Contrasting sensitivity of lake sediment $n$-alkanoic acids and $n$-alkanes to basin-scale vegetation and regional-scale precipitation $\delta^2$H in the Adirondack Mountains, NY (USA)

Erika J. Freimuth a,*, Aaron F. Diefendorf a, Thomas V. Lowell a, Benjamin R. Bates a, Anna Schartman a, Broxton W. Bird b, Joshua D. Landis c, Alexander K. Stewart d

a Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
b Department of Earth Sciences, Indiana University-Purdue University, Indianapolis, IN 46202, USA
c Department of Earth Sciences, Dartmouth College, Hanover, NH 03755-3571, USA
d Department of Geology, St. Lawrence University, Canton, NY 13617, USA

Received 26 November 2018; accepted in revised form 20 August 2019; Available online 28 August 2019

Abstract

The hydrogen isotope values of plant waxes ($\delta^2$H w) primarily reflect plant source water. $\delta^2$H w preserved in lake sediments has therefore been widely used to investigate past hydroclimate. The processes by which plant waxes are integrated at regional and catchment scales are poorly understood and may affect the $\delta^2$H w values recorded in sediments. Here, we assess the variability of sedimentary $\delta^2$H w for two plant wax compound classes ($n$-alkanes and $n$-alkanoic acids) across 12 lakes in the Adirondack Mountains that receive similar regional precipitation $\delta^2$H but vary at the catchment-scale in terms of vegetation structure and basin morphology. Total long-chain ($n$-C27 to $n$-C35) alkane concentrations were similar across all sites (191 ± 53 µg/g TOC) while total long-chain ($n$-C28 and $n$-C30) alkanoic acid concentrations were more variable (117 ± 116 µg/g TOC) and may reflect shoreline vegetation composition. Lakes with shorelines dominated by evergreen gymnosperm plants had significantly higher concentrations of long-chain $n$-alkanoic acids relative to $n$-alkanes, consistent with our observations that deciduous angiosperms produced more long-chain $n$-alkanes than evergreen gymnosperms (471 and 33 µg/g TOC, respectively). In sediments, the most abundant chain lengths in each compound class were $n$-C29 alkane and $n$-C28 alkanoic acid, which had mean $\delta^2$H values of $-188 \pm 6\%e$ and $-164 \pm 9\%e$, respectively. Across sites, the range in sedimentary $n$-C29 alkane (22%) and $n$-C28 alkanoic acid $\delta^2$H (35%) was larger than expected based on the total range in modeled mean annual precipitation $\delta^2$H (4%). We observed larger mean $\varepsilon_{\text{app}}$ (based on absolute values) for $n$-alkanes ($-123\%e$) than for $n$-alkanoic acids ($-97\%e$). Across sites, the $\delta^2$H offset between $n$-C29 alkane and the biosynthetic precursor $n$-C30 alkanoic acid ($\varepsilon_{C29-C30}$) ranged from $-8$ to $-58\%e$, which was more variable than expected based on observations in temperate trees ($-20$ to $-30\%e$). Sediments with greater aquatic organic matter contributions (lower C/N ratios) had significantly larger (absolute) $\varepsilon_{C29-C30}$ values, which may reflect long-chain $n$-alkanoic acids from aquatic sources. Concentration and $\delta^2$H w data in Adirondack lakes suggest that long-chain $n$-alkanes are more sensitive to regional-scale precipitation signals, while $n$-alkanoic acids are more sensitive to basin-scale differences in catchment vegetation and wax sourcing.

© 2019 Published by Elsevier Ltd.

Keywords: Hydrogen isotopes; Plant wax; Aquatic biomarkers; Lacustrine sediment

* Corresponding author.
E-mail address: erika.freimuth@gmail.com (E.J. Freimuth).

https://doi.org/10.1016/j.gca.2019.08.026
0016-7037/© 2019 Published by Elsevier Ltd.
1. INTRODUCTION

The hydrogen isotopic composition of plant waxes ($\delta^{2}H_{\text{wax}}$) has become an important tool for reconstructing paleohydrology (Pancost and Boot, 2004; Castaneda and Schouten, 2011; Sachse et al., 2012; Sessions, 2016). Plants synthesize leaf waxes using hydrogen derived from plant source waters (including soil, stream and lake water), which are derived from precipitation. $\delta^{2}H_{\text{wax}}$ is therefore interpreted to reflect the $\delta^{2}H$ composition of precipitation ($\delta^{2}H_{\text{precip}}$) from which the plant’s water was ultimately sourced (Sachse et al., 2006; Feakins and Sessions, 2010; Kahmen et al., 2013a, 2013b; Tipple and Pagani, 2013). The relationship between $\delta^{2}H_{p}$ and $\delta^{2}H_{\text{wax}}$ persists from the plant-level to both marine and lacustrine sediments, which can serve as tools for reconstructing plant source water (i.e., precipitation) throughout the Cenozoic (e.g., Tierney et al., 2008; Niedermeier et al., 2014; Carmichael et al., 2017).

Molecular paleohydrology relies upon estimates of the net apparent fractionation ($e_{\text{app}}$) between $\delta^{2}H_{p}$ and $\delta^{2}H_{\text{wax}}$. While $e_{\text{app}}$ is critical for calculating past $\delta^{2}H_{p}$ based on $\delta^{2}H_{\text{wax}}$ measured in sediments, estimating $e_{\text{app}}$ is challenging because it varies both globally among plant growth forms and taxonomic groups (McInerney et al., 2011; Sachse et al., 2012), and locally among species growing at the same site (by up to ~100‰; Hou et al., 2007; Feakins and Sessions, 2010; Eley et al., 2014). Processes controlling $e_{\text{app}}$ in plants include evaporative $\text{H}$-enrichment of plant source water during soil evaporation (McInerney et al., 2011) and leaf transpiration (Feakins and Sessions, 2010; Sachse et al., 2010; Kahmen et al., 2013a). In addition, biosynthetic $\text{H}$-fractionation ($e_{\text{bio}}$) during lipid production from intracellular water discriminates against $\text{H}$, resulting in plant waxes that are D-depleted relative to plant source water (Sachse et al., 2012). $e_{\text{bio}}$ values can vary by 50–65‰ among species in natural settings and growth chambers (Kahmen et al., 2013a, 2013b). Field-based estimates of $e_{\text{bio}}$ in plants (based on leaf water and leaf wax $\delta^{2}H$) show that $e_{\text{bio}}$ can also vary through the growing season within individual plants (Newberry et al., 2015; Freimuth et al., 2017; Tipple and Ehleringer, 2018), likely due to shifting metabolic status (carbohydrate metabolism and carbon autonomy) of plants through phenological stages of growth (Cormier et al., 2018).

While much recent progress has been made in understanding the constituent controls on $e_{\text{app}}$ in modern plants, the process of lipid integration from plants to sediments is not as well understood (Sachse et al., 2012; Feakins et al., 2018). There is evidence that integration from the landscape can bias different plant-derived biomarkers toward different sources. Such bias may result from: differences among plant taxa, functional types or species in wax production (Diefendorf et al., 2011, 2015; Diefendorf and Freimuth, 2017) and $\delta^{2}H$ fractionation (Sachse et al., 2012; Gao et al., 2014); preferential degradation of functionalized lipid classes (e.g. $n$-alkanoic acids) in soils and sediments (Meyers and Ishiwatari, 1993); contrasting temporal and spatial averaging between functionalized lipids and $n$-alkanes in large river catchments (Hemingway et al., 2016); or over-representation of forested areas by lake sediment $n$-alkanes (Seki et al., 2010).

One of the main advantages of applying the $\delta^{2}H_{\text{wax}}$ proxy in lake sediments is that lakes can provide records of paleohydrologic conditions at exceptionally high temporal (~sub-decadal) and spatial (i.e., a single lake catchment) resolution (e.g., Feakins et al., 2014; Rach et al., 2014). The localized sensitivity of lacustrine $\delta^{2}H_{\text{wax}}$ records, however, can also make them vulnerable to inter-basin variability due to sourcing from vegetation assemblages unique to each lake catchment. For example, $\delta^{2}H_{\text{wax}}$ values can vary by as much as ~60‰ in the sediments of multiple lakes in close proximity as a result of differences in catchment vegetation or local aridity effects (Douglas et al., 2012; Daniels et al., 2017). It is therefore difficult to estimate $e_{\text{app}}$ with a high degree of confidence when reconstructing $\delta^{2}H_{p}$ using lake sediments.

The goals of this study were to (1) determine the variability in lake sediment $\delta^{2}H_{\text{wax}}$ in the absence of major differences in $\delta^{2}H_{p}$ among sites within the same region; (2) identify possible catchment-level drivers of site-to-site variability; and (3) compare the molecular and $\delta^{2}H$ composition of two plant wax compound classes ($n$-alkanes and $n$-alkanoic acids) to assess potential differences in their sourcing and $e_{\text{app}}$ values. This study aims to identify catchment-level factors that can guide site selection to maximize the fidelity of $\delta^{2}H_{\text{wax}}$ to past $\delta^{2}H_{p}$ in lake sediments. Our approach was to survey $\delta^{2}H_{\text{wax}}$ in 12 lakes in the Adirondack Mountains, NY, USA that receive similar $\delta^{2}H_{p}$ but vary markedly in shoreline and catchment vegetation composition, lake to watershed area ratios, fluvial complexity and bulk sediment characteristics. Adirondack lakes have been the subject of comprehensive regional water quality monitoring (Driscoll and Newton, 1985; Driscoll et al., 1995) as well as several paleohydrological and paleovegetation studies (Charles et al., 1990; Whitehead et al., 1990; Stager et al., 2016).

2. MATERIALS AND METHODS

2.1. Sampling locations and sediment collection

This project focused on the Adirondack State Park, NY, USA (24,000 km$^2$; 37–1629 m above sea level), which has approximately 2,800 lakes covering 1,030 km$^2$, and 13,000 km of streams (Driscoll et al., 1991). The biome classification of the Adirondacks includes both cool mixed forest and temperate deciduous forest (Kaplan et al., 2003). The Adirondacks are a transitional vegetation zone between eastern deciduous angiosperm and mixed angiosperm-conifer forest with the distribution of vegetation assemblages dependent primarily on elevation. The Köppen-Geiger climate classification of the Adirondacks is humid continental (Peel et al., 2007). Thirty-year (1981–2010) normal climate data was obtained for each site from PRISM (2018). Annual mean data are reported for each site in Table 1 and EA1; monthly means are reported in Fig. EA1. Across the 12 sites, mean annual temperature...
Table 1 Location, climate and morphologic data for the 12 sampled lakes. Mean annual temperature (MAT) and mean annual precipitation (MAP) are the 30-year normal (1981–2010) for each location (see Table EA-1 for data from all 36 samples). Basins with one or more fluvial inlets are labeled as open.

