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Nonholonomic Hybrid Zero Dynamics for the Stabilization of Periodic Orbits:
Application to Underactuated Robotic Walking

Kaveh Akbari Hamed

Abstract—This brief addresses zero dynamics associated
with relative degree one and two nonholonomic outputs for
exponential stabilization of given periodic orbits for hybrid
models of bipedal locomotion. Zero dynamics manifolds are
constructed to contain the orbit while being invariant under
both the continuous- and discrete-time dynamics. The associ-
ated restriction dynamics are termed the hybrid zero dynam-
ics (HZD). Prior results on the HZD have mainly relied
on input-output linearization of holonomic outputs and are
referred to as holonomic HZD (H-HZD). This brief presents
reduced-order expressions for the HZD associated with non-
holonomic output functions referred to as nonholonomic HZD
(NH-HZD). This brief systematically synthesizes NH-HZD con-
trollers to stabilize periodic orbits based on a reduced-order sta-
bility analysis. A comprehensive study of H-HZD and NH-HZD is
presented. It is shown that NH-HZD can stabilize a broader range
of walking gaits that are not stabilizable through traditional
H-HZD. The power of the analytical results is finally illustrated
on a hybrid model of a bipedal robot through numerical
simulations.

Index Terms—Hybrid zero dynamics (HZD), nonholonomic
outputs, periodic orbits, underactuated bipedal robots.

I. INTRODUCTION

YBRID dynamical systems exhibit characteristics of

both continuous- and discrete-time systems [1], [2] and
have become a very common language to model legged
locomotion [3]-[25]. Hybrid models of bipedal walking
involve ordinary differential equations (ODEs) describing
the Lagrangian continuous-time domains (i.e., phases) and
discrete-time transitions describing the impact events [26].
Feedback controllers that deal directly with the hybrid
nature of the bipedal robots have come out of hybrid
reduction [27], [28], controlled symmetries [7], transverse
linearization [9], [29], and hybrid zero dynamics (HZD) [4],
[16], [30]. The notion of HZD was introduced in [30] to
design feedback controllers that can explicitly accommodate
underactuation in bipedal robots and move beyond quasi-static
and flat-footed walking gaits. During the continuous-time
domains, a set of parameterized output functions, referred
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to as virtual constraints [31]—-[33], is defined and enforced
by input—output (I-O) linearizing feedback controllers. The
parameters of outputs are then updated by event-based laws
during discrete-time transitions to render the associated zero
dynamics manifolds hybrid invariant under the closed-loop
dynamics [16]. HZD-based controllers have been validated
numerically and experimentally for 2-D and 3-D bipedal
robots [15], [34]-[39], powered prosthetic legs [40], [41],
exoskeletons [42], monopedal [17], and quadruped robots [43].
The main advantage of the HZD approach is its systematic and
geometric model reduction that significantly reduces the com-
putational burden required for the motion planning and sta-
bilization of periodic walking gaits for underactuated bipedal
robots with high degrees of freedom. In particular, a periodic
orbit of the HZD that lies in the zero dynamics manifolds is
indeed an orbit of the full-order hybrid model. Therefore, one
can apply the optimization-based motion planning algorithms
to generate the orbit for the reduced-order HZD rather than
the full-order model. In addition, if the feedback controllers
render the zero dynamics manifolds attractive, the exponential
stabilization of the periodic orbit for the HZD is equivalent
to that of the orbit for the full-order hybrid system [6], [16],
[44]. Hence, the stabilization problem of the periodic orbit can
be investigated through a reduced-order Poincaré map rather
than the full-order one.

A. Motivation

Although the vast body of work in HZD relies on zeroing
uniform relative degree two holonomic outputs, nonholonomic
outputs have also been utilized for the path planning of
3-D bipedal locomotion in [36] and [45]-[47]. Closed-form
expressions for the HZD associated with holonomic virtual
constraints, referred to as holonomic HZD (H-HZD), have
been reported in [30] and [4, Ch. 6]. These results have
been extended to 3-D walking gaits in [5], [37], and [44].
Although the generated gaits reported for nonholonomic out-
puts in [36] and [45]-[47] are stable, reduced-order stabi-
lization problems have not been addressed for nonholonomic
HZD (NH-HZD). In particular, the motion planning algorithms
of [36] and [45] have been presented for the full-order hybrid
systems rather than the reduced-order ones. Although [48]
studied reduced-order NH-HZD for optimization-based gait
planning of planar bipedal locomotion, the results are tai-
lored to relative degree two nonholonomic outputs and not
mixed relative degree one and two nonholonomic outputs.
In addition, it does not address the stabilization and NH-HZD
controller synthesis problems for given periodic orbits. In this
brief, we aim to answer these questions: 1) how can we
present closed-form solutions for relative degree one and two
NH-HZD to systematically reduce the computational burden
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for the exponential stabilization problem of given periodic
orbits; 2) are there closed-form expressions for the restricted
Poincaré maps; 3) if not, how can we effectively compute the
restricted Poincaré maps; 4) how can we synthesize NH-HZD
controllers that stabilize given walking gaits; and 5) are there
nonholonomic virtual constraints to stabilize walking gaits that
are not stabilizable through traditional holonomic outputs?

