Stellar Proper Motions in the Orion Nebula Cluster

 Christopher A．Theisseh©，and Mark R．Morris ${ }^{5}$ ©
${ }^{1}$ Department of AstronomyUniversity of California，Berkeley，Berkeley，CA 94720－3411，USA；dongwon．kim＠berkeley．edu
${ }_{3}^{2}$ Department of Physics，Jniversity of California，San Diego，9500 Gilman Dr．，La Jolla，CA 92093，USA
${ }^{3}$ Institute for Astronomy，University of Hawaii，Manoa，640 N．Auhoku PI．\＃209，Hilo，HI 96720 USA
${ }^{4}$ Space Telescope Science Institußz，00 San Martin Dr．，Baltimore，MD 21218，USA
${ }^{5}$ Department of Physics and Astronomb，niversity of California，Los Angeles，Los Angeles，CA 90095－1547，USA
Received 2018 October 16；revised 2018 December 6；accepted 2018 December 17；published 2019 February 11

Abstract

The Orion Nebula Cluster（ONC）is the nearest site of ongoing massive star fanmiatiomillows us to study the kinematics and dynamics of the region in detail and constrain star formation theories．Using HST ACS／WFPC2／WFC3IR and Keck II NIRC2 data，we have measured the proper motions of 701 stars within an $\sim 6^{\prime} \square \times \square 6^{\prime}$ field of view around the center of the ONC．We have found more than 10 escaping star candidates，concentrated predominantly at the core of the cluster．The proper motions of the bound stars are consistent with a normal distribution，albeit elongated north－south alon velocity dispersions（ofv，a＊,$\left.s_{v, d}\right)=\left(\begin{array}{lll}1.57[0.04,2.12] ~ 0.06\end{array}\right) \mathrm{km} \mathrm{s}^{-1}$ assuming a distance of 400 pc to the ONC． The clustershows no evidence fotangential－to－radiahisotropyOur velocity dispersion profile agrees with the prediction from the observed steltagas density profile from Da Rio etal．，indicating thathe ONC is in virial equilibrium．This finding suggests th胜e clusterwas formed with a low starformation efficiency pedynamical timescale based on comparisons with current star formation theories．Our survey also recovered high－velocity IR sources $B N, x$ and n in the BN／KL region．The estimated location of the first two sources $\sim 500 \mathrm{yr}$ ago agrees with that of the radio source I，consistent with their proposed common origin from a multistellar disintegration．However，source n appears to have a small proper motion and is unlikely to have been involved in the event．

Key words：open clusters and associations：individual（Orion Nebula Cluster）－proper motions－stars：formation－ stars：kinematics and dynamics

Supporting material：machine－readable tables

1．Introduction

The Orion Nebula Cluster（ONC）region provides an exquisi opportunity to probe the procesøf massive starand cluster formation in detail．The ONC is very massive，with stellar mass ranging between 0.1 and 50eM（Hillenbrand 1997）The mean age of the ONC is 2.2 Myr with a spread of a few Myr（Reggiar et al．2011），which is consistentaith the star formation activity lasting between 1.5 and 3．5 Myrthe ONC＇s close proximity （ $\sim 400 \mathrm{pc}$ ）and high galactic latitude（b $\square \sim \square \mathrm{r} 199,35 \mathrm{pc}$ from the Galactic plane）allows us to study individypabtostars and the entire cluster in detail．This combination is beneficial becau the foreground haslow extinction（ $A_{V} \square=\square 1.5 \mathrm{~m}$ ）Dell \＆ Yusef－Zadeh 2000）and contains very few stars．Also，the Orion Molecular Cloud has a very large extinction up to $\mathrm{A}=$ 50－100 mag（Hillenbrand \＆Carpenter 20\＄\＆andariato e由l． 2011），which reduces background confusion．Therefore，the st observed in this region ofthe sky are mostly ONC members （Jones\＆Walker 1988）．The ONC allows us to probe the mechanisms that drive massive star and cluster formation，wh remains a challenging problem in astrophysics．

Currently，two main theories attempt to explain massive stel birth，and they mainly differ in how and when the mass is gathered to form the stanthe first model，called the turbulent fragmentation modelsuggests thanearly the entire mass of individual protostars is gathered at prestellarstage and that further fragmentation is halted due to externpressures from turbulenceradiation，and other forms of feedback（McKee \＆ Tan 2002，2003）．The competitive accretion model，alternativ poses thatmass is gathered during the staformation process
itself，with all protostars starting with a low mass and accreting a significant amount of their final mass as they move through the molecularcloud（Bonnell et al．2001a，2001b）．One way to discern which model is more applicable is to study the dynamics of star－forming regions．While the turbulent fragmentation model requiresthe turbulence to remain virial and the star formation rates per dynamical timescale to be low，the competitive accretion moders a rapid collapse of the gas clump and highly efficient star formation（Krumholz et al． 2011，2012）．Comparing the dynamica由ge of a star－forming slester，such as the ONC，to the age spread of its stellar population may thus facilitate estimation of the star formation rates and distinguish the two models．
The dynamical properties of the stars can also have a significant impact on the star formation efficiency．Certain interactions diguld produce explosive outflows thatovide feedback to the surrounding molecular clouThe nature and frequency of these interactions inform our understanding of the role thedback elays in halting starand clusterformation，expelling gas，and setting the overalstarformation efficiency within a molecular \＆łoud．Such an explosive event has been discovered in the ONC to the northwest of the well－known Trapezium cluster（e．g．， Zapata et al．2005，2006；Henney et al．2007）．This region hosts the Kleinmann－Low（KL）Nebula and contains a well－studied radio and infrared（IR） object（BN；Becklin \＆Neugebauer1967）；thus，the region is referred to as the BN／KL regionBased on analysis of the gas motions，the explosion is highly energetic（2－6 $\square \times \square^{4}$ そerg） and expelled over a very wide angle（Kwan \＆Scoville 1976；

Gómez et al. 2008; Bally et al. 2011), traced by molecules withcæntral coordinates within $\sim(3)$ of the center of the ONC were broad range of velocities (>100 km1;sKwan \& Scoville 1976; Furuya \& Shinnaga 2009; Bally et al. 2017h.e outflow is the brightestknown source of shocked ${ }_{2}$ Hemission,with over 100 selected.However, only those images with exposure times longer than 40 s were used in our PM analysis to ensure sufficiently high signal-to-noise ratios for faint sources. A few molecular bow shocks (e.g., Allen \& Burton 1993; Stolovy et al.of these images were also rejected in the process of matching 1998; Colgan et al. 2007). Millimeter and submillimeter observations suggetstat the eventwas likely driven by close and alignment (see Section 3.2).

The HST images were obtained from several different cameras. dynamical interactions in a group of massive protostars, includinge ACS/WFC consists of two 2048 $\square \times \square 40$ 66el CCD BN and source I, that resulted in a violent ejection of material adeltectorsThe plate scale is 50 mas pix \bar{l} l which corresponds the formation of a compactbinary or stellarmerger(Bally \& Zinnecker 2005; Bally et al. 2017).

There have been several previous studies of dynamical to a $202^{\prime \prime} \square \times \square 200$ " field of view. The WFPC2 uses four $800 \square \times \square 8$ pixel CCDs where three othem covera $150 " \square \times \square 150$ " region (PM) and have a pixel scale of 100 mas pixehe fourth CCD interactions and proper motions (PMs) within the Orion Nebula(PC) images a $34^{\prime \prime} \square \times \square 34^{\prime \prime}$ field with a spasia由le of 56 mas both in the optical and in the radiهriginally,Parenago (1954) pixe Γ^{-1}. The WFC3IR channel uses a single $1024 \square \times \square 1024$ pixel determined PMs for stars in the Orion Nebula over a field of $\sim 9 C C D$ detectorwith a plate scale of 130 mas pixēl ${ }^{1}$, correspdeg'. Later, a 77 yr baseline survey was done by van Altena et ahding to a $136^{\prime \prime} \square \times \square 123^{\prime \prime}$ field of view.
(1988) for 73 stars in the Orion Nebula. Jones \& Walker (1988) Observations that were within ~ 1 month and with the same then carried out a survey using deep red-optical plates taken oirestrument were combined to define a single epoch. In Table 1, 23 yr on the Lick Shane reflector, which included over 1000 stane provide the complete list of HST observationsfor the within 15' of the ONC. In the radio, Gómez et al. (2005) measudifflerent epochs used in this work, including the epoch number, the PMs of 35 sources in the Orion Nebula using the Very Largeates of observations, R.A. and decl. at the center of the frames, Array, with additionalmeasurements presented in Gómeal.et instrument, filter, total exposure time, and principal investigator (2008) and Dzib et al. (2017). Most recently, Kuhn et al. (2019)for the data.
estimated the velocity dispersion of the ONC using the PMs of 50
sources in the Gaia Data Release 2 (DRG;aia Collaboration et al. 2018) withir 10¢ 0of the center of the cluster. The ONC has proven a challenging environmenfor measuring PMs,

2.2. Keck AO

The observations with NIRC2 (instrumeffit: K. Matthews) particularly in the very center. These previous studies are limitedcused on the BN/KL star-forming region ($\alpha \square=\square 05: 35: 14.16$, by either their lack of precision or small sample size. $\quad \delta \square=\square-05: 22: 21.5$). The data were obtained on 2010 October 30-

Fortunately,we now have access to a long baseline of data November 1 and 2014 December 11-12. The first run in 2010 is on the ONC from the Hubble Space Telescope (HST) and highalso described in Sitarslet al. (2013). The observations were resolution near-IR data from the Keck II telescope focusing on conducted using the laser guide star adaptive optics (LGS-AO) the BN/KL region. Using these data,we have increased the system (Wizinowich eal. 2006). The LGS corrected for most precision of PMs,which has allowed us to further learn about the kinematics in this nearest massive star-forming area.
atmospheric aberrations; howevery-order tip-tilt terms were corrected using visible-lighøbservations of the star Paranego
 PM catalog for the ONC in Section 2. The analysis process for avoid the strong nebulosity in this region, sky frames were extracting PMs for each star is detailed in Section 3. The resultobtained for the wavefront sensors using larger-than-normal sky are given in Section 4followed by a discussion of how these offset positions. results compareto previous studies in Section 5. Also in The two epochs of Keck AO observations covered nearly the Section 5 , we briefly discuss the interaction of sources near theame sky area with the wide-field cameras on NIRC2, which has a BN/KL region.

2. Observations and Data

We measured stellar PMs near the center of the Trapezium mmdsaicked around the BN/KL region for a total areal coverage of BN/KL region using high-resolution optical and IR images spanning ~ 20 yrOur final PM catalog covers $\sim 6 \square \times \square 6$ arcmin around the Trapeziumine images were obtained with different instruments on board the HSWcluding the Advanced Camera instruments on board the HSİcluding the Advanced Camera identicalto that of the science exposureshich is necessary to
for Surveys with the Wide Field Channel (ACS/WFC), the Wideaccurately subtract thermal emission from the field rotator mirror Field Camera 3 IR detector (WFC3/IR), and the Wide Field andn this band (Stolte et al. 2008).

Planetary Camer2 (WFPC2), as well as the Near-Infrared Camera 2 (NIRC2) of the W. M. Keck II 10 m telescope.