<table>
<thead>
<tr>
<th>Lake</th>
<th>Site Latitude</th>
<th>Site Longitude</th>
<th>Elevation (m)</th>
<th>MAT (°C)</th>
<th>MAP (mm)</th>
<th>Lake area (km²)</th>
<th>Catchment area ratio</th>
<th>Waterdepth (m)</th>
<th>Lake water depth at 18O and 18O/16O</th>
<th>Lake water depth at 2H and 2H/16O</th>
<th>%</th>
<th>(‰)</th>
<th>%</th>
<th>(‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chazy</td>
<td>44.73</td>
<td>44.36</td>
<td>73.82</td>
<td>6.2</td>
<td>1062</td>
<td>0.13</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Debar</td>
<td>44.62</td>
<td>44.34</td>
<td>74.19</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>East Peak</td>
<td>44.18</td>
<td>44.34</td>
<td>74.17</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Heart</td>
<td>44.51</td>
<td>44.34</td>
<td>74.13</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Hope</td>
<td>44.14</td>
<td>44.34</td>
<td>74.12</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Horseshoe</td>
<td>44.56</td>
<td>44.34</td>
<td>74.10</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Little</td>
<td>44.36</td>
<td>44.34</td>
<td>74.08</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Green</td>
<td>44.37</td>
<td>44.34</td>
<td>74.10</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Moose</td>
<td>44.32</td>
<td>44.34</td>
<td>74.08</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Raquette</td>
<td>44.23</td>
<td>44.34</td>
<td>74.12</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Sucker</td>
<td>44.18</td>
<td>44.34</td>
<td>74.10</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Wolf</td>
<td>44.02</td>
<td>44.34</td>
<td>74.08</td>
<td>6.4</td>
<td>483</td>
<td>0.06</td>
<td>0.1</td>
<td>2.8</td>
<td>7</td>
<td>186</td>
<td>0</td>
<td>10.9</td>
<td>12.3</td>
<td>16.2</td>
</tr>
</tbody>
</table>

Note: All distances are in meters.
2.2. Bulk sediment characterization

Each core was scanned for magnetic susceptibility using a Barington MS2 meter. Percent total organic matter and total carbonate were determined based on the mass loss-on-ignition (LOI) of 1 cm$^3$ aliquots of oven-dried sediment (60 °C overnight) after baking at 550 °C (4 h) and 1000 °C (2 h; Heiri et al., 2001). Approximately 1 cm$^3$ of sediment was taken from each core at 4, 8, and 12 cm and at 10 cm intervals from 20 cm to the base of the core for grain size analysis. Sample pre-treatment followed Gray et al. (2010) and Bird et al. (2014). Organic matter was removed using 30% H$_2$O$_2$ at room temperature for 24 h followed by three repeat 24 h treatments with 30% H$_2$O$_2$ in a 70 °C water bath. Biogenic silica was removed using 1 M NaOH at 60 °C for 6 h. Lastly, carbonates were removed using 1 M HCl at room temperature. Sediments were freeze dried and weighed to determine the percent lithics based on the mass loss after pretreatment. Grain size particle distribution was determined as an average of three measurements per sample using a Beckman-Coulter LS230 laser diffraction particle size analyzer.

An aliquot of each of the 36 samples of dried and homogenized sediment used for lipid extraction (see Section 2.3) was decarbonated (using 1 M HCl until reaction completion, followed by DI water rinses until neutralized) and used to determine bulk sediment total organic carbon (TOC), total nitrogen (TN), and δ$^{13}$C$_{org}$. Bulk δ$^{13}$C analyses were performed on decarbonated sediments, and on an aliquot of dried and homogenized plant leaves used for lipid extraction, via continuous flow (He; 120 ml/min) on a Costech elemental analyzer (EA) interfaced to a Thermo Electron Delta V Advantage IRMS via a Conflo IV. Raw δ$^{13}$C values were corrected for sample size dependency and normalized to the VPDB scale using a two-point calibration with in-house standards which were calibrated with IAEA standards (NBS-19, L-SVEC) to −38.26‰ and −11.35‰ VPDB following Coplen et al. (2006). Error was determined by analyzing two additional independent standards with a precision of 0.11‰ (1σ, n = 34) and accuracy of 0.09‰ (n = 34). Carbon/nitrogen (C/N) atomic ratios were determined from the molar ratios of TOC/TN.

2.3. Lipid extraction, separation and quantification

The uppermost sediments from each lake were subsampled at three 0.5 cm intervals (1.0–1.5, 5.0–5.5, and 9.0–9.5 cm depth) for a total of 36 samples, which were transferred to glass jars and freeze dried in preparation for lipid analysis. Three samples were taken from each core to gain additional insight into lipid variation over discrete depth and time intervals within the upper 10 cm, rather than taking a homogenized grab sample of surface sediment. Leaves were also collected for lipid analysis in May 2017 from DA (n = 13 individuals, 5 species) and EG plants (all conifers; n = 14 individuals, 7 species) at seven of the 12 sites where sediment was collected (Table 2). The same individual plants were simultaneously sampled for xylem water isotope analysis (see Section 2.5). Collection from a representative set of common terrestrial plant species was prioritized.

A subset of the cores from Heart, Moose, Wolf, Debar, and East Pine were dated using $^{210}$Pb by gamma counting at the Dartmouth GeoAnalytical Resource Center, Hanover, NH, USA. Based on these results, the age at 10 cm depth ranged from calendar year 1960 at Wolf lake to 2004 at Heart lake. We therefore estimate that the intervals used for plant wax analysis in this study (the upper 10 cm, see Section 2.3) represent approximately the last 50 yr, which is in good agreement with $^{210}$Pb results from over 50 lakes throughout the Adirondacks (Binford, 1990; Binford et al., 1993).
for comparison with recent sediments. Extensive terrestrial and aquatic plant surveys were beyond the scope of this study. Species-level terrestrial and aquatic plant $\delta^13C_{\text{wax}}$ are therefore not comprehensively understood for the Adirondacks, but prior studies provide reference for temperate forested plant assemblages (Section 4).

The dry mass extracted for each individual sediment and plant sample is reported in Table EA1. Dried sediment was homogenized prior to accelerated solvent extraction (ASE; Dionex 350) with 9:1 (v/v) DCM/MeOH using three extraction cycles at 100 °C and 10.3 MPa. Approximately 200 mg of powdered leaves from each plant was extracted by sonication twice with 20 ml of DCM/MeOH (2:1, v/v), centrifuging and pipetting the lipid extract into a separate vial after each round of sonication. For both sediment and leaves, the total lipid extract was saponified with 3 ml of 0.5 N KOH in MeOH/H2O (3:1, v/v) for 2 h at 75 °C. Once cool, 2.5 ml of NaCl in water (5%, w/w) was added and then acidified with 6 N HCl. The solution was extracted with hexanes/DCM (4:1, v/v), neutralized with NaHCO3/H2O (5%, w/w), and water was removed through addition of Na2SO4. Neutral and acid fractions were separated using DCM/IPA (2:1, v/v) and 4% formic acid in diethyl ether, respectively, over aminopropyl-bonded silica gel. The neutral fraction was then separated into aliphatic and polar fractions using activated alumina oxide column chromatography. The aliphatic fraction was separated over 5% silver nitrate silica gel with hexanes to collect saturated compounds. The acid fraction was evaporated under a gentle stream of nitrogen and methylated by adding ~1.5 ml of 95:5 MeOH/12 N HCl (v/v) of known $\delta^13C$ composition and heating at 70 °C for 12–18 h. HPLC grade water was then added and the methylated acid fraction was extracted with hexanes and eluted through Na2SO4 to remove water before separation over 5% deactivated silica gel with DCM to collect fatty acid methyl esters (FAMEs).

n-Alkanes and FAMEs were identified by gas chromatography–mass spectrometry (GC–MS) using an Agilent 7890A GC and Agilent 5975C quadrupole mass selective detector system, and quantified using a flame ionization detector (FID). Compounds were separated on a fused silica column (Agilent J&W DB-5 ms; 30 m x 0.25 mm, 25 μm film) and the oven ramped from an initial temperature of 60 °C (held 1 min) to 320 °C (held 15 min) at 6 °C/min. Compounds were identified using authentic standards, fragmentation patterns and retention times. All samples were diluted in hexanes spiked with 1,1′-binaphthyl as an internal standard prior to quantification. Compound peak areas were normalized to those of 1,1′-binaphthyl and converted to concentration using response curves for an in-house mix of n-alkanes (even-chains from C14 to C16; odd-chains from C25 to C33) and FAMEs (C16, C18, C24, C26, C28) at concentrations ranging from 0.5 to 100 μg/ml. Precision and accuracy were determined by analyzing external standards at 25 μg/ml as unknowns and were 0.61 (1σ, n = 13) and 0.41 (1σ, n = 13), respectively. Quantified concentrations were normalized to the mass of dry sediment or leaf material extracted and to the equivalent mass of TOC extracted. Recovery standards were not used and therefore we cannot account for potential loss of lipids during lipid extraction and separation steps. FAME concentrations were converted to equivalent n-alkanoic acid concentrations using respective molar masses.

Average chain length (ACL) is the weighted average concentration of all the long-chain waxes, defined as

$$ACL_{a\to b} = \frac{\sum_{i=a}^{b} \frac{n_i}{C_i}}{\sum_{i=a}^{b} \frac{C_i}{C_i}}$$

(1)

where $a$-$b$ is the range of chain lengths and $C_i$ is the concentration of each wax compound with $i$ carbon atoms. $ACL_{27,35}$ is used to indicate ACL values for n-C27 to n-C35 alkanes (odd chain-lengths only). $ACL_{26,30}$ is used to indicate ACL values for n-C26 to n-C30 alkanic acids (even chain-lengths only). The carbon preference index (CPI) for n-alkanes is defined as

$$CPI_{alk} = \frac{\sum C_{23-33} + \sum C_{25-35}}{2 \sum C_{24-34}}$$

(2)

where the numerator (denominator) includes only odd (even) chain-lengths, following Marzi et al. (1993). The CPI for n-alkanoic acids is defined as

$$CPI_{acid} = \frac{\sum C_{22-28} + \sum C_{24-30}}{2 \sum C_{23-29}}$$

(3)

where the numerator (denominator) includes only even (odd) chain-lengths, following Feakins et al. (2018). We note that CPI is here defined to include mid-chain lengths (n-C22-26) that are not specific to terrestrial plants. Following Bush and McInerney (2013), sedimentary CPI$_{alk}$ values > 2 are interpreted as a qualitative indicator for a predominance of odd n-alkane or even n-alkanoic acid chain-lengths typical in modern plants and thermally immature sediments.

### 2.4. $\delta^2H$ analysis of n-alkanes and n-alkanoic acids

The $\delta^2H$ composition of n-alkanes (sediments and plants) and n-alkanoic acids (sediments only; plant fatty acid fraction had insufficient peak separation for compound-specific isotope analysis) was determined using a Thermo Trace GC Ultra coupled to an Isolink pyrolysis reactor (1420 °C) and interfaced to a Thermo Electron Delta V Advantage IRMS via a Conflo IV. The GC oven program ramped from 80 °C (held 2 min) to 320 °C (held 15 min) at a rate of 8 °C/min. The $^{18}O$ factor was tested daily and averaged 4.8 ppm/ng during the period of analysis. Data were normalized to the VSMOW/SLAP scale using a standard n-alkane mix of known $\delta^2H$ composition (Mix A5; A. Schimmelmann, Indiana University). The long-term precision of a co-injected n-C38 alkane standard was 2.9‰ (1σ, n = 40). The $\delta^2H$ value of hydrogen added to n-alkanoic acids during derivatization was determined by mass balance of phthalic acid of known $\delta^2H$ composition (A. Schimmelmann, Indiana University) and derivatized methyl phthalate (Polissar and D’Andrea, 2014). Hydrogen isotopic fractionations are reported as epsilon values (in units of per mil, ‰), using the following equation:

$$\epsilon_{a\to b} = \left( \frac{(\delta D_a + 1)}{(\delta D_b + 1)} \right) - 1$$

(4)
Table 2
Summary data for common Adirondack plants sampled in May 2017, including xylem water and leaf wax molecular and δ13C composition. Species-level data are summarized by plant type for evergreen gymnosperms (EG) and deciduous angiosperms (DA), pooled by species. C29-MAP values are based on OIPC-modeled mean annual precipitation at each site; C29-AW values are based on xylem water from the same individual plant.