B. Goals, Objectives, and Contributions

The extension of the HZD approach to nonholonomic out-
puts is a challenge. First, unlike the H-HZD in [4] and [30],
there is no closed-form expression for the solutions of the non-
holonomic zero dynamics, which complicates the gait stability
analysis. Second, nonholonomic zero dynamics manifolds are
not, in general, invariant under the impact dynamics. This
motivates the use of event-based update laws to ensure hybrid
invariance, which, in turn, numerically complicates the gait
stability analysis via the Poincaé return map. Third, the most
important property of H-HZD, which is reduced-order gait
stability analysis based on restricted Poincaré maps, is not
easily extendable to the case of NH-HZD with event-based
update laws. Although there are no closed-form expressions
for the solutions of NH-HZD, this brief will show how
NH-HZD controllers can stabilize a broader range of dynamic
gaits. In particular, the stability of the gait for planar bipedal
locomotion in the H-HZD approach depends solely on the
gait trajectory and cannot be changed. More specifically, [4,
Th. 6.2] states that the H-HZD approach fails to stabilize
walking gaits for which the ratio of the value of the conjugate
momentum around the stance leg end at the beginning of
the step to that at the end of step is greater than or equal
to one. This motivates the development of a systematic and
computationally attractive approach to synthesize NH-HZD
controllers that stabilize these dynamics gaits. The primary
goal of this brief is to establish an analytical foundation to
extend the HZD and reduced-order stabilization problem to
hybrid models of planar bipedal robots with relative degree
one and two nonholonomic outputs. The secondary goal is to
present a systematic approach to design nonholonomic outputs
that stabilize given underactuated walking gaits. These goals
will be achieved through four objectives and contributions.

1) This brief presents closed-form expressions for
NH-HZD with relative degree one and two outputs.
These expressions are computationally important to
develop the proposed controller synthesis approach
based on restricted Poincaré maps. Two important
classes of nonholonomic outputs are investigated. The
first class consists of uniform relative degree two
nonholonomic outputs. They are expressed in terms
of the generalized positions as well as generalized
conjugate momenta and are motivated by the work
in [45]. The second class consists of mixed relative
degree one and two nonholonomic outputs. Here,
in addition to controlling the generalized positions
and conjugate momenta, we regulate the forward
walking velocity. The velocity-modulating quantities
are motivated by the work on partial HZD (PHZD)
in [36], [46], and [47].
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Fig. 1. Left: N DOF model for planar and underactuated bipedal robots.
Right: structure of the underactuated five DOF planar bipedal robot for the
numerical simulation. A typical choice for the phasing variable is shown.

2) This brief extends the reduced-order stabilization
approach that was originally developed for H-HZD [44]
to that of periodic orbits lying in NH-HZD.

3) A comprehensive study of H-HZD and NH-HZD is
presented to investigate their power in stabilizing given
periodic orbits.

4) This brief finally shows how to synthesize stabilizing
NH-HZD controllers. The power of the analytical results
is numerically illustrated on a hybrid model of a bipedal
robot.

II. HYBRID MODEL OF BIPEDAL LOCOMOTION

We shall suppose that the hybrid model of bipedal walking
consists of one continuous-time domain, referred to as the
single-support phase, plus a discrete-time transition, referred to
as the instantaneous double-support phase. The underactuated
and planar bipedal robot model is assumed to consist of a rigid
tree structure with a torso link, two identical legs terminating at
point feet and two possible identical arms (see Fig. 1). During
the single-support phase, the mechanical system is supposed to
have N degrees of freedom with one degree of underactuation.
In particular, the generalized coordinates can be partitioned as
q = col(qq, qu) € Q, where Q represents the configuration
space taken as an open and connected subset of RY . Moreover,
ga € R¥"!and g, € R denote the actuated body (i.e., internal)
and unactuated degrees of freedom, respectively. The evolution
of the robot during the continuous-time domain is described
by the Euler-Lagrange equations as follows:

