure
19(c). This representation shows the main state character in an
intuitive way, i.e., the hole (orange) is located on the Re and Cl
atoms whereas the electron (cyan) is located on the bipyridyl
(bpy) ligand. However, the problem of any visual analysis is
the required time and the dependence of the outcome on the
subjective reasoning of the person analyzing.
To overcome these problems of visual analysis, a completely

automatized way to assign the state-character in transition
metal complexes has been developed,329,335 and it is presented
as a second option here. First, the system needs to be divided
into different fragments; in the present case a useful partition is
the Re(CO)3 unit (red), the chlorine atom (green), and the
bpy ligand (blue), as represented in Figure 19(a). Sub-
sequently, the excitation process is partitioned into different

local contributions on the individual fragments and charge
transfer (CT) between them using a 1TDM population
analysis procedure yielding the so-called charge-transfer
numbers.314,326 The outcome of this analysis is presented in
Figure 19(d). The left-most bar graph corresponding to the S1
state shows that this state is predominantly of Re(CO)3→bpy
CT character (yellow bar, 61%) with a secondary contribution
of Cl→bpy character (green bar, 26%). More generally, Figure
19(d) shows the low-energy states to be generally of
Re(CO)3→bpy character with the exception of T3, which is
a locally excited state on bpy (blue bar).
A downside of the CT number analysis is that its application

requires an a priori definition of the fragments used for the
decomposition. When intuition is untrustworthy, it is possible
to automatize the fragment definition process.335 Alternatively,
we can move away from the population-analysis concept
altogether leading to the third option, exemplified here through
the computation of a CT distance in real space. Two different
formulas are employed considering either (i) the distance dh→e
between the barycenters of hole and electron densities as
computed from the 1TDM or (ii) the distance dD→A between
the barycenters of the detachment and attachment densities337

as computed from the 1DDM.324 The results are shown in
Figure 19(e), and without going into too much detail, we want
to mention two observations. First, the CT distance mirrors
CT character as identified in Figure 19(d), i.e., the CT
distances of the local states (red and blue bars) are close to
zero while they are significantly enhanced for the CT states.
Second, CT distances obtained from the 1TDM and 1DDM
differ significantly where the latter are always lower. This
difference can be interpreted to originate from orbital
relaxation effects,323,328,329 i.e., the total amount of charge
separation is lowered as the orbitals adjust to the primary
excitation process.

7. ADDITIONAL FEATURES
In this final section on new options and utilities in
OpenMolcas, we present developments for a new multiscale
option, accurate and compact basis sets, symmetrization of
wave functions, and simulations of muonic molecular systems.

Figure 19. Analysis of the singlet and triplet excited-states of the Re(CO)3(bpy)Cl complex computed at the MS-CASPT2 level using the WFA
module: (a) molecular structure and definition of the Re(CO)3 (red), bpy (blue), and Cl (green) fragments; (b) excitation energies; (c) electron
(cyan) and hole (orange) densities of the S1 state; (d) decomposition into different local and charge transfer contributions; (e) charge transfer
distance using two different descriptors.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00532
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

Z

http://dx.doi.org/10.1021/acs.jctc.9b00532


7.1. Multiscale Simulations by Frozen-Density Em-
bedding Theory. The toolbox of electron correlation
methods present in OpenMolcas would not be complete
without the possibility to combine them in a multiscale
fashion. Among the different possibilities for multiscale
modeling in OpenMolcas, the one based on frozen-density
embedding theory (FDET)338−340 provides a robust tool to
treat systems and problems of different nature. This multiscale
approach is a first-principles description of a complex system as
combination of two interacting subsystems. One portion of the
system, subsystem A, is selected to be described at the
molecular orbital level−e.g., through a Kohn−Sham determi-
nant,338 or an interacting wave function339−whereas the
second (subsystem B, so-called “environment”) is accessed
through a simpler descriptor, namely its electron density. The
interaction between the electrons of A with subsystem B is
nonetheless accounted quantum mechanically through the
action of the following (orbital-free) embedding potential:
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The first two terms in eq 26 represent electrostatic
contributions due to the nuclei of system B and to its electron
density ρB(r), respectively. The next two terms are instead
purely quantum mechanical and originate from the nonadditive
contribution to the noninteracting kinetic energy functional
Ts[ρ] and the exchange−correlation functional Exc[ρ],
respectively. By nonadditive contribution of a generic density
functional G[ρ], we refer to a bifunctional of the electron
densities of A and B, namely to Gnad[ρA,ρB] = G[ρA+ρB] −
G[ρA] − G[ρB]. Finally, the last term in eq 26 is not related to
the interaction between the two subsystems, but it rather
ensures consistency with the Hohenberg−Kohn theorem upon
introduction of approximations in the description of subsystem
A. This term is however neglected in most practical
applications of the theory.339