2.1. HST

The observations from HST consisted of 11 epochs between 1995 and 2015 (Prosser et a1994; O'dell et al. 1997; Rubin et al. 1997; O'Dell 2001; Robberto et al2004,2013), mostly with medium or wide optical/IR passband filters (F435W, F439W, F539M, F555W, F775W, F791W, and F139M), exceptfor IR filter F130N. All HST archivalimages having

A summary of our Keck AO observations is listed in Table 2. The field of view of our Keck data is illustrated by a dashed polygon in Figure 1. dashen 1.4 arcmi². Sky frames were taken interspersed with science observations in a dark region $\sim 15^{\circ}$ to the east. Sky observations were timed in such a way that the field rotator mirror angle was identicalto that of the science exposuresshich is necessary to解
view of $40^{\prime \prime} \square \times \square 40^{\prime \prime}$, in the view of $40 " \square \times \square 40^{\prime \prime}$, in the same passbarbd $\left(\mu_{d} \square=\square 2.06 \mu \mathrm{~m}\right.$, $\Delta \lambda \square=\square 0.03 \mu \mathrm{~m}$)he narrowband filteallows us to avoid the saturation of bright sourcessuch as BN . The imageswere

3. Analysis

3.1. Astrometry

3.1.1.HST

For ACS/WFC and WFC3/IR data, we used pipelinecalibrated images with the suffix _flt, which were dark-and

Figure 1. Spatial distribution of stars in our PM catalog, overlaid on the CTIO/Blanco ISlBdikd image of the ONC from Robberto et al. (2010). Open yellow and blue circles mark stars measuredwith HST and Keck (or Keck+HST), respectively. Open magenta circles mark Gaia DR2 sources with the astrometric_excess_noise=0 used in Kuhn et al. (2019). The dashed polygon illustrates the sky coverage of our 2010 and 2014 Keck NIRC2 data.
bias-corrected and havebeen flat-fielded. All images were downloaded between 2018 February and June from the Mikuls Archive for Space Telescopes (MASP).To measure stellar positions and fluxes in each exposure, we adopted the FORTRAN code hst1pass, ${ }^{7}$ an advanced version of the img2xym_WFC software package for HST (Anderson \& King 2006). The hst1pass code runs a single pass sfource finding and point-source function (PSF) fitting for each exposure and corrects the positions of stars using the geometric-distortion correction ofAnderson \& King (2006) for ACS/WFC and the WFC3/IR correction developed by J. Anderson. For WFPC2 data, we used calibrated images with a suffix _cOf and analyzed with the FORTRAN code img2xymrduv (Anderson \& King 2003). This code is implemented similarly to hst1pass and corrects the positions of stars from the WFPC2 data based on the distortion correctio of Anderson \& King (2003).
Outputs from hst1pass and img2xymrduv include the distortion-correctedpositions of stars, their R.A. \square and

[^0]decl. \square based on the WCS information in the imagebeader, kistrumental magnitudes, and the quality (or q) of the detections.Sources with q close to zero appeavery stellar, while those with large q values are mostly cosmic-ray impacts or artifacts of diffraction spikesFor our analysis,we apply a quality cut with the threshold of $0 \square<\square q \square \quad \square 0.5$ to exclude such false positives and saturated sources. We also set the minimum flux limits to 1300 electrons for the narrow filter F130N and 500 electrons for other medium/wide filters,high enough to distinguish between the detectionsf stars and background noise.

3.1.2.Keck AO

The Keck AO NIRC2 data were reduced through a standard pipeline originally developed for analysis of Galactic center images (Stolte et al. 2008; Lu et al. 2009). This process includes dark and flat-field correctionsky subtraction,nasking of bad pixels and cosmic rays, and application of the distortion solution, provided by H. Fu. The images were then registered and drizzled using the IRAF/PyRAF modules xregister and drizzle. The images were

[^1]Table 1
HST Observation

Epoch	$\begin{gathered} \text { Date } \\ (\mathrm{YYYY} \mathrm{~mm} \mathrm{dd}) \end{gathered}$	$\begin{aligned} & \alpha_{\mathrm{J2000}} \\ & \text { (hms) } \end{aligned}$	$\begin{aligned} & \delta_{\mathrm{J} 2000} \\ & (\mathrm{dms}) \end{aligned}$	Instrument	Filter (nm)	Exp. Time (s)	Proposal ID	PI Name
1	$\begin{gathered} \hline 1995 \text { Dec } 15 \\ \mathrm{~L} \\ 1995 \text { Oct } 3 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { 5:35:15.45 } \\ L \\ 5: 35: 13.79 \\ L \end{gathered}$	$\begin{gathered} -5: 24: 06.65 \\ L \\ -5: 21: 47.13 \\ L \end{gathered}$	$\begin{gathered} \hline \text { WFPC2 } \\ L \\ \text { WFPC2 } \\ L \end{gathered}$	$\begin{gathered} \hline \text { F547M } \\ L \\ \text { F791W } \\ \text { L } \end{gathered}$	$\begin{gathered} 200.0 \\ L \\ 100.0 \\ L \end{gathered}$	$\begin{gathered} \hline 6056 \\ L \\ 5976 \\ L \end{gathered}$	Rubin L O'Dell L
2	$\begin{gathered} \hline 1998 \text { Nov } 2 \\ \mathrm{~L} \\ 1998 \text { Nov } 2 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { 5:35:00.46 } \\ L \\ 5: 35: 00.46 \\ L \end{gathered}$	$\begin{gathered} -5: 24: 40.00 \\ L \\ -5: 24: 40.00 \\ L \end{gathered}$	WFPC2 L WFPC2 L	$\begin{gathered} \text { F547M } \\ L \\ \text { F791W } \\ \text { L } \end{gathered}$	$\begin{gathered} 500.0 \\ L \\ 300.0 \\ L \end{gathered}$	$\begin{gathered} 6666 \\ L \\ 6666 \\ L \end{gathered}$	Stauffer L Stauffer L
3	$\underset{\mathrm{L}}{2000 \text { Sep } 13}$	$\begin{gathered} 5: 35: 13.77 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} -5: 21: 47.14 \\ \mathrm{~L} \end{gathered}$	WFPC2 L	$\begin{gathered} \text { F547M } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} 50.0 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 8121 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { O’Dell } \\ \text { L } \end{gathered}$
4	$\underset{\mathrm{L}}{2001 \text { Mar } 13}$	$\underset{L}{5: 35: 17.00}$	$\begin{gathered} -5: 23: 27.00 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { WFPC2 } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} \text { F439W } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} 160.0 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 8894 \\ \mathrm{~L} \end{gathered}$	Beckwith L
5	$\begin{gathered} \hline 2004 \text { Oct } 12 \\ \text { L } \\ 2004 \text { Oct } 12 \\ \text { L } \\ 2004 \text { Oct } 12 \\ \text { L } \end{gathered}$	$\begin{gathered} \text { 5:35:18.43 } \\ L \\ 5: 35: 18.43 \\ L \\ 5: 35: 18.43 \\ L \end{gathered}$	$\begin{gathered} -5: 22: 12.62 \\ L \\ -5: 22: 12.62 \\ L \\ -5: 22: 12.62 \\ \text { L } \end{gathered}$	$\begin{gathered} \text { ACS } \\ L \\ \text { ACS } \\ L \\ \text { ACS } \\ L \end{gathered}$	$\begin{gathered} \text { F435W } \\ L \\ \text { F555W } \\ L \\ \text { F775W } \\ L \end{gathered}$	$\begin{gathered} 420.0 \\ L \\ 385.0 \\ L \\ 385.0 \\ L \end{gathered}$	$\begin{gathered} 10246 \\ \mathrm{~L} \\ 10246 \\ \mathrm{~L} \\ 10246 \\ \mathrm{~L} \end{gathered}$	Robberto L Robberto L Robberto L
6	$\begin{gathered} 2005 \text { Apr } 5 \\ \text { L } \\ 2005 \text { Apr } 5 \\ L \\ 2005 \text { Apr } 5 \\ L \end{gathered}$	$\begin{gathered} \text { 5:34:56.37 } \\ L \\ \text { L:34:56.37 } \\ L \\ \text { L:34:56.37 } \\ L \end{gathered}$	$\begin{gathered} -5: 23: 19.89 \\ L \\ -5: 23: 19.89 \\ L \\ -5: 23: 19.89 \\ L \end{gathered}$	$\begin{gathered} \text { ACS } \\ L \\ \text { ACS } \\ L \\ \text { ACS } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { F435W } \\ L \\ \text { F555W } \\ L \\ \text { F775W } \\ L \end{gathered}$	$\begin{gathered} 420.0 \\ L \\ 385.0 \\ L \\ 385.0 \\ L \end{gathered}$	$\begin{gathered} 10246 \\ \mathrm{~L} \\ 10246 \\ \mathrm{~L} \\ 10246 \\ \mathrm{~L} \end{gathered}$	Robberto L Robberto L Robberto L
7	$\begin{gathered} 2007 \text { Sep } 12 \\ L \\ 2007 \text { Sep } 12 \\ L \end{gathered}$	$\begin{gathered} \text { 5:35:12.05 } \\ L \\ 5: 35: 12.05 \\ L \end{gathered}$	$\begin{gathered} -5: 23: 27.00 \\ L \\ -5: 23: 27.00 \\ L \end{gathered}$	WFPC2 L WFPC2 L	$\begin{gathered} \text { F791W } \\ \text { L } \\ \text { F547M } \\ \text { L } \end{gathered}$	$\begin{gathered} 40.0 \\ \mathrm{~L} \\ 40.0 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 11038 \\ \mathrm{~L} \\ 11038 \\ \mathrm{~L} \end{gathered}$	Biretta L Biretta L
8	$\begin{gathered} 2015 \text { Feb } 25 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 5: 34: 56.37 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} -5: 23: 19.89 \\ L \end{gathered}$	$\begin{gathered} \text { ACS } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} \text { F775W } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} 340.0 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 13826 \\ \mathrm{~L} \end{gathered}$	Robberto L
9	$\begin{gathered} 2015 \text { Mar } 11 \\ \mathrm{~L} \\ 2015 \text { Mar } 11 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { 5:34:47.07 } \\ L \\ 5: 34: 47.07 \\ L \end{gathered}$	$\begin{gathered} -5: 17: 29.31 \\ L \\ -5: 17: 29.31 \end{gathered}$	$\begin{gathered} \text { WFC3 } \\ \text { L } \\ \text { WFC3 } \\ L \end{gathered}$	$\begin{gathered} \text { F130N } \\ \text { L } \\ \text { F139M } \\ \text { L } \end{gathered}$	$\begin{gathered} 302.9 \\ \mathrm{~L} \\ 302.9 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 13826 \\ \mathrm{~L} \\ 13826 \\ \mathrm{~L} \end{gathered}$	Robberto L Robberto L
10	$\begin{gathered} 2015 \text { Oct } 23 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 5: 35: 18.43 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} -5: 22: 12.62 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { ACS } \\ \mathrm{L} \end{gathered}$	$\underset{\mathrm{L}}{\mathrm{~F} 775 \mathrm{~W}}$	$\begin{gathered} 340.0 \\ \mathrm{~L} \end{gathered}$	$\underset{\mathrm{L}}{13826}$	Robberto L
11	$\begin{gathered} 2015 \text { Oct } 24 \\ \text { L } \\ 2015 \text { Oct } 24 \\ \text { L } \end{gathered}$	$\begin{gathered} \text { 5:35:09.34 } \\ L \\ 5: 35: 35.72 \\ L \end{gathered}$	$\begin{gathered} -5: 29: 55.00 \\ L \\ -5: 31: 04.42 \\ L \end{gathered}$	$\begin{gathered} \text { WFC3 } \\ \text { L } \\ \text { WFC3 } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { F130N } \\ \text { L } \\ \text { F139M } \\ \text { L } \end{gathered}$	$\begin{gathered} 302.9 \\ \mathrm{~L} \\ 302.9 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} 13826 \\ \mathrm{~L} \\ 13826 \\ \mathrm{~L} \end{gathered}$	Robberto L Robberto L

(This table is available in its entirety in machine-readable form.)