D(q)gG +C(q,9)q + G(q) = Bu (D

in which u € 4 € RN~ is the control input, D(q) €
RN*N represents the positive definite mass-inertia matrix, and
B € RV*(N=1 denotes the input distribution matrix with the
property rank(B) = N —1. For future purposes, the centrifugal,
Coriolis, and gravitational terms are lumped in the vector
H(q,q) := C(q,§)q + G(q) € RN, The state vector for the
control system (1) is taken as x := col(q,gq) € X, where
X = TQ c R?" represents the state manifold. The state
equation can be represented by X = f(x) 4+ g(x)u, where
the vector filed f(x) and columns of the g(x) matrix are
smooth (i.e., C*°). In this brief, we shall consider walking on
flat surfaces and assume that the instantaneous double-support
phase occurs when the swing leg end contacts the ground.
In particular, we define the guard of the hybrid system as
S = (v e Xph(q) = 0, ply(@) > 0}, where pyy :=
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col(pl,, pb,) : @ — R? denotes the Cartesian coordinates of
the swing leg end with respect to the ground. The evolution of
the system during the double-support phase is then described
by the following discrete-time model:

v _a" V] Aqa™ ] A
o= [cﬁ} = [Aq(q—m—] = AT

where x~ and xT denote the state of the system right before
and after the discrete transition, respectively [4, Ch. 3], [26].
By integrating the continuous- and discrete-time dynamics,
the hybrid model of locomotion can be expressed as

Jrx=f ) +egx)u, xeX
xt=AE), x"eXnS§.

In this brief, we shall study periodic orbits to be exponentially
stabilized. In particular, we make the following assumption.
Assumption I (Transversal and Periodic Orbit): There

exist: 1) a fundamental period 7* > 0; 2) a smooth
and nominal control input u* : [0,T*] — U; and 3) a
smooth and nominal state trajectory ¢* : [0,T*] — X
such that ¢*(t) = [f(p*(@)) + g(p*(@))u*(r) for all
0 <t <T* o(t) ¢ S for every 0 < t < T* and
p*(T*) € S, and ¢*(0) = A(p*(T*)) (periodicity). Then,
O :={x € X|x = ¢*(t),0 <t < T*} is a period-one
orbit of (3). We further suppose that O is transversal
to S. In particular, {x*7} := ONSis a singleton, and
Pl (x*7) # 0, where O denotes the set closure of O.

)

3)

III. NH-HZD FOR BIPEDAL WALKING

The objective of this section is to address underactuated
planar bipedal walking with nonholonomic outputs. We study
two different output classes with relative degree one and
two nonholonomic quantities. The restricted Poincaé map and
controller synthesis problem for the stabilization of the orbit
O will be addressed in Sections IV and V, respectivly.

Definition 1 (Nonholonomic Outputs): We will consider a
family of parameterized nonholonomic outputs as follows:

y=h(x,a)=h(g,q,) 4)

where dim(y) = dim(u#) = N — 1. Here, the output function is
parameterized by the output parameters o. € A, where A C R?
represents the set of admissible output parameters for some
positive integer p. We remark that the reason for parame-
terization is to ensure that the corresponding zero dynamics
manifolds are invariant under the discrete-time dynamics. This
will be clarified more in Assumption 3.

Assumption 2 (Relative Degree): The family of output
functions h(x,a) satisfies two properties: 1) there exists
a nominal parameter, denoted by a* € A, such that the
nominal output function 4 (x, a*) vanishes on the given orbit
O, ie., h(x,a*) = 0 for all x € O and 2) h(x,a) has
relative degree vector (rq,...,ry—1) with respect to # on an
open neighborhood of O, denoted by N(O) c X. In par-
ticular, ngL]}h,-(x,a) = 0 for all x € N(O), a € A,
1 <i,j <N-1,and 0 < k < r; —2 and the decoupling
matrix A(x, a) 1= [Lg_jL?flhi(x,a)]lsi,jSN,l is regular on

N(@O) x Al

I'We remark that Assumption 2 is equivalent to having well-defined vector
relative degree on the constraint manifold [31, Definition 3.1].

From Assumption 2 and [49, Ch. 5], one can design a C 1
and parameterized [-O linearizing feedback law on A/ (O) x A
as u = I'(x, @) given by

I'(x,a):= —A_l(x,a)(b(x,a)+€(x,a)) (5)

to asymptotically zero the output function h(x,a)
for the continuous-time dynamics, where b(x,a) =
col{L;ih,-(x,a)}lN:_ll, {(x,a) = col{f,-(x,a)}f.vz_]l, and
ti(x,0) = 30K j /(€ )Lhi(x,a) for | < i <
N — 1. In particular, employing the feedback law (5) yields
the output dynamics yl-(ri) + Z;":_Ol(l(ijj/(e”’j))yi(]) =0
for which the origin is assumed to be exponentially stable.
Here, K;j for 0 < j < r,—1,1 < i < N-—1, and
€ > 0 are positive scalars chosen such that the monic
polynomials (" + z;":_ol(l(ijj/(e”’j))(j are Hurwitz. The
adjustable parameter ¢ will be utilized for the singular
perturbation analysis in Theorem 1. We remark that the
control law (5) renders the parameterized zero dynamics
manifolds Z, = {x € Xlefh,-(x,a) = 0,1 < i <
N—-1,0 < j < rj—1} attractive and forward invariant
under the flow of the closed-loop continuous-time dynamics
¥ = fYx,a), in which 9, a) = f(x)+ g(x) T (x, a).
From Assumption 2, dim(Z,) = n; :=n —r for all a € A,
where r := r; + --- + ry—1. The evolution of the system
restricted to the manifold Z, is further described by the
parameterized zero dynamics Z = fyero(z, @), where z € Rz
represents a set of local coordinates for Z,.

