PDoT: Private DNS-over-TLS with TEE Support

Yoshimichi Nakatsuka
University of California, Irvine
nakatsuy@uci.edu

ABSTRACT

Security and privacy of the Internet Domain Name System (DNS)
have been longstanding concerns. Recently, there is a trend to pro-
tect DNS traffic using Transport Layer Security (TLS). However,
at least two major issues remain: (1) how do clients authenticate
DNS-over-TLS endpoints in a scalable and extensible manner; and
(2) how can clients trust endpoints to behave as expected? In this pa-
per, we propose a novel Private DNS-over-TLS (PDoT) architecture.
PDoT includes a DNS Recursive Resolver (RecRes) that operates
within a Trusted Execution Environment (TEE). Using Remote Attes-
tation, DNS clients can authenticate, and receive strong assurance
of trustworthiness of PDoT RecRes. We provide a proof-of-concept
implementation of PDoT and use it to experimentally demonstrate
that its latency and throughput match that of the popular Unbound
DNS-over-TLS resolver.

CCS CONCEPTS

« Security and privacy — Web protocol security; Hardware-
based security protocols; Network security; Privacy protections.

KEYWORDS

Domain Name System, Privacy, Trusted Execution Environment

ACM Reference Format:

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik. 2019. PDoT: Pri-
vate DNS-over-TLS with TEE Support. In 2019 Annual Computer Security
Applications Conference (ACSAC °19), December 9-13, 2019, San Juan, PR, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3359789.3359793

1 INTRODUCTION

The Domain Name System (DNS) [26] is a distributed system that
translates human-readable domain names into IP addresses. It has
been deployed since 1983 and, throughout the years, DNS privacy
has been a major concern.

In 2015, Zhu et al. [33] proposed a DNS design that runs over
Transport Layer Security (TLS) connections [14]. DNS-over-TLS
protects privacy of DNS queries and prevents man-in-the-middle
(MiTM) attacks against DNS responses. [33] also demonstrated
practicality of DNS-over-TLS in real-life applications. Several open-
source recursive resolver (RecRes) implementations, including Un-
bound [8] and Knot Resolver [5], currently support DNS-over-TLS.

*Work done while visiting University of California, Irvine, as a US-UK Fulbright Cyber
Security Scholar.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACSAC 19, December 9-13, 2019, San Juan, PR, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7628-0/19/12.

https://doi.org/10.1145/3359789.3359793

Andrew Paverd®
Microsoft Research
andrew.paverd@ieee.org

Gene Tsudik
University of California, Irvine
gene.tsudik@uci.edu

In addition, commercial support for DNS-over-TLS has been increas-
ing, e.g., Android P supports it [2] as does Cloudflare’s 1.1.1.1
RecRes [1]. However, despite attracting interest in both academia
and industry, some problems remain.

One major issue is lack of means to determine whether a given
RecRes is trustworthy. For example, even if communication be-
tween client stub (client) and RecRes, and between RecRes and the
name server (NS) is encrypted using TLS, RecRes must decrypt
the DNS query in order to resolve it and contact the relevant NS-
s. This allows RecRes to learn unencrypted DNS queries, which
poses privacy risks if a malicuous RecRes misuses this data, e.g.,
profiling users or selling their DNS data. Some RecRes operators
go to great lengths to assure users that their data is private. For
example, Cloudflare promises “We will never sell your data or use
it to target ads” and goes on to say “We’ve retained KPMG to audit
our systems annually to ensure that we’re doing what we say” [1].
Although helpful, this still requires users to trust the auditor and
can only be used by operators who can afford an auditor.

The second problem is that clients authenticate RecRes using
certificates. Certificate-based authentication is natural for websites,
since the user (client) already knows the website and the certificate
securely binds a public key to that website’s URL. However, the
same does not hold for DNS, since most users have little or no idea
what DNS is, much less which resolver’s organization is trustworthy.
Therefore, ideally, we need a way to authenticate RecRes without
any user involvement. One way to address this issue is by creating a
white-list of trusted RecRes-s’ public keys. However, this is neither
scalable nor maintainable, because the white-list would have to
include all possible RecRes operators, ranging from large public
services (e.g., 1.1.1.1) to small-scale providers, e.g., a local RecRes
provided by a coffee-shop.

An alternative approach is to use Remote Attestation (RA) so that
clients can check what software a given RecRes is running. In this
context, the identity of RecRes is no longer relevant, since clients
can make trust decisions based on how RecRes behaves. RA is one
of the main features of modern hardware-based Trusted Execution
Environments (TEEs), such as Intel Software Guard Extensions
(SGX) [24] and ARM TrustZone [9]. Such TEEs are now widely
available, with Intel CPUs after the 7th generation supporting SGX,
and ARM Cortex-A CPUs supporting TrustZone. TEEs with RA
capability are now also available in cloud services, such as Microsoft
Azure [25]. In this paper, we use these features to address the two
problems posed above. Specifically, our contributions are:

e We design a Private DNS-over-TLS (PDoT) architecture, the
main component of which is a privacy-preserving DNS RecRes
that operates within a commodity TEE. Running an RecRes
inside a TEE prevents even the RecRes operator from learn-
ing clients’ DNS queries, thus providing query privacy. Our
RecRes design also addresses the authentication challenge by

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

enabling clients to trust the RecRes based on how it behaves,
and not on who it claims to be. (See Section 4).

e We implement a proof-of-concept PDoT RecRes using In-
tel SGX and evaluate its security, deployability, and perfor-
mance. All source code and evaluation scripts are publicly
available [?]. Our results show that PDoT handles DNS
queries without leaking information while achieving suf-
ficiently low latency and offering acceptable throughput
(Sections 5 and 6).

o In order to quantify privacy leakage via traffic analysis, we
performed an Internet measurement study. It shows that
94.7% of top 1,000,000 domain names can be served from a
privacy-preserving NS that serves at least two distinct domain
names, and 65.7% from a NS that serves 100+ domain names.
(See Section 7).

2 BACKGROUND
2.1 Domain Name System (DNS)

DNS is a distributed system that translates host and domain names
into IP addresses. DNS includes three types of entities: Client Stub
(client), Recursive Resolver (RecRes), and Name Server (NS). Client
runs on end-hosts. It receives DNS queries from applications, cre-
ates DNS request packets, and sends them to the configured RecRes.
Upon receiving a request, the RecRes sends DNS queries to NS-s
to resolve the query on client’s behalf. When NS receives a DNS
query, it responds to RecRes with either the DNS record that an-
swers client’s query, or the IP address of the next NS to contact.
RecRes thus recursively queries NS-s until the record is found or a
threshold is reached. The NS that holds the queried record is called:
Authoritative Name Server (ANS). After receiving the record from
ANS, RecRes forwards it to client. It is common for RecRes to cache
records so that repeated queries can be handled more efficiently.

2.2 Trusted Execution Environment (TEE)

A Trusted Execution Environment (TEE) is a security primitive
that isolates code and data from privileged software such as the
OS, hypervisor, and BIOS. All software running outside TEE is
considered untrusted. Only code running within TEE can access
data within TEE, thus protecting confidentiality and integrity of
this data against untrusted software. Another typical TEE feature
is remote attestation (RA), which allows remote clients to check
precisely what software is running inside TEE.