<table>
<thead>
<tr>
<th>Site</th>
<th>Species</th>
<th>Plant type</th>
<th>Xylem water δ18O</th>
<th>Xylem water δD</th>
<th>ACL n-C27-35 alkane</th>
<th>n-C28-30 alkane</th>
<th>n-C26-30 acid</th>
<th>(n-C27-35 alkane)/ (n-C28-30 acid)</th>
<th>CPI n-C23-35 alkane</th>
<th>CPI n-C22-30 acid</th>
<th>δ13C n-alkane (%)</th>
<th>tapp (%)</th>
<th>C29-MAP</th>
<th>C29-AW</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Pine</td>
<td>A. balsamea</td>
<td>EG</td>
<td>−9.6</td>
<td>−74.8</td>
<td>28.4</td>
<td>28.3</td>
<td>0.1</td>
<td>1.3</td>
<td>3.0</td>
<td>−152</td>
<td>−178</td>
<td>−176</td>
<td>−112</td>
<td></td>
</tr>
<tr>
<td>East Pine</td>
<td>A. rubrum</td>
<td>DA</td>
<td>−10.3</td>
<td>−75.5</td>
<td>28.9</td>
<td>28.0</td>
<td>0.2</td>
<td>1.8</td>
<td>4.8</td>
<td>−162</td>
<td>−191</td>
<td>−194</td>
<td>−125</td>
<td></td>
</tr>
<tr>
<td>East Pine</td>
<td>P. papyrifera</td>
<td>DA</td>
<td>−10.7</td>
<td>−70.9</td>
<td>27.5</td>
<td>26.4</td>
<td>8.1</td>
<td>4.9</td>
<td>7.1</td>
<td>−166</td>
<td>−161</td>
<td>−160</td>
<td>−93</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>A. rubrum</td>
<td>DA</td>
<td>−10.7</td>
<td>−64.5</td>
<td>29.9</td>
<td>26.3</td>
<td>51.5</td>
<td>15.1</td>
<td>4.1</td>
<td>−148</td>
<td>−181</td>
<td>−170</td>
<td>−115</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>B. papyrifera</td>
<td>DA</td>
<td>−10.7</td>
<td>−80.9</td>
<td>27.5</td>
<td>26.3</td>
<td>25.6</td>
<td>6.6</td>
<td>5.8</td>
<td>−163</td>
<td>−157</td>
<td>−88</td>
<td>−125</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>P. rubens</td>
<td>DA</td>
<td>−11.5</td>
<td>−82.6</td>
<td>28.7</td>
<td>27.4</td>
<td>0.5</td>
<td>1.9</td>
<td>3.1</td>
<td>−155</td>
<td>−176</td>
<td>−163</td>
<td>−109</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>T. occidentalis</td>
<td>DA</td>
<td>−9.3</td>
<td>−74.5</td>
<td>28.6</td>
<td>26.9</td>
<td>12.5</td>
<td>17.6</td>
<td>4.4</td>
<td>−153</td>
<td>−168</td>
<td>−100</td>
<td>−101</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>T. canadensis</td>
<td>EG</td>
<td>−10.7</td>
<td>−73.5</td>
<td>27.8</td>
<td>27.6</td>
<td>0.1</td>
<td>1.4</td>
<td>3.0</td>
<td>−148</td>
<td>−171</td>
<td>−164</td>
<td>−103</td>
<td></td>
</tr>
<tr>
<td>Hope</td>
<td>T. canadensis</td>
<td>EG</td>
<td>−9.7</td>
<td>−71.5</td>
<td>27.8</td>
<td>27.6</td>
<td>0.1</td>
<td>1.4</td>
<td>2.5</td>
<td>−148</td>
<td>−167</td>
<td>−163</td>
<td>−99</td>
<td></td>
</tr>
<tr>
<td>Horseshoe</td>
<td>B. papyrifera</td>
<td>DA</td>
<td>−11.6</td>
<td>−87.6</td>
<td>27.4</td>
<td>26.9</td>
<td>48.5</td>
<td>12.9</td>
<td>4.3</td>
<td>−170</td>
<td>−168</td>
<td>−102</td>
<td>−89</td>
<td></td>
</tr>
<tr>
<td>Little Green</td>
<td>A. rubrum</td>
<td>DA</td>
<td>−9.1</td>
<td>−74.5</td>
<td>27.5</td>
<td>26.3</td>
<td>16.5</td>
<td>7.5</td>
<td>7.1</td>
<td>−173</td>
<td>−175</td>
<td>−159</td>
<td>−108</td>
<td></td>
</tr>
<tr>
<td>Little Green</td>
<td>P. grandifolia</td>
<td>DA</td>
<td>−10.8</td>
<td>−88.8</td>
<td>28.7</td>
<td>26.9</td>
<td>3.9</td>
<td>4.7</td>
<td>5.4</td>
<td>−157</td>
<td>−183</td>
<td>−117</td>
<td>−123</td>
<td></td>
</tr>
<tr>
<td>Little Green</td>
<td>P. rubens</td>
<td>DA</td>
<td>−10.8</td>
<td>−72.3</td>
<td>28.8</td>
<td>28.6</td>
<td>0.3</td>
<td>1.7</td>
<td>2.4</td>
<td>−146</td>
<td>−185</td>
<td>−170</td>
<td>−119</td>
<td></td>
</tr>
<tr>
<td>Little Green</td>
<td>P. strobus</td>
<td>DA</td>
<td>−8.6</td>
<td>−69.6</td>
<td>28.6</td>
<td>27.5</td>
<td>0.2</td>
<td>1.7</td>
<td>3.4</td>
<td>−149</td>
<td>−197</td>
<td>−204</td>
<td>−132</td>
<td></td>
</tr>
<tr>
<td>Little Green</td>
<td>T. canadensis</td>
<td>DA</td>
<td>−9.5</td>
<td>−70.8</td>
<td>29.0</td>
<td>27.8</td>
<td>0.5</td>
<td>2.2</td>
<td>3.4</td>
<td>−147</td>
<td>−164</td>
<td>−162</td>
<td>−96</td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>A. rubrum</td>
<td>DA</td>
<td>−9.3</td>
<td>−76.6</td>
<td>30.3</td>
<td>26.8</td>
<td>68.4</td>
<td>32.0</td>
<td>3.2</td>
<td>−203</td>
<td>−195</td>
<td>−140</td>
<td>−137</td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>B. papyrifera</td>
<td>DA</td>
<td>−11.3</td>
<td>−87.0</td>
<td>28.1</td>
<td>26.3</td>
<td>13.4</td>
<td>11.2</td>
<td>4.3</td>
<td>−171</td>
<td>−164</td>
<td>−97</td>
<td>−84</td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>F. grandifolia</td>
<td>DA</td>
<td>−10.3</td>
<td>−81.0</td>
<td>28.1</td>
<td>27.1</td>
<td>0.9</td>
<td>3.6</td>
<td>3.8</td>
<td>−153</td>
<td>−161</td>
<td>−94</td>
<td>−87</td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>Shrub 2</td>
<td>DA</td>
<td>−10.0</td>
<td>−74.5</td>
<td>30.6</td>
<td>27.1</td>
<td>57.9</td>
<td>7.9</td>
<td>5.9</td>
<td>−136</td>
<td>−159</td>
<td>−92</td>
<td>−91</td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>T. occidentalis</td>
<td>DA</td>
<td>−9.8</td>
<td>−75.2</td>
<td>34.5</td>
<td>26.6</td>
<td>19.1</td>
<td>9.4</td>
<td>3.8</td>
<td>−155</td>
<td>−166</td>
<td>−150</td>
<td>−99</td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>T. canadensis</td>
<td>DA</td>
<td>−10.5</td>
<td>−79.6</td>
<td>30.0</td>
<td>27.8</td>
<td>0.5</td>
<td>2.2</td>
<td>3.4</td>
<td>−155</td>
<td>−166</td>
<td>−150</td>
<td>−99</td>
<td></td>
</tr>
<tr>
<td>Raquette</td>
<td>P. sylvestris</td>
<td>DA</td>
<td>−9.4</td>
<td>−71.8</td>
<td>28.4</td>
<td>27.2</td>
<td>1.5</td>
<td>2.1</td>
<td>2.7</td>
<td>−147</td>
<td>−176</td>
<td>−110</td>
<td>−112</td>
<td></td>
</tr>
<tr>
<td>Mean DA</td>
<td></td>
<td>DA</td>
<td>−10.0</td>
<td>−76.4</td>
<td>28.8</td>
<td>26.6</td>
<td>31.8</td>
<td>10.0</td>
<td>5.0</td>
<td>−161</td>
<td>−175</td>
<td>−178</td>
<td>−109</td>
<td></td>
</tr>
<tr>
<td>Mean EG</td>
<td></td>
<td>DA</td>
<td>−10.0</td>
<td>−73.7</td>
<td>29.9</td>
<td>27.6</td>
<td>3.9</td>
<td>3.2</td>
<td>3.0</td>
<td>−150</td>
<td>−176</td>
<td>−109</td>
<td>−109</td>
<td></td>
</tr>
</tbody>
</table>
where $a$ is the product and $b$ is the substrate. All epsilon values herein are interpreted based on their absolute values (e.g., larger $\varepsilon_{app}$ means that the absolute value of $\varepsilon_{app}$ is greater).

### 2.5. Water sampling and isotope analysis

Surface water samples were collected from lakes and rivers throughout the Adirondacks in July and October 2016 and January and May 2017 using 30 ml Nalgene bottles. At the time of sampling, water temperature and conductivity were measured and the sampling location was determined using GPS. Surface water $\delta^2$H and $\delta^{18}$O values were measured at Indiana University-Purdue University Indianapolis (IUPUI) with a Picarro L2130-i Analyzer and normalized to the VSMOW scale following the method of van Geldern and Barth (2012) using Los Gatos and USGS standards. Precision and accuracy based on replicate analyses of three previously calibrated in-house standards were 0.6‰ and 1.3‰ respectively, for $\delta^2$H, and 0.05‰ and 0.15‰, respectively, for $\delta^{18}$O.

Plant material for xylem water isotope analysis was collected in May 2017 from DA ($n = 13$ individuals, 5 species) and EG plants (all conifers; $n = 14$ individuals, 7 species) at seven of the 12 sites where sediment was collected (Table 2). Plant sampling methods followed Freimuth et al. (2017). Briefly, two stems (<1.0 cm diameter) were clipped from each individual, stripped of outer bark, and sealed in separate pre-ashed glass extainer vials with airtight septa screwcaps. Each sample was treated and analyzed separately. All samples were kept in a cooler in the field and frozen ($-5 \degree C$) in the lab until water extraction.

Xylem water was extracted using cryogenic vacuum distillation following West et al. (2006). Exetainer vials containing frozen stems were evacuated to a pressure < 8 Pa (<60 mTorr), isolated from the vacuum pump, and heated to 100 °C. Water vapor was collected in borosilicate test tubes immersed in liquid nitrogen for a minimum of 60 minutes. To verify extraction completion, samples were weighed following cryogenic vacuum distillation and then again after freeze drying. Based on the mass difference, the recovery of xylem water was >99%. Collected water was thawed and pipetted into 2 ml crimp-top vials and refrigerated at 4 °C until analysis.