A. Relative Degree Two Nonholonomic Outputs

In this section, we consider relative degree two non-
holonomic outputs that are expressed in terms of the
position variables and generalized conjugate momentum.
In order to present the main idea, we make the following
assumptions.

Hypothesis 1 (Phasing Variable): We assume that ¢, is a
strictly increasing function of time along the desired periodic
orbit O, which is referred to as the phasing variable. We further
suppose that ¢, is a cyclic variable for the continuous-time
dynamics, that is, (6D /dq,)(q) = 0.

Next, let us consider the Lagrangian for the continuous-time
dynamics as £(q, ¢) := (1/2)¢ " D(g) § — V(g), where V (q)
represents the potential energy. We define the generalized con-
jugate momentum to g, as o := (0L£/0¢.)(q,q) = ey D(q)q,
where ey = col(0,0, ..., 1). From the Euler-Lagrange equa-
tions and the fact that e;B = 0, one can rewrite the last
row of (1) as ¢ = (0£/0q,)(q, q). Furthermore, Hypothe-
sis 1 states that (6£/0q,) = —(8V /dqy,). More specifically,
(0L/d8q,) is solely a function of ¢, and therefore

b= g =g = i) ©

Gu Oqu

We are now in a position to define the following parameter-

ized and relative degree two nonholonomic output function:

4y = h(x, @) 1= hnom(x) — heorr (qu, o)
‘= dqa —612(%)—% (0)+hs (U*(Qu)) —heorr(qu, @)

=:hnom (¥)

@)
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where dim(y) = dim(u) = N — 1, and ¢}(q,) and ¢*(qu)
denote the desired evolutions of the actuated joint variables
and conjugate momentum along the orbit O in terms of the
phasing variable g,, respectively. In addition, 7, : R — RV~!
is a C* function of ¢ to be determined later. In particular,
Section V will show that the proper selection of 4, would
affect the stability behavior of the periodic orbit for the
closed-loop hybrid system. We remark that for /2, (6) = 0, the
nonholonomic output (7) is reduced to a traditional holonomic
output function. According to the construction procedure,
the nominal output, /yom(x), vanishes on the desired orbit
O. Without loss of generality, we assume that the signs for
the position and momentum terms in (7) are not same. The
corrective term, Ao : R x A — RV~1 is then defined as an
additive term in (7) to zero the output function y right after the
impact event. One typical choice for the corrective term is a
piceswise and sufficiently differentiable function of ¢, that is
taken as a polynomial for the first half of the gait and zero for
the second half [44, Example 1]. In this formulation, o € A
denotes the coefficients of the polynomial. Therefore, one can
choose the nominal parameters as zero, i.e., a* = 0,, for
which the corrective term vanishes. The following proposition
addresses the 2-D zero dynamics.

Proposition 1 (Zero Dynamics for Relative Degree Two
Outputs): Assume that Hypothesis 1 is satisfied. Consider the
output function y in (7) and rewrite it as

)’:h(xaa)th(q,a)_ha(o') (8)
in which hy(q,a) = qs — qaa(qu, o) and qua(qu,a) =
q2(qu) — ho (6*(qu)) + heorr(qu, @). Suppose further that the
decoupling matrix A(x, a) = %(q, a)D~'(q)B is invertible
on N(O) x A. Then, the following statements are correct.

1) Assumption 2 is satisfied. In particular, the output func-
tion y = h(x,a) has uniform relative degree 2 [i.e.,

(2,...,2)] with respect to u on N'(O) x A.
2) z(x) := col(gy, o) is a valid tangent coordinates for the

zero dynamics manifold Z,. In addition, the position
lift-up mapping on Z, is given by
q = 77:(] (QM, o, a) = COl(Qad(Qu, a) + hO’ (0-)’ QM)
3) The zero dynamics can be expressed as
. qu k1(qu, o, @)
7= . = Z,0) = 9
4] =t = [0
where
o —¢ (qu, o, a)
I(Clu, O-a a)
K2(¢]u> 0’5 a) = A(q)‘

4K1 (qu, o, a) =

q=7q(qu.0,0)

with 7(qy, 0, a) := Dyy(q) + Dua(q)(0Gaa/0qu)(qu, @)
and Q(Qm o,a) = Dua(‘])(aha/ao')(a)/l(q) for g =
74(qu, o, a). In our notation