One recent TEE example is Intel SGX, which enables applications
to create isolated execution environments called enclaves. CPU
enforces that only code running within an enclave can access that
enclave’s data. SGX also provides RA functionality.

Memory Security. SGX reserves a portion of memory called
Processor Reserved Memory (PRM). It holds 4KB pages of Enclave
Page Cache (EPC) that stores code and data that run in that enclave.
PRM is protected by CPU to prevent non-enclave access to this
memory region. Also, processes can enter and leave an enclave
only through special functions: ECALLs and OCALLs, respectively.
These functions are realized by adding special CPU instructions.
Any illegal attempt to enter or leave without calling these functions
forces an enclave to shut down.

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

Attestation Service. SGX provides two types of attestation:
local and remote. Local attestation enables one enclave to attest
another (running on the same machine) to verify that the latter
is a genuine enclave actually running on the same CPU. Remote
attestation involves more entities. First, an application enclave to
be attested creates a report that summarizes information about
itself, e.g., code it is running. This report is sent to a special enclave,
called quoting enclave which is provided by Intel and available
on all SGX machines. Quoting enclave confirms that requesting
application enclave is running on the same machine and returns a
quote, which is a report with the quoting enclave’s signature. The
application enclave sends this quote to the Intel Attestation Service
(IAS) and obtains an attestation verification report. This is signed by
the IAS saying that the application enclave is indeed running the
code that it claims to be running. Once it receives an attestation
verification report, the verifier can make an informed trust decision
about behavior of the attested enclave.

Side-Channel Attacks. SGX is vulnerable to several side-channel
attacks [22, 30], and various mechanisms have been proposed [13,
27?] to mitigate them. Since defending against side-channel attacks
is orthogonal to our work, we expect that a production implemen-
tation would include relevant mitigation mechanisms.

3 ADVERSARY MODEL & REQUIREMENTS
3.1 Adversary Model

The adversary’s goal is to learn or infer information about DNS
queries sent by clients. We consider two different types of adver-
saries, based on their capabilities:

Our first type of adversary is a malicious RecRes operator who
has full control over the physical machine, its OS and all applica-
tions, including RecRes. We assume that the adversary cannot break
any cryptographic primitives, assuming that they are correctly im-
plemented. We also assume that it cannot physically attack hard-
ware components, e.g., probe CPU physically to learn TEE secrets.
This adversary also controls all of RecRes’s communication inter-
faces, allowing it to drop/delay packets, measure the time required
for query processing, and observe all cleartext packet headers.

The second adversary type is a network adversary, which is
strictly weaker than the malcious RecRes operator. In the passive
case, this adversary can observe any packets that flow into and out
of the RecRes. In the active case, this adversary can also modify
and/or forge network packets. DNS-over-TLS alone (without PDoT)
is sufficient to thwart a passive network adversary. However, since
an active adversary could attempt to redirect clients to a malicious
RecRes, clients need a efficient mechanism for authenticating the
RecRes and determining whether it is trustworthy, which is the
main contribution of PDoT.

For either adversary, we do not consider Denial-of-Service (DoS)
attacks against RecRes, since these do not help to achieve either ad-
versary’s goal of learning clients’ DNS queries. Connection-oriented
RecRes-s can defend against DoS attacks using cookie-based mech-
anisms to prevent SYN flooding [33].

3.2 System Requirements

In the context of the aforementioned adversary model, we now
define system requirements for a privacy-preserving RecRes:

PDoT: Private DNS-over-TLS with TEE Support

R1: Query Privacy. Contents of client’s query (specifically, do-
main name to be resolved) should not be learned by the
adversary. Ideally, payload of the DNS packets should be
encrypted. However, even if packets are encrypted, their
headers convey information, such as source and destina-
tion IP addresses. In Section 7.1, we quantify the amount of
information that can be learned via traffic analysis.

R2: Deployability. Clients using a privacy-preserving RecRes
should require no special hardware. Only minimal software
modifications should be imposed. Also, for the purpose of
transition and compatibility, a privacy-preserving RecRes
should be able to effectively interact with legacy clients that
support DNS-over-TLS.

R3: Response Latency. A privacy-preserving RecRes should
achieve similar response latency to that of a regular RecRes.

R4: Scalability. A privacy-preserving RecRes should process a
realistic volume of queries generated by a realistic number
of clients.

Note: the query privacy guarantees provided by PDoT rely on
the forward-looking assumption that the communication between
RecRes and the respective NS-s will also be protected by DNS-over-
TLS. The DNS Privacy (DPrive) Working Group is working towards
a standard for encryption and authentication of DNS resolver-to-
authoritative communication [?], using essentially the same mech-
anism as DNS-over-TLS. We expect an increasing number of NS-s
to begin to support this standard in the near future. Once PDoT is
enabled at the RecRes, it can provide incremental query privacy
for any queries served from a DNS-over-TLS NS. As we explain in
Section 5, with small design modifications, PDoT could be adapted
for use in NS-s.

4 SYSTEM MODEL & DESIGN CHALLENGES
4.1 PDoT System Model

Figure 1 shows an overview of PDoT. It includes four types of enti-
ties: client, RecRes, TEE, NS-s. We now summarize PDoT operation,
reflected in the figure. (1) After initial start-up, TEE creates an at-
testation report. (2) When client initiates a secure TLS connection,
the attestation report is sent from RecRes to the client alongside
all other information required to setup a secure connection. (3)
Client authenticates and attests RecRes by verifying the attestation
report. It checks whether RecRes running inside TEE is genuine
and runs code that it trusts. (4) Client proceeds with the rest of the
TLS handshake procedure only if verification succeeds. (5) Client
sends a DNS query to the RecRes through the secure TLS channel it
has just set up. (6) RecRes receives a DNS query from client (in its
secure memory) and learns the domain name that the client wants
to resolve. (7) RecRes sets up a secure TLS channel to appropriate
NS in order to resolve the DNS query. (8) RecRes sends a DNS query
to NS over that channel. If NS’s reply includes an IP address of the
next NS, RecRes sets up another TLS channel to that NS. This is
done repeatedly, until RecRes successfully resolves the name to an
IP address. (9) Once RecRes obtains the final answer, it sends it to
client over the secure channel. Client can reuse the TLS channel
for future queries.

Note that we assume RecRes is not under the control of the
user. In some cases, users could run their own RecRes-s, which

Client Stub

[an?B o

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

Trusted Execution
Environment

L —

Recursive Resolvar

Cotry

)

Secure
Tunnel

B: Attostation Report

Name Servers

 Gusery |

o ||/ [
) Secure l
Tunnel .

e) /| @)

Secure
Tunnel

Figure 1: Overview of the proposed system.

would side-step the concerns about query privacy. For example,
modern home routers are sufficiently powerful to run an in-house
RecRes. However, this approach cannot be used in public networks
(e.g., airports or coffee shop WiFi networks), which are the target
scenarios for PDoT.