Table 2
Keck AO NIRC2 Wide-field Camera Observation

Epoch	Date $($ YYYY mm dd)	Filter	Exp. Time (s)	$N_{\text {indi }}$	$\mathrm{N}_{\text {stack }}$	Total Int. Time (s)	FWHM (mas)	Strehl
12	2010 Oct 31	HeI B	27.15	53	9	1439	162.32	0.136
13	2014 Dec 11	HeI B	27.15	133	9	36111	132.40	0.191

all stacked into one final average image foreach pointing. We used the IDL package StarFinder (Diolaiti et al. Additionally, each final image had three associated subimages 2000) on each of the final averaged images and subimages for that combined one-third of the data that were used to estimate each pointing with the wide camera to determine precise pixel astrometric and photometric uncertainties.
positions for stars within the field. StarFinder extracts a

Table 3
PM Measurements

ID	$\begin{gathered} \alpha_{\mathrm{J} 2000^{\mathrm{a}}} \\ \mathrm{deg} \end{gathered}$	$\begin{gathered} \delta_{J 2000}{ }^{a} \\ \text { deg } \end{gathered}$	$\begin{gathered} m_{\mathrm{a}^{*}} \\ \operatorname{mas} \mathrm{yr}^{-1} \end{gathered}$	$\begin{gathered} \square_{m_{\mu^{*}}} \\ \text { mas } \mathrm{yr}{ }^{-1} \end{gathered}$	$\begin{gathered} \mu_{\delta} \\ \text { mas } \mathrm{yr}^{-1} \end{gathered}$	$\begin{gathered} \square_{m_{d}} \\ \operatorname{mas} \mathrm{y} \overline{\mathrm{r}}^{1} \end{gathered}$	$\mathrm{N}_{\text {det }}$	$\begin{aligned} & \Delta \mathrm{t} \\ & \mathrm{yr} \end{aligned}$	$\begin{aligned} & \text { F139 } \\ & \text { mag } \end{aligned}$	Note ${ }^{\text {b }}$
1	83.85346518	-5.36602620	0.34	0.09	-0.71	0.05	4	16.9	14.57	
2	83.83552846	-5.34779414	-0.20	0.16	0.68	0.55	3	16.3	12.12	
3	83.77062885	-5.35257430	-0.43	0.06	2.12	0.18	3	11.0	13.25	
4	83.77579375	-5.33816393	-0.41	0.28	-0.75	0.30	3	11.0	14.52	
5	83.82285598	-5.38091090	1.38	0.16	1.64	0.05	5	16.4	13.35	
6	83.79410989	-5.37909779	0.14	0.46	-1.53	0.06	3	16.3	12.11	
7	83.81797732	-5.34033710	-1.00	0.13	0.01	0.45	3	16.3	12.93	
8	83.85596135	-5.39258964	-0.79	0.11	-0.44	0.11	4	16.3	12.81	
9	83.84994021	-5.41941865	0.12	0.81	0.98	0.15	4	14.6	13.04	
10	83.79543932	-5.37954202	-0.04	0.27	1.00	0.40	5	19.4	13.28	
L	L	L	L	L	L	L	L	L	L	L

Notes.
${ }^{a}$ Epoch 2015.5.
b In this column, $1 \square=\square$ proplyd morphologyj $=\square$ Herbig-Haro objfRtcci et al. 2008); $\quad \square=\square$ double stareviously known in the literature (Hillenbrand 1997; Robberto et al. 2013); $4 \square=\square$ new double star, previously reported as single in the literature; $5 \square=\square$ double-star candidate, previously reported as single in the liter $6 \square=\square$ double-star candiqatiously unreported.
(This table is available in its entirety in machine-readable form.)

PSF from the image over several iterations from a set of stars, cross-matched the stars in the HST F775W and F139M catalogs for which we selected a total of five to seven stars in a range ofvith those of the Gaia DR2 catalog within a radius of 60 mas magnitudes $8 \square<\square K \square<\square 10$. and applied 2D second-orderpolynomials to transform the
The star catalogs from each pointing were then matched withpositions of stars in the input star catalogs to those of the the corresponding catalogsfrom their subimageswith the program align (Ghez et al. 2008), which cross-matches sources and solves foastrometric transformations.he final star catalogs only include stars thaappeared in each ofthe subimagesas well as the averaged imagesf.inally, false or reference starsAlthough the minimum number of data points for a second-order polynomiafit is six, we excluded frames that had less than nine matches to ensure a good fit. The median position was calculated for each star from both Gaia DR2 and the transformed catalog $\Phi u r i n g$ each polynomialfitting, we low-quality detections were rejected from the final star catalogsejected 3σ outliers and repeatedthe same processuntil based on the PSF correlation coefficients oifndividual stars convergence into a final solution. provided by StarFinder. We applied a threshold of corr $\square 0.8$ for the quality cutt,hich is strict enough to reject unlikely detections while retaining faintstars (Diolaiti et al. 2000).

3.2. Relative PMs

The first step in measuring relative PMs is to establish an astrometric reference frameWith distortion-free astrometric measurementsGaia DR2 (Gaia Collaboration et al. 2016, 2018) provides an excellerfbundation for a reference frame. One caveabf using Gaia DR2 alone as a reference frame is that in the central region of the ONC, the photometry only reaches $\mathrm{G} \square \sim \square 17$, mostly due to high nebulosity. Given the st catalogs from different passbands, we needed a reference fram for alignment that covers a wider range of magnitudes and colors.
We constructed a new reference franbee,ilding upon Gaia DR2 using our star catalogsfrom ACS/WFC F775W and WFC3IR F139M in epochs 8-11 as follows. First, we converted the celestiatoordinates of stars in Gaia DR2 into right-handed Cartesian coordinates x and y parallel to the R.A. and decl. directions (i.e., $x=D a \cos d$, $y \square=\square \Delta 8$), respectively. In order to compromise between the number of reference sources and the accuracy of the astrometrye adopted only Gaia stars with measuremeretrors smaller than 60 ma\$Ne

[^2]In the final iteration, we used the new reference frame to transform and match the rest of the HST and Keck star catalogs from all epochs.A final catalog was constructed using the median of the transformed positionsfor each star in each epoch, and the standard error of the median was adopted as the positional uncertainty.
The relative PMs of each starwere measured using leastsquares straight-line fits to the positions over timelye set a lower limit for the time baseline $(\Delta \mathrm{t})$ as 1 yr . For stars identified in three epochs or more, the linear fit determined the velocities with the errors calculated using the covariance matrix from the fit. The velocities of the remaining objects, detected in only two epochs,were calculated as the positionalifference etween the two epochs divided by the time baseline, and their uncertainties were calculated as the quadratic sum of positional errors in each epoch. We provide our PM catalog with positions at epoch 2015.5 in Table 3. To estimate the photometric depth of the catalog, we cross-matched the PM catalog with the firstpass hst1 pass outputs for F139M images, lowering the flux limit to 20 electrons.We found thatour sample includes 693 stars that fall within the range between F139M $\square=\square 9.5$ and 20.5, $\sim 95 \%$ of which are brighter than $\mathrm{F} 139 \mathrm{M} \square=\square 18.0$, and 22 stars that are undetected in the near-IR passband. ce th

3.3. PM Dispersion Calculation

From the measured PM measurementswe derived the internal PM dispersion of the ONC using Bayes's theorem and

Figure 2. The PM-vector point diagram, at two different scales, for all stars measured in this work. The filled red circle and blue square in the left panel represent B and source xOpen circles in the right panel mark ESCs (see Section 4.2).
a multivariate normaldistribution model.Assuming thateach PM measuremenis drawn from a Gaussian distribution with mean \bar{m} and an intrinsic dispersion, othe likelihood for the ith PM measurement ${ }_{i} \square \pm \square$ ì then given by

$$
\begin{equation*}
L_{i}\left(\left.m_{i}\right|^{-} m, m\right)=G\left(m_{i}{ }^{-} m \sqrt{s_{m}^{2}+\square_{i}^{2}}\right), \tag{1}
\end{equation*}
$$

where the final dispersion is the quadratic sum of the intrinsic dispersion s_{m} and the error on the measurement for each star, q. Given a setof measurement \mathcal{B}° \{ $\left.m_{i}, \square i\right\}_{i=1}^{N}$, the posterior probability P is defined by Bayes's theorem as

$$
\begin{equation*}
\left.P\left(\bar{m} s_{n} D\right) \mu\right]_{i} L_{i}\left(\left.n_{i}\right|^{-} m m_{i} p\left(\bar{m} s_{n}\right)\right. \tag{2}
\end{equation*}
$$

where $P\left(\bar{m} s_{n}\right)^{\circ} p(\bar{m}) P\left(s_{m}\right)$ is the prior for the mean and the standard deviationWe adopt a flat prior for the mean and a "noninformative" Jeffreys prior for the standard deviation, i.e., $p\left(s_{m}\right) \mu s_{m}^{-1}$ (see Section 7 in Jaynes 1968 for justificatiôh). As each star has PM measurements along R.A. (α) and decl.(we maximized the producbf the posteriorifor the two axes, i.e., $P_{a, d}=P_{a} P_{d}$, utilizing the Markov chain Monte Carlo (MCMC) Ensemble sampler emcee (Foreman-Mackey et 2013).

4. Results

We present the PMs for 701 stars centered on the Trapeziun and BN/KL regions (Figure 2), adding ~ 500 sources with precise PM measurements as compared to Gaia DR2 over the same region. Our catalog has a temporal baseline of $\sim 20 \mathrm{yr}$ and

[^3]extends the wavelength coverage to the near-IRhroughout the remainder of the paper, we use the notatiogsand μ_{5} to denote projected PMs whene ${ }^{*}{ }^{\circ}{ }^{\circ} m_{a} \cos d$.

4.1. Consistency with Gaia DR2 PMs

We compare our PM measurements with those in Gaia DR2. Due to the strong nebulosity, the astrometric measurements from Gaia DR2 have overall lower quality for stars around the ONC compared with other nebula-free regions. As a result, we adopta generous quality cuffor Gaia DR2 stars in order to compromise between the astrometric quality and the size of the comparison sample: astrometric_gof_al<16 and photometric_mean_g_mag<16. With this condition, we found 15 matches between Gaia DR2 and our PM catalog. The main panel of Figure 3 shows the difference in PMs along the R.A. and decl. axeswhere the data points are concentrated around $(0,0)$ within 1 mas yr^{1}. Figure 4 verifies that the PM vectors tend to point in similar directions with similar () magnitudes.
(ठ), Returning to the main panel of Figure 3, however, we noticed that the differences generally exceed the measurement errors and exhibit an asymmetric distribution.The inconsistency in the amplitudesof PMs can be attributed to underestimated PM uncertainties in Gaia DR2Arenou etal. (2018) demonstrated that the parallax and PM errors in Gaia DR2 are underestimated and tend to overestimate the intrinsic dispersionf(s)r distant mpen/globular clusters. To test the possibility of underestimated uncertainties in Gaia DR2 around the ON $\mathbb{1}$, e compared the PM dispersions derived from the stars in common between Gaia QR2 and our catalog, excluding kinematic outliers identified in Section 4.2.First, we compared the PM dispersions of the 15 stars in Figure 3. The Gaia DR2 resulted in PM dispersions

12 The Gaia DR2 sources with astrometric_excess_noise=0, adopted by Kuhn et al. (2019) for accurate estimatesof measurement uncertainty, are generally too bright and saturated in ourHST images (see Figure 1).

