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Abstract—Under minimal regularity assumptions, we establish
a family of information-theoretic Bayesian Cramér-Rao bounds,
indexed by probability measures that satisfy a logarithmic
Sobolev inequality. This family includes as a special case the
known Bayesian Cramér-Rao bound (or van Trees inequal-
ity), and its less widely known entropic improvement due to
Efroimovich. For the setting of a log-concave prior, we obtain
a Bayesian Cramér-Rao bound which holds for any (possibly
biased) estimator and, unlike the van Trees inequality, does not
depend on the Fisher information of the prior.

I. INTRODUCTION

Throughout, we let P(Rn) denote the set of probability
measures on Rn, equipped with the Borel σ-algebra. For
µ ∈ P(Rn), we abuse notation slightly and define

Var(µ) := inf
c∈Rn

∫

|x− c|2dµ(x),

where | · | denotes Euclidean length on Rn. Thus, Var(µ)
is the usual variance in dimension n = 1; it is the trace of
the covariance matrix for arbitrary dimension n. A probability
measure µ ∈ P(Rn) is said to be log-concave if dµ(x) =
e−V (x)dx for convex V . All logarithms are taken with respect
to the natural base.

Our results are best stated within the general framework of
parametric statistics. To this end, we let (X ,F , Pθ; θ ∈ Rn) be
a dominated family of probability measures on a measurable
space (X ,F); with dominating σ-finite measure λ. To each
Pθ, we associate a density f( · ; θ) (w.r.t. λ) according to

dPθ(x) = f(x; θ)dλ(x).

For sufficiently smooth densities, the Fisher information of the
parametric family (Pθ) evaluated at θ is defined as

I(θ) :=

∫

X

|∇θf(x; θ)|2

f(x; θ)
dλ(x),

where ∇θ denotes gradient with respect to θ. Note that I is
distinct from the information theorist’s Fisher information J ,
defined as

J (µ) :=

∫

Rn

|∇ϱ(θ)|2

ϱ(θ)
dθ

for a probability measure µ ∈ P(Rn) having density ϱ with
respect to Lebesgue measure. In the special case where θ is a
location parameter, the two quantities coincide.

For a real-valued parameter θ ∈ R and an observation X ∼
Pθ the basic question of parametric statistics is how well can

one estimate θ from X . Here, the Cramér-Rao bound is of
central importance in proving lower bounds on L2 estimation
error, stating that

Var(θ̂(X)) = E(θ − θ̂(X))2 ≥
1

I(θ)
(1)

for any unbiased estimator θ̂. The assumption of unbiased-
ness is quite restrictive, especially since unbiased estimators
may not always exist, or may be less attractive than biased
estimators for any one of a variety of reasons (computability,
performance, etc.). Under the assumption that the parameter
θ is distributed according to some prior π ∈ P(R), the so-
called Bayesian Cramér-Rao bound [1], [2] (also known as the
van Trees inequality) states, under mild regularity assumptions,
that

E(θ − θ̂(X))2 ≥
1

EπI(θ) + J (π)
, (2)

where the expectation is over θ ∼ π and, conditioned on
θ, X ∼ Pθ. As noted by Tsybakov [3, Section 2.7.3],
this inequality is quite powerful since it does not impose
any restriction on unbiasedness, is relatively simple to apply,
and often leads to sharp results (including sharp constants).
Tsybakov states that the primary disadvantage of (2) is that
it applies only to L2 loss. Although it does not appear to be
widely known, this is actually not true. Indeed, Efroimovich
proved in [4] that

1

2πe
e2h(θ|X) ≥

1

EπI(θ) + J (π)
, (3)

which is stronger than (2) by the max-entropy property of
Gaussians. Efroimovich’s inequality can be rearranged to give
an upper bound on the mutual information

I(π;Pθ) ≡ I(θ;X)

:=

∫∫

f(x; θ) log
f(x; θ)

∫

Rn f(x; θ′)dπ(θ′)
dλ(x)dπ(θ).