4.2 Design Challenges

The following key challenges were encountered in the process of
PDoT’s design:

C1: TEE Limited Functionality. In order to satisfy their secu-
rity requirements, TEE-s often limit the functionality pro-
vided to applications that run within them. One example
is the inability to fork within the TEE. Forking a process
running inside the TEE forces the child process to run out-
side the TEE, breaking RecRes security guarantees. Another
example is that system calls, such as socket communication,
cannot be made from within the TEE.

C2: TEE Memory Limitations. Typically, the amount of mem-
ory that a TEE can use is small. The size of an SGX enclave
is virtually as large as the size of the host machine’s mem-
ory. However, this is realized through page swapping, which
itself requires additional instructions. Moreover, the page to
be swapped must be encrypted due to SGX enclave security
requirements of SGX, thus adding even more instructions.
Therefore, introducing page swapping places heavy burden
on the performance of the application in the enclave. To
avoid page swapping, enclave size should be the same as
EPC of the Intel CPU - typically, 128MB. Since RecRes is
a performance-critical application, its size should ideally
not exceed 128MB. This limit negatively impacts RecRes
throughput, as it bounds the number of threads that can
spawn in TEE.

C3: TEE Call-in/Call-out Overhead. Applications that require
functionality that is not present within the TEE must switch
to the non-TEE side. This introduces additional overhead
since switching between TEE and non-TEE “worlds” requires
additional instructions. Identifying and limiting the number
of times RecRes switches back and forth (while keeping
RecRes functionality correct) is a substantial challenge.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

Intel Attestation Service PDoT [b
B Quoting Enclave| AVR |: Attestation Verification Report
Quote 4\ B [b
} Quote| 4 i AVR |: Attestation Verification
+ Sig | Report Signature
Application Enclave
B ’S‘i'; : Attestation Report
\) ~— |Quote eport Cert | Signature Certificate
i
— ~
Stubby \-—.» DoTs H(A) \ __Name Servers
—/ : [|| Ce MRENCLAVE DNSH
AR
\ DoTS ___,/'—-
-
[?;Et - — / Qule'}r
DNS
Query —*—h
J? Secure
- [b Ans
ar] 2| e ? H(@) s Tunnel . —
Sig Q‘ - }
1 - .
MRENCLAVE| * 1
""""""" —s DNS
DNS ;:;fy / Query
Query Secure t
b Secure Tunnel -\ '—Ln
Ans Tunnel -~ | Ans ans
T T

Figure 2: Overview of PDoT implementation.

5 IMPLEMENTATION

Figure 2 shows an overview of the PDoT design. Since our design
is architecture-independent, it can be implemented on any TEE
architecture that provides the features outlined in Section 2.2. We
chose to use off-the-shelf Intel SGX as the platform for the proof-
of-concept PDoT implementation in order to support an accurate
performance evaluation on real hardware (Section 6). This means
that our implementation is subject to the performance and memory
constraints in the current version of Intel SGX, and is thus best
suited for small-scale networks (e.g., the public WiFi network pro-
vided by a coffee shop). However, as TEE technology advances, we
expect that our design will be able to scale to larger networks.

5.1 PDoT

PDoT consists of two parts: (1) trusted part residing in TEE enclaves,
and (2) untrusted part that operates in the non-TEE region. The
former is responsible for resolving DNS queries, and the latter —
for accepting incoming connections, assigning file descriptors to
sockets, and sending/receiving data received from the trusted part.

Enclave Startup Process. When the application enclave starts,
it generates a new public-private key-pair within the enclave. It
then creates a report that summarizes enclave and platform state.
The report includes an SHA256 hash of the entire code that is sup-
posed to run in the enclave (called MRENCLAVE value) and other
attributes of the target enclave. PDoT also includes an SHA256 hash
of the previously generated public key in the report. The report is
then passed on to the SGX quoting enclave to receive a quote. The
quoting enclave signs the report and thus generates a quote, which
cryptographically binds the public key to the application enclave.
The quoting enclave sends the quote to the application enclave
which forwards it to Intel Attestation Service (IAS) to obtain an
attestation verification report. It can be used in the future by clients

to verify the link between the public key and MRENCLAVE value.
After receiving the attestation verification report from IAS, the
application enclave prepares a self-signed X.509 certificate required
for the TLS handshake. This certificate, in addition to the public key,
includes: (1) attestation verification report, (2) attestation verifica-
tion report signature, and (3) attestation report signing certificate
(extracted from (1)). MRENCLAVE value and hash of public key are
enclosed in the attestation verification report.

TLS Handshake Process.! Once the application enclave is cre-
ated, PDoT can create TLS connections and accept DNS queries
from clients. The client initiates a TLS handshake process by send-
ing a message to PDoT. This message is captured by untrusted part
of PDoT and triggers the following events?. First, untrusted part
of PDoT tells the application enclave to create a new TLS object
within the enclave for this incoming connection. This forces the
TLS endpoint to reside inside the enclave. The TLS object is then
connected to the socket where the client is waiting to be served.
RecRes then exchanges several messages with the client, including
the self-signed certificate that was created in the previous section.
Having received the certificate from RecRes, the client authenti-
cates RecRes and validates the certificate. (For more detail, see
Section 5.2). Only if the authentication and validation succeed, the
client resumes the handshake process.

DNS Query Resolving Process. The client sends a DNS query
over the TLS channel established earlier. RecRes receives a DNS
query from the client, decrypts it within the application enclave
and obtains the target name. It starts to resolve the name starting
from root NS, by doing the following repeatedly: 1) set up a TLS
channel with NS, 2) send DNS queries and receive replies via that

!'In implementing this process, we heavily relied on SGX RA TLS [20] whitepaper.
%Since we consider a malicious RecRes operator, it has an option not to trigger these
events. However, clients will notice that their queries are not being answered and can
switch to a different RecRes.

PDoT: Private DNS-over-TLS with TEE Support

ClientReader

QueryHandler outQueryList ClientWriter

Figure 3: Overview of PDoT threading model.

channel. Once it receives the answer from NS, RecRes returns to
the client, also over a TLS channel.

Figure 3 illustrates how PDoT divides DNS query resolution
process into three threads: (1) receiving DNS query — ClientReader,
(2) resolving it — QueryHandler, and (3) returning the answer —
ClientWriter.

ClientReader and ClientWriter threads are spawned anew upon
each query. Dividing receiving and sending processes and giving
them a dedicated thread is helpful because many clients send mul-
tiple DNS queries within a short timespan without waiting for the
answer to the previous query.> When ClientReader thread receives
a DNS query from the client, it stores the query and a client ID in a
FIFO queue, called inQueryList.

QueryHandler threads are spawned when PDoT starts up. The
number of QueryHandler threads is configured by RecRes operator.
QueryHandler threads are shared among all current ClientReader
and ClientWriter threads. When a QueryHandler thread detects an
entry in the inQueryList, it removes this entry and retrieves the
query and the client ID. QueryHandler first checks whether this
client is still accepting answers from RecRes. If not, QueryHandler
simply ignores this query and moves on to the next one. If the client
is still accepting answers, QueryHandler resolves the query and
puts the answer into a FIFO queue (called outQueryList) dedicated
to that specific client.