The one-electron operator corresponding to the potential of
eq 26 can then be added to the environment-free Hamiltonian
(ĤA) of the quantum mechanical method of choice for
subsystem A in order to proceed with the electronic structure
calculation. Naturally, this way to proceed simplifies the
computational effort compared to the corresponding quantum
mechanical calculation on the entire (A + B) system. One
limitation of the current OpenMolcas implementation is the
need to use explicitly basis functions on B as well as A. For true
multiscale simulations, where for example ρB(r) is obtained
from statistical averages,341 the use of a real-space
representation is certainly desirable and will be implemented
in a future release of the software. Nonetheless, it should be
pointed out that the overhead for the presence of basis
functions on B is somewhat handled intelligently so that
correlation methods need not to include orbitals from
subsystem B explicitly (see section S15).
If the exact functional forms for Ts

nad[ρA,ρB], for Exc
nad[ρA,ρB],

and for ΔF[ρA] were known, eq 26 would produce an exact
quantum mechanical model for the interacting subsystems, but
in practice various approximations to these functionals are
available that guarantee a sufficient accuracy. Some of such
approximate functionals are included in the current Open-

Molcas implementation of FDET342−345 as detailed in the
software documentation. Noticeably, the construction of the
embedding potential through eq 26 requires the user to make
another important choice, namely that of which ρB(r) is to be
used. This is a key issue for the correct use of FDET, and
despite the lack of a general answer to the question, the many
studies present in the literature show the general trend that the
results do not depend strongly on the choice of ρB(r).

346 In
practice, with any physically justified ρB(r), deviations in the
predicted observables are smaller than the errors introduced by
other sources, such as the basis set used, the choice of the
approximants for Ts

nad[ρA,ρB] and Exc
nad[ρA,ρB], or the quantum

mechanical method selected to describe subsystem A.
As OpenMolcas is specialized in multiconfigurational wave

function methods,7 the combination with FDET represents a
somewhat unique tool for investigating complex systems
especially in their excited states and for notorious DFT-hard
situations. With this in mind, an effort has been put into the
development of a variant of FDET, known as linearized
FDET,343 that shows some advantages compared to the
conventional FDET approach, as it inherits useful properties of
the corresponding wave function method. Linearization
consists of approximating the nonadditive functionals so that
they become linear in ρA(r), by means of a Taylor expansion
around a reference density ρA

ref(r), which can be assumed not
to differ significantly from the stationary density of the
embedded subsystem. Among the many advantages of
linearized FDET, we point out the fact that the eigenstates
of the embedded Hamiltonian are orthogonal, hence they can
be directly related to the true ground and excited states of the
embedded subsystem. Also, differences in the computed
eigenenergies of the embedded Hamiltonian can be used to
assign excitation energies in much the same way as it is done
for the calculation on the isolated system A.

7.2. Development of New ANO Basis Sets. Basis sets
based on the atomic natural orbitals (ANO) approach347 are
the workhorse of the MOLCAS/OpenMolcas program pack-
ages. The ANO contraction scheme offers a fast convergence
toward the uncontracted form of the basis set. Thus, ANO
basis sets even in small contracted forms−say valence double-ζ
plus polarization functions (VDZP)−usually are able to yield
accurate results, which makes them the perfect choice for
calculations where the bottleneck lies in the correlation part.
With the focus on fast convergence by contraction and
application in accurate correlated calculations, ANO basis sets
were allowed to contain a larger number of primitive basis
functions than other comparable basis sets.348,349

Accompanying the nonrelativistic ANO-L basis set,350 the
more compact ANO-S basis set351 had been available, thus
allowing more economic treatment of large molecular systems
where the integral computation time can rival the correlation
part. For relativisitic calculations, however, so far only the
relativistic core-correlated ANO-RCC basis set352 had been
developed for the second-order Douglas−Kroll−Hess (DKH2)
Hamiltonian. The large size of this basis set in terms of
primitive basis functions made integral calculations for
extended systems rather costly. To make also relativistic
calculations for large systems more economic, a new compact
relativistic basis set, the ANO-XS basis set,353 has recently been
developed. The number of primitive basis functions in the
ANO-XS basis set is about half that of the ANO-RCC basis set.
This greatly reduces the computational costs in the integral
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computation time, especially when used in combination with
Cholesky decomposition.
The ANO-XS basis set is available for light atoms (Z ≤ 20).