Such a general upper bound on I(π;Pθ) can be useful in
settings beyond those where (2) applies. For example, it
can be used to give one direction of the key estimate in
Clarke and Barron’s work showing that Jeffrey’s prior is least
favorable [5]. It can also be applied to characterize Bayes risk
measured under losses other than L2 when coupled with a
lower bound on mutual information (see, e.g., [6]). We remark
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that several systematic techniques exist for lower bounding
the mutual information I(π;Pθ) in terms of Bayes risk (e.g.,
Fano’s method, or the Shannon lower bound for the rate
distortion function), so finding a good upper bound is often
the challenge. A typical heuristic is to bound I(π;Pθ) from
above by the capacity of the channel θ '→ X ∼ Pθ, but this
method has the disadvantages that (i) it discards information
about the prior π; and (ii) capacity expressions are only
explicitly known for very special parametric families (Pθ)
(e.g., Gaussian channels). Efroimovich’s inequality overcomes
both of these obstacles, but has the undesirable property of
being degenerate when J (π) = +∞. This can be a serious
disadvantage in applications since many natural priors have
infinite Fisher information, for example uniform measures on
convex bodies1.

Contributions

We make two main contributions, which we describe in
rough terms here. Precise statements are given in Section
II. First, we establish a family of Bayesian Cramér-Rao-type
bounds indexed by probability measures that satisfy a logarith-
mic Sobolev inequality on Rn. This generalizes Efroimovich’s
inequality (3), which corresponds to the special case where
the reference measure is taken to be Gaussian. Second, we
specialize the first result to obtain an explicit Bayesian Cramér-
Rao-type bound under the assumption of a log-concave prior
π. In dimension one, the result implies

e2h(θ|X) ≥
4

e2EπI(θ)
≥

1

2EπI(θ)
, (4)

provided Var(π) ≥ 1/EπI(θ); a correction is needed if this
condition is not met2 (see Theorem 2 for a precise statement).
In particular,

E(θ − θ̂(X))2 ≥ Var(θ − θ̂(X)) ≥ C/EπI(θ)

holds under our assumptions for a universal constant C,
regardless of whether θ̂ is biased. This should be compared
to the classical Cramér-Rao bound: morally speaking, (1)
continues to hold (up to a modest constant factor) for any
estimator θ̂, provided we are working with a log-concave
prior and Var(π) ≥ 1/EπI(θ). Note that the crucial (and
somewhat surprising) advantage relative to (3) is that the
Fisher information J (π) does not appear.

Organization

The sequel is organized as follows: main results, along with
assumptions and brief discussion are provided in Section II.
The proofs of all results can be found in Section III.

1Mollification may be a useful heuristic to compensate for infinite J (π)
in low dimensions, but this problem becomes more fundamental in high
dimensions where mollification picks up dimensional dependence, and alters
the boundary of a set where the measure concentrates.

2It is easy to see why a condition like this is needed: if there were no
such assumption, then we could let π approximate a point mass, effectively
showing that the Cramér-Rao bound holds – up to an absolute constant – for
any estimator. This clearly can not be true (consider the trivial constant biased
estimator θ̂ not equal to θ).

II. MAIN RESULTS

A. Assumptions

As is typical of Cramér-Rao-type bounds, our main results
require us to assume some mild regularity. In particular, for
a given measure µ ∈ P(Rn), we will refer to the following
standard condition on the densities associated to (Pθ):

∫

X
∇θf(x; θ)dλ(x) = 0, µ− a.e. θ, (5)

where ∇θ denotes the gradient with respect to θ. We remark
that this holds whenever the orders of differentiation with
respect to θ and integration with respect to x can be exchanged
(Leibniz rule).

B. Statement of Results

Our first main result establishes a family of Cramér-Rao-
type bounds on the mutual information I(π;Pθ) in terms
of logarithmic Sobolev inequalities on Rn. To this end, we
recall the standard definitions of relative entropy and relative
Fisher information (the parlance in which logarithmic Sobolev
inequalities are framed). Consider µ, ν ∈ P(Rn), with ν ≪ µ
and dν = hdµ. The entropy of ν, relative to µ, is defined as

Dµ(ν) ≡ Dµ(h) :=

∫

Rn

h log hdµ.