There might be cases when NS response is too slow. In such
cases, QueryHandler thread gives up on resolving that particular
query and moves on to the next query, because it is very likely
that the request was dropped. This also prevents resources (such as
mutex) from being locked up by this QueryHandler thread. In our
implementation, this timeout was set to be the same as the client’s
timeout, since there is no point in sending the answer to the client
after that.

Once an answer is added to outQueryList dedicated to its client,
ClientWriter uses that answer to compose a DNS reply packet and
sends it to the client. The reason we have N outQueryLists for N
clients is to improve performance. With only one outQueryList,
ClientWriter threads must search through the queue to find the
answer for the connected client. This takes O(M X N) time, where
N is the number of clients and M is the number of queries each
client sends. Instead, with N outQueryLists, we reduce complexity
to O(1) because ClientWriter thread merely selects the query at the
head of the list.

3For example, a client has received a webpage that includes images and advertisements
that are served from servers located at different domains. This triggers multiple DNS
queries at the same time.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

Caching. Some DNS recursive resolvers also provide the ability
to cache results on the resolver. Caching can be beneficial from
the clients’ perspective because if the answer to a query is already
cached, the RecRes can send the answer immediately, thus reducing
query latency. The RecRes also benefits from not having to establish
connections to external NS-s in order to answer the query. However,
irrespective of how it is implementated, caching at the resolver
introduces potential privacy leakage (e.g., timing measurements
can reveal whether or not a certain domain was already in the cache).
This is an orthogonal challenge, which we discuss in Section 7.2.

To explore the possibility of caching in a privacy-preserving
resolver, we implemented a simple in-enclave cache for PDoT. It
uses a red-black tree data structure and stores all records associated
to the client’s query, indexed by the queried domain. This provides
O(log2(N)) access times with N entries in the cache. In production,
PDoT could also use existing techniques to mitigate against side-
channel attacks on the cache’s memory access patterns (e.g., [? ?
?]). During remote attestation, clients can ascertain whether the
resolver has enabled caching, and which mitigations it uses.

PDoT ANS with TEE support. With minor design changes,
our PDoT RecRes design can be modified for use as an ANS. Simi-
larly to the caching mechanism described above, a PDoT ANS looks
up the answers to queries from an internal database, rather than
contacting external NS-s. In the same way that clients authenticate
a PDoT RecRes, the RecRes can authenitcate the PDoT ANS. Clients
can thus establish the trustworthiness of both the RecRes and ANS
using transitive attestation [?].

5.2 Client with PDoT Support

We took the Stubby client stub from the getdns project [7] which
offers DNS-over-TLS support and modified it so that it can perform
remote attestation during the TLS handshake. In this section, we
describe how the client verifies its RecRes, decides whether the
RecRes is trusted, and emits the DNS request packet.

RecRes Verification. After receiving a DNS request from an
application, the client first checks whether there is an existing TLS
connection to its RecRes. If there is, the client reuses it. If not, it
attempts to establish a new TLS connection. During the handshake,
the client receives a certificate from RecRes, from which it extracts:
1) attestation verification report, 2) attestation verification report
signature, and 3) attestation report signing certificate. This certifi-
cate is self-signed by IAS and we assume that the client trusts it.
From (3), the client first retrieves the IAS public key and, using it,
verifies (2). Then, the client extracts the SHA256 hash of RecRes’s
public key from (1) and verifies it against a copy from (3). This way,
the client is assured that RecRes is indeed running in a genuine
SGX enclave and uses this public key for the TLS connection.

Trust Decision. The client also extracts the MRENCLAVE value
from (1), which it compares against the list of acceptable MREN-
CLAVE values. If the MRENCLAVE value is not listed or one of the
verification steps fail, the client stub aborts the handshake, moves
on to the next RecRes, and re-starts the process. Note that the trust
decision process is different from the normal TLS trust decision
process. Normally, a TLS server-side certificate binds the public
key to one or more URLs and organization names. However, by
binding the MRENCLAVE value with the public key, the clients can

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

trust RecRes based on its behavior, and not its organization (recall
that the MRENCLAVE value is a hash of RecRes code). There are
various possible options for deciding which MRENCLAVE values
are trustworthy. For example, the recursive resolver vendors could
publish lists of expected MRENCLAVE values for their resolvers.
For open source resolvers like PDoT, anyone can recalculate the
expected MRENCLAVE value by recompiling the software (assum-
ing a reproducible build process). This would allow trusted third
parties (e.g., auditors) to inspect the source code, ascertain that it
upholds the required privacy guarantees, and publish their own
lists of trusted MRENCLAVE values.

Sending DNS request. Once the TLS connection is established,
the client sends the DNS query to RecRes over the TLS tunnel. If
it does not receive a response from RecRes within the specified
timeout, it assumes that there is a problem with RecRes and sends a
DNS reply message to the application with an error code SERVFAIL.

5.3 Overcoming Technical Challenges

As discussed in Section 4.2, PDoT faced three main challenges,
which we addressed as follows:

Limited TEE Functionality. The inability to use sockets within
TEE is a challenge for PDoT because the RecRes cannot commu-
nicate with the outside world. We address this issue by having a
process running outside the TEE, as described in Section 5.1. This
process forwards packets from the client to TEE through ECALLs
and sends packets received from TEE via OCALLs. However, this
processes might redirect the packet to a malicious process or sim-
ply drop it. We discuss this issue in Section 6.1. Another function
unavailable within TEE is forking a process. PDoT uses pthreads
instead of forking to run multiple tasks concurrently in a TEE.

Limited TEE Memory. We use several techniques to address
this challenge. First, we ensure no other enclaves (other than the
quoting enclave) run on RecRes machine. This allows PDoT to use
all available EPC memory. Second, we fix the number of Query-
Handler threads in order to save space. This is possible because of
dis-association of QueryHandler and ClientReader/Writer threads.

OCALL and ECALL Overhead. ECALLs and OCALLs require
additional instructions and therefore should be avoided as much as
possible. For example, all threads mentioned in the previous section
must wait until they receive the following information: for Clien-
tReader thread — DNS query from the client, for QueryProcessor
thread - query from inQueryList, and for ClientWriter thread -
response from outQueryList. PDoT was implemented so that these
threads wait inside the enclave. If we were to wait outside the en-
clave, we would have to make an ECALL to enter the enclave each
time the thread proceeds.

6 EVALUATION
6.1 Security Analysis

This section describes how query privacy (Requirement R1) is
achieved, with respect to the two types of adversaries (Section 3.1).

Malicious RecRes operator. Recall that a malicious RecRes
operator controls the machine that runs PDoT RecRes. It cannot
obtain the query from intercepted packets since they flow over
the encrypted TLS channel. Also, because the local TLS endpoint
resides inside the RecRes enclave, the malicious operator cannot

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

retrieve the query from the enclave, as it does not have access to
the protected memory region.