Daa(q)  Dau (q)}
Dya(q)  Duu(q)

is a partitioning of D corresponding to the coordinates
vector ¢ = col (qa, qu)-

D(q) = [ (10)
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Proof:  Differentiating the output function (8) results
in y = (0hy/0q)g — (Ohs/0c)i and y = (0hy/0q9)G +
(0/09)((0hq/89)§) G — (0%hg /062)* — (9hs /00)(01/09)q,
which together with the system dynamics (1) yields y =
A(x,o)u + b(x,a). Here, A = ((’;‘hq/(’;‘c])D_1 B and

oh o (oh o%h ohg 0
4h=——D'"H+ —(Lj)g— —51* - =24
dq oq \ 0q do? do 0q

which completes the proof of Part 1. Analogous to [30] and
based on the proof of the Frobenius Theorem [49, p. 23],
one can show that the tangent coordinates are given by z =
col(qy, o), and hence, Part 2 is correct. Finally, from (10),
0 = Dyy Gy + Dyy qu, which in combination with the position
lift-up mapping and (6) completes the proof of Part 3. [ ]

B. Relative Degree One and Two Nonholonomic Outputs

In this section, we consider relative degree one and two
nonholonomic outputs. In particular, we consider an output
vector y with the property dim(y) = dim(u) = N — 1 and
decompose it into relative degree one and two components as
y = col (yg1, ya2). Here, yg1 € R and yg» € R¥=2 represent
the relative degree one and two portions, respectively. The rel-
ative degree one portion (i.e., y41) is assumed to be expressed
in terms of the velocity, generalized conjugate momentum, and
position variables, whereas the relative degree two portion (i.e.,
vq2) is supposed to be defined in terms of the position variables
and generalized conjugate momentum analogous to the output
function (7). Our motivation for considering a 1-D relative
degree one portion [i.e., dim(ys;) = 1] is to regulate the
stance hip forward velocity. This idea originates from the study
of human-inspired control. In particular, by analyzing human
locomotion data, [46] showed that the stance hip forward
velocity appears to be a constant value. Since the relative
degree two portion is (N — 2)-dimensional (i.e., dim(ys2) =
N —2), we consider a subset of actuated joint variables with
N — 2 components. More precisely, one can decompose the
actuated variables as g, = col(u,ds), where g, € RN72
represents the above-mentioned subset of ¢,. Furthermore,
da € R denotes the actuated joint variable that is not being
regulated as in (7). Instead, we regulate the forward walking
speed of the robot. We are now in a position to define the
parameterized output function y as follows:

4y 1= I:ydl:| = h(x, a) := hnom(x) — heorr(qu, @)
Yd2
- [D —0*(qu) + ﬂ(gla_é;:(‘bt)_;’g(o')‘i‘fla (0'*(5114))):|
. éa - é;(%t)_ha (0)+h0 (U*(Qu))

=:hnom (x)

11
hcorr,dZ(‘]u, @) (
—_—

=thcorr (qu,)

. |:hcorr,d1 (Gu> a):|

in which v(q, ¢) represents the forward velocity of a point on
the robot to be controlled (e.g., the stance hip), whose desired
evolution on the gait is given by v*(g,). In (11), g}(qu) € R,
G:(qu) € R¥=2, and 6*(g,) € R denote the desired evolutions
of Ga, g4, and o on the orbit, respectively. In addition,
he (o) = col(hy, hy) is a partitioning of the previously defined
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function h, corresponding to the vector g, = col(Gas Ga),
ie., hy € R and h, € RV=2. The relative degree one portion
then depends on a weighting factor 4 € R as a tradeoff
between controlling the forward velocity v and controlling the
actuated variable g,. We remark that for ¢ = 0, one solely
controls the forward velocity ». The corrective term can be
decomposed as hcorr(qu, @) = col(hcorr,d1, hcorr,d2) € RN~
compatible with the relative degree one and two components.
The following proposition addresses the corresponding 3-D
zero dynamics.

Proposition 2 (Zero Dynamics for Relative Degree One and
Two Outputs): Assume that Hypothesis 1 is satisfied. Consider
the output function y in (11) and rewrite it as follows:

y = |:Z)(q, q)v+ﬁq(qsaz_ M I;O'(O-):|
he(q,a) — hs (o)

in which fzq(q, a) = Ga — qad(qu, o) and
4ﬁq (q,a) = (qu) + ];J (0'*((]u)))

(12)

—0"(qu) + #(Ga — G,

— heorr,d1(qu, @)
Gad(qu, 0) == C;;(Clu) - ;la (0'*(414)) ~+ heorr,d2(qu, ).

The velocity v can be expressed as v(q,q) = J(g)g, where

J(q) € RN is the corresponding Jacobian matrix. Suppose
further that the parameterized decoupling matrix

J(q)
Alx,a) = 6h( o)

is invertible on N/ (O) x A. Then, the following statements are
correct.