Analysis of xylem water $\delta^{18}$O and $\delta^2$H was made by headspace equilibration. For $\delta^{18}$O analysis, 500 µl of water was transferred to an extainer vial, stoppered, and purged using an offline purging manifold system with 0.3% CO₂ in He for 10 minutes at 120 ml/min (Paul and Skrzypczek, 2006). Samples were then equilibrated in a water bath at 25 °C for 18 hours. For $\delta^2$H analysis, 200 µl of water was transferred to an extainer vial, and a Pt catalyst was added. Samples were purged using 2% H₂ in He for 10 minutes at 120 ml/min and equilibrated at 25 °C for 1 hour. The isotopic composition of equilibrated headspace gases was analyzed on a Thermo Delta V Advantage IRMS with a Thermo Gasbench II connected to the IRMS via a Conflo IV interface. For $\delta^2$H analysis, volatile organics were removed from the sampled headspace gas by passing the capillary through a liquid nitrogen trap before isotope analysis. Data were normalized to the VSMOW/SLAP scale (Coplen, 1988) using three in-house standards. For xylem waters, precision and accuracy were 1.6‰ (1σ, $n = 20$) and 2.5‰ ($n = 20$), respectively, for $\delta^2$H and 0.3‰ (1σ, $n = 22$) and −0.1‰ ($n = 22$), respectively, for $\delta^{18}$O.

We calculated deuterium excess ($d$-excess) as a measure of the extent of evaporation affecting the isotopic composition of each water sample using the following equation (Dansgaard, 1964):

$$d - \text{excess} = \delta^2H - 8 \times \delta^{18}O$$

The average $d$-excess value for precipitation is 10‰. As environmental waters undergo evaporation (kinetic fractionation), $d$-excess values typically decrease to values below 10‰ (Clark and Fritz, 1997). Data reduction and analysis was completed using JMP Pro 12.0 (SAS, Cary, USA) and we assign significance for alpha levels at or below 0.05. Mean values are presented with ±1 standard deviation.

### 3. RESULTS

#### 3.1. Bulk sediment characteristics

The average total organic matter (%TOM) determined by loss-on-ignition from the upper 50 cm of sediment ranged from 14 to 68% among all 12 sites, with most sites between 20 to 40%. The total carbonate (%TC) was less than 6% in all cores. Magnetic susceptibility was consistently low (<5.3SI units) across all cores. Grain size distributions in the upper 50 cm of sediments varied widely, with most sites dominated by clay or silt (Electronic Annex Table EA1).

The C/N ratios of individual leaf and sediment samples are reported in Table EA1. The C/N ratios of plant leaves ranged from 15 to 74, with a lower mean for DA (25) and EG plants (60). Mean sediment C/N ratios in each lake ranged from 12 to 16 (Table 1). These values are intermediate between typical C/N ratios for lake algae (4–10) and vascular land plants (>20; Meyers, 2003). Across all sites, we observed a 25% range in TOC (from 10% at Chazy to 35% at Quiver), and a ~5% range in $\delta^{13}$Corg (from −31.9% at Quiver to −26.8% at Chazy; Table 1). There was an inverse relationship between TOC and $\delta^{13}$Corg values among lakes ($R^2 = 0.42$, $p < 0.0001$; Fig. 3). Particularly low $\delta^{13}$Corg at several sites (<−30‰; Fig. 3) may reflect either reduced algal productivity or incorporation of $^{13}$C-depleted DIC from the heterotrophic respiration of sedimentary organic matter (Meyers, 2003; Diefendorf et al., 2008). Lower TOC in Chazy and Raquette lakes, which are dammed, may reflect an apparent dilution of organics with relatively high sand and silt in the sediment grain size distribution at those sites (Table EA1).

#### 3.2. Adirondack isotope hydrology

##### 3.2.1. Surface and meteoric water isotopes

Adirondack lake waters sampled between July 2016 and May 2017 had $\delta^2$H values ranging from −81 to −42‰ and $\delta^{18}$O values from −11.9 to −5.0‰ (Figs. 4 and EA2;
Table EA3). The mean isotope values of lakes varied by season, with more positive values in July and October 2016 ($\delta^2$H, $-62$ and $-57%e$, $\delta^{18}$O, $-8.1$ and $-7.3%e$, respectively) and more negative values in January and May 2017 ($\delta^2$H, $-65$ and $-68%e$, $\delta^{18}$O, $-8.9$ and $-9.4%e$, respectively; Fig. EA2). Lake waters sampled in this study were comparable to those reported for different Adirondack lakes sampled in September 2007 ($-69%e$, $\delta^2$H and $-9.2%e$, $\delta^{18}$O; Brooks et al., 2014; Fig. EA2). There was a significant $^2$H- and $^{18}$O-enrichment of lake water in basins with no fluvial inlets relative to basins with one or more inlets in July, October and May ($t$-test, $p < 0.03$ and 0.007, respectively) but not in January. The overall mean $d$-excess value for Adirondack lakes in this study was $3.8 \pm 4.4%e$ ($n = 75$), in agreement with mean $d$-excess values measured by Brooks et al. (2014) from Adirondack lakes in September ($4.7%e$; Fig. EA3). Lake water $d$-excess values were significantly lower in basins with no fluvial inputs ($1.6 \pm 2.7%e$, $n = 34$) than in basins with one or more inlets ($5.9 \pm 4.3%e$, $n = 39$; $t$-test, $p < 0.0001$). Lake water $d$-excess values were also lower in the summer and autumn ($2.5%e$ in July and 1.9%e in October) than in winter and spring ($6.2%e$ in January and 6.7%e in May). These values indicate that Adirondack lakes undergo significant evaporation (kinetic fractionation), especially for basins with no fluvial inputs (open symbols).

Fig. 3. Relationship between sediment TOC and $\delta^{13}$Corg at 1, 5, and 9 cm depth in each lake core for basins with no fluvial inputs (filled symbols) and with one or more fluvial inputs (open symbols).

Fig. 4. The $\delta^2$H and $\delta^{18}$O composition of regional precipitation collected at the Ottawa GNIP station (light gray points, solid black line) and modeled (monthly) for the Adirondack lake sites (gray squares, gray dashed line). Adirondack waters collected in this study include lakes (blue points, black dashed line), rivers (red squares), snow events (blue stars) and xylem waters (green triangles). The white diamond ($\delta^2$H, $-75%e$, $\delta^{18}$O, $-10.8%e$) indicates the intercept of the regional evaporation line (REL) with the regional meteoric water line (RMWL). Also shown are the range of OIPC-modeled $\delta^2$Hxw across all 12 sites (light gray bar, $-76$ to $-72%e$) and mean $\delta^2$Hxw (green dashed line, $-76%e$). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The regional evaporation line (REL; based on all Adirondack lake water isotopes) intercepts the RMWL (based on precipitation collected since 1972 at the GNIP station in Ottawa ~ 100 km northwest of the Adirondack Park; IAEA/WMO, 2018) at a $\delta^2$H value of $-75%e$ and a $\delta^{18}$O value of $-10.8%e$ (Fig. 4). This provides an estimate of the isotope composition of mean annual precipitation (MAP) in the sampled Adirondack region, and is in close agreement with the weighted MAP values from GNIP Ottawa data of $-76%e$ for $\delta^2$HMAP and $-11.0%e$ for $\delta^{18}$O MAP (IAEA/WMO, 2018). The intercept of the REL with meteoric water lines based on precipitation collected approximately 160 km southwest of the Adirondack Park in Tompkins County, NY ($\delta^2$H, $-78%e$ and $\delta^{18}$O, $11.3%e$; Coplen and Huang, 2000) and based on modeled precipitation from the Online Isotopes in Precipitation Calculator (OIPC) for the 12 Adirondack lake sites ($\delta^2$H, $-77%e$, and $\delta^{18}$O, $-11.1%e$; Bowen and Revenaugh, 2003; IAEA/ WMO, 2018; Bowen, 2017; Bowen et al., 2005) were similar to that based on the GNIP data. Therefore, we use the intercept of Adirondack lake waters with the OIPC-based meteoric water line to estimate $\delta^2$Hxw ($-77%e$) and $\delta^{18}$O MAP ($-11.1%e$) for the sampled region, which is also similar to comparable estimates from lakes sampled by Brooks.
et al. (2014; −76‰) and nearby rivers sampled by Kendall and Coplen (2001; −73‰).

3.2.2. Plant water isotopes

Xylem water δ²H values (δ²Hₓw) collected in May 2017 ranged from −39 to −60‰ with an overall mean of −76 ± 6‰ (n = 43; Figs. 4 and EA2; Table EA3), similar to δ²HₓMAP estimates from the intercept of the Adirondack lake REL with RMWLs in Section 3.2.1 (−75 to −78‰). Mean δ²Hₓw values were not significantly different among sites (ANOVA, p = 0.07) or between deciduous angiosperms (−77‰) and evergreen gymnosperms (−74‰; t-test, p = 0.05). Xylem water δ-excess ranged from −4.6 to 16.2‰, with a mean of 4.8‰ (Fig. EA3), indicating that some plant waters were evaporatively enriched (δ-excess < 10‰) while others were not. For comparison, May/June precipitation at Ottawa from 2007–2017 had δ-excess values of 9.7‰. Xylem δ-excess values in angiosperms (3.1 ± 4.4‰, n = 17) were modestly but significantly (t-test, p = 0.018) lower than in gymnosperms (6.8 ± 4.7‰, n = 21). Greater evaporative enrichment of angiosperm source waters may reflect differences in leaf lifespans, rooting structure or hydraulic anatomy and freeze-thaw cavitation resistance between angiosperm xylem vessels and gymnosperm tracheids (Brodribb et al., 2012). Additionally, groundwater contributions to gymnosperms and angiosperms may differ, although this may depend on site-specific conditions (Evaristo et al., 2017; Evaristo and McDonnell, 2017).

3.3. Plant wax abundance and distribution

Molecular distributions for lake sediment n-alkanes and n-alkanoic acids are summarized in Table 3 and Figs. 5 and 6. Comparable data for plants are reported in Table EA1. All molecular data for individual plant and sediment samples are reported in Table EA1. All lake sediments had detectable amounts of n-C₁₆ to n-C₃₀ alkanic acids and n-C₁₇ to n-C₃₅ alkanes. In sediments, total long-chain (n-C₂₇ to n-C₃₅) alkane concentrations were similar across all sites (191 ± 53 µg/g TOC) while total long-chain (n-C₂₈ and n-C₃₀) alkanic acid concentrations were considerably more variable (117 ± 116 µg/g TOC; Fig. 6). In plants, DA trees produced significantly more total long-chain n-alkanes than EG trees (471 and 33 µg/g TOC, respectively; Fig. 6), while total long-chain n-alkanoic acid concentrations were comparable for DA and EG trees (15 and 20 µg/g TOC, respectively). There were large species-level differences in leaf wax concentration and distribution. For example, the evergreen Thuja occidentalis produced over two orders of magnitude more n-C₃₅ alkane than any other species (Table EA1).