However, a malicious RecRes operator may attempt to connect
the socket to a malicious TLS server that resides in either: 1) an
untrusted region, or 2) a separate enclave that the operator itself
created. If the operator can trick the client into establishing a TLS
connection with the malicious TLS server, the adversary can obtain
the plaintext DNS queries. For case (1), the verification step at the
client side fails because the TLS server certificate does not include
any attestation information. For case (2), the malicious enclave
might receive a legitimate attestation verification report, attesta-
tion verification report signature, and attestation report signing
certificate from IAS. However, that report would contain a differ-
ent MRENCLAVE value, which would be rejected by the client. To
convince the client to establish a connection with PDoT RecRes,
the adversary has no choice but to run the code of PDoT RecRes.
Therefore, in both cases, the adversary cannot trick the client into
establishing a TLS connection with a TLS server other than the one
running a PDoT RecRes.

Network Adversary. Recall that this adversary captures all
packets to/from PDoT. It cannot obtain the plaintext queries since
they flow over the TLS tunnel. The only information it can obtain
from packets includes cleartext header fields, such as source and
destination IP addresses. This information, coupled with a timing
attack, might let the adversary correlate a packet sent from the
client to a packet sent to an NS. The consequent amount of privacy
leakage is discussed in Section 7.1

6.2 Deployability

Section 5 explains how PDoT clients do not need special hardware,
and require only minor software modifications (Requirement R2).
To aid deployability, PDoT also provides several configurable pa-
rameters, including: the number of QueryHandle threads (to adjust
throughput), the amount of memory dedicated to each thread (to
serve clients that send a lot of queries at a given time), and the time-
out of QueryHandle threads (to adjust the time for a QueryHandle
thread to acquire a resource). Another consideration is incremental
deployment, where some clients may request DNS-over-TLS with-
out supporting PDoT. PDoT can handle this situation by having
its TLS certificate also signed by a trusted root CA, since legacy
clients will ignore PDoT-specific attestation information.

On the client side, an ideal deployment scenario would be for
browser or OS vendors to update their stub resolvers to support
PDoT. In the same way that browser vendors currently include
and maintain a list of trusted root CA certificates in their browsers,
browser/OS vendors could include and periodically update a list of
trustworthy MRENCLAVE values for PDoT resolvers. This could
all be done transparently to end users. As with root CA certifi-
cates, expert users can manually add/remove trusted MRENCLAVE
values for their own systems. In practice there are only a handful
of recursive resolver software implementations, so even allowing
for multiple versions for each, the list of trusted MRENCLAVE
values will be orders of magnitude smaller than the list of public
keys of every trusted resolver, as would be required for standard
DNS-over-TLS.

PDoT: Private DNS-over-TLS with TEE Support

07

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

EEN PDoOT
[unbound

0.6

0.5

0.4 I

0.3

Time to resolve a query [s]

0.2

014

0.0

Time to resolve a query [s]

0.7
I PDoT
3 unbound

0.6

054

0.4

014

google.com
facebook.com
youtube.com {
twitter.com o
microsoft.com
linkedin.com -
wikipedia.org
plus.google.com -
instagram.com -
apple.com

(a) Latency of PDoT and Unbound (Cold Start)

0.0

google.com
facebook.com
youtube.com -
twitter.com -
microsoft.com
linkedin.com -
wikipedia.org
plus.google.com -
instagram.com -|
apple.com -

(b) Latency of PDoT and Unbound (Warm Start)

Figure 4: Latency comparison of PDoT and Unbound

6.3 Performance Evaluation

We ran PDoT on a low-cost Intel NUC consisting of an Intel Pentium
Silver J5005 CPU with 128 MB of EPC memory and 4 GB of RAM.
We used Ubuntu 16.04 and the Intel SGX SDK version 2.2. We
configured our RecRes to support up to 50 concurrent clients and
process queries using 30 QueryHandle threads. For comparison,
we performed the same benchmarks using Unbound [8], a popular
open source RecRes.

6.3.1 Latency Evaluation. The objective of our latency evaluation is
to assess overhead introduced by running RecRes inside an enclave.
To do so, we measure the time to resolve a DNS query using PDoT
and compare with Unbound. To meet requirement R3, PDoT should
not incur a significant increase in latency compared to Unbound.

Experimental Setup. The client and RecRes ran on the same
physical machine to remove network delay. We conducted the
experiment using PDoT and Unbound as the RecRes, and Stubby
as the client. We measured latency under two different scenarios:
cold start and warm start. In the former, the client sets up a new
TLS connection every time it sends a query to the RecRes. In the
warm start scenario, the client sets up one TLS connection with the
RecRes at the beginning, and reuses it throughout the experiment.
In other words, the cold start measurements also include the time
required to establish the TLS connection. In this experiment, the
caching mechanisms of both PDoT and Unbound were disabled.

We created a python program to feed DNS queries to the client.
The program sends 100 queries sequentially for ten different do-
mains. That is, the program waits for an answer to the previous
query before sending the next query. We used the top ten domains
of the Majestic Million domain list [6].

The python program measures the time between sending the
query and receiving an answer. For the cold start experiment, we
spawned a new Stubby client and established a new TLS connection
for each query. In the warm start scenario, we first established the

TLS connection by sending a query for another domain (not in the
top ten), but did not include this in the timing measurement.

Note that the numeric latency values we obtained are specific
to our experimental setup because they depend on the network
bandwidth of our RecRes, and the latency between our RecRes
and the relevant NS-s. The important aspect of this experiment is
the ratio between the latencies of PDoT and Unbound. Therefore
it is not meaningful to compute the average latency over a large
set of domains. Instead we took multiple measurements for each
of a small set of domains (e.g., 100 measurements for each of 10
domains) so that we could analyse the range of response latencies
for each domain.

Results and observations. The results of our latency measure-
ments are are shown in Figure 4. The red boxes show the latency
of PDoT and the blue boxes of Unbound. In these plots, the boxes
span from the lower to upper quartile values of collected data. The
whiskers span from the highest datum within the 1.5 interquartile
range (IQR) of the upper quartile to the lowest datum within the
1.5 IQR of the lower quartile. The median values are shown as black
horizontal lines inside the boxes.

For the cold-start case (Figure 4a), although Unbound is typically
faster than our proof-of-concept PDoT implementation, the range
of latencies is similar. For 7 out of 10 domains, the upper whisker
of PDoT was lower than that of Unbound. Overall, PDoT shows
an average 22% overhead compared to Unbound in the cold-start
setting.