Dfl(q)B c R(N*])X(N*]) (13)

1) Assumption 2 is satisfied. In particular, the output func-
tion y = h(x, o) has relative degree (1,2,...,2) with
respect to u on N (O) x A.

2) z(x) := col(qgy, 0, q,) is a valid tangent coordinates for
the manifold Z,. Moreover, the position lift-up mapping
on Z, is given by

q = 77:(] (qua o, qa; a) = COI(‘}(I; C}ad(‘]u» a) + ]:20' (0-)9 (]u)

3) The zero dynamics can be expressed as

é Kl(QuaO', éa,a)
= o | = frero(z, @) == | k2(qu> 0, Ga> @) (14)
qa K3 (QM; 0-9 (;a» a)

Where KZ(CIM, o, q~a, a) = ju(Q) fOr q = ﬂq(‘lua o, éa, a)
and x; and x3 are solutions of the following linear

equation:

Iqu qu Ki| _ 0—¢

Jou Jil|lx3| | —hg+uhs —of
In  our notation, Iy, (z, a) = Dgq.(q) +
Dg,5,(a)(0Gaa/0qu)(qu, @), 1,(z,a) = Dg,g,(q)

and ¢ (z,a) := Dy, (q)(0hy /80)(0)1(q), where

Dj,5.@)  Dg,3.(q) Dg,q,(q)
D(q) = | Dj,5.(@) Dj,5.(@) Dg,q,(q) (15)
unéa (q) D‘Iuéa (CI) DQuQu (Q)

is a partitioning of D corresponding to the coordinates
vector ¢ = col(qa, 4a, qu). Furthermore, Jy,(z, a) =

Z
2,2
Zoe
2

Z(,,t

Fig. 2.  Geometric illustration of the hybrid periodic orbit O and family of
zero dynamics manifolds Z, for four different parameters al, az, a3, and
a* € A. According to the construction procedure, @ C Zyxand SN2, =

SN Z,x for every o € A.

Jau (@) + J4,(0)(04aa/09u)(qu> @), Jg,(z, &) := Jg,(q),

and o(z,a) = J;,(q)(@0hs/35)(0)A(g) for
qg = my(z,a). In our notation, J(g) =
[J5.(@) J3.(q) Jq,(¢)] is also a  partitioning
of J corresponding to the coordinates vector

q = col(Gas qa» qu)-

Proof:  Differentiating the output function y results in
at = J§ + 0/6q)J 9 + (©0hg/89)q — u(0hg/00)k,
Sar = (©hy/09)q — ©h/00)2, and Far = (0h/00)i +
(0/09)((0hq/09)§) G — (6%hs /05%)1* — (0 /05)(01/0q)q,
which in combination with the single-support phase dynam-
ics (1) yields col(yg1, Va2) = A(x, a)u+b(x, a). In particular,
A is given by (13) and

Ui+ 5L u ;
oq oq oo / _
b=14 (ah ) Yy 5 0y 0k, _[%]D H
— q)q- A —q %
og \ oq oc?

which completes the proof of Part 1. Using the constructive
proof the Frobenius Theorem [49, p. 23], we can show that
the tangent coordinates are given by z = col(gqy, 0, 44), and
therefore, Part 2 is correct. From the definition of the angular
momentum and forward velocity as well as the partitioning
in (15) o= quqaqa + unana + DQuQuqu and v = Jq Ga +
J5.9a+ g, c}u, which together with the position lift-up mapping
and dynamics (6) completes the proof of Part 3. [ |

IV. REDUCED-ORDER STABILIZATION PROBLEM

The objective of this section is to present a reduced-order
approach to address the exponential stabilization problem
of the orbit O for (3) through restricted Poincaré maps.
We extend the results of [44] to a broader range of HZD
associated with nonholonomic outputs. In particular, the results
of [44] were expressed for H-HZD with uniform relative
degree outputs, whereas this section addresses NH-HZD.
In our control strategy, the I-O linearizing controller gener-
ates attractive and invariant zero dynamics manifolds for the
continuous-time domain. The event-based controller is then
utilized to render these manifolds hybrid invariant for the
closed-loop system. To clarify this idea, we make the following
assumption.

Assumption 3 (Event-Based Update Law): We assume that
there exists an event-based update law a™ = y (x ) such that
y (x*7) = a*; for every a € A, the intersection S N Z,
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is a nonempty and (n; — 1)-dimensional manifold that is
independent of a, i.e., SN Z, = SN Z,~ (see Fig. 2); and for
every x - e N )NSN Zge, xt = Ax7) € Z, ().

The following theorem extends the reduced-order stabiliza-
tion problem of periodic orbits of H-HZD [16], [44] to that
of periodic orbits of NH-HZD.