In sediments, the long-chain (≥n-C₂₇) compounds in highest abundance (C₉₉ max) were generally n-C₂₈ alkanic acids and n-C₂₅ alkanes (Fig. 6). The dominance of n-C₂₅ alkane was reflected in mean sediment ACL₂₇₋₃₅ (29.5 ± 0.2, n = 36), which had similar values but higher variability in DA (28.8 ± 1.2, n = 13) and EG (30.0 ± 2.5, n = 14) plants. We note that for several lakes, the distribution of the entire range of n-C₁₇ to n-C₃₅ alkanes was dominated by mid-chain lengths (specifically, n-C₂₃ and n-C₂₅ alkanes; Fig. 5), distributions typically associated with submerged and floating aquatic plant sources (Ficken et al., 2000). While there is evidence that trees are a dominant source of sedimentary long-chain n-alkanes for lakes in temperate forested catchments (Seki et al., 2010; Freimuth et al., 2019), certain aquatic plant species can also produce long-chain (≥n-C₂₇) alkanes as well (Aichner et al., 2010; Liu and Liu, 2016). Given that aquatic plants were not sampled in this study we cannot directly assess the lipid distributions of the local aquatic sources and further work is needed to constrain the contribution of aquatic plants to Adirondack lake sediments.

For n-alkanoic acids, the mean ACL₂₇₋₃₀ was similar for sediments (26.5 ± 0.07) and DA plants (26.6 ± 0.3, n = 12) but higher in EG plants (27.6 ± 0.6, n = 14), which reflects significantly higher n-C₃₀ to n-C₃₅ acid concentration ratios in EG plants (3.6) than in DA plants or sediments (0.3 and 0.5, respectively; Fig. 6). Most lakes had long-chain n-alkane concentrations that were either higher than or comparable to long-chain n-alkanoic acid concentrations, with four exceptions (Chazy, East Pine, Little Green, and Hope; Fig. 6).

The overall mean CPI alk was similar between lake sediments (3.0 ± 0.6, n = 36) and modern plants pooled by species (3.8 ± 1.2, n = 10 species, 24 individuals; Table 3). For n-alkanes, the overall mean CPI alk was lower and less variable for lake sediments (2.6 ± 0.9, n = 36) than for terrestrial plants (6.1 ± 5.8, n = 12 species, 27 individuals; Table 3). Low CPI alk (<~2) in thermally immature sediments can reflect degradation (though we did not observe a significant change in CPI alk with depth), petrogenic aerosols from gasoline and diesel (though these contain few n-alkanes > n-C₂₇ (Bai et al., 2014), which are the main focus of this study), or microbial or algal sources (Freeman and Pancost, 2014). We note that CPI alk is highly variable in terrestrial plants and therefore following recommendations from a systematic meta-analysis (Bush and McInerney, 2013), we interpret sedimentary CPI alk values at or above a threshold of 2 as a qualitative indicator of terrestrial plant sources. CPI alk ranged from 1.9 to 5.8 in Adirondack sediments (and from 1.3 to 32 in Adirondack plants), which is therefore qualitatively consistent with terrestrial plant sources; we consider the potential influence of additional sources further in Section 4.

3.4. Plant wax δ²H and εapp values

Sedimentary δ²Hₓw max data are reported in Table 3 and Fig. 7. All isotopic data for individual plant and sediment samples are reported in Table EA1. The mean n-C₂₇ and n-C₃₀ alkanic acid δ²H values in the upper 9 cm of sediment across all sites were −164 ± 9‰ and −159 ± 9‰, respectively. n-Alkanes were significantly D-depleted relative to n-alkanoic acids across all long-chain homologues (mean n-C₂₇, n-C₂₉ and n-C₃₁ alkane δ²H were −191 ± 7‰, −188 ± 6‰ and −176 ± 6‰, respectively; t-test, p < 0.0001 for pairwise comparisons between each long-chain n-alkane and n-alkanoic acid). The overall δ²Hₓw max
Table 3
Mean molecular and $\delta^2$H$_{wax}$ plant wax data from lake surface sediments ($n = 36$ samples; 3 samples per lake, at 1, 5 and 9 cm depth), for long-chain $n$-alkanes and $n$-alkanoic acids. $\varepsilon_{app}$ values are based on OIPC-modeled mean annual precipitation ($\varepsilon_{wax}$/MAP) at each site. Mean values for modern plants ($n = 27$ individuals) are pooled by total species ($n = 12$), DA species ($n = 5$) and EG species ($n = 7$).

<table>
<thead>
<tr>
<th>Site</th>
<th>ACL $n$-C$_{27-35}$ alkane</th>
<th>ACL $n$-C$_{26-30}$ acid</th>
<th>CPI $n$-C$_{23-35}$ alkane</th>
<th>CPI $n$-C$_{22-30}$ acid</th>
<th>$\delta^2$H $n$-alkane (%)</th>
<th>$\delta^2$H $n$-acid (%)</th>
<th>$\varepsilon_{alkane}$-acid (%)</th>
<th>$\varepsilon_{app}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chazy</td>
<td>29.7</td>
<td>26.5</td>
<td>1.4</td>
<td>2.5</td>
<td>2.7</td>
<td>$-$188</td>
<td>$-$188</td>
<td>$-$179</td>
</tr>
<tr>
<td>Debar</td>
<td>29.3</td>
<td>26.5</td>
<td>5.8</td>
<td>2.7</td>
<td>2.5</td>
<td>$-$195</td>
<td>$-$196</td>
<td>$-$179</td>
</tr>
<tr>
<td>East Pine</td>
<td>29.4</td>
<td>26.4</td>
<td>0.5</td>
<td>4.4</td>
<td>3.7</td>
<td>$-$199</td>
<td>$-$193</td>
<td>$-$180</td>
</tr>
<tr>
<td>Hope</td>
<td>29.3</td>
<td>26.5</td>
<td>1.1</td>
<td>3.6</td>
<td>3.3</td>
<td>$-$202</td>
<td>$-$190</td>
<td>$-$176</td>
</tr>
<tr>
<td>Horseshoe</td>
<td>29.1</td>
<td>26.5</td>
<td>4.1</td>
<td>2.1</td>
<td>2.6</td>
<td>$-$187</td>
<td>$-$188</td>
<td>$-$176</td>
</tr>
<tr>
<td>Little Green</td>
<td>29.6</td>
<td>26.4</td>
<td>0.8</td>
<td>2.4</td>
<td>3.6</td>
<td>$-$189</td>
<td>$-$190</td>
<td>$-$176</td>
</tr>
<tr>
<td>Moose</td>
<td>29.7</td>
<td>26.5</td>
<td>1.6</td>
<td>2.4</td>
<td>2.2</td>
<td>$-$194</td>
<td>$-$190</td>
<td>$-$176</td>
</tr>
<tr>
<td>Quiver</td>
<td>29.7</td>
<td>26.5</td>
<td>4.1</td>
<td>2.1</td>
<td>4.2</td>
<td>$-$181</td>
<td>$-$179</td>
<td>$-$176</td>
</tr>
<tr>
<td>Raquette</td>
<td>29.7</td>
<td>26.6</td>
<td>3.4</td>
<td>2.0</td>
<td>2.4</td>
<td>$-$189</td>
<td>$-$186</td>
<td>$-$167</td>
</tr>
<tr>
<td>Wolf</td>
<td>29.9</td>
<td>26.5</td>
<td>6.5</td>
<td>2.0</td>
<td>2.9</td>
<td>$-$184</td>
<td>$-$179</td>
<td>$-$168</td>
</tr>
<tr>
<td>Sediment</td>
<td>29.5</td>
<td>26.5</td>
<td>3.4</td>
<td>2.6</td>
<td>3.0</td>
<td>$-$191</td>
<td>$-$188</td>
<td>$-$176</td>
</tr>
<tr>
<td>Plant</td>
<td>29.4</td>
<td>27.1</td>
<td>16.8</td>
<td>6.1</td>
<td>3.8</td>
<td>$-$156</td>
<td>$-$175</td>
<td>$-$174</td>
</tr>
<tr>
<td>Mean DA</td>
<td>28.8</td>
<td>26.6</td>
<td>31.8</td>
<td>10.0</td>
<td>5.0</td>
<td>$-$161</td>
<td>$-$175</td>
<td>$-$178</td>
</tr>
<tr>
<td>Mean EG</td>
<td>29.9</td>
<td>27.6</td>
<td>3.9</td>
<td>3.2</td>
<td>3.0</td>
<td>$-$150</td>
<td>$-$176</td>
<td>$-$171</td>
</tr>
</tbody>
</table>
variability was significantly larger for \( n \)-C\(_{28} \) alkanoic acid (1\( \sigma = 9\times \), \( n = 34 \)) than for \( n \)-C\(_{29} \) alkane (1\( \sigma = 6\times \), Levene test, \( p = 0.004 \); Fig. 7). There were significant differences in \( \delta^{2} \)H\(_{\text{wax}} \) values among lakes, for both \( n \)-C\(_{28} \) alkanoic acid (Kruskal-Wallis test, \( H = 30 \), 11 d.f., \( p = 0.0014 \)) and \( n \)-C\(_{29} \) alkane (Kruskal-Wallis test, \( H = 31 \), 11 d.f., \( p = 0.0012 \)). In plants, the pooled mean \( n \)-C\(_{27} \), \( n \)-C\(_{29} \) and \( n \)-C\(_{31} \) alkane \( \delta^{2} \)H\(_{\text{wax}} \) values across all species were \( 156 \pm 11% \), \( 175 \pm 14% \) and \( 174 \pm 17% \), respectively. We note that mean \( n \)-C\(_{27} \) and \( n \)-C\(_{29} \) alkane \( \delta^{2} \)H\(_{\text{wax}} \) values were significantly higher in plants than in sediments (t-test, \( p < 0.0001 \)), while \( n \)-C\(_{31} \) alkane \( \delta^{2} \)H\(_{\text{wax}} \) was not significantly different (t-test, \( p = 0.6 \)). There was no significant difference between the pooled mean \( n \)-alkane \( \delta^{2} \)H\(_{\text{wax}} \) values of DA and EG plants (t-test, \( p = 0.4–1.0 \) across long-chain \( n \)-alkane homologues).

Within the \( n \)-alkane class, the \( \delta^{2} \)H of long-chain homologues in sediments were positively correlated with one another and had significant shared variance (\( n \)-C\(_{29} \) with \( n \)-C\(_{27} \) and \( n \)-C\(_{31} \), \( R^{2} = 0.63 \) and 0.38, respectively, \( p < 0.0001 \) for both). Stronger shared variance for \( n \)-C\(_{29} \) and \( n \)-C\(_{31} \) alkanes suggests that these two compounds likely have a similar water source, while \( n \)-C\(_{31} \) may either reflect different source water \( \delta^{2} \)H or derive from different plant
sources as suggested by Garcin et al. (2012) in the West African tropics. By contrast, in plants there was no relationship between \( n\text{-C}_{27} \) and \( n\text{-C}_{29} \) alkanes (\( R^2 = 0.064 \), \( p = 0.2578 \)), while \( n\text{-C}_{29} \) and \( n\text{-C}_{31} \) alkanes had greater shared variance than in sediments (\( R^2 = 0.716 \), \( p < 0.0001 \)). The \( \delta^2 H \) of long-chain \( n\)-alkanoic acid homologues in sediments were positively correlated with shared variance indicating common biological or environmental influences (\( n\text{-C}_{28} \) with \( n\text{-C}_{26} \) and \( n\text{-C}_{30} \), \( R^2 = 0.53 \) and 0.67, respectively, \( p < 0.0001 \) for both).