If the density h is weakly differentiable, the Fisher information
of ν, relative to µ, is defined according to

Iµ(ν) ≡ Iµ(h) :=

∫

Rn

|∇h|2

h
dµ.

If h is not weakly differentiable, we adopt the convention that
Iµ(h) = +∞ so that our expressions make sense even in the
general case.

A probability measure µ is said to satisfy a logarithmic
Sobolev inequality with constant C > 0 (or, LSI(C) for short)
if, for all probability measures ν ≪ µ,

Dµ(ν) ≤
C

2
Iµ(ν).

The standard Gaussian measure dγ(x) := (2π)−n/2e−|x|2/2dx
on Rn is a prototypical example of a measure that satisfies an
LSI, and does so with constant C = 1. More generally, if
dµ(x) = e−V (x)dx with Hess(V ) ≥ K · In for K > 0 and
In the n× n identity matrix, then µ satisfies LSI(1/K); this
result is known as the Bakry-Émery theorem [7], and we shall
need it later in the proof of Theorem 2.

With these definitions in hand, our first result is the follow-
ing:

Theorem 1. Let µ ∈ P(Rn) satisfy LSI(C) and assume the

regularity condition (5) holds. For any probability measure

π ≪ µ on Rn,

I(π;Pθ) +Dµ(π) ≤
C

2

(

Iµ(π) +

∫

Rn

I(θ)dπ(θ)

)

. (6)
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Inequality (6) improves the LSI for µ. Indeed, taking Pθ

independent of θ renders I(π;Pθ) = I(θ) = 0, so that the LSI
for µ is recovered. However, the proof of (6) follows from a
relatively simple application of the LSI for µ and some basic
analysis, so the two inequalities should be viewed as being
formally equivalent in this sense.

Clearly, the statement of Theorem 1 allows us the freedom
to choose the measure µ so as to obtain the tightest possible
bound on I(π;Pθ). However, a notable example is obtained
when µ is taken to be the standard Gaussian measure on Rn.
In this case, upon simplification we obtain

1 + log(2πe) ≤
2

n
h(θ|X) + J (π) +

∫

Rn

I(θ)dπ(θ). (7)

Of note, (7) is not invariant to rescalings of the parameter θ.
So, just as one passes from Lieb’s inequality to the entropy
power inequality, we may optimize over all such scalings to
obtain the following multidimensional version of (3):

1

2πe
exp

(

2

n
h(θ|X)

)

≥
n

J (π) +
∫

Rn I(θ)dπ(θ)
.

Remark 1. Efroimovich’s work [4] contains a slightly

stronger multidimensional form, stated in terms of determi-

nants of Fisher information matrices. As defined, our Fisher

information quantities I and J correspond to traces of

the same matrices, leading to a weaker inequality by the

arithmetic-geometric mean inequality. Nevertheless, the two

inequalities should really be regarded as essentially equiv-

alent, as they are both direct consequences of the one-

dimensional inequality (where the two results coincide). See

[4, Proof of Theorem 5] for details. It is unclear whether a

similar claim holds for non-Gaussian µ in (6).

We remark that (3) was discovered by Efroimovich in 1979,
but does not appear to be widely known (we could not find
a statement of the result outside the Russian literature). At
the time of Efroimovich’s initial discovery of (3), the study of
logarithmic Sobolev inequalities was just getting started, being
largely initiated by Gross’s work on the Gaussian case in 1975
[8]. In particular, the derivation of (3) (and, less generally, the
van Trees inequality) from the Gaussian logarithmic Sobolev
inequality does not appear to have been observed previously.
So, from a conceptual standpoint, one contribution of Theorem
1 is that it shows how Efroimovich’s result (and the weaker
van Trees inequality) emerges as one particular instance in
the broader context of LSIs which, to our knowledge, have
not found direct use in parametric statistics beyond their
implications for measure concentration (see, e.g., [9]).