For the warm-start case (Figure 4b), we see that the median
latency is lower across the board compared to the cold-start setting
because the TLS tunnel has already been established. In this setting,
PDoT shows an average of 9% overhead compared to Unbound. In
practice, once the client has established a connection to RecRes, it
will maintain this connection, and thus the vast majority of queries
will see only the warm-start latency.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

N 0.8+ 0.8 -
0.7 4‘ 0.7 4‘ 0.7 {‘
06| | 06| 06 |
= | z | |
3 05| 5 05| 5 05/(]
£ £ £
2041‘ ; ;oﬂr] go.aH g
{ | |
203 l i 1 2031 | ' 203 |
| 3 i §
0.2 [0.2| [02|] [
| |] |
gl o (L 01(]
i
0 S 1015202536 3540 45 50 55 60 65 70 75 60 8590 65100 U § 10 15 20 25 30 35 4D 45 50 55 60 65 70 80 85 50 95100 00570 15 20 25 30 35 40 45 50 55 60 65 70 75 B0 85 90 95100
Rate [queries per second] Rate [queries per second] Rate [queries per second]
(a) Throughput for 1 client (b) Throughput for 2 clients (c) Throughput for 3 clients
0.8+ 0.8 - 087
0.7 # 0.7 0.7 J‘
06| 0.6 06|
O B = |
o5 505 805
£ £ £
g 0.4 ‘ | [3 g 0.4 '] ‘ E 04 ‘ ‘
2 9 |
Zoall L || ‘; [[‘ 1 §o3 i l %0,3 ‘ I ‘ ‘
& | ! |1 | 4 3 < |
0.2] ' ! l 0.2 |V] | , J ‘ 0.2
01| I HLHEIHL | |1 |1 0.1 T . . oaf| | 1 |
¢ il £ : 1 |
00 S 615202530 354045 50 5560 65 70 7560 8590 95100 U 5 1015202530 354045 50 5560 65 70 7560859095100 ' 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 60 85 90 95100
Rate [queries per second] Rate [queries per second] Rate [queries per secand]
(d) Throughput for 4 clients (e) Throughput for 5 clients (f) Throughput for 10 clients
0.8+ 0.8+ 08 .
0.74 071, 0.74
| | |
061 061 ’
| | =
305 l w05/ 3 0.
£ (| E || | £ T
804 2041 11,1 \ IR \
| |
5 _F l | ‘
§°-3J‘ [T §o3f (LT i I i i | I [
< (-3 | -3 |
02| 0.2 | T |
Il51 ‘ L[l J | |
01| o1 i .
1 1 | 11 3 1 1
0.0

5 10 15 20 25 20 35 40 45 50 55 60 65 70 75 B0 85 90 95100
Rate [queries per second]

(g) Throughput for 15 clients

i 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 B0 85 90 95100
Rate [gueries per second]

(h) Throughput for 20 clients

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 B0 85 90 95100
Rate [queries per second]

(i) Throughput for 25 clients

Figure 5: Throughput comparison of PDoT (red) and Unbound (blue)

6.3.2 Throughput evaluation. The objective of throughput evalu-
ation is to measure the rate at which the RecRes can sustainably
respond to queries. PDoT’s throughput should be close to that of
Unbound to fulfill requirement R4.

Experiment setup. The client and RecRes were run on different
machines, so that the RecRes could use all available resources of a
single machine. This is representative of a local RecRes running in
a small network (e.g., a coffee shop WiFi network). We conducted
this experiment using the same two RecRes-s as in the latency
experiment. Stubby was configured to reuse TLS connections. To
simulate a small to medium-scale network, we varied the number of
concurrent clients between 1 and 25 and adjusted the query arrival
rate from 5 to 100 queries per second. Query rates were uniformly
distributed among the clients, e.g., for an overall rate of 100 queries
per second with 10 clients, each client sends 10 queries per second.
To eliminate any variability in resolving the query, all queries were
for the domain google.com. We maintained each constant query

rate for one minute. In this experiment, the caching mechanisms of
both PDoT and Unbound were disabled.

Results and observations. The results of our throughput ex-
periments are shown in Figure 5. Each graph corresponds to a
different number of clients. The horizontal axes shows different
query rates and vertical axis shows the range of response latencies
for each query rate. Measurement are plotted using the same box
plot arrangement as in the latency evaluation. Blue boxes show the
result for Unbound and red boxes show the result for PDoT.

If queries arrive faster than RecRes can process them, the queries
will start to build up in a queue, and the latency of each successive
response will increase as the length of the queue grows. In this
case, the average latency will continue to increase indefinitely until
queries begin to timeout or RecRes runs out of memory. Therefore
we say this rate of query arrival is unsustainable. On the other
hand, if RecRes can sustain the rate of query arrival, the average
response latency will remain roughly constant irrespective of how
long RecRes runs. For this experiment, we define a sustainable rate

PDoT: Private DNS-over-TLS with TEE Support
014 014 |

1 |
70124 Fo12

=1
o

o0

0.08 | & 0.08 |

Time to reselve a query [
o
I

0.02 {

0.00 ¢

twitter.comn - S

twitter.com 4
apple.com

o o
e o
E =
1
youtube.com .q- ey
T
T
wikipedia org S

youtube com -

google.com
facebook.com
microsoft.com
inkedin.com
facebook.com

Instagram.corn | SR
|l
Time to resolve a query
e ®& a ©
e e o o
e N & =
googie com /.

plus.goegle.com

(a) 10 domains in cache

microsoft.com | M — !

(b) 100 domains in cache

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

nia

Foaz{

o
o

0.08 |

o
o
&

L]
L}
—
1

Time o resolve a query [
a
o
£

o
o
~

apple.com | I
=
=
-]
google.com
dia.org
apple.com

+*
facebook.com ———

youtube com S
twitter.com | S
Inkedin com S
Instagram corn |-

microsoft com

iinkedin com | SE— -
wikipedia org —— —
]
Instagram.corm _——i——

plus.google.com

o
plus.gocgle.com T

(c) 1000 domains in cache

Figure 6: Latency comparison of PDoT (red) and Unbound (blue) with different number of domains in cache

of query arrival as one for which the average response latency is
constant over time, and below one second (well below a typical
DNS client timeout). Figure 5 only shows cases in which the query
arrival rate is sustainable for the respective RecRes. In other words,
the presence of a box in Figure 5 shows that the RecRes can achieve
that level of throughput.

Surprisingly, we observed that Unbound cannot handle query
rates exceeding 10 queries per second per client (i.e., Unbound’s
maximum sustainable rate was 10n queries per second distributed
among n clients). This is because Unbound’s design only uses one
query processing thread per client. In contrast, PDoT was able to
handle more than 100 queries per second in all cases because our
design uses a separate pool of QueryHandle threads.

Overall, Figure 5 confirms that our proof-of-concept implemen-
tation achieves at least the same throughput as Unbound across
the range of clients and query arrival rates, and can achieve higher
throughput when the number of clients is low. Although Unbound
again achieves slightly lower latency, this is consistent with our
latency measurements in Section 6.3.1 and is likely due to that fact
that Unbound is an optimized production-grade RecRes.

6.3.3 Caching evaluation. We evaluated the performance of both
resolvers with caching enabled; Unbound with its default caching
behavior, and PDoT with our simple proof-of-concept cache.

Experiment setup. The experimental setup is similar to that
of the latency evaluation described in Section 6.3.1. In this case,
we pre-populated the resolvers’ caches with varying numbers of
domains and measured the response latency for a representative
set of 10 popular domains.