Comparing between compound classes, \( n\)-alkanoic acid and \( n\)-alkane \( \delta^2 H \) values were not significantly correlated with one another for all long-chain homologues except \( n\text{-C}_{27} \) alkane and \( n\text{-C}_{30} \) acid (\( p = 0.02 \)). This indicates that, while controls on \( \delta^2 H_{\text{wax}} \) are largely shared within compound classes, there are distinct controls on \( n\)-alkanes and \( n\)-alkanoic acids. The weighted mean \( \delta^2 H \) values for \( n\)-alkanes (\( n\text{-C}_{27} \) to \( n\text{-C}_{31} \)) and \( n\)-alkanoic acids (\( n\text{-C}_{28} \) to \( n\text{-C}_{30} \)) are within 1-2\( \% \) of the values for \( n\text{-C}_{29} \) alkane and \( n\text{-C}_{28} \) acid due to the dominance of these homologues (Fig. 6). The discussion section is focused on mean homologues (primarily \( n\text{-C}_{29} \) alkane and \( n\text{-C}_{32} \) alkanoic acid) as well as the \( \delta^2 H \) differences between long-chain \( n\text{-C}_n \) alkanes and their biosynthetic precursor \( n\text{-C}_{n+1} \) alkanoic acids.

Within individual lakes, \( n\)-alkane \( \delta^2 H \) was always more negative than \( n\)-alkanoic acid \( \delta^2 H \), but the magnitude of the \( \delta^2 H \) offset between homologues varied among sites (Fig. 7). The \( \delta^2 H \) offset between \( n\text{-C}_{29} \) alkane and \( n\text{-C}_{30} \) acid (\( \epsilon_{\text{C29-C30}} \)) ranged from \(-8\% \) (Raquette) to \(-58\% \) (Little Green; Fig. 8), and offsets between \( n\text{-C}_{27} \) alkane and \( n\text{-C}_{28} \) acid (\( \epsilon_{\text{C27-C28}} \)) were comparable. Across all sites, mean \( \epsilon_{\text{C29-C30}} \) was \(-35\% \) and \( \epsilon_{\text{C27-C28}} \) was \(-33\% \) (Table 3), similar in sign and magnitude to (but more variable than) that observed previously in temperate plants (\(-20 \) to \(-30\% \); Chikaraishi and Naraoka, 2007; Hou et al., 2007; Freimuth et al., 2017).

Lastly, we determined \( \epsilon_{\text{app}} \) values based on various source water estimates (Table 3). First, based on mean xylem water (\( \delta^2 H_{\text{wax}} = -76\% \)), which was within 1\% of our regional \( \delta^2 H_{\text{wax}} \) estimate (\(-77\% \); Section 3.2.1) we determined \( \epsilon_{\text{app}} \) for sedimentary \( n\text{-C}_{29} \) alkane (\( \epsilon_{\text{C29-xw}} = -122 \pm 6\% \), \( n = 36 \)) and \( n\text{-C}_{28} \) alkanoic acid (\( \epsilon_{\text{C28-xw}} = -95 \pm 10\% \), \( n = 34 \)). We also determined \( \epsilon_{\text{app}} \) based on OIPC-modeled \( \delta^2 H_{\text{MAP}} \) at each site (\(-76 \) to \(-72\% \)) for \( n\text{-C}_{29} \) alkane (\( \epsilon_{\text{C29-MAP}} = -123 \pm 6\% \), \( n = 36 \)) and \( n\text{-C}_{28} \) alkanoic acid (\( \epsilon_{\text{C28-MAP}} = -97 \pm 9\% \), \( n = 34 \)). Mean plant \( \epsilon_{\text{app}} \) values for \( n\text{-C}_{29} \) alkane were similar when calculated based on xylem water (\( \epsilon_{\text{C29-xw}} \)) and on OIPC-modeled \( \delta^2 H_{\text{MAP}} \) (\( \epsilon_{\text{C29-MAP}} \)), ranging from \(-106 \) to \(-109\% \) at each site (Table 3).

4. DISCUSSION

4.1. Basin-scale drivers of sedimentary \( n\)-alkyl lipid composition

Sedimentary \( n\)-alkane concentrations were remarkably consistent across the 12 sampled lakes, but long-chain \( n\)-alkanoic acid concentrations varied widely (Fig. 6). This suggests that long-chain \( n\)-alkane concentrations in sediments are relatively insensitive to basin-scale differences in terrestrial plant assemblage and wax production, whereas the opposite is true for \( n\)-alkanoic acids. In addition, the total range in sedimentary \( n\)-alkane and \( n\)-alkanoic acid \( \delta^2 H \) (22\%e and 35\%e, respectively) was larger than we would expect based on estimated differences in \( \delta^2 H_{\text{MAP}} \) among sites (\(-4\%e \), Fig. 4). Here, we assess the potential influence of basin-scale factors (specifically, vegetation assemblage and local aridity) on the observed variability in wax distributions and \( \delta^2 H_{\text{wax}} \) values in lake sediments.

4.1.1. Influence of basin-scale vegetation on sedimentary \( n\)-alkyl lipids

All of the lake basins in this survey are forested, but the mix of plant types (especially DA and EG abundance) varies considerably (Fig. 2) which could lead to differences in wax abundance and distribution, biosynthetic \( \delta^2 H \) fractionation, and timing of wax synthesis in the source vegetation contributing to the sediments in each basin. While a species-level plant survey of each catchment was beyond the scope of this study, we used the 2011 NLCD data to characterize the distribution of major plant types at the basin-level. This land cover data cannot account for differences in leaf wax production rates among plant taxa, growth forms or species, but can provide insight into whether the mix of DA and EG plants at each site influences sedimentary plant lipid distributions (e.g., Giri et al., 2015). In particular,
the abundance ratio of long-chain (n-C_{27} to n-C_{35}) alkanes to long-chain (n-C_{28} and n-C_{30}) acids in sediments varied widely among sites (0.5–7.4; Fig. 6; Table 3), and was negatively correlated with the abundance of EG plants (Fig. 9) in each lake catchment and in a 30 m buffer around the shoreline of each lake ($R^2 = 0.37–0.41$, respectively, $p < 0.0001$). When Chazy and Raquette are excluded from this analysis due to the potential influence of damming on organic matter sourcing and shoreline flooding (Section 2.1), the strength of the relationship increases further ($R^2 = 0.52–0.67$, $p < 0.0001$; Fig. 9). This suggests that sedimentary waxes are sensitive to local plant assemblages at the catchment- or shoreline-scale. EG plants in particular may be an important source of long-chain fatty acids at sites with more than ~40% EG plant cover (Fig. 9). This is consistent with observations that DA plants had significantly higher mean $\delta^3$H than EG plants (4) and sediments (3; Table 2). Further, CPIacid values were similar for sediments and EG plants (3.0 and 3.0) but slightly higher in DA plants (5.0), providing additional supporting evidence for EG-derived n-alkanoic acids in sediments.

Phylogeny is a major control on the relative abundance of n-alkyl lipids in conifers, and while n-alkanoic acids are generally less abundant than n-alkanes at the family level (Diefendorf et al., 2015), this broad trend can vary among specific families and species. One such exception is the Pinaceae family, which is well represented among common Adirondack EG species. For example, five of the seven EG species we sampled (including the genera Tsuga, Pinus, Picea and Abies) are in the Pinaceae family and had a higher abundance of n-C_{28-30} alkanic acids than n-C_{27-35} alkanes (Table 2), which could contribute to the similar n-alkane to n-acid ratios in EG plants and sediments (Tables 2 and 3). Major trends in wax production among plant functional types (e.g., DA, EG) are important guides for interpreting possible sources of sedimentary n-alkyl lipids, but these trends can vary with greater phylogenetic specificity (Diefendorf et al., 2011, 2015). Therefore, constraining the composition of source vegetation at the family- or species-level using pollen or macrofossil data can provide important insight into wax sources.

EG plant abundance in lake catchments and shorelines was closely related to the relative abundance of n-alkanoic acids and n-alkanes in sediments, but it had no significant relationship to sediment $\varepsilon_{app}$ ($p$-value > 0.8 for both $\varepsilon_{C28-MAP}$ and $\varepsilon_{C29-MAP}$). This is in contrast to a prior study that found that the composition of catchment vegetation could explain between 28% and 70% of the variability in sedimentary $\varepsilon_{app}$ from adjacent lakes, depending on the n-alkane or n-alkanoic acid homologue (Daniels et al., 2017). However, that study took place in an Arctic tundra biome where watersheds were distinguished by the dominance of either grasses or shrubs, reflecting major $\varepsilon_{app}$ differences between monocots and eudicots (Sachse et al., 2012). By contrast, the Adirondack lake catchments in this study are all forested and distinguished instead by the proportion of either DA or EG trees, which had no significant difference in $\varepsilon_{app}$ between gymnosperms and angiosperms growing in the same environment (Chikaraishi and Naraoka, 2003; Bi et al., 2005; Gao et al., 2014). One exception is a study that found distinctly larger $\varepsilon_{app}$ in evergreen conifers than in coexisting deciduous angiosperms (Pedentchouk et al., 2008), however that was in a semi-desert setting and may therefore not be applicable to the cold/continental climate and mixed EG/DA forest structure of the Adirondacks. We would therefore not necessarily expect EG vegetation cover to impact sediment $\varepsilon_{app}$.

We did find that wetland cover (including woody wetlands and emergent aquatic plants) was negatively correlated with sedimentary n-C_{28} and n-C_{30} acid $\delta^2$H$_{wax}$ values ($R^2 = 0.43$ and 0.49, respectively, $p < 0.0001$). The extent of...
wetland cover is small (accounting for between 0 and 7% of total catchment area), but nevertheless the basins with more wetland coverage had larger n-alkanoic acid $e_{app}$ values. The negative correlation may reflect the use of evaporatively $^2$H-enriched lake water or other surface waters by wetland vegetation compared to the use of soil water by trees. Meanwhile, $n$-C$_{29}$ and $n$-C$_{31}$ alkane $e_{app}$ had no relationship with the abundance of wetland cover ($p = 0.3–0.5$). This may further indicate distinct plant sources (possibly accessing different water pools) for long-chain n-alkanes and n-alkanoic acids, which is explored further in Section 4.3.

4.1.2. Influence of basin-scale aridity on sedimentary n-alkyl lipids

We examined the relationship between sedimentary wax $e_{app}$ and the evaporative $^2$H- and $^{18}$O-enrichment of lake water, which has been previously established as an indicator of local (basin-scale) aridity (Polissar and Freeman, 2010). The evaporative enrichment of lake water relative to mean annual precipitation ($e_{lw-MAP}$) has two main drivers: (1) climatic factors (including relative humidity, temperature, precipitation/evaporation ratios, and the isotopic composition of meteoric water) and (2) lake water balance (the net flux and isotopic composition of total inflows from precipitation, surface water and groundwater and total outflows from surface and ground waters and evaporation; Gat, 1995; Gibson and Edwards, 2002; Polissar and Freeman, 2010). The climatic factors influencing lake water evaporative $^2$H- and $^{18}$O-enrichment also affect soil and plant water $^2$H- and $^{18}$O-enrichment. $e_{lw-MAP}$ can therefore be used to investigate possible climatic drivers of plant wax $^2$H differences among sites. Before we assess climatic drivers of lake and plant water $^2$H-enrichment, we must also assess the effect of lake water balance. Performing a comprehensive water budget analysis including seasonal surface and ground water discharge for each lake was beyond the scope of this study. Instead we use the lake/catchment area ratio of each basin to approximate the ratio of lake evaporation to watershed runoff (e.g., Polissar and Freeman, 2010).