A nontrivial consequence of Theorem 1 is a general Cramér-
Rao-type bound on I(π;Pθ), assuming only that π is log-
concave. Specifically, our second main result is the following:

Theorem 2. Assume the parametric family (Pθ) satisfies (5)
for µ equal to Lebesgue measure. Let dπ(x) = e−V (x)dx
satisfy Hess(V ) ≥ K · In for some scalar K ≥ 0, where In

is the n × n identity matrix. Define P := 1
nVar(π), J :=

1
n

∫

Rn I(θ)dπ(θ). It holds that

I(π;Pθ) ≤ n · φ
(

√

(KP )2 + JP −KP
)

, (8)

where

φ(x) :=

{

x if 0 ≤ x < 1

1 + log x if x ≥ 1.

Remark 2. The one-dimensional inequality (4) follows di-

rectly from Theorem 2 for K = 0, combined with the

entropy lower bound for log-concave random variables h(θ) ≥
1
2 log(4Var(θ)) due to Marsiglietti and Kostina [10]. Similar

statements hold for general dimension n, albeit with a correc-

tion factor that depends on dimension (no correction is needed

if the hyperplane conjecture is true; see [11]).

The upper bound (8) should be viewed as a function of
two nonnegative quantities: the products KP and JP . By the
Brascamp-Lieb inequality [12], we always have KP ≤ 1;
this quantity only depends on the prior π and distills what
quantitative information is known about its degree of log-
concavity. In particular, if π is only known to be log-concave,

then K = 0 gives I(π;Pθ) ≤ n · φ
(√

JP
)

. In the other

extreme case, if KP = 1 (e.g., if π is scaled standard
Gaussian), we have the slightly improved bound I(π;Pθ) ≤
n·φ

(√
1 + JP − 1

)

. These bounds both essentially behave as
n
2 log(JP ) for JP modestly large, so knowledge of KP (i.e.,
additional information about the measure π) only significantly
affects the behavior of the upper bound (8) for JP small.
To be precise, for JP near zero, the upper bound behaves
as nJ/K when K > 0, and n

√
JP if K = 0. Applications

in asymptotic statistics consider a sequence of observations
X1, . . . , Xm, conditionally independent given θ. In this case,
J grows linearly with m, so that the logarithmic behavior of
the bound dominates, regardless of what is known about K.

Let us now make a brief observation on the sharpness
of Theorem 2. To this end, consider the classical Gaussian
sequence model X = θ + Z, where Z ∼ N(0,σ2In) is
independent of θ ∼ π. In this case, the typical quantity

of relevance is the signal-to-noise ratio snr := Var(π)
nσ2 =

n−2Var(π)
∫

I(θ)dπ(θ), in terms of which we have the sharp
upper bound

I(π;Pθ) ≤
n

2
log(1 + snr) =

n

2
log(1 + JP ). (9)

Thus, in view of the previous discussion, we clearly see that
Theorem 2 provides a sharp estimate in the regime where JP
is moderately large. We do not yet know whether the bound

I(π;Pθ) ≤ n · φ
(√

JP
)

is sharp for small JP and K = 0,

but we believe that it should be.
Finally, we remark that all results have correct dependence

on dimension for product measures.

C. Remarks on Applications

Applications of Cramér-Rao-type bounds are numerous,
and our results will generally apply in Bayesian settings. In
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particular, we believe corollaries such as (4) may be especially
useful for proving lower bounds on Bayes risk when the
prior π is log-concave. Of course, since mutual information
is invariant to one-to-one transformations of the arguments,
Theorem 2 holds even when π is not log-concave, but one must
reparameterize the problem data in terms of a log-concave
proxy for π for purposes of computing the quantities J, P (a
nontrivial task in general). That being said, we remark that
our results are quite general in form, and therefore should not
be interpreted as being restricted to applications in parametric
statistics.

III. PROOFS

This section outlines the proofs of main results. Omitted
details can be found in [13].