Results and observations. As shown in Figure ??, Unbound
serves responses from cache with a consistent latency irrespective
of the number of entries in the cache. Although PDoT achieves
lower average latencies when the cache is relatively empty, it has
a higher variability than Unbound. This is most likely due to the
combination of our unoptimized caching implementation and the
latency of accessing enclave memory. Nevertheless, Figure ?? shows
that even with the memory limitations of current hardware enclaves,
PDoT can still benefit from caching a small number of domains.

7 DISCUSSION

This section discusses some potential privacy issues in PDoT.

7.1 Information Revealed by IP Addresses

Even if the connections between the client, RecRes, and NS-s are
all encrypted using TLS, some information is still leaked. The most
prominent and obvious is source/destination IP addresses. The
network adversary described in Section 3.1 can combine these
cleartext IP addresses with packet timing information in order to
correlate packets sent from clients to the RecRes with subsequent
packets sent from the RecRes to the NS.

Armed with this information, the adversary can narrow down
the client’s domain name query to one of the records that could
be served by that specific ANS. Assuming the ANS can serve R
domain names, the adversary has a 1/R probability of guessing
which domain name the user queried. When R > 1, we call this
a privacy-preserving ANS. This prompts two questions: 1) what
percentage of the domains can be answered by a privacy-preserving
ANS; and 2) what is the typical size of anonymity set (R) provided
by a privacy-preserving ANS?

To answer these questions, we designed a scheme to collect
records stored in various ANS-s. We sent a DNS query for 1,000,000
domains and gathered information about ANS-s that can possibly
provide the answer to that query. By collecting data on possible
ANS-s, we can map domain names to each ANS, and thus estimate
the number of records held by each ANS. Following the Guidelines
for Internet Measurement Activities [12], we limited our querying
rate, in order to avoid placing undue load on any servers.

We used the Majestic Million domain list [6] to obtain 1,000,000
popular domain names. As shown in Figure 6, only 5.7% of the
domains we queried were served by non-privacy-preserving ANS-s
(i.e., ANS-s that hold only one record). Examples of domain names
served from non-privacy-preserving ANS-s included: tinyurl. com?,
bing.com,nginx.org, news.bbc.co.uk,and cloudflare.com. On
the other hand, 9 out of 10 queries were served by a privacy-
preserving ANS, and 65.7% by ANS-s that hold over 100 records.

“Note that since tinyurl.com is a URL shortening service, this is actually still privacy-
preserving because the adversary can not learn which short URL was queried.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

N=10-99

Figure 7: Percentage of Majestic Million domains answered
by an ANS with at least N records

It is important to note that the above results and Figure 6 are
still approximations. Since we do not have data for domains outside
the Majestic Million list, we cannot make claims about whether
or not these would be served by a privacy-preserving ANS. We
hypothesize that the vast majority of ANS-s would be privacy-
preserving for the simple reason that it is more economical to
amortize the ANS’s running costs over multiple domains. On the
other hand, we can be certain that our results for the Majestic
Million are a strict lower bound on the level of privacy because
the ANS-s from which these are served could also be serving other
domains outside of our list. It would be possible to arrive at a more
accurate estimate by analyzing the zone files of all (or at least
most) ANS-s. However, virtually all ANS-s disable the interface
to download zone files because this could be used to mount DoS
attacks against the ANS. Therefore, this type of analysis would
have to be performed by an organization with privileged access to
all ANS-s’ zone files.

7.2 Caching & Timing attacks

Introducing a cache into an RecRes would allow the adversary to
launch timing attacks and help guess the domain name queried by
the end-user. We consider two types of timing attacks:

e Measuring time between query and response. This the
simplest attack, whereby the adversary monitors the network
between client and RecRes, and records the time for the
RecRes to respond to the client. If the response time is shorter
(compared to other queries), it likely has been served from a
cache. This attack can be launched by both adversary types
described in Section 3.1. One obvious countermeasure is to
artificially delay the response, so that it matches the latency
of NS-served responses.

e Correlating client and RecRes requests. To counter the
above countermeasure, an adversary may attempt to corre-
late DNS requests sent from the client to the RecRes with

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

those sent from RecRes to NS-s. This can be done by measur-
ing time the two packets were sent. If the adversary manages
to succeed, it can distinguish requests that involve contact-
ing an NS from those that do not. Responses to the latter
type must be served from the cache. This attack can be also
launched by a malicious RecRes or a network sniffer. One
way to counter it is to always send a query to the NS, but
this negates all benefits of caching. Another way to counter
this is by randomly mixing requests to the NS.

Considering the two types of timing attacks discussed above, the
information leakage depends on whether the adversary is passive
or active. The former can (at most) guess the domain name. If
the caching strategy is Most Recently Used (MRU), the domain
name must be one of the popular ones. The active adversary that
generates its own DNS queries, has better chances of guessing the
end-user’s query target. This adversary can query a wide range of
domain names and keep a list of those that result in cache hits.

8 RELATED WORK

There have been many work to protect the privacy of DNS queries [11,
16, 17, 23, 28, 31, 32]. For instance, Lu et al. [23] proposed a privacy-
preserving DNS that uses distributed hash tables, different naming
scheme, and computational private information retrieval method.
Federrath et al. [17] introduces a dedicated DNS Anonymity Ser-
vice to protect the DNS query using an architecture that distributes
the top domains by broadcast and uses low-latency mixes for re-
questing the remaining domains. These scehems all assume that
the involved parties do not act maliciously.

There have also been activities in the Internet standards com-
munity that aim to protect the security and privacy of DNS. DNS
Security Extensions (DNSSEC) [21] provides data origin authenti-
cation and integrity to the DNS by using public key cryptography,
but no privacy. Bortzmeyer [10] proposed a scheme to enhance the
privacy of DNS queries by revealing the sections of the domain
name that is only necessary to resolve the DNS query. Addition-
ally, though they are not accepted as Internet standards, several
protocols have been proposed that encrypt and authenticates DNS
packets between the client and the RecRes (DNSCrypt [3]) and
RecRes and NS-s (DNSCurve [4]). Moreover, the original DNS-over-
TLS paper has been drafted as an Internet standard [19]. All these
methods assume that the RecRes operator can be trusted and does
not attempt to learn anything from the DNS queries.

Moreover, there has been active research on establishing trust
through TEEs to protect confidentiality and integrity of network
functions. More specifically, SGX has been used to protect network
functions, especially middle boxes. For example, Endbox [18] aims
to distribute middle boxes at client edges that the clients connect
through VPN to ensure the confidentiality of the client’s traffic
while remaining maintainable. LightBox [15] is another middle box
that runs in an enclave, but they aim to protect the client’s traffic
from the third-party middle box service provider while maintaining
the performance. Lastly, ShildBox [29] aims to protect confidential
network traffic that flow through untrusted commodity servers
and provide a generic interface for easy deployability. These work
focus on protecting the security of confidential data that flows in
the network, but do not target DNS queries in particular.