The 12 lakes in this study had $e_{lw-MAP}$ values ranging from 0.4 to 5.4‰ (Table 1), and we found no relationship between $e_{lw-MAP}$ (based on OIPC-modeled $\delta^{18}$O$_{MAP}$ and the mean measured lake water $\delta^{18}$O values at each site) and lake/catchment area ratio ($R^2 = 0.05, p = 0.18$). Seasonality can also have a strong impact on evaporative enrichment of surface waters (Gibson et al., 2008), but surface water data suggests this is not a major factor in the Adirondacks. The Adirondack REL has a slope of 5.1 which is typical for lake water evaporation lines in mid-latitude climates that lack strong precipitation seasonality ($<5$; Gibson et al., 2008) and tend to have relatively constant evaporation rates throughout the year. Alternatively, Adirondack lake water enrichment could reflect the complex hydrologic drivers of lake water balance. The sampled lakes were selected to represent a wide range of depositional settings (lake and watershed size, fluvial inputs and catchment relief) present in the Adirondacks and therefore basin water balance is likely to vary across the sampled sites, however we are unable to test this fully with the available hydrologic data. While we acknowledge these limitations, the first-order comparison with lake/catchment area ratios suggests that lake water enrichment may instead be driven by the catchment-scale climatic factors listed above (relative humidity, etc.), which would theoretically also affect plant source water and, as a result, plant wax $^2$H.

We test the potential link between lake water $^{18}$O-enrichment and leaf wax $^2$H fractionation by analyzing the relationship between $e_{lw-MAP}$ and $e_{app}$ in sediments (Fig. EA4). We restricted this analysis to include only the uppermost sample (1.0–1.5 cm depth) from each sediment core to reduce the temporal integration represented. The relationships between $e_{lw-MAP}$ and both $e_{C_{29-MAP}}$ and $e_{C_{28-MAP}}$ were not significant ($p$-values were 0.4 and 0.3, respectively), indicating that sedimentary $\delta^2$H$_{wax}$ is insensitive to the drivers of lake water enrichment, whether those drivers are climatic or related to lake water balance. If lake water enrichment in this study is in fact driven by basin-scale climatic factors, then the corresponding lack of sensitivity of sedimentary $\delta^2$H$_{wax}$ is consistent with observations from other forested biomes (Polissar and Freeman, 2010). This may be because in forested biomes, soil water evaporation (and resulting xylem water $^2$H-enrichment) is minimized by tree canopies and groundwater vegetation structures (e.g., Freimuth et al., 2017). By contrast, in more open ecosystem structures such as grasslands and shrublands local evaporative effects on lake water are also expressed in sedimentary $\delta^2$H$_{wax}$ and this is reflected in significant positive $e_{app}$-$e_{lw-MAP}$ slopes (Polissar and Freeman, 2010; Douglas et al., 2012; Fig. EA4).

It remains unclear which specific basin-scale factors (catchment vegetation, local aridity or other unconstrained factors) ultimately control the range of n-alkyl lipid distributions and $\delta^2$H observed across the 12 lakes. Basin-scale vegetation differences had an apparently stronger effect on n-alkanoic acids, as the abundance and $\delta^2$H of n-alkanoic acids varied more widely than n-alkanes (Figs. 6 and 7). In addition, there was a greater range of $\delta^2$H$_{wax}$ among lakes for n-C$_{29}$ alkanoic acids (35%) than n-C$_{29}$ alkanes (22%). Together, this suggests greater sensitivity of n-alkanoic acid $\delta^2$H to localized basin-scale factors. If this is the case, then n-alkanes may more faithfully record regional signals such as $\delta^2$H$_{pw}$. We explore the regional variability of sedimentary $\delta^2$H$_{wax}$ further in the next section.

4.2. Regional-scale drivers of sedimentary n-alkyl lipid composition

Here, we consider the potential influence of regional climate factors and lipid transport processes on sedimentary $\delta^2$H$_{wax}$ variation. The lakes sampled in this study were selected to maximize basin-scale differences (in forest composition, lake and catchment size and structure) and minimize regional-scale climatic differences by sampling over a relatively small area and elevation range. The OIPC-modeled $\delta^2$H$_{MAP}$ was therefore similar (~76 to ~72‰) across the 12 sampled lakes (Bowen and Revenaugh, 2003; Bowen et al., 2005; Bowen, 2017). As a first-order approximation of regional differences in plant source water, OIPC-modeled $\delta^2$H$_{MAP}$ can explain ~34–45% of the variation in sedimentary $n$-C$_{27}$, $n$-C$_{29}$ and $n$-C$_{31}$ alkane $\delta^2$H at
1 cm core depth ($R^2 = 0.42, 0.45, 0.34$; $p = 0.02, 0.02, 0.05$, respectively). While this is an approximation and cannot explain the majority of $n$-alkane $\delta^2$H variation alone, this relationship suggests that sedimentary long-chain $n$-alkane $\delta^2$H is sensitive even to modest regional precipitation signals despite the considerable basin-scale differences among sites (Table 1). By contrast, OIPC-modeled $\delta^2$H$_{\text{MAP}}$ was not significantly correlated with sedimentary $n$-$C_{28}$ or $n$-$C_{30}$ alkanoic acid $\delta^2$H. This reinforces the fidelity of $n$-alkane $\delta^2$H to regional-scale factors and suggests that $n$-alkanoic acids may be more sensitive to basin-scale factors.

Most isoscape models explain the majority of spatial variation in precipitation isotopes as a function of independent variables (including latitude, elevation, mean annual temperature and precipitation amount) that are correlated with precipitation isotope fractionation (Bowen, 2010). Of these variables, latitude can explain $\approx 30$–$40\%$ of the variation in sedimentary $n$-$C_{28}$ and $n$-$C_{31}$ alkane $\delta^2$H at 1 cm core depth ($R^2 = 0.4, 0.3$; $p = 0.02, 0.04$, respectively), possibly reflecting the latitudinal gradient in precipitation (increasing toward the southwest) across the Adirondacks (Ito et al., 2002). This is demonstrated by Wolf and Quiver lakes, which are located at lower latitudes than all other sites (Fig. 1) and had the highest OIPC-modeled $\delta^2$H$_{\text{MAP}}$ values ($\sim 73\%e$ and $\sim 72\%e$) and among the highest $n$-alkane $\delta^2$H$_{\text{wax}}$ values (Table 1; Fig. 7). Quiver lake also has considerably greater annual precipitation than other sites (Table 1). In addition, $n$-$C_{31}$ alkane $\delta^2$H was correlated with mean annual temperature ($R^2 = 0.48; p = 0.01$). Elevation was not correlated with sedimentary $\delta^2$H$_{\text{wax}}$ as expected given that the 12 sampled sites were selected to minimize elevation effects on $\delta^2$H$_{\text{wax}}$ and therefore $\delta^2$H$_{\text{wax}}$. By contrast, neither latitude nor elevation were significantly correlated with $n$-$C_{28}$ or $n$-$C_{30}$ alkanoic acid. This further supports the above evidence suggesting that sedimentary $n$-alkanoic acids are more sensitive to basin-scale factors such as catchment forest composition (see Section 4.1), or that they reflect different source organisms from $n$-alkanes (see Section 4.3).

Relatively invariant long-chain $n$-alkane concentrations across all lakes (Fig. 6), despite the wide range in catchment vegetation mix (Fig. 2) suggests regional-scale integration of long-chain $n$-alkanes. By contrast, $n$-alkanoic acid concentrations vary widely among lakes, suggesting greater sensitivity to basin-scale factors or heterogenous sources. If this contrasting local vs. regional sensitivity for $n$-alkanoic acids and $n$-alkanes is robust, then measuring $\delta^2$H$_{\text{wax}}$ from both compounds may have potential to yield additional environmental information. The $\delta^2$H offset between $n$-$C_{29}$ alkane and the biosynthetic precursor $n$-$C_{30}$ alkanoic acid ($\delta^2$H$_{\text{wax}}$C$_{29}$-$C_{30}$) varied widely (from $-8$ to $-58\%e$) among lakes and affords an opportunity to investigate the underlying drivers of this feature.

4.3. Do $n$-alkanes and $n$-alkanoic acids record the same water signal?

In Adirondack lake sediments, $n$-alkanoic acid $\delta^2$H values were more positive than $n$-alkane $\delta^2$H, as expected based on prior observations on trees in temperate forested settings (Chikaraiishi and Naraoka, 2007; Hou et al., 2007; Freimuth et al., 2017). It was unexpected, however, to find that the magnitude of the $\delta^2$H offset between corresponding $n$-alkanes and their biosynthetic precursor $n$-alkanoic acids ($\delta^2$H$_{\text{wax}}$C$_{29}$-$C_{30}$) ranged so widely among lakes (Fig. 8). For instance, a prior study tracked seasonal changes in $\delta^2$H$_{\text{wax}}$ in five DA tree species occupying the same temperate forest and found that once spring leaves mature, $\delta^2$H$_{\text{wax}}$ values of approximately $-20\%e$ are established in all species (Freimuth et al., 2017). If sedimentary long-chain $n$-alkanes and $n$-alkanoic acids in the Adirondacks are both derived mainly from tree sources, we would therefore expect sedimentary $\delta^2$H$_{\text{wax}}$ values of approximately $-20\%e$, but instead values ranged from $-8$ to $-58\%e$ (Fig. 8). One explanation for this could be that sedimentary $n$-alkanes and $n$-alkanoic acids are sourced from different organisms. While long-chain $n$-alkanes and $n$-alkanoic acids are generally derived from terrestrial higher plants (Ficken et al., 2000; Bush and McInerney, 2013), $n$-$C_{28}$ and $n$-$C_{30}$ alkanoic acids in lake sediments can also reflect aquatic source organisms (whether aquatic plants or microalgae) that access lake water (Polissar et al., 2014; van Bree et al., 2018). Recent studies including multiple $n$-alkyl lipids have also found evidence for variable temporal and spatial sourcing between functionlized lipids and $n$-alkanes (e.g., more rapid and local sourcing of $n$-alkanoic acids compared to $n$-alkanes; Hemingway et al., 2016).

We explored sourcing differences between $n$-alkanoic acids and $n$-alkanes in the context of bulk sediment organic matter. We observed a strong positive correlation between bulk sediment C/N and $\delta^2$H$_{\text{wax}}$ values ($R^2 = 0.7, p < 0.0001$) in Adirondack lakes, wherein $\delta^2$H$_{\text{wax}}$ was largest in lakes with low C/N and thus greater aquatic organic matter input (excluding one C/N outlier from Little Green; Fig. 8). By contrast, the relationship between $\delta^2$H and C/N was far weaker ($R^2 = 0.17, p = 0.02$), indicating that this relationship is specific to the longer chain-lengths. Emergent and submerged aquatic plants tend to produce higher concentrations of total $n$-alkanoic acids ($n$-$C_{14-34}$) than total $n$-alkanes ($n$-$C_{19-35}$), and while submerged aquatic plants generally have $n$-alkanoic acid $C_{\text{max}}$ between $C_{20-24}$, emergent aquatics tend to have higher and more variable $C_{\text{max}}$ ranging from $C_{22-32}$ (Ficken et al., 2000). C/N ratios are generally $\geq 20$ in terrestrial vascular land plants, range widely in emergent and submerged aquatic plants (from approximately 10 to $>40$), and are generally lowest (approximately 4–10) in lacustrine algae (Cloern et al., 2002; Meyers, 2003). The lakes in this study had mean C/N ratios between 12 and 16 (Table 1), suggesting mixed organic matter sourcing from algae and aquatic and terrestrial plants. It is therefore possible that the relationship between $\delta^2$H$_{\text{wax}}$ and C/N is linked to lipids sourced from emergent or submerged aquatic plants and their use of lake water. Long-chain $n$-alkanoic acids can be sourced from lacustrine microalgae (Volkman et al., 1998; Ladd et al., 2018; van Bree et al., 2018), which could potentially account for lower (aerobic-derived) C/N sediments having the largest $\delta^2$H$_{\text{wax}}$ values, reflecting contrasting (terrestrial or aquatic) water sources for $n$-alkanes and $n$-alkanoic acids, respectively.