Figure 3. Differences between the absolute (Ab) PMs from Gaia DR2 and the PMs in the rest frame (RF) of the ONC based on the HST + Keck (HK).e subtracted the median values of the differences between the absolute and the relative PMs $\left.\widetilde{\mathrm{D} m_{a^{*}}}, \widetilde{\mathrm{D} m_{d}}\right) \square=\square(1.6,0.6) \mathrm{mas}^{-1}$ yto take into account the bulk motion of the ONC. The inset panel is the same as the main panel, but the PM uncertainties of Gaia DR2 were increased by a factor of 3 (see Section 4.1.)

Figure 4. The PM vectors from Gaia DR2 (red) and this study using HST + Keck (HK; blue) show good agreemerlh this figure, the bulk motion of the ONC inferred from the median values of the difference between the absolute and relative PMs $\left(\widetilde{\mathrm{D} m_{a}^{*}}, \widetilde{\mathrm{D} m_{d}}\right) \square=\square(1.0,6)$ mas $\overline{\mathrm{yr}}^{1}$ was subtracted from those from Gaia DR2 (see Figure 3)Gray dots illustrate the positions of all stars in our sample.
$\left(s_{a^{*}}, s_{d}\right) \square=\mathbb{\square}\left\langle 3^{+}{ }_{0.23}^{0.31}, 0.9 \uparrow_{0.15}^{+0.21}\right)$ mas $\overline{y r}^{1}$, which is nearly 30% larger than the dispersion from our PM measurements, $\left.\left(s_{a^{*}}, s_{d}\right) \square=\mathbb{\square} \varphi 4_{0.19}^{+0.26}, 0.72_{0.13}^{+0.17}\right)$ mas $\overline{\mathrm{yr}}^{1}$.
compared to Gaia DR2, there is no significant discrepancy ascribed to our PM measurements.

In order to reach comparablePM dispersions, the PM uncertainties in Gaia DR2 need to be increased by a factbr ~ 3. Given the small size of the samples performed the same test using a larger sample, without the quality cut we applied for the previous sample. We found 197 matches between Gaia DR five-parametesourcesand our catalog after excluding the kinematic outliers listed in Section 4.2 and measured the PM were not detected in the optical but only in the IR images from Keck/NIRC2 and WFC3/IR. We measure PMs ofin $\left.\alpha^{*}, \mu_{\delta}\right) \square=$ dispersions following the same procedure described in Section ($4.7 \overline{2} \pm 2.7,12.2 \pm 1.9 \mathrm{mas} \overline{\mathrm{yr}}$) for BN and (26.8 ± 1.5, We find a 2D dispersion from the Gaia DR2 measurements of -18.4 ± 1.5 mas $\overline{\mathrm{yr}}{ }^{-1}$) for source x . Our measurements agree $\left(s_{a^{*}}, s_{d}\right) \square=\square(1.50 \square \pm \square 0.09,1.69 \square \pm \square 0$! 1 lOhnicasis/nearly \quad with those both at IR wavelengths from Luhman et \&2017) 70% larger than the dispersion for our catalog of $(0.83 \square \pm \square 0.0$ and in the radio from Rodríguez et a(2017) within 1σ. $1.00 \square \pm \square 0.06$) mās for comparable PM dispersionscreasing the PM uncertainties in Gaia by a factorof ~ 3 is again required.We note thatthis increased errois still needed even when comparing to the PM dispersions for our entire sample o from previous surveys at optical wavelengths (see Section 4.3 Jones \& Walker 1988). The inset of Figure 3 is the same as the main panel but with PM uncertainties in Gaia DR2 increased b factor of 3 ,where the differences appear to be consistent overa with zero within $\sim 1 \sigma$. There is one outlier whose PM difference offset toward the southeasthis star has the smallest number of both good observations and visibility periods in Gaia DR2 out all the matched stans,hose astrometric_n_good_obs_al and visibility_preiods_used values range from 106 to

We also recovered source n in the BN/KL complex, whose PM was reported to be as high as $\sim 7 \mathrm{mas}^{-1} \mathrm{y}$ rin some radio studies (Rodríguez etal. 2017). In fact, the source appears highly elongated at radio wavelengths, which hinders a reliable RAdmeasurementAt IR wavelengths,it appears as a single point source with a much smallerPM value (Luhman et al. 2017). Not surprisingly, our PM measuremenfor source n $1.9 \pm 1.0,1.0 \pm 0.7)$ mas $\bar{y} 1$ agrees reasonably well with the motions of $(-1.8 \pm 1.4,-2.5 \pm 1.4)$ mas $\overline{\mathrm{yr}}^{1}$ previously measured in the IR by Luhman et al. (2017) or (1.6 ± 1.6, $3.4 \pm$ 1.6) mas $\overline{\mathrm{y}}{ }^{1}$ in the millimeter (Goddi et al. 2011) but disagrees with the PM of $(0.0 \pm 0.9,-7.8 \pm 0.6)$ mas $\overline{y r}^{1}$ in the radio data (Rodríguez et a 2017).

In addition to the previously known high-velocity star\$1,e 205 and from 7 to 12, respectively. The outlier thus falls within thelected three other stars with large PNas, shown in the left regime of possible systematic errors in PMs of Gaia DR2 indugsahel of Figure 2. We note that we initially had a few more by the scanning law of the survey as demonstrated in Appendi飞 Andidate stars with large PM values; but, after visual inspection, The direction of the bias is also consistent with the scan directiqney were identified as false positives ascribed to marginally around the ONC, northwest-southeast, which can be traced byrdselved double stars, Herbig-Haro objects, or proplyds (Prosser positions of Gaia DR2 sources filtered based on the number ofet al. 1994; Hillenbrand 1997; Reipurth et al. 2007; Ricci et al. observationธr visibility periods. We therefore conclude that, 2008; Robberto et al. 2013; Duchêneet al. 2018). Since

Figure 5. Positions and color-magnitude distribution of stars in our sample. Left panel: positions of all stars with PM measurements in this work (orange squares) a PM vectors for stars with large PMs. Middle panel: (F775W-F850LP) vs. F775W color-magnitude diagram from the HST/ACS photometry of Robberto et al. (2013) Previously identified members BN and source x are omitted, as they are not detected at optical wavelengths. Right panel: same as the middle panel but for (F555V F850LP) vs.F555W. The star marked as a green diamond in the left panel is omittit is not detected at F555W.
foreground field starsoften have large PMs, we performed recalculating the mean and the standard deviation, the velocity further investigation to determine the nature of the three objectsplistribution exhibits consistency with a normal distribution Figure 5 shows the HST/ACS photometry of stars covering within the 95% confidence envelope.
~ 600 arcmin ${ }^{2}$ around the ONC from Robberto et al. (2013). The We consider the possibility that the outlier stars are colors and magnitudes ofthe four objects are systematically evaporating from the cluster by comparing their velocities to bluer than the young ONC sequence and found in the locus of the escape speedJsing the virial theorem,the mean-square foreground objects with low reddening. This finding strengthens scape speed can be estimated as
the idea that these kinematic outliers are most likely field stars.
We note that the brightest object, shown by a cyan pentagon in
Figure 5, corresponds to source 583 in the photometric survey of

$$
\begin{equation*}
\hat{a}^{2} v_{e}^{2} \tilde{n^{2}}=\mathfrak{x}^{V^{2}} \tilde{\mathfrak{n}}^{2}, \tag{5}
\end{equation*}
$$

Hillenbrand (1997), where the star was classified as a nonmember with 0\% membership probabilityhis objectalso corresponds to source 3017360902234836608 in Gaia DR2 w a relatively large parallax, $4.14 \pm 0.07 \mathrm{mas}(\equiv 242 \square \pm \square 4 \mathrm{pc})$, which supports thatt is likely a foreground star.For internal kinematic analysis, we do not include these three peculiar objects.Also excluded are BN and source xas was done in previous studies (e.g., Jones \& Walker 1988; Dzib et al. 2017).

We also identify probable escaping,or evaporating,stars whose high velocities deviate significantly from our Gaussian velocity distribution model (see Section 5.1). As demonstrated by Kuhn et al. (2019), the deviation can be visualized on a plot of observed data quantiles ($Q_{\text {data }}$) versus the theoretical quantiles of the Gaussian distributionthed. The quantiles are

$$
\begin{gather*}
Q_{\text {data } i}=\frac{m_{T}-\bar{m}}{\sqrt{s_{m}^{2}+\square_{i}^{2}}} \tag{3}\\
Q_{\text {theo } i}=\sqrt{2} \operatorname{erf}^{-1}\left(2\left(r_{i}-0.5\right) / n-1\right), \tag{4}
\end{gather*}
$$

whereerf ${ }^{1}$ is the inverse of the error function, n is the number of measurements, ands the rank of the ith measurement. The mean \bar{m} and standard deviation q_{j} are computed with the method described in Section 3.3. The upper panels in Figure 6 show the $\mathrm{Q}-\mathrm{Q}$ plots of all stars excepfor the high-velocity stars.Overall, the velocity distribution is wellfit by a normal distribution along both the α and δ axes. In the α axis, however, we notice that beyond $Q_{\text {data } a^{*}}=\square 3$, the data quantiles deviate from the expected quantile function othe Gaussian distributionln the lower panelsafter excluding the six stars outside $Q_{\text {data a* }}=\square 3$ (red filled circles) and
withhereáv $V^{2} \tilde{n}^{2}$ is the mean-square speed dhe cluster's stars (Binney \& Tremaine 2008). Using this relation, we approximate a corresponding angular escape speed of $\approx 3.1 \mathrm{ma}$ as yr We found that the apparent angular speed of the outliers ranges from 3.2 to 4.5 mas $\overline{y r}^{-1}$, all of which exceed the speed limit .for evaporation.We identified 12 additional candidate stars from our sample whose apparerangularspeeds exceed this threshold (see Figure 2),although they do not stand out as statistically significanbutliers on the Q-Q plots partially due to large measurement errors or dispersion along the δ axis (see Figure 2). We note that we initially had several more candidates thatvere excluded after visuainspection showed that they were marginally resolved double stars or unresolved double-starcandidateswith highly elongated, double-lobed morphology in HST/ACS or Keck/NIRC2 imagesHereafter, we refer to the relatively high- and low-significance escaping star candidates (ESCsłs ESC group 1 and ESC group 2, respectively.In Section 5.1, we demonstrate thathese stars preferentially occupy the central region of the ONC. To accountfor their effect on the radialvariation of the velocity 6 dispersion, we present the PM dispersion as a function of radius in Table 5 for three cases: excluding (a) none of ESC groups, (b) ESC group 1, and (c) ESC group $1+2$. Otherwise, we only exclude ESC group 1 when modeling the PM distribution in the following sections.

We note that all false positives are included and flagged in our PM catalog (Table 3). Among the false positives, we have newly identified two double stars and two double-star candidates.

Figure 6. The $\mathrm{Q}-\mathrm{Q}$ plots to assess the normality of the stellar PM distribution, comparing data quantiles to theoretical Gaussian quantiles. The dotted lines mark the expected values of the theoretical distribution. The gray regions illustrate 95% point-wise confidence envelopes. The upper and lower panels show before and afte removing ESC group 1 from our sample.