Its main intent is to be used in combination with the larger
ANO-RCC basis set in relativistic calculations containing
heavy atoms such as the chromium complex shown in Figure
20, constituting a part of a metal−organic framework (MOF).
When using the ANO-RCC basis set with VDZP contraction
for all atoms, the total number of primitive basis functions is
4573. Replacing the basis set for all atoms except chromium
with the ANO-XS basis set reduces the number to 2014.
7.3. Symmetrization of Wave Functions. At the early

stage of quantum chemistry, the symmetry of molecules played
an important role as an efficient way to reduce the size of the
computational problems. Today this aspect is not as important,
since the absolute majority of computed systems has no
symmetry elements except of identity.
Many computational codes, including OpenMolcas, use only

Abelian point groups (D2h and subgroups) for calculations. In

this case the result of any symmetry operation on a matrix
element is a multiplication by 1 or −1.
If a molecule has a symmetry higher than D2h, the

computational code will use a lower symmetry, and as a
result, the computed density or wave function can present a
broken symmetry. In some cases, this deviation from
symmetrical solution will be small, but in other cases this
error will be significant.
Rewriting the computational codes for the purpose of

handling an arbitrary point group is a rather complicated
programming task. Instead, there is a more simple approach,
which involves symmetrization of the computed wave function
according to any specified symmetry, e.g., the symmetry of the
molecular structure. The procedure of symmetrization of the
wave function can be applied at the end of the calculation or
during the iterative procedure of computing the wave function
(e.g., in a self-consistent cycle). The details of the algorithm of
symmetrization are described in ref 354. Prior to an SCF
calculation the point group is determined. The orbital spaces
for each irreducible representation (irrep) are then calculated
for the supplied basis. At each iteration the symmetric orbitals
are projected out and partner functions determined. Co-
efficients are then averaged over the partner functions. Since
the dimension of each irrep space is known, the symmetriza-
tion step will also verify that the projected subspaces belong to
the correct symmetry species. This is required since no
restriction is placed on the rotations during the iterations, and
large symmetry breaking may occur.
A mathematical library (libMSYM) has been designed for

two independent tasks: automatic detection of the point group
and symmetrization of the computed wave function according
to a given symmetry.355 Version 2.0 of the library can be
integrated into the OpenMolcas code and can produce SCF
calculations with wave function symmetrized at any SCF cycle.
The usage of libMSYM is especially important if approximate
integrals are used in the calculations. Two examples below
demonstrate the abilities of the library.
As a first example, in tetrafluoromethane (CF4), belonging

to the Td point group, the HOMO orbitals belong to the T1
irrep. After removing three electrons from the molecule and

Figure 20. Basis set combination of ANO-RCC and ANO-XS for the
calculation of an MOF template.

Figure 21. Orbitals for CF4 (point group Td) before (upper row) and after (lower row) symmetrization.
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running a UHF/DFT calculation the symmetry will break even
though T1 is 3-dimensional. By applying symmetry restrictions
in the SCF calculation the charges will be evenly distributed
between 3 orbitals of T1 symmetry as can be seen in Figure 21.
The second example is a symmetry-broken solution. The

structure of the (NO2)2 dimer is totally symmetric and belongs
to the D2h point group. However, if we add a positive charge,
the wave function (at the UHF level) becomes unstable and
the electron is localized at one of the monomers. By enforcing
the symmetry with the libMSYM library, we obtain a fully
symmetric solution. The total dipole moment is of the order of
10−13 D.
7.4. Calculations of Muonic Atoms and Molecules.

The overwhelming majority of chemical studies, experimental
and computational, are concerned with “normal” matter,
constituted of electrons, protons, and neutrons. However, a
large number of other elementary and composite particles are
known which could, in principle, replace the ordinary
Fermions, although their lifetimes are usually so short that
the practical significance is doubtful. An outstanding case is
that of the muon, whose lifetime of 2.2 μs has allowed its
detection combined with normal matter. The muon is a lepton,
with similar properties to the electron, but with a mass about
200 times larger. Muons can replace electrons in normal
molecules, and due to their heavier mass, their density is
concentrated much closer to the nuclei. The radiation emitted
as a muon falls down to lower energy levels can give
information about the nuclear charge distribution and, to
some extent, about the electronic structure. Recent develop-
ments in muonic X-ray spectroscopy for nondestructive
elemental analysis356−358 have spurred the interest of
theoreticians to predict the properties of muonic atoms and
molecules.
Calculations of systems including muons and electrons are

now possible with OpenMolcas.359 There are a few issues to
take care of. One-particle and exchange integrals are always
vanishing between electrons and muons, since they are
distinguishable, but Coulomb integrals are always nonzero,
regardless of which particles they refer to. Due to the heavy
mass of the muons, the Born−Oppenheimer approximation
becomes less valid, especially for the lighter nuclei, which
cannot be assumed infinitely heavier than the muons. To
account for this, OpenMolcas allows including the so-called
finite nuclear mass correction (FNMC)360 term to the kinetic
energy. In addition, since the muonic density is much more
concentrated close to the nucleus, the muonic energy levels are
much more sensitive to the nuclear size and charge
distribution, and a pointlike nuclear model is expected to be
inaccurate. In OpenMolcas finite nuclear size effects can be
included through a Gaussian charge distribution. Finally, the
description of muons requires the use of specialized basis sets,
with exponents much larger than those typically used for
electronic basis functions. Such a basis set has been recently
developed for elements from H to Ar and Cu.359 Initial
calculations for atoms and molecules where one electron was
replaced with one muon showed satisfactory agreement with
experimentally available data, suggested a mislabeling of one of
the peaks for Cu and allowed the estimation of the sensitivity
of muonic X-ray energies to chemical environment.