The abundance ratios of total long-chain $n$-alkanes to $n$-alkanoic acids suggested EG plants as a potentially impor-
tant source for long-chain n-alkanoic acids in sediments as well (Section 4.1.1). We note, however, that EG plants sampled in this study are distinguished by having a higher abundance ratio of n-C30 acid relative to n-C28 acid on average (3.6), whereas the opposite is true for both DA plants (0.3) and sediments (which ranged from 0.34 to 0.65; Fig. 6). The abundance ratio of n-C30 to n-C28 acid was positively correlated with both C/N and δ29C-C30 values (\( R^2 = 0.46 \) and 0.45, respectively, \( p < 0.0001 \)). This supports an aquatic source for n-alkanoic acids because in sediments where terrestrial organic matter contributions are minimal (lowest C/N ratios) and an EG plant source of n-alkanoic acids in particular is unlikely (based on low n-C30 to n-C28 acid ratios), n-C29-C30 values were also largest, perhaps reflecting contrasting source water in aquatic-derived n-alkanoic acids and terrestrial plant-derived n-alkanes.

4.4. \( \varepsilon_{\text{app}} \) in the Adirondacks compared with other biomes

Regional \( \varepsilon_{\text{app}} \) estimates for the Adirondacks (based on OIPC-modeled \( \delta^2H_{\text{MAP}} \) at each site) were \(-123 \pm 6\%e \) (\( n = 36 \)) for \( \varepsilon_{\text{C29-MAP}} \) and \(-97 \pm 10\%e \) (\( n = 34 \)) for \( \varepsilon_{\text{C28-MAP}} \) (Table 3). Adirondack \( \varepsilon_{\text{C29-MAP}} \) values were smaller than \( \varepsilon_{\text{C29-MAP}} \) from comparable lake sediments in cool and temperate forested sites (Table EA2; Fig. EA5) in Europe, North America and Asia (\(-137 \) to \(-131\%e, \) Sachse et al., 2004; Polissar and Freeman, 2010; Seki et al., 2010), perhaps due to differences in precipitation seasonality among sites. The mixed (DA/EG) forest composition in the Adirondacks is unlikely to account for smaller \( \varepsilon_{\text{app}} \) in the Adirondacks because there was no significant difference in \( \delta^2H_{\text{wax}} \) or \( \delta^2H_{\text{wax}} \) between EG and DA plants in this study (Sections 3.2.2 and 3.4) or others (Chikaraishi and Naraoka, 2003; Sachse et al., 2004; Gao et al., 2014). We also compared available lake surface sediment \( \varepsilon_{\text{app}} \) data by biome (based on the BIOME4 model of Kaplan et al. (2003), see Table EA2), and found that \( \varepsilon_{\text{C29-MAP}} \) values overlap in all biomes represented. Mean \( \varepsilon_{\text{C29-MAP}} \) values ranged from \(-130\%e \) in temperate forests and \(-129\%e \) in Alaskan tundra to \(-125\%e \) in tropical forest, grass and shrublands, \(-120\%e \) in cool/cold forests and \(-118\%e \) in temperate grass and shrublands (Table EA2; Fig. EA5). By comparison, mean \( \varepsilon_{\text{C28-MAP}} \) values were similar for lakes in cool/cold, temperate and tropical settings (both forests and grass or shrublands), ranging from \(-105 \) to \(-95\%e \), but distinct from the Alaskan tundra (\(-127\%e, \) Daniels et al., 2017; Table EA2 and Fig. EA5). Two main insights about n-alkyl lipids in lake sediments result from this comparison. First, across major climate zones, mean \( \varepsilon_{\text{C29-MAP}} \) values are similar (ranging \(-10\%e \)), whereas mean \( \varepsilon_{\text{C28-MAP}} \) values are more variable (ranging \(-30\%e \)). Second, in all major climate zones aside from the Alaskan tundra, \( \varepsilon_{\text{app}} \) values are smaller for n-C25 alkanoic acids than for n-C28 alkanes.

Numerous calibration studies have sampled lake surface sediments along gradients in climate and vegetation in order to evaluate their effects on sedimentary \( \delta^2H_{\text{wax}} \). By contrast, this study aimed to understand the influence of basin-scale effects on sedimentary \( \delta^2H_{\text{wax}} \) by sampling 12 lakes in the same region with minimal differences in climate and vegetation (all catchments were forested, with a range of DA/EG abundance ratios; Fig. 2). Across the Adirondack sites, estimated \( \delta^2H_{\text{MAP}} \) ranged by less than 10\%e, while \( \delta^2H_{\text{wax}} \) ranged by 22 to 35\%e for n-alkanes and n-alkanoic acids. Two other studies have taken a comparable approach, sampling 24 lakes in the Alaskan tundra (Daniels et al., 2017) and 20 lakes in the Central American and Mexican tropics (Douglas et al., 2012). In the Alaskan tundra, \( \delta^2H_{p} \) differences among sites are likely minimal (the sampled lakes are within a \(~500 \text{ km}^2\) area), while \( \delta^2H_{\text{wax}} \) ranged by up to 37\%e for n-alkanoic acids and 32\%e for n-alkanes (Daniels et al., 2017). In the tropics, the estimated total range in \( \delta^2H_{p} \) was 25\%e, while \( \delta^2H_{\text{wax}} \) ranged by 60\%e for n-alkanoic acids and 56\%e for n-alkanes (Douglas et al., 2012). The \( \delta^2H_{\text{wax}} \) variability in the tropics was nearly twice as large as in the Adirondacks or Alaskan tundra. The variability in \( \delta^2H_{\text{wax}} \) in the tropics is largely explained by the aridity index (the ratio of mean annual precipitation to potential evapotranspiration (MAP/PET); Douglas et al., 2012), which is not a significant control in the Adirondacks (see Section 4.1.2) or the Alaskan tundra, where basin-scale vegetation effects may be a controlling factor (Daniels et al., 2017). Together these studies provide preliminary estimates of the maximum expected basin-to-basin variability in lake sediment \( \delta^2H_{\text{wax}} \), which is approximately 20–30\%e due to basin-scale vegetation effects in regions with high MAP/PET, or approximately 50–60\%e due to basin-scale aridity effects in regions with low MAP/PET.

These three studies also measured \( \delta^2H_{\text{wax}} \) on both n-alkanes and n-alkanoic acids in the same samples and therefore offer an opportunity to compare \( \varepsilon_{\text{C29-C30}} \) across biomes. Mean \( \varepsilon_{\text{C29-C30}} \) was distinct among climates, with smaller values in the tropics (\(-7 \pm 10\%e, n = 11; \) Douglas et al., 2012), intermediate values in the Alaskan tundra (\(-17 \pm 10\%e, n = 16; \) Daniels et al., 2017) and highest values in this study (\(-35 \pm 12\%e, n = 12; \) ANOVA, \( R^2 = 0.55, p < 0.0001 \)). The trends in lake sediments reflect observations on n-alkanes and n-alkanoic acids in plants, where tropical forests had a mean \( \varepsilon_{\text{C29-C30}} \) of only \(-3 \pm 17\%e \) (\( n = 64 \) individuals, 16 species; Feakins et al., 2016) compared with \( \varepsilon_{\text{C29-C30}} \) of \(-20 \) to \(-30\%e \) for temperate forests (Chikaraishi and Naraoka, 2007; Hou et al., 2007; Freimuth et al., 2017). It is unclear what controls the differences in \( \varepsilon_{\text{C29-C30}} \) between temperate and tropical regions, but future studies including both n-alkanes and n-alkanoic acids in plants and sediments could test climatic and vegetation effects with potential implications for reconstructing such effects in the past using paired \( \delta^2H_{\text{wax}} \) on both compounds.

5. CONCLUSIONS

This study measured the \( \delta^2H_{\text{wax}} \) signal in lake surface sediments throughout a cool mixed forest biome, the Adirondack Mountains, to determine the degree to which catchment-specific factors affect the fidelity of plant waxes as tracers of water isotopes. Based on plant water and surface water isotope measurements, plant source waters reflect annually-integrated precipitation values and do not vary systematically among sites. If sedimentary plant wax
primarily reflects plant source water, then we would also expect δ^2H_{wax} to be similar among the 12 lakes sampled. However, sedimentary δ^2H_{wax} values ranged by up to 22‰ for n-C_{29} alkane and 35‰ for n-C_{30} alkanoic acid. The abundance of long-chain n-alkanes in sediments was remarkably consistent among lakes, despite the range of forest assemblages and the considerable differences in n-alkane production between DA and EG trees. By contrast, the abundance of long-chain n-alkanoic acids in sediments varied by an order of magnitude among different lakes. The extent of evergreen vegetation in lake shorelines was correlated with the abundance ratio of long-chain n-alkanes relative to n-alkanoic acids, which may indicate sourcing of n-alkanoic acids in part from EG trees. These data suggest that sedimentary n-alkanoic acids may be more sensitive than n-alkanes to basin-scale factors such as catchment vegetation cover.

The δ^2H offset between n-C_{29} alkane and the biosynthetic precursor n-C_{30} alkanoic acid (ε_{C_{29}-C_{30}}) ranged from −8 to −58‰ among sites and was strongly correlated with sediment C/N ratios. This relationship supports an aquatic source for long-chain n-alkanes. We found larger ε_{app} for n-alkanes (−123‰) than for n-alkanoic acids (−97‰). In the absence of a gradient in δ^2H_{wax} over the sampled region, we observed higher site-to-site variability in long-chain n-alkanoic acid abundance and δ^2H values compared to long-chain n-alkanes. The evidence for basin-scale effects on sedimentary n-alkanoic acids suggests that they are primarily sourced from within a lake catchment rather than mixed at a regional scale. By contrast, n-alkanes were relatively insensitive to basin-scale factors such as forest composition, which reinforces their utility as tracers for regional-scale δ^2H_{wax} from lake sediments in similar settings.

ACKNOWLEDGEMENTS

We thank the New York State Department of Environmental Conservation, especially Jonathan DeSantis and Barbara Lucas-Wilson, for sampling permits (TRP #2349/10310). Daphne Taylor and Natasha Karninski at the SUNY-ESF Newcomb campus provided access to Wolf Pond and the Adirondack Mountain Club granted access to Heart Lake. Thanks go to Elliot Boyd, Helen Eifert and Thomas Faraday for field sampling assistance, and to Andrew Diefendorf for designing and building refrigerated core storage and an essential core splitter. Paul McKenzie provided temporary core storage and Kelly Grogan assisted with sample preparation. This research was supported by the US National Science Foundation (EAR-1229114 to AFD, EAR-1636740 to AFD and TVL and EAR-1636744 to AKS) and by a University of Cincinnati Research Council award to EJF.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gca.2019.08.026.

REFERENCES


Cloern J. E., Canuel E. A. and Harris D. (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of...


Hemingway J. D., Scheufele E., Dinga B. J., Pryer H. and Galy V. V. (2016) Multiple plant-wax compounds record differential


*Associate editor: Ann Pearson*