A. Proof of Theorem 1

We may assume that the RHS of equation (6) is finite;
else the claim is trivially true. Let dπ = hdµ, and note
that h(θ)f(x; θ) is the joint density of (π, Pθ) with respect
to µ × λ. Define f(x) =

∫

Rn f(x; θ)dπ(θ), and hx(θ) =
h(θ)f(x; θ)/f(x), which is well-defined (π × λ)-a.e. Now,
since µ satisfies LSI(C), we have for λ-a.e. x

∫

Rn

hx(θ) log hx(θ)dµ(θ) ≤
C

2

∫

Rn

|∇hx(θ)|2

hx(θ)
dµ(θ),

where we write ∇ in place of ∇θ for brevity. Integrating both
sides with respect to the density fdλ, we have

∫

X
f(x)

(
∫

Rn

hx(θ) log hx(θ)dµ(θ)

)

dλ(x)

≤
C

2

∫

X
f(x)

(
∫

Rn

|∇hx(θ)|2

hx(θ)
dµ(θ)

)

dλ(x).

Now, observe that

∫

X
f(x)

(
∫

Rn

|∇hx(θ)|2

hx(θ)
dµ(θ)

)

dλ(x)

=

∫

X

∫

Rn

|∇(f(x)hx(θ))|2

f(x)hx(θ)
dµ(θ)dλ(x)

=

∫

X

∫

Rn

|∇(f(x; θ)h(θ))|2

f(x; θ)h(θ)
dµ(θ)dλ(x)

=

∫

X

∫

Rn

(

f(x; θ)
|∇h(θ)|2

h(θ)
+ 2∇h(θ) ·∇f(x; θ)

+h(θ)
|∇f(x; θ)|2

f(x; θ)

)

dµ(θ)dλ(x)

= Iµ(π) +

∫

Rn

I(θ)dπ(θ)

+ 2

∫

X

∫

Rn

∇h(θ) ·∇f(x; θ)dµ(θ)dλ(x),

where the penultimate identity follows by the product rule
and expanding the square. The final cross term is integrable;
indeed, Cauchy-Schwarz yields

∫

X

∫

Rn

|∇h(θ) ·∇f(x; θ)|dµ(θ)dλ(x)

≤
n
∑

i=1

∫

X

∫

Rn

|∂θih(θ)∂θif(x; θ)|dµ(θ)dλ(x)

≤
n
∑

i=1

(
∫

X

∫

Rn

|∂θih(θ)|
2

h(θ)
f(x; θ)dµ(θ)dλ(x)

)1/2

×
(
∫

X

∫

Rn

|∂θif(x; θ)|
2

f(x; θ)
h(θ)dµ(θ)dλ(x)

)1/2

≤

√

Iµ(π)

∫

Rn

I(θ)dπ(θ).

The exchange of integrals to obtain the last line is justified by
Tonelli’s theorem. Therefore, by Fubini’s theorem,

∫

X

∫

Rn

∇h(θ) ·∇f(x; θ)dµ(θ)dλ(x)

=

∫

Rn

∇h(θ) ·

(
∫

X
∇f(x; θ)dλ(x)

)

dµ(θ) = 0,

where the last equality follows by the regularity assumption.
Summarizing, we have

∫

X
f(x)

(
∫

Rn

|∇hx(θ)|2

hx(θ)
dµ(θ)

)

dλ(x)

= Iµ(π) +

∫

Rn

I(θ)dπ(θ).

To finish, we observe that
∫

X
f(x)

(
∫

Rn

hx(θ) log hx(θ)dµ(θ)

)

dλ(x)

=

∫

X

∫

Rn

f(x)hx(θ) log hx(θ)dµ(θ)dλ(x)

=

∫

X

∫

Rn

f(x; θ)h(θ) log
hx(θ)

h(θ)
dµ(θ)dλ(x)

+

∫

X

∫

Rn

f(x; θ)h(θ) log h(θ)dµ(θ)dλ(x)

=

∫

X

∫

Rn

f(x; θ)h(θ) log
f(x; θ)

f(x)
dµ(θ)dλ(x)

+

∫

Rn

h(θ) log h(θ)dµ(θ)

= I(π;Pθ) +Dµ(π),

which proves the claim.

B. Proof of Theorem 2

We require the following proposition, the proof of which is
the most difficult part of the argument. The ideas of the proof
are independent from Theorem 2, so it is deferred to [13] due
to space constraints. The key idea is to show the existence of
the specified mδ using the Banach fixed-point theorem. The
proposition itself may be of independent interest.
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Proposition 1. Let ρ = e−V be a probability density on Rn,

with V convex.