4.3. Internal PM Dispersions

Using the method described in Section 3.3we obtain the mean PM and intrinsic dispersion of the ONC in Cartesian coordinates:

$$
\begin{aligned}
& \bar{m}_{a^{*}}=-0.04 \square 0.03 \text { mas } \mathrm{yr}^{1} \text {, } \\
& \bar{m}_{d}=-0.05 \square 0.05 \text { mas }^{1} \mathrm{yr}^{1} \text {, } \\
& s_{m a}=0.83 \square \quad 0.02 \text { mas }^{2 r}{ }^{1} \text {, } \\
& s_{m}=1.12 \square \quad 0.03 \text { mas } \mathrm{yr}^{1} \text {. }
\end{aligned}
$$

Following the same procedure, we also computed the mea and dispersion along the radial axis away from the cluster
center and the tangential axis perpendicular to it:

$$
\begin{aligned}
& \bar{m}=-0.04 \square \quad 0.04 \text { mas }_{\mathrm{m}}{ }^{1}, \\
& \bar{m}=0.00 \square 0.04{\text { mas } \mathrm{yr}^{1} \text {, }}^{1} \\
& s_{m r}=0.97 \square 0.03 \text { mas }^{2 r}{ }^{1} \text {, } \\
& s_{m t}=1.00 \square 0.03 \text { mas }^{\mathrm{yr}^{1}} \text {. }
\end{aligned}
$$

Our PM dispersions agree with those found by Jones \& Walker
 (1.06 $\square \pm \square 0.05,1.04 \square \pm \square 0.05)^{1} \mathrm{mas} \mathrm{yr}$

The PM dispersions were also measured for stars grouped into equally partitioned magnitude bins in F139M ($\mathrm{N} \square=\square 110$) and by PMistance from the center of the ONGi,ven in Tables 4 and 5. The one-dimensionaPM dispersionss ${ }_{m 1 D}$ were obtained by

Table 4
PM Dispersions as a Function of Magnitude

F139M mag	$\begin{gathered} S_{m}^{*}{ }^{*} \\ \text { mas } \mathrm{yr}^{-1} \end{gathered}$	$\begin{gathered} \sigma_{\mu, \delta} \\ \text { mas } \mathrm{yr}^{-1} \end{gathered}$	$\begin{gathered} s_{m r} \\ \text { mas } \mathrm{yr} \bar{r}^{-1} \end{gathered}$	$\begin{gathered} \sigma_{\mu, \mathrm{t}} \\ \text { mas } \mathrm{yr} \bar{r}^{1} \end{gathered}$	$\begin{gathered} s_{m 1 \mathrm{D}} \\ \text { mas } \mathrm{yr} \mathrm{r}^{1} \end{gathered}$	N
9.50-12.18	$0.86 \square \pm \square 0.07$	$1.08 \square \pm \square 0.08$	$0.91 \square \pm \square 0.07$	$1.02 \square \pm \square 0.08$	$0.98 \square \pm \square 0.05$	110
12.18-13.00	$0.87 \square \pm \square 0.07$	$1.18 \square \pm \square 0.09$	$1.09 \square \pm \square 0.08$	$1.00 \square \pm \square 0.07$	$1.04 \square \pm \square 0.06$	110
13.00-13.56	$0.84 \square \pm \square 0.07$	$1.11 \square \pm \square 0.09$	$0.92 \square \pm \square 0.07$	$1.05 \square \pm \square 0.08$	$0.98 \square \pm \square 0.06$	110
13.56-14.45	$0.85 \square \pm \square 0.07$	$1.19 \square \pm \square 0.09$	$1.01 \square \pm \square 0.08$	$1.07 \square \pm \square 0.08$	$1.03 \square \pm \square 0.06$	110
14.45-16.09	$0.83 \square \pm \square 0.06$	$1.12 \square \pm \square 0.08$	$1.06 \square \pm \square 0.08$	$0.94 \square \pm \square 0.07$	$0.99 \square \pm \square 0.05$	110
16.09-18.38	$0.67 \square \pm \square 0.05$	$1.03 \square \pm \square 0.08$	$0.79 \square \pm \square 0.06$	$0.94 \square \pm \square 0.07$	$0.87 \square \pm \square 0.05$	110

Note.
${ }^{\text {a }}$ The dispersion columns give 1D intrinsic dispersions in the R.A., decl., radial, and tangential directions. The final dispersion column is the mean of the R.A. and decl. dispersions.
taking the quadratic mean of R.Aand decl.dispersions s_{m}.a and $s_{m} d$ The PM dispersions appear to be essentially flat within the uncertainties from $m_{\text {F139M }}=9.50$ to 16.09 , below which there is marginalevidence of decreasing R.Adispersion.The PM dispersions more obviously decrease with radius from the center to $R=$ §. 0

5. Discussion

5.1. Normality and Isotropy of PM Distribution

Kuhn et al. (2019) demonstrated that the ONC is one of only a few young open clusters whose stellar velocities are consistent with a multivariatenormal distribution or a thermodynamic Maxwell-Boltzmann distribution (see Figure 10 in Kuhnæt 2019). For this analysishowever,the authors used Gaia DR2 sources with astrometric_excess_noise $=0$, only a few of which fall in the central region of the ONC, as shown in Figure 1. Hence, their sample does not fully reflect the distribution of stellarvelocitiesover the region covered in this work. In Section 4.2, we identified deviation from normality at the tails of the distribution. To verify the multivariate normality more quantitatively, we employed the R package MVN (Korkmaz et al. 2014) based on the method of Henze \& Zirkler (1990). Asfigure 7. The positions of stars with our HST + Keck (HK) PM measurements Section 4.2we tested the three cases: excluding (a) none of the are shown as gray points/ectors represent the PMs of the ESCs in the right ESC groups, (b) ESC group 1, and (c) ESC group 1 $\square+\square 2$. The first
case exhibitsstatistically significantleviation from normality
($\mathrm{p} \square \sim \square 0.00$ h)ile the latter two cases show consistency with a PM dispersions calculated in Section 4.Bquation (1) would multivariate normadistribution ($\mathrm{p} \square>\square 0$. . С5) e deviation from give an estimate for the mean-squareescape speed of normality suggests that including the ESCs in ESC group 1 woqu! $\square \pm \square 0.1$ mas y y 10% lower than our previous estimate in overestimate the width of the PM distribution.
Understandingthe nature of the kinematic outliers is important for assessing the applicability of our PM distribution model used in the previous section. We notice in Figure 7 that these stars are mostly concentrated at the clustef f_{c} cere. (1; Hillenbrand \& Hartmann 1998), with PM vectors heading outward. This is also the case for the stars in ESC group 2. Their positions and motions imply that the majority are likely higher-velocity stars escaping the ONC as a consequence of more frequent dynamical interactions between starsat the cluster core (Johnstone 1993; Baumgardt et al. 2002). Another possibility is that some of these are unresolved binaries Section 4.2. This suggests thathe previous estimate forthe escape velocity needs to be treated as an upper liemitd that applying the lower limit could reveal additional candidates. Nonetheless, if the higher-velocity stars are not escaping, then the deviation from normality seen in case (a) would be attributed to the rapid variation of velocity dispersions within the core of the cluster, as shown in Figure 8. We note that, even when including the ESCs, the PMs of all five subsamples grouped by distance in Table 5 are consistent with a multivariate normal distribution ($\mathrm{p} \square>\square 0.05 \mathrm{~h}$) both the Cartesian and radial-tangentiabordinatesOur modelis thus centrally concentrated due to mass segregation, although in thistill valid in all of the radial bins. case, their anisotropic radial PMs would not be easily explained. It is yet difficult to take a complete census of

The ONC is well known to have a stellar velocity distribution at is elongated north-south (e.g., Jones \& Walker 1988, Kuhn escaping stars due to measurement errors induced by the stronal. 2019) along the axis of the Orion A cloud filament. The PM nebulosity and the lack of line-of-sight velocity measurements. distribution of our sample also appears elongated north-south With the relation'áv $2 \tilde{n}=s_{v}^{2}$ for the Maxwellian distribution and with an axis ratio s_{m} t/ $s_{m} \sigma 0.74 \square 0.03$ This kinematic

Table 5
PM Dispersions as a Function of Distance

Excluded ESC Group	Radii arcmin	$\begin{gathered} S_{m}{ }^{\star a} \\ \text { mas } y r^{-1} \end{gathered}$	$\begin{gathered} \sigma_{\mu, \delta} \\ \text { mas } y r^{-1} \end{gathered}$	$\begin{gathered} \sigma_{\mu, r} \\ \text { mas } y r^{-1} \end{gathered}$	$\begin{gathered} \sigma_{\mu, \mathrm{t}} \\ \text { mas } \mathrm{yr} \mathrm{r}^{-1} \end{gathered}$	$\begin{gathered} s_{m 1 \mathrm{D}} \\ \text { mas } \mathrm{yr}^{-1} \end{gathered}$	N
None	0.0-0.7	$1.20 \square \pm \square 0.10$	$1.40 \square \pm \square 0.11$	$1.26 \square \pm \square 0.10$	$1.41 \square \pm \square 0.11$	$1.30 \square \pm \square 0.07$	91
	0.7-1.4	$0.93 \square \pm \square 0.06$	$1.18 \square \pm \square 0.08$	$1.07 \square \pm \square 0.07$	$1.10 \square \pm \square 0.07$	$1.06 \square \pm \square 0.05$	153
	1.4-2.1	$0.80 \square \pm \square 0.06$	1.11 $\square \pm \square 0.08$	$0.96 \square \pm \square 0.07$	$0.99 \square \pm \square 0.07$	$0.97 \square \pm \square 0.05$	135
	2.1-2.8	$0.80 \square \pm \square 0.05$	$1.00 \square \pm \square 0.06$	$0.99 \square \pm \square 0.06$	$0.82 \square \pm \square 0.05$	$0.91 \square \pm \square 0.05$	158
	2.8-3.5	$0.81 \square \pm \square 0.07$	$1.00 \square \pm \square 0.08$	$0.83 \square \pm \square 0.07$	$0.97 \square \pm \square 0.08$	$0.91 \square \pm \square 0.05$	93
Group 1	0.0-0.7	$0.99 \square \pm \square 0.09$	$1.40 \square \pm \square 0.11$	$1.13 \square \pm \square 0.10$	$1.30 \square \pm \square 0.11$	$1.21 \square \pm \square 0.07$	87
	0.7-1.4	$0.90 \square \pm \square 0.06$	$1.18 \square \pm \square 0.08$	$1.02 \square \pm \square 0.07$	$1.04 \square \pm \square 0.07$	$1.04 \square \pm \square 0.05$	152
	1.4-2.1	$0.80 \square \pm \square 0.06$	1.11 $\square \pm \square 0.07$	$0.96 \square \pm \square 0.07$	$0.99 \square \pm \square 0.07$	$0.97 \square \pm \square 0.05$	135
	2.1-2.8	$0.80 \square \pm \square 0.05$	$1.00 \square \pm \square 0.06$	$0.99 \square \pm \square 0.06$	$0.82 \square \pm \square 0.05$	$0.91 \square \pm \square 0.05$	158
	2.8-3.5	$0.75 \square \pm \square 0.06$	$1.00 \square \pm \square 0.08$	$0.84 \square \pm \square 0.07$	$0.92 \square \pm \square 0.08$	$0.88 \square \pm \square 0.05$	92
Group 1 $\square+\square 2$	0.0-0.7	$0.98 \square \pm \square 0.09$	$1.18 \square \pm \square 0.10$	$1.04 \square \pm \square 0.10$	$1.12 \square \pm \square 0.10$	$1.08 \square \pm \square 0.07$	79
	0.7-1.4	$0.90 \square \pm \square 0.06$	$1.13 \square \pm \square 0.07$	$0.99 \square \pm \square 0.07$	$1.03 \square \pm \square 0.07$	$1.02 \square \pm \square 0.05$	149
	1.4-2.1	$0.80 \square \pm \square 0.06$	1.11 $\square \pm \square 0.07$	$0.96 \square \pm \square 0.07$	$0.99 \square \pm \square 0.07$	$0.97 \square \pm \square 0.05$	135
	2.1-2.8	$0.80 \square \pm \square 0.05$	$0.96 \square \pm \square 0.06$	$0.96 \square \pm \square 0.06$	$0.81 \square \pm \square 0.05$	$0.88 \square \pm \square 0.04$	157
	2.8-3.5	$0.75 \square \pm \square 0.06$	$1.00 \square \pm \square 0.08$	$0.84 \square \pm \square 0.07$	$0.92 \square \pm \square 0.08$	$0.88 \square \pm \square 0.05$	92