8. SUMMARY
OpenMolcas−an open-source community development plat-
form−is based on the source code of the MOLCAS package.

The program suite is now also a fully operational user’s
alternative. This move has been done under the leadership of
the (Open)Molcas developers to promote the use and the
development of the multiconfigurational wave function
paradigm. The report includes technical details of the
development platform and also a large number of novel
implementations. For the first part it was described how the
OpenMolcas code is developed and managed. This arrange-
ment will allow easier contributions from new developers and a
more direct interaction with other software, as already
exemplified by some of the interfaces reported in this work.
For the second part it is reported an array of new options in
OpenMolcas, which include new techniques in wave function
models, tools for molecular dynamics and potential energy
surface exploration, methods for computing spectroscopic and
magnetic properties, utilities for graphical representation of
results, and other additional new features. These items are
summarized below.
The range of applicability of the CASSCF procedure has

been extended by a number of new implementations and
interfaces. The report describes in some detail the Stochastic-
CASSCF approach, two DMRG options−the OpenMolcas−
CheMPS2 and the OpenMolcas−QCMAQUIS interfaces−and
new features available for the MC-PDFT method. Further-
more, new tools for exploration of the electronic PES and
various types of MD have been implemented. More
specifically, we report on availability of analytical nonadiabatic
coupling vectors and associated optimization and character-
ization of conical intersections, on new options for the
DYNAMIX module, and on two interfaces for molecular
dynamics−SHARC for semiclassical dynamics and Quantics
for on-the-fly quantum dynamics. A number of options and
features have been implemented to improve the capacity of
OpenMolcas to address issues associated with different types
of spectroscopy. These options include the use of the exact
semiclassical operator for the light−matter interaction, the
treatment of core-holes, the generation of Dyson orbitals, the
simulations of MCD spectra, the POLY_ANISO module for
the simulation of magnetic properties of polynuclear
complexes, and the use of OpenMolcas in association with
ultra-accurate simulations. The OpenMolcas package has
additionally been supplemented with a list of new tools for
postcalculation analysis. These include LUSCUS−a general
purpose GUI, a stand-alone grid generator SAGIT, the orbital
visualizer Pegamoid, the generation of natural transition
orbitals in the RASSI module, and the WFA module to
analyze excited-state simulations. Finally, some additional
features were described, such as the ANO-XS basis set, a
multiscale option using frozen-density embedding techniques,
implementation of higher point groups through the libMSYM
library, and options to handle both the negatively charged
muons and electrons at the same time.
To conclude, we have reported on the new development and

application environment of the open-source quantum chemical
electron structure and molecular dynamics simulation package
OpenMolcas. This report described a robust software develop-
ment environment. This and the documentation of a large
array of new developments should stimulate more developers
to join the OpenMolcas community, in particular those
interested in multiconfigurational electron structure theory
and various types of molecular dynamics and spectroscopies.
Moreover, to the reader, and potential user, we hope that the
case has been made that OpenMolcas−a free-of-charge tool−

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00532
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

AC

http://dx.doi.org/10.1021/acs.jctc.9b00532


can provide a strong and dynamic platform for state-of-the-art
simulations. The user can virtually get access to new options
and features as soon as the developer deems them stable for
use in production calculations. Looking toward the future and
new development one would in particular look forward to a
robust implementation of a QM/MM interface, a better
platform infrastructure to facilitate efficient massively parallel
simulations, integral-direct RI techniques, and the use of new
technologies, such as machine learning, to accelerate current
procedures but also open for new ways in which ab initio data
are used.
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G.; Engel, N.; Raheem, A. A.; Kühn, O.; Kiyan, I. Y.; Aziz, E. F.
Ultrafast Spin Crossover in [FeII(bpy)3]

2+: Revealing Two Competing
Mechanisms by Extreme Ultraviolet Photoemission Spectroscopy.
ChemPhysChem 2017, 18, 465−469.
(277) Golnak, R.; Bokarev, S. I.; Seidel, R.; Xiao, J.; Grell, G.; Atak,
K.; Unger, I.; Thürmer, S.; Aziz, S. G.; Kühn, O.; Winter, B.; Aziz, E.
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