PDoT: Private DNS-over-TLS with TEE Support

9 CONCLUSION & FUTURE WORK

In this paper, we propose PDoT, a novel design of a DNS RecRes
that operates within a TEE to protect privacy of DNS queries, even
from a malicious RecRes operator. In terms of query throughput,
our unoptimized proof-of-concept implementation matches the
throughput of Unbound, a state-of-the-art DNS-over-TLS recursive
resolver, while incurring an acceptable increase in latency (due to
the use of a TEE). In order to quantify the potential for privacy
leakage through traffic analysis, we performed an Internet measure-
ment study which showed that 94.7% of the top 1,000,000 domain
names can be served from a privacy-preserving ANS that serves
at least two distinct domain names, and 65.7% from an ANS that
serves 100+ domain names. As future work, we plan to port Un-
bound to Intel SGX and conduct a performance comparison with
PDoT, as well as explore methods to improve PDoT’s performance
using caching while maintaining client privacy.

ACKNOWLEDGMENTS

The authors thank Geonhee Cho for the initial data collection for
the privacy-preserving ANS analysis (Section 7.1). The authors also
thank the paper’s shepherd, Roberto Perdisci, and the anonymous
reviewers for their valuable comments. First and third authors were
supported in part by NSF Award Number:1840197, titled: "CICI:
SSC: Horizon: Secure Large-Scale Scientific Cloud Computing". The
first author was also supported by The Nakajima Foundation. The
second author was supported by a US-UK Fulbright Cyber Security
Scholar Award.

REFERENCES

[1] [n.d.]. DNS over TLS - Cloudflare Resolver. https://developers.cloudflare.com/1.
1.1.1/dns-over-tls/

[2] [n.d.]. DNS over TLS support in Android P Developer Preview. https://security.

googleblog.com/2018/04/dns- over-tls-support-in-android-p.html

[n. d.]. DNSCrypt. https://dnscrypt.info/

[n. d.]. Introduction to DNSCurve. https://dnscurve.org/index.html

[n. d.]. Knot Resolver. https://www.knot-resolver.cz/

[n. d.]. Majestic Million. https://blog.majestic.com/development/majestic-

million-csv-daily/

[7] [n.d.]. Stubby. https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Daemon-+-
+Stubby

[8] [n.d.]. Unbound. https://nlnetlabs.nl/projects/unbound/about/

] ARM. [n. d.]. ARM Security Technology - Building a Secure System using
TrustZone Technology. http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.prd29-genc-009492c/index.html
[10] S.Bortzmeyer. 2016. DNS Query Name Minimisation to Improve Privacy. Technical

Report. https://doi.org/10.17487/RFC7816
[11] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. 2008. Anonymous Resolution of
DNS Queries. Springer, Berlin, Heidelberg, 987-1000. https://doi.org/10.1007/978-
3-540-88873-4_5
[12] V.G. Cerf. 1991. Guidelines for Internet Measurement Activities. Technical Report.
https://doi.org/10.17487/rfc1262
[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. , 857-
874 pages. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/costan
T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version
1.2. Technical Report. https://doi.org/10.17487/rfc5246

=
it

[15]

[16

(17

[18

[20

[21

[22

[23

S
=)

[25

[26

[27

[29

[30

[31

[32

[33

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui Ren.
2017. LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed. (Jun
2017). arXiv:1706.06261 http://arxiv.org/abs/1706.06261

Annie Edmundson, Paul Schmitt, and Nick Feamster. [n. d.]. ODNS: Oblivious
DNS. https://odns.cs.princeton.edu/

Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and Christopher
Piosecny. 2011. Privacy-Preserving DNS: Analysis of Broadcast, Range Queries
and Mix-Based Protection Methods. Springer, Berlin, Heidelberg, 665-683.

https://doi.org/10.1007/978-3-642-23822-2_36
David Goltzsche, Signe Rusch, Manuel Nieke, Sebastien Vaucher, Nico Weich-

brodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fetzer, Pascal
Felber, Peter Pietzuch, and Rudiger Kapitza. 2018. EndBox: Scalable Middlebox
Functions Using Client-Side Trusted Execution. In 2018 48th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN). IEEE, 386-397.
https://doi.org/10.1109/DSN.2018.00048

Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and P
Hoffman. 2016. Specification for DNS over Transport Layer Security (TLS).
https://doi.org/10.17487/RFC7858

Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
(Jan 2018). arXiv:1801.05863 http://arxiv.org/abs/1801.05863

Matt Larson, Dan Massey, Scott Rose, Roy Arends, and Rob Austein. [n. d.]. DNS
Security Introduction and Requirements. ([n. d.]). https://tools.ietf.org/html/
rfc4033

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 605-622. https://doi.org/10.1109/SP.2015.43

Y. Lu and G. Tsudik. 2010. Towards Plugging Privacy Leaks in the Domain Name
System. In 2010 IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P). IEEE, 1-10. https://doi.org/10.1109/P2P.2010.5569976

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy - HASP
’13. ACM Press, New York, New York, USA, 1-1. https://doi.org/10.1145/2487726.
2488368

Microsoft. [n. d.]. Introducing Azure confidential computing. https://azure.
microsoft.com/en-us/blog/introducing-azure-confidential- computing/

P.V. Mockapetris. 1987. Domain names - implementation and specification. Tech-
nical Report. https://doi.org/10.17487/rfc1035

Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In NDSS Sym-
posium. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-
sgx-eradicating-controlled-channel-attacks-against-enclave-programs/

Haya Shulman and Haya. 2014. Pretty Bad Privacy: Pitfalls of DNS Encryption.
In Proceedings of the 13th Workshop on Privacy in the Electronic Society - WPES
’14. ACM Press, New York, New York, USA, 191-200. https://doi.org/10.1145/
2665943.2665959

Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded Execu-
tion. In Proceedings of the Symposium on SDN Research - SOSR ’'18. ACM Press,
New York, New York, USA, 1-14. https://doi.org/10.1145/3185467.3185469
Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640-656. https://doi.org/10.1109/
SP.2015.45

Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Analysis of Privacy
Disclosure in DNS Query. In 2007 International Conference on Multimedia and
Ubiquitous Engineering (MUE’07). IEEE, 952-957. https://doi.org/10.1109/MUE.
2007.84

Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Two-Servers PIR
Based DNS Query Scheme with Privacy-Preserving. In The 2007 International
Conference on Intelligent Pervasive Computing (IPC 2007). IEEE, 299-302. https:
//doi.org/10.1109/IPC.2007.27

Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and Nikita
Somaiya. 2015. Connection-Oriented DNS to Improve Privacy and Security. In
2015 IEEE Symposium on Security and Privacy. IEEE, 171-186. https://doi.org/10.
1109/SP.2015.18

	Abstract
	1 Introduction
	2 Background
	2.1 Domain Name System
	2.2 Trusted Execution Environment

	3 Adversary Model and System Requirements
	3.1 Adversary Model
	3.2 System Requirements

	4 System Model & Design Challenges
	4.1 PDoT System Model
	4.2 Design Challenges

	5 Implementation
	5.1 PDoT
	5.2 Client with PDoT Support
	5.3 Overcoming Technical Challenges

	6 Evaluation
	6.1 Security Analysis
	6.2 Deployability
	6.3 Performance Evaluation

	7 Discussion
	7.1 Information revealed through IP addresses
	7.2 Caching and timing attacks

	8 Related Work
	9 Conclusion & Future Work
	References