Figure 8. Plot of the velocity dispersions ${ }_{v, 1 \mathrm{D}}$ vs. distance from the center of the ONC. The gray, red (with error bars), and blue confidence bands mark velocity dispersions based on the PM dispersions presented in Table 5 and the estimate for the distance of the ONC414 $\square \pm \square 7$ pc (Mentenaet2007). The black solid line illustrates the one-dimensionalelocity dispersion forvirial equilibrium predicted from the stellar and gas mass from Da Rio et al. (2014), and the dashed lines mark the uncertainty assuming a 30\% mass uncertainty. Note that 0.3 pc corresponds to $\sqrt{2} \mathbb{Z}$ in radius.
anisotropyagreeswith that seen in the stellar distribution at a radius of $\sim 3^{\prime}$, which is also elongated north-south with b/a $\square \sim \square 0.7$ (see Figure 3 in Da Rio e2\&114), parallel to the Orion A molecular cloud (Hillenbrand \& Hartmann 1998). The PM dispersions may reflect the initial conditions of the protocluster cloud or the geometry of the present-day gravitational potential. On the other hand, the deviation from tangentia to radial isotropy ($s_{m t} / s_{m r}-1$; Bellini et al. 2018) is $0.03 \square \pm \square 0.04$,ich suggests thathe cluster is consisterwtith being isotropic in the tangential-radial velocity space.

5.2. Dynamical Equilibrium

It has been argued in some previous studies that the ONC is likely to be supervirial (e.g., Jones \& Walker 1988; Da Rio et al. 2014). The dynamical mass of the ONC inferred from the previous kinematic analysis done by Jones \& Walker (1988) is nearly twice the total stellar and gas mass. Alternatively, virial equilibrium requires a one-dimensionatean velocity dispersion of $q \square ; \square 1.7 \square \pm \square 0.3$ krgisen the volume density of the stellar and gas contents in the ONC (Da Rio et al. 2014), which is only $\sim 75 \%$ of the velocity dispersion of $2.34 \square \pm \square 0.06^{1} \mathrm{~km}$ s from Jones \& Walker (1988), leading to the conclusion that the ONC is likely to be slightly supervirial, with a virial ratio of $q \square ; \square 0.9 \square \pm \square \square \square R B$ pastresult is, however, partially attributable to the previous estimate of the distance of the ONC adopted forthe derivation of velocity dispersion in Jones \& Walker (1988), 470 pc.

The estimate of the distance subsequently decreased in later studies to ~ 400 pc (e.g., Jeffries 2007; Menten et al. 2007; Kounkel et al. 2017, 2018; Großschedl et al. 2018; Kuhn et al. 2019). At a distance of $d \square=\square 414 \square \pm \square 7$ pc from Mentath et (2007), Jones \& Walker (1988) would have obtained a smaller value for their velocity dispersion, $\sigma_{v} \square ; \square 2.1 \square \pm \square 0.1 \mathrm{~km}$ s which would give a virial ratio as low as $q \square ; \square 0.7 \square \pm \square 0.3$.

Figure 8 compares our measured velocity dispersionsin Table 5 to the predicted velocity dispersions required for virial equilibrium based on the total mass profile from Da Rio et al. (2014). We note that we adopted $414 \square \pm \square 7$ pc from Menten et al. (2007) for the distance of the ONC, as Da Rio et al. (2014) did, for consistency purposesOverall, our velocity dispersion profiles tend to decrease with radius following the prediction based on the observed mass profile power-law profile slightly steeper than a singular isothermalphere (Da Rio et al. 2014). When we include the ESCs,our measured velocity dispersion appears to be more than 1σ largerthan predicted at the very central region. However, when neglecting the escaping stars in ESC group 1 or $1 \square+\square 2$, our measurements are in good agreementwith the predicted values within 1σ uncertainty, suggesting that the bulk of the cluster is virialized. Even if the ESCs are included, the measuredvelocity dispersions are still well below the boundednesslimit
($s_{\text {bound }}=\sqrt{2} s_{\text {vir }}$). There is no indication of global expansion in on average, is often cited as evidence for the primordial origin of the ONC from our analysis; the mean PM along the radial axis the mass segregation.The evidence of virial equilibrium,
is small and consistentwith zero within the σ uncertainty,as shown in Section 4.3. Kuhn et al. (2019) reported evidence of mild expansion in the ONC based on PM measurements of Gaia DR2 sources, finding the median outward velocity $\nabla_{\text {out }}=0.42 \square 0.20 \mathrm{~km}^{-1}$ based on the uncertainty-weighted median with bootstrap resamplingn Figure 5 of their paper, the weighted kernel-density estimate (KDE) plot of $\mathrm{V}_{\text {out }}$ exhibits two peaks, one at $\sim-0.4 \mathrm{~km} \mathrm{~s}^{-1}$ and the other at $\sim 1.0 \mathrm{~km} \mathrm{~s}^{-1}$, which implies a significant concentration of data points or weights attwo different places.To explore this, we divided the Gaia DR2 sample of Kuhn et al. (2019), including 378 stars, into two subgroups in terms of weights: (a) 42 stars with small errors (i.e.Jarge weights) $\dot{\rho}_{.0 u} \square<\square 0.15 \mathrm{~km}$ आnd (b) 336 stars with larger errors,, $\mathrm{g}_{\mathrm{u}} \square>\square 0.15 \mathrm{~km} 1$.sThe sum of the weights of group (a) reaches $\sim 64 \%$ of that of group (b). For groups (a) and (b), the median velocity is found to be $\nabla_{\text {out }}=0.94 \square 0.41$ and $0.09 \square \pm \square 0.19 \mathrm{kTh}$, sespectively.We note that we converted PMs intorkand calculated the median velocity in the same manner as described in Sections 3 and 4 Kuhn et al. (2019), for consistency purposes.This result indicates that $\sim 10 \%$ of the whole sample (i.e., group (a)) producesthe second peak in the KDE plot and biasesthe median velocity,ultimately leading to the conclusion thathe ONC shows evidence for mild expansiom fact, the stars in group (a) mostly fall into the magnitude range between phot_g_mean_mag ~13 and 15, which corresponds to the transition pointin the Gaia error terms from the detector and calibration-dominated regime to photon noise-limited regimes In this interval, the astrometric uncertainties of Gaia DR2 are known to be the mostunderestimated (see Section 4.6.4 and Figure 24 in Arenou et al. 2018). We refer to the IAU GA presentation slides by Lindegrể for more details. Between group (a) and our catalogive found one star matchedyhose PM errors in the Gaia DR2 need to be increased by a factor of ~ 3 or greater for its outward velocities to be consistent within 1σ uncertainty (see also Section 4.1We therefore conclude that the net outward velocity claimed by Kuhn et al. (2019) is likely a result of underestimated uncertaintieis the Gaia DR2 data.
Our result adds to the growing evidence that the central regi of the ONC is dynamically evolved. Studies of spatial morphology have revealed ththen ONC has overallery little stellar substructure (Hillenbrand \& Hartmann 1998; Da Rio 2014). The core of the cluster exhibits a rounder and smoother stellar distribution than the outskiitisdicating that the core has likely experienced moredynamicaltimescalesto lose initial substructuresThe line-of-sight velocities are also smoothly distributed, as expected from an old dynamicalage (Da Rio et al. 2017). Correcting for the local variation of the mean velocities,Da Rio et al. (2017) found thathe dispersion of the line-of-sight velocities is measured as low as $\sim 1.7^{1} \mathrm{k}$ mow $/$ sich agrees with a virial state. Kuhn et al. (2019) also reached a si conclusion using the PMs of 48 Gaia DR2 sources.
The dynamicalage also has an implication for the origin of mass segregationthe ONC exhibits clearevidence ofmass segregation, with the most massive stars preferentially located the central region of the cluster (Hillenbrand \& Hartmann 1998) The young age of the stellar population, as young as $\sim 2.5 \mathrm{Myr}$

[^4]however, implies that the central region of the ONC is dynamically old enough to have undergone severadrossing times or more (Tan etal. 2006). With a large age spread of ~1.3 Myr, the stellar population already appears seveiraes older than the current crossing time based on the observed cluster mass (Da Rio eal. 2014). In addition, the dynamical timescale was likely much smallerat the early phase of the cluster due to higher stellar densities (Bastian et al. 2008; Allison et al. 2009). The mass segregation in the ONC thus need not be fully primordial.
Ultimately, our results favor the theoreticallypothesis that star clusterformation is a dynamically "slow" process;stars form slowly in supersonicallyturbulent gas over several crossing timesreaching a quasi-equilibrium (Tan ell. 2006; Krumholz \& Tan 2007; Krumholz et al. 2012). In the "fast" scenariosa star cluster forms via a rapid globalollapse of a gas clump within approximately one crossing time (e.g., Elmegreen 2007;Krumholz et al. 2011), in which case the fluster would lack the features expected from dynamical evolution. The ONC continues to form stars with low efficiency and largely in virial equilibrium; thus, it provides observational evidence for the slow formation scenario and does not support the competitive accretion model.

5.3. Origin of High-velocity Stars

Our PM catalog includes previously known fast-moving sources around the BN/KL complex,namely, BN, source x, and source n, although in our analysis, source n exhibits a rather small PM in the rest frame of the ONC. These optically invisible objects are all detected in epoch 2010 and 2014 NIRC2 Hel b (~K-band) images. ${ }^{14}$. Before the recent discovery of source x,two possible scenarios were proposed to explain their origin:
(a) Ejected from Trapeziurhori C $\sim 4000 \mathrm{yr}$ ago (Plambeck et al. 1995; Tan 2004)BN passed near sourcettiggering an explosive outflow; or (b) BN, source I, and at least one other star once comprised a multiple systenænd the lattertwo objects merged into a tight binary system, which resulted in an explosive outflow ~ 500 yr ago (Rodríguez et al. 2017).
onNumerous pieces of evidence argue against the first scenario, e.g., the large separation betwe \because ar $\theta \mathrm{C}$ and BN at the time of ejection ($\square 10^{\prime \prime}$) and their inconsistentomenta and ages (see aGoddi et al. 2011 and references therein)n the meantime, source x was recently found as a promising candidate the formerly missing puzzle for the second scenario. Luhman et al. (2017) demonstrated thathe estimated location ofsource x $\sim 500 \mathrm{yr}$ ago agrees with the position for BN and source I at that time, determined by radio PMs measured by Gómez etal. (2008), Goddi et al. (2011), and Rodríguez et al. (2017), which suggests thathe three sources were likely ejected in the same event.
milalle have independently calculated when BN and source x experiencedtheir closest approach $\left(\mathrm{t}_{\text {min }}\right)$ using our PM measurements and the method described in AppendixMBe obtained $\hbar_{\text {min }} \square=\square 1535 \square \pm \square$ 2thich is consistentwithin 2σ with that for BN and source I based on their radio PMs,
${ }^{14}$ The astrometric measurements of the highly embedded obsbl on the HST WFC3/R F130N and F139M ($\sim \mathrm{J}$ - and H -band) images were excluded from this analysis, as it appears highly elongated and asymmetric on those images.