Theorem 1 (Reduced-Order Stabilization for NH-HZD):
Under Assumptions 1-3, the following statements are correct.

1) Singular Perturbation and HZD: There is an € > 0

such that for all 0 < ¢ < €, the orbit O x {a*} is
exponentially stable for the full-order model if and only
if its projection onto z, i.e., Ozero X {a*}, is exponentially
stable for the following reduced-order NH-HZD:

Z _ Jrero(2, @) _
|:(5!:| = |: 0 :|, Z ¢ Szero

+ -
Z+ = Azem (Z_ ) , 2 € Szero
o Y zero (z7)

where Ajer0(z) and pger0(z) represent the restriction of
the impact map and event-based law to Syero N Zy*,
respectively. In addition, Sero denotes the projection of

the guard S onto the z-coordinates.
2) Reduced-Order Stability Criterion: The orbit Ogero X

{a*} is exponentially stable for the NH-HZD if
and only if the eigenvalues of the Jacobian matrix
D Prero(2°7) := (0 Pgero/07)(z*7) strictly lie inside the
unit circle, where Pyero @ Szero N 2o+ — Szero N Zg*
represents the restriction of the Poincaré return map to
Szero N Za*'

Remark 1: Theorem 1 follows from [44, Ths. 1 and 2] that
is an extended version of [16, Corollary 11]. This result will
be utilized in Section V for the proper selection of the function
hs (o) that stabilizes the given gait. For this purpose, we will
parameterize the function h, (o) with a finite-dimensional
parameter vector ¢. Then, [44, Ths. 1 and 2] allows us to use
the reduced-order Poincaré map for the HZD with adjustable
and stabilizing parameters ¢, whereas [16, Corollary 11] does
not consider this parameterization (see [44, Remark 3]).

Remark 2 (Advantage of NH-HZD): Unlike [30], there are
no closed-form expressions for the state solutions of the
NH-HZD. In particular, H-HZD consists of separable ODEs
[4, Sec. 5.4.1] for which one can easily compute the flow map.
However, those in (9) and (14) are not separable ODEs. Fur-
thermore, we can show that, in general, the impact invariance
condition cannot be achieved for nonholonomic zero dynamics
manifolds unless event-based update laws are utilized. More
specifically, [4, Th. 6.2] constructs holonomoic outputs for a
given periodic orbit such that the corresponding zero dynamics
manifolds are hybrid invariant. This result cannot be extended
to the nonholonomic case, which, in turn, complicates the
reduced-order stability analysis. However, thanks to Theo-
rem 1, we can still have a reduced-order stabilization approach
for NH-HZD. This will be clarified more in Section V. We will
also show that zeroing nonholonomic outputs can stabilize
periodic walking gaits that are not stabilizable through zeroing
holonomic outputs. More specifically, [4, Th. 6.2] states that
the H-HZD approach fails to stabilize walking gaits for which

SV H-HFD
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the ratio of the value of the momentum o at the beginning
of the step to that at the end of step is greater than or equal
to one, i.e., (6*/¢*7) > 1. Section V will numerically show
how to synthesize NH-HZD controllers to stabilize these gaits.

Remark 3: In  this brief, we only regulate one
velocity-modulating output. The results of this brief can
be extended to NH-HZD with multiple relative degree
one outputs. However, by increasing the number of
velocity-modulating outputs, the dimension of the zero
dynamics manifolds becomes bigger. This increases the
computational burden for the Jacobian linearization of the
restricted Poincaré map.

V. NUMERICAL SYNTHESIS OF NH-HZD CONTROLLERS
FOR STABILIZATION OF GIVEN PERIODIC ORBITS

The objective of this section is to apply the reduced-order
approach of Theorem 1 to: 1) investigate the stability of
given walking gaits for NH-HZD and 2) improve the stability
behavior through the proper selection of the smooth function
hs (0). We numerically show that the gaits that are not
stabilizable through the traditional H-HZD can be stabilized
with NH-HZD. We consider a robot structure with point feet
as shown on the right-half of Fig 1. Each leg of the robot
is assumed to include two actuated DOFs: a one-DOF hip
joint plus a one-DOF knee joint. During the single-support
phase, the robot has five DOFs, including four actuated DOFs
of two legs and one unactuated DOF corresponding to the
pitch motion of the torso link. The kinematic and dynamic
parameter values for the links are taken according to those
reported in [50] from a human cadaver study. Here, g, and
ga are chosen as g, := col(gsTK, ¢STH> ¢SWK, gswH) and
da ‘= qsTK, Where the subscripts “STK,” “STH,” “SWK,”
and “SWH” stand for the stance knee, stance hip, swing
knee, and swing hip, respectively. The phasing variable g,
in Hypothesis 1 is also chosen as the angle of the virtual leg
with respect to the ground, in which the virtual leg is defined
as the virtual line connecting the stance foot to the stance
hip. Using the motion planning algorithm of [37], a desired
periodic walking gait O is designed for walking at 0.7 (m/s)
with the cost of mechanical transport CMT = 0.17 such
that the instability criterion of Remark 2 is satisfied. This
condition violates the necessary and sufficient conditions of
[4, Th. 6.2] that are required for the exponential stabilization of
the periodic orbit using the H-HZD approach. To confirm the
instability of the gait, we set i, () = 0 in the uniform relative
degree two output function (7) and then apply Theorem 1
to compute the derivative of the 1-D restricted Poincaré map
as D; Pyero (z*7,0) = 1.1006. In particular, we make use of
[44, Corollary 1] for the numerical computation of the
Jacobian matrix. Fig. 3 illustrates the evolution of the pitch
angular velocity versus time during 25 consecutive steps of
walking for which the initial condition has been chosen off of
the orbit. The state trajectory diverges from the orbit.