(i) For each δ > 0, there exists a unique mδ ∈ Rn such that
∫

Rn

xe−δ|x−mδ|
2/2ρ(x)dx = mδ

∫

Rn

e−δ|x−mδ|
2/2ρ(x)dx.

(ii) For mδ as in part (i), and each δ ≥ 0

− log

(
∫

Rn

e−δ|x−mδ|
2/2ρ(x)dx

)

≤

{

δ
2Var(ρ) if 0 ≤ δ < n

Var(ρ) ,
n
2

(

1 + log
(

δ
nVar(ρ)

))

if δ ≥ n
Var(ρ) .

To begin the proof, consider the log-concave density
dπ(x) = e−V (x)dx, where Hess(V ) ≥ K · In. For δ > 0,
let µδ be the probability measure with density

dµδ(x) = C−1
δ e−V (x)−δ|x−mδ|

2/2dx,

where Cδ =
∫

e−V (x)−δ|x−mδ|
2/2dx is a normalizing constant

and mδ ∈ Rn is such that
∫

Rn xdµδ = mδ , which exists as
a consequence of Proposition 1(i). Note that π has density
Cδeδ|x−mδ|

2/2 with respect to µδ . Therefore, we may readily
compute

Dµδ
(π) =

δ

2

∫

Rn

|x−mδ|
2e−V (x)dx+ logCδ

=
1

2δ
Iµδ

(π) + logCδ.

By the Bakry-Émery theorem, µδ satisfies LSI(1/(K + δ)),
so it follows from Theorem 1 that

I(π;Pθ)

≤ −Dµδ
(π) +

1

2(K + δ)
· Iµδ

(π) +
1

2(K + δ)

∫

I(θ)dπ(θ)

= −
K

2δ(K + δ)
· Iµδ

(π) +
1

2(K + δ)

∫

I(θ)dπ(θ)− logCδ

= −
Kδ

2(K + δ)
·

∫

|x−mδ|
2e−V (x)dx

+
1

2(K + δ)

∫

I(θ)dπ(θ)− logCδ.

By Proposition 1(ii) and the inequality
∫

|x−mδ|
2e−V (x)dx ≥ Var(π)

holding by definition of Var(π), we have

I(π;Pθ) ≤ −
Kδ

2(K + δ)
· nP +

1

2(K + δ)
· nJ

+

{

δ
2 · nP if 0 ≤ δ < 1

P
n
2 (1 + log (δP )) if δ ≥ 1

P ,
(10)

where J, P are as defined in the statement of the theorem.
Since the above holds for arbitrary δ > 0, we now particularize
by (optimally) choosing

δ =
√

K2 + J/P −K

if JP < 1 + 2KP , and otherwise choosing

δ = 1

2

(

(K2
P + J − 2K) +

√

(K2P + J)2 − 4K(K2P + J)
)

.

It can be verified that if JP < 1+ 2KP , then this choice of
δ ensures δ < 1/P . On the other hand, if JP ≥ 1 + 2KP ,
then this choice of δ ensures δ ≥ 1/P . Hence, substitution
into equation (10) and simplifying yields:

I(π;Pθ) ≤ n · ψ(KP, JP )

where ψ is defined piecewise according to

ψ(a, b) :=
√

a2 + b− a if b < 2a+ 1,

and, otherwise if b ≥ 2a+ 1, then

ψ(a, b) :=
1
2

(

1− a+
2(a2 + b)

a2 + b+
√

(a2 + b)2 − 4a(a2 + b)

+ log

(

a2 + b+
√

(a2 + b)2 − 4a(a2 + b)

2
− a

))

.

This bound is actually better than what is stated in the
theorem, but is clearly a bit cumbersome. Since KP ≤ 1, we
note the simpler (yet, still essentially as good) bound holding
for ψ in the range 0 ≤ a ≤ 1, completing the proof

ψ(a, b) ≤

{√
a2 + b− a if b < 2a+ 1

1 + log
(√

a2 + b− a
)

otherwise.
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