Figure 9. Positions of BN and sources I, n, and x for the epoch of 2015 (squares without error bars). Arrows indicate the direction and PM displacement for 300 yr in the rest frame of the ONChe dashed and dotted lines illustrate the projected paths back to 1535 and the uncertainties, respectively.The error bars representhe estimated positions forthe epoch of 1535. The astrometry and PM of source I were adopted from Rodríguez et al. (2017)
$t_{\text {min }} \square=\square 1475 \square \pm \square 6 \mathrm{yr}$ (Rodríguez et al. 2017). Figure 9 show PM vectors and positions of BN and sources I, n, and x and th $1 \sigma \square$ range of allowed paths back to 15ßWere only the data for source I have been adopted from Rodríguezædt (2017). Our observation supports the possibility that BN and sources I and x were ejected from around the same location $\sim 500 \mathrm{yr}$ ago Elements ofthis hypothesis were once challenged by theoretical simulations;Farias \& Tan (2018) demonstrated using a large suite of N -body simulations thatthe mass for source I required by their simulations is as large as atleast $14 \mathrm{M}_{\mathrm{e}}$, almost twice as large as the previously estimated $\mathrm{e}_{\text {7bßllised }}$ on the kinematics of the circumstellar material (Matthews et al. 2010; Hirota et al. 2014; Plambeck \& Wright 2016). Recent ALMA observations with higher resolution and sensitivity than the previous oneshowever,estimate the mass of source I as $15 \square 2 M_{\square}$ (Ginsburg et al. 2018), by which the dynamical decay scenario still remains viable.

6. Conclusions

Using HST ACS/WFC3IR data that span ~ 20 yr and Keck II NIRC2 data obtained in 2010 and 2014, we obtained relative PMs of 701 stars within \sim. 3 of the ONC. With the analysis of these PMs,we reach the following conclusions.

1. Excluding the kinematic outlier\$he PMs of our sample are consistent with a multivariate normal distribution. With the refined sample, the calculated velocity dispersions $\operatorname{are}\left(s_{m}{ }^{*}, s_{d}\right)=\left(\begin{array}{lll}0.83 \square 0.02,1.12 \square 0.03\end{array}\right)$ mas $\overline{y r}^{1}$ and $\left(s_{m r}, s_{m t}\right)=(0.97 \square 0.03,1.00 \square 0.03)$ mas yr^{1}. These values agree with those in previous surveys (e.g., Jones Walker 1988) but have a factor of ~ 2 improved precision.
2. The PM distribution appears elongated north-south with an axis ratio of s_{m} t/ $s_{m} \sigma=0.74 \square 0.03$ resembling the stellar distribution,which is also elongated north-south,
with $\mathrm{b} / \mathrm{a} \square \approx \square 0.7$ in the central regiom the other hand, the radial and tangential PMs are consistent with tangential-to-radialisotropy, as indicated by the low deviation from isotropy $\$_{m t} / s_{m r}-1$) $=0.03 \square 0.04$.
3. Compared to the prediction from the total density profile, our velocity dispersion profile is in good agreement with a virialized state. This suggeststhat the star-forming region is dynamically evolved.
4. Our analysis recovered the fast-moving IR sources in the $B N / K L$ region, including BN, x, and n. The PMs of BN and source x, are consistent with previous measurements in the literature, whereas source n exhibits a relatively small PM, as previously seen at IR and millimeter wavelengths. The estimated locations of BN and source x when the closestseparation took place agree with the initial position of the radio source n implying the dynamical decay of a multiple system involving these three sources.
5. The majority of ESCs are concentrated around the core of the ONC, where their PM vectors mostly point outward.
6. Based on comparisonswith current star formation theories, our result suggeststhat the ONC is forming stars with a low star formation efficiency per dynamical timescale.

Our analysis shows that high spatial resolution, near-IR coverage of the ONC is essential; HST WFC3/IR + Keck NIRC2 observations revealed a factor of ~ 3 more stars than the optical Gaia DR2 sources in the BN/KL region. In order to sbtham a complete PM catalog of the most embedded and Yowest-mass objects, additional observations over a sufficiently long time baseline with near-IR telescopes/instruments such as HST WFC3/IR and Keck NIRC2 and the next-generation near/mid-IR telescopes such as the James Webb Space Telescope and WFIRST wilbe required. Alongside the PM analysis, ongoing spectroscopic surveys for stellar line-of-sight velocities around the ONC will enable determination ofthe three-dimensionalstellar velocity distribution (e.g., C. A. Theissen et al2019, in preparation).

The authors thank the anonymousreferee for interesting suggestions and commentts/e thank Andrea Bellini, Joshua Simon, and Anthony Brown for helpful discussions on Gaia data, Gaspard Duchene on visuabinaries in the ONC, and Michael Kuhn for providing the list of Gaia DR2 source IDs. We also thank Steven Stahler and Lynne Hillenbrand for informative discussionsand comments. J.R.L. and D.K. acknowledge support from NSF AST-1764218, HST-AR13258, and HST-GO-13826J.R.L., Q.K., D.K., and C.A.T. are supported by NSF grant AST-1714816. This work is based on observationsmade with the NASA/ESA Hubble Space Telescopeobtained atthe Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work has made use of data from the European Space Agency (ESA) missiœ冂aia (https://www.cosmos.esa. int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; $\square h t t p s: / / w w w . c o s m o s . e s a . i n t / w e b / g a i a / ~$ \&pac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the

California Institute of Technology, the University of California, in the globular cluster NGC 7078. Note that NGC 7078 and the NationalAeronautics and Space Administrationthe observatory was made possible by the generousfinancial supportof the W. M. Keck Foundation.The authors wish to recognize and acknowledge the very significarcultural role and reverence thathe summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

We acknowledge use of the Astropy (Astropy Collaboration et al. 2013), Matplotlib (Hunter 2007), and R (R Core Team 2018) software packages.

Facilities: HST (ACS, WFPC2, WFC3), Keck:II (NIRC2), Gaia.

Software:Astropy (Astropy Collaboration et al. 2013), align (Ghez et al. 2008), emcee (Foreman-Mackey etal. 2013), hst1pass, $\square \mathrm{img} 2 x y m _W F C$ (Anderson \& King 2006), img2xymrduv (Anderson \& King 2003), Matplotlib (Hunter 2007), MVN (Korkmaz et al. 2014), R (R Core Team 2018) StarFinder (Diolaiti et al. 2000)

Appendix A
 Systematic Errors in Gaia DR2 PMs

In order to use Gaia DR2 as a control sample (see Section 4.1), it is important to understand the underlying systematic errorsas well as random errorsdepending on the quality of individual measurementłlere we demonstrate that the Gaia DR2 PMs may include systematic errors induced by the scanning law of the survey by comparing to the HST PMs
provides a cleaner data sthan the nebulous ONC.The top left and right panels of Figure 10 show the PM-vector point diagrams of stars in common between Gaia DR2 and the HST PM catalog of Bellini et al. (2014). The distribution of Gaia DR2 PMs exhibits unexpected linear structures nearly perpendicular to one anothen.hese structures stillemain in the bottom left panel, where the HST PMs are subtracted from the Gaia DR2 PMs. The linear trends closely resemble the scanning footprints around the cluster, which can be traced by the positions of Gaia DR2 sources filtered based on the number of good observationsastrometric_n_good_obs_al, as shown in the bottom right panel. This suggeststhat the systematicerrors reflect the scanning pattern and survey incompleteness

We find that fainter stars with a smaller number of observations and visibility periodsend to be more strongly effected by systematicFFigure 11 compares obvious outliers along the structures, highlighted in red in the bottom left panel of Figure 10, to the rest in different parameter spaces. The outliers are mostly fainter than phot_g_mean_mag~16 and have astrometric_n_good_obs_al values below 120 and visibility_periods_used values below 8 . The black solid lines in the left panel mark the quality-cut thresholds applied for our control sample in Section 4.1 based on magnitudes and the goodnessfibf(gof) statistic of individual sources.These criteria alone cannotompletely rule out the possibility of systematic errorsthere are still a few contaminants, circled in blue, inside the boundariesThe right panels

Figure 10. Evidence of systematics in Gaia DR2 PMs. Top left panel: distribution of Gaia DR2 PMs for stars in common between Gaia DR2 and the HST NGC 707 PM catalog of Bellini et al. (2014). Top right panel: same as the top left panel but for HST PMs. Bottom left panel: same as the top panels but for differences in the Gaia DR2 and HST PMs. Obvious outliers are highlighted in red for Figure 11. The dotted line illustrates the orientation of the Galactic plane. Bottom right panel: positions of Gaia DR2 sources with astrometric_n_good_obs_al below 110, which imprint the scanning law of Gaia. The orange polygon marks the field of view of the HST catalog.

Figure 11. Characteristics of Gaia DR2 sources with systematic errors. Filled circles in red and gray correspond to the selected outliers and the rest in the bottom le panel of Figure 10, respectively. Left panel: gof statistic as a function of magnitude. Black solid lines outline the quality-cut thresholds applied for our control sampl in Section 4.1. Outliers that passed the cuts are marked with open circles in blueRight panels:histograms ofastrometric_n_good_obs_al (top) \quad and visibility_periods_used (bottom).
show that increasing thresholds for astrometric_n_good_ obs_al and visibility_periods_used can reduce the number of stars subjected to the systematic errors in 14309.9) mas and PMs of $\left(\mu_{x}, \mu_{y}\right) \square=\square(-34.0 \pm 3.30 .6 \pm$ rempler 2.4) mas $\overline{y r}^{1}$ based on our measurements for BN and source x sample. Filtering based on these two parameters may come at $\mathfrak{\text { be obtain }}$ cost, especially where the detection efficiency of Gaia is typically low, like at the central region of globular clusters due to high crowding (Arenou et al. 2018).