To stabilize the gait, we now consider a linear family2
for h, (o) that is parameterized by a set of parameters as

2Using the analytical approach of this brief, one can also consider other
smooth functions for h,. However, to simplify the analysis, this section
presents numerical results for a linear function.
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Plot of the pitch angular velocity versus time during 25 consecutive steps associated with the holonomic output function (left). Here, the initial

condition is taken off of the orbit O and the state trajectory diverges from the orbit. Contour plots of max(|eig(D; Pzero(z*7))|) for the NH-HZD associated

with the outputs (7) (middle plot) and (11) (right plot).
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Fig. 4. Phase portraits for the full-order closed-loop system associated with
nonholonomic outputs (7) (top) and outputs (11) (bottom) together with the
projection of the state solution onto the zero dynamics manifolds Z, during
100 consecutive steps of planar walking. Convergence to the orbit is clear.

he(o) = o € R where & := col(&),&H,8,8) € RY
denotes the constant parameters to be determined. We will
see that the proper selection of the parameter vector & is
crucial for the stabilization problem. To simplify the analysis,
we assume that the first two components of 4, that correspond
to the stance knee and hip angles are zero, i.e., & = & = 0.
The last two components of &, are then used to control
the motion of the swing knee and hip angles. We start
with the NH-HZD associated with the relative degree two
outputs in (7) and apply Theorem 1 to compute the 1 x 1
Jacobian matrix of the restricted Poincaré map. Fig. 3 depicts
contour plots of |D;Pyero(z*~,0)] to determine the range
of stabilizing parameters (&3,¢;). The white areas in the
figure represent the portions of the (&3, & )-plane for which
the gait is unstable, i.e., the spectral radius of the Jacobian
linearization of the Poincaré map is more than 1. We then
study the 2 x 2 Jacobian matrix of the restricted Poincaré
map for the NH-HZD associated with the relative degree one
and two outputs in (11) with the weighting factor 4 = 1.
Fig. 3 also represents the contour plots of the spectral radius
of the Jacobian matrix, i.e., max(|eig(D; Pero (27, 0))]) versus
(&, &a). For u = 0 that reduces yg to the velocity-modulating
output, we could not find any stabilizing parameters to stabilize
the above-mentioned gait. Hence, we assume that ¢ # 0. From

the contour plots of Fig. 3, we choose (&3,¢1) = (0.02,0)
for which the periodic orbit is exponentially stable for the
corresponding NH-HZD. Fig. 4 depicts the phase portraits for
the full-order closed-loop systems associated with zeroing (7)
and (11) together with the projection of the state solution onto
the zero dynamics manifolds during 100 consecutive steps of
walking. The convergence to the periodic orbit O is clear. The
animation of these simulations can be found in [51].

VI. CONCLUSION

This brief addressed HZD associated with relative degree
one and two nonholonomic outputs for exponential stabi-
lization of given periodic orbits for planar bipedal locomo-
tion. Nonholonomic outputs are constructed such that the
associated zero dynamics manifolds contain the orbit while
being invariant under both the continuous- and discrete-time
dynamics. This brief presented reduced-order models for rel-
ative degree one and two NH-HZD. In addition, a compu-
tationally attractive framework, based on restricted Poincaré
maps, was developed to synthesize NH-HZD controllers that
exponentially stabilize underactuated gaits. A comprehensive
study of H-HZD and NH-HZD was presented. It was shown
that NH-HZD can stabilize a broader range of periodic gaits
that are not stabilizable through the application of traditional
H-HZD. To illustrate the power of the analytical foundation,
this brief numerically verified the NH-HZD framework to sta-
bilize underactuated gaits of a planar bipedal robot. For future
research, we will investigate the extension and scalability of
the current framework for 3-D bipedal locomotion with high
degrees of freedom and underactuation. We will also use this
framework to design and experimentally implement stabilizing
controllers for underactuated bipedal robots.
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