Appendix B

The Minimum Separation of BN and Source x in the Past

$$
\begin{aligned}
& s_{\min }=2.82 \square \square 1.32 \\
& t_{\min }=1535 \square \quad 29 \mathrm{yr} .
\end{aligned}
$$

We have determined the closest approach distance between

ORCID iDs
BN and source x based on our PM measurements in a similar Dongwon Kim © https://orcid.org/0000-0002-6658-5908 approach to the method of Gómez et al. (2008). Assuming theiઇessica RLu © https://orcid.org/0000-0001-9611-0009 PMs are linear, the relative positions of BN with respect to source x as a function of time t are given by

$$
\begin{aligned}
& x(t)=x_{2014.9}+m_{\star}(t-2014.9 \\
& y(t)=y_{2014.9}+m_{y}(t-2014.9
\end{aligned}
$$

where ($x_{2014.9} y_{2014.9}$) and (μ, μ_{y}) are the relative positions for epoch 2014.9 and relative motions in the right-handed Cartesian coordinates ($x \mathbb{D} \boldsymbol{\square}$ Cos $d, y \square=\square \Delta \delta$). The separation of the two sources as a function of time is then given by

$$
s(t)=\sqrt{x^{2}(t)+y^{2}(t)}
$$

The minimum separation $n_{n \$ 0}$ and the corresponding epoch $t_{\text {min }}$ are given by differentiating the separation and equaling to zero:

$$
\begin{aligned}
& s_{\min }=\frac{\left|x_{2014.9} m_{\nless}-y_{2014.9} m\right|}{\sqrt{m_{x}^{2}+m_{y}^{2}}} \\
& t_{\min }=-\frac{x_{2014.9} m_{\neq}+y_{2014.9} m y}{m_{x}^{2}+m_{y}^{2}}
\end{aligned}
$$

Quinn Konopacky https://orcid.org/0000-0002-9936-6285
Laurie Chu© https://orcid.org/0000-0002-1437-4463
Jay Anderson https://orcid.org/0000-0003-2861-3995
Christopher A.Theissen https://orcid.org/0000-0002-
9807-5435
Mark R. Morris (i) https://orcid.org/0000-0002-6753-2066

References

Allen, D. A., \& Burton, M. G. 1993, Natur, 363, 54
Allison, R. J., Goodwin, S. P., Parker,R. J., et al. 2009, ApJL, 700, L99
Anderson,J., \& King, I. R. 2003, PASP,115, 113
Anderson, J., \& King, I. R. 2006, ACS/ISR 2006-01 (Baltimore, MD: STScl) http://www.stsci.edu/hst/acs/documents/isrs
Arenou,F., Luri, X., Babusiaux,C., et al. 2018,A\&A, 616, A17
Astropy Collaboration,Robitaille, T. P., Tollerud, E. J., et al. 2013, A\&A, 558, A33
Bally, J., CunninghamN. J., Moeckel,N., et al. 2011,ApJ, 727, 113
Bally, J., Ginsburg,A., Arce, H., et al. 2017, ApJ, 837, 60
Bally, J., \& Zinnecker, H. 2005,AJ, 129, 2281
Bastian,N., Gieles,M., Goodwin,S. P., et al. 2008, MNRAS, 389, 223
Baumgardt,H., Hut, P., \& Heggie, D. C. 2002, MNRAS, 336, 1069
Beccari, G., Petr-Gotzens, M. G., Boffin, H. M. J., et al. 2017, A\&A, 604, A22
Becklin, E. E., \& Neugebauer,G. 1967,ApJ, 147, 799
Bellini, A., Anderson,J., van der Marel,R. P., et al. 2014, ApJ, 797, 115
Bellini, A., Libralato,M., Bedin, L. R., et al. 2018,ApJ, 853, 86

Binney, J., \& Tremaine,S. 2008, Galactic Dynamics (2nd ed.; PrincetolN,J: Princeton Univ Press)
Bonnell, I. A., Bate, M. R., Clarke, C. J., \& Pringle, J. E. 2001a,MNRAS, 323, 785
Bonnell, I. A., Clarke, C. J., Bate, M. R., \& Pringle, J. E. 2001b, MNRAS, 324, 573
Colgan, S. W. J., Schultz, A. S. B., Kaufman, M. J., Erickson, E. F., \& Hollenbach,D. J. 2007, ApJ, 671, 536
Da Rio, N., Tan, J. C., Covey, K. R., et al. 2017,ApJ, 845, 105
Da Rio, N., Tan, J. C., \& Jaehnig,K. 2014, ApJ, 795, 55
Diolaiti, E., Bendinelli, O., Bonaccini,D., et al. 2000,A\&AS, 147, 335
Duchêne,G., Lacour, S., Moraux, E., Goodwin, S., \& Bouvier, J. 2018, MNRAS, 478, 1825
Dzib, S. A., Loinard, L., RodríguezL. F., et al. 2017,ApJ, 834, 139
ElmegreenB. G. 2007,ApJ, 668, 1064
Eriksen,H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 10
Farias,J. P., \& Tan, J. C. 2018, A\&A, 612, L7
Foreman-MackeyD., Hogg, D. W., Lang, D., \& Goodman, J. 2013, PASP, 125, 306
Furuya,R. S., \& Shinnaga,H. 2009,ApJ, 703, 1198
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A\&A, 616, A1
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A\&A, 595, A1
Ghez,A. M., Salim, S., Weinberg,N. N., et al. 2008, ApJ, 689, 1044
Ginsburg,A., Bally, J., Goddi, C., Plambeck,R., \& Wright, M. 2018, ApJ, 860, 119
Goddi, C., Humphreys, E. M. L., Greenhill, L. J., Chandler, C. J., \& Matthews,L. D. 2011,ApJ, 728, 15
Gómez,L., Rodríguez,L. F., Loinard,L., et al. 2005,ApJ, 635, 1166
Gómez,L., Rodríguez,L. F., Loinard, L., et al. 2008, ApJ, 685, 333
GroßschedlJ. E., Alves, J., Meingast,S., et al. 2018,A\&A, 619, A106
Henney,W. J., O'Dell, C. R., Zapata,L. A., et al. 2007,AJ, 133, 2192
Henze, N., \& Zirkler, B. 1990, Communicationsin Statistics-Theory and Methods,19, 3595
Hillenbrand,L. A. 1997,AJ, 113, 1733
Hillenbrand,L. A., \& Carpenter,J. M. 2000, ApJ, 540, 236
Hillenbrand,L. A., \& Hartmann,L. W. 1998,ApJ, 492, 540
Hirota, T., Kim, M. K., Kurono, Y., \& Honma, M. 2014, ApJL, 782, L28
Hunter, J. D. 2007, CSE, 9, 90
JaynesE. T. 1968, IEEE Trans.Syst. Sci. and Cybernetics\$SC-4,227
Jeffries,R. D. 2007,MNRAS, 376, 1109
JohnstoneD. 1993,AJ, 105, 155
Jones,B. F., \& Walker, M. F. 1988, AJ, 95, 1755
Korkmaz, S., Goksuluk,D., \& Zararsiz, G. 2014, The R Journal,6, 151
Kounkel, M., Covey,K., Suárez,G., et al. 2018,AJ, 156, 84
Kounkel, M., Hartmann,L., Loinard, L., et al. 2017,ApJ, 834, 142
Krumholz, M. R., Klein, R. I., \& McKee, C. F. 2011,ApJ, 740, 74
Krumholz, M. R., Klein, R. I., \& McKee, C. F. 2012,ApJ, 754, 71

Krumholz, M. R., \& Tan, J. C. 2007,ApJ, 654, 304
Kuhn, M. A., Hillenbrand, L. A., Sills, A., Feigelson, E. D., \& Getman, K. V. 2019, ApJ, 870, 32
Kwan, J., \& Scoville, N. 1976, ApJL, 210, L39
Lu, J. R., Ghez,A. M., Hornstein,S. D., et al. 2009,ApJ, 690, 1463
Luhman,K. L., Robberto,M., Tan, J. C., et al. 2017,ApJL, 838, L3
Matthews,L. D., Greenhill,L. J., Goddi, C., et al. 2010,ApJ, 708, 80
McKee, C. F., \& Tan, J. C. 2002, Natur, 416, 59
McKee, C. F., \& Tan, J. C. 2003, ApJ, 585, 850
Menten,K. M., Reid, M. J., Forbrich, J., et al. 2007,A\&A, 474, 515
O'Dell, C. R. 2001,AJ, 122, 2662
O'dell, C. R., Hartigan,P., Lane,W. M., et al. 1997,AJ, 114, 730
O'Dell, C. R., \& Henney, W. J. 2008, AJ, 136, 1566
O'Dell, C. R., \& Yusef-Zadeh,F. 2000,AJ, 120, 382
ParenagoP. P. 1954,TrSht, 25, 393
Plambeck,R. L., \& Wright, M. C. H. 2016, ApJ, 833, 219
Plambeck,R. L., Wright, M. C. H., Mundy, L. G., \& Looney, L. W. 1995, ApJL, 455, L189
Prosser,C. F., Stauffer,J. R., Hartmann,L., et al. 1994,ApJ, 421, 517
R Core Team 2018, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing (Vienna: R Foundation for Statistical Computing)
Reggiani,M., Robberto,M., Da Rio, N., et al. 2011,A\&A, 534, A83
Reipurth, B., Guimarães,M. M., Connelley,M. S., \& Bally, J. 2007, AJ, 134, 2272
Ricci, L., Robberto,M., \& Soderblom,D. R. 2008,AJ, 136, 2136
Robberto,M., Soderblom,D. R., Bergeron,E., et al. 2013,ApJS,207, 10
Robberto,M., Soderblom,D. R., ScandariatoG., et al. 2010,AJ, 139, 950
Robberto,M., Song,J., Mora Carrillo, G., et al. 2004, ApJ, 606, 952
Rodríguez,L. F., Dzib, S. A., Loinard, L., et al. 2017,ApJ, 834, 140
Rubin, R. H., Dufour, R. J., Ferland,G. J., et al. 1997, ApJL, 474, L131
ScandariatoG., Robberto,M., Paganol., \& Hillenbrand, L. A. 2011,A\&A, 533, A38
Sitarski,B. N., Morris, M. R., Lu, J. R., et al. 2013, ApJ, 770, 134
Stolovy, S. R., Burton, M. G., Erickson,E. F., et al. 1998, ApJL, 492, L151
Stolte,A., Ghez,A. M., Morris, M., et al. 2008,ApJ, 675, 1278
Tan, J. C. 2004, ApJL, 607, L47
Tan, J. C., Krumholz, M. R., \& McKee, C. F. 2006, ApJL, 641, L121
van Altena, W. F., Lee, J. T., Lee, J.-F., Lu, P. K., \& Upgren, A. R. 1988, AJ, 95, 1744
van de Ven, G., van den Bosch, R. C. E., Verolme, E. K., \& de Zeeuw, P. T. 2006,A\&A, 445, 513
Wizinowich, P. L., Le Mignant, D., Bouchez,A. H., et al. 2006, PASP, 118, 297
Yelda, S., Lu, J. R., Ghez,A. M., et al. 2010,ApJ, 725, 331
Zapata,L. A., Ho, P. T. P., Rodríguez,L. F., et al. 2006, ApJ, 653, 398
Zapata,L. A., Rodríguez,L. F., Ho, P. T. P., et al. 2005, ApJL, 630, L85

[^0]: ${ }^{6}$ http://archive.stsci.edu
 7 http://www.stsci.edu/~jayander/CODE/
 8 http://www.stsci.edu/~jayander/STDGDCs/

[^1]: 9 http://homepage.physics.uiowa.edu/~haifu/idl/nirc2wide/

[^2]: $\overline{{ }^{10} \text { Higher-order projection such as Equation (1) in van de Ven at. (2006) }}$ changes our PM measurements by typically $1 \mu \mathrm{as}^{-1}$ yor less.

[^3]: ${ }^{11}$ Flat prior can be strongly "informative" for a scale parameter and bias the posterior probability distribution (see, e.g., Section 4.1 of Eriksen et al. 2008). Neverthelessusing a flat prior instead of the Jeffreys prior ${ }_{m}^{1}$ increases our estimates ofPM dispersions in this paperby only $\sim 0.01 \mathrm{mas}^{\mathrm{yr}}{ }^{-1}$ or less, except for the sample in Figure 3, ~ 0.05 mas ydue to its small sample size. The choice of prior thus changes none of our conclusions in this paper.

[^4]: $\overline{{ }^{13} \mathrm{https}: / / \mathrm{www} . c o s m o s . e s a . i n t / w e b / g a i a / d r 2-k n o w n-i s s u e s ~}$

