
PDoT: Private DNS-over-TLS with TEE Support

Yoshimichi Nakatsuka
University of California, Irvine

nakatsuy@uci.edu

Andrew Paverd∗

Microsoft Research
andrew.paverd@ieee.org

Gene Tsudik
University of California, Irvine

gene.tsudik@uci.edu

ABSTRACT

Security and privacy of the Internet Domain Name System (DNS)

have been longstanding concerns. Recently, there is a trend to pro-

tect DNS traffic using Transport Layer Security (TLS). However,

at least two major issues remain: (1) how do clients authenticate

DNS-over-TLS endpoints in a scalable and extensible manner; and

(2) how can clients trust endpoints to behave as expected? In this pa-

per, we propose a novel Private DNS-over-TLS (PDoT ) architecture.

PDoT includes a DNS Recursive Resolver (RecRes) that operates

within a Trusted Execution Environment (TEE). Using Remote Attes-

tation, DNS clients can authenticate, and receive strong assurance

of trustworthiness of PDoT RecRes. We provide a proof-of-concept

implementation of PDoT and use it to experimentally demonstrate

that its latency and throughput match that of the popular Unbound

DNS-over-TLS resolver.

CCS CONCEPTS

· Security and privacy → Web protocol security; Hardware-

based security protocols; Network security; Privacy protections.

KEYWORDS

Domain Name System, Privacy, Trusted Execution Environment

ACM Reference Format:

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik. 2019. PDoT: Pri-

vate DNS-over-TLS with TEE Support. In 2019 Annual Computer Security

Applications Conference (ACSAC ’19), December 9ś13, 2019, San Juan, PR, USA.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3359789.3359793

1 INTRODUCTION

The Domain Name System (DNS) [26] is a distributed system that

translates human-readable domain names into IP addresses. It has

been deployed since 1983 and, throughout the years, DNS privacy

has been a major concern.

In 2015, Zhu et al. [33] proposed a DNS design that runs over

Transport Layer Security (TLS) connections [14]. DNS-over-TLS

protects privacy of DNS queries and prevents man-in-the-middle

(MiTM) attacks against DNS responses. [33] also demonstrated

practicality of DNS-over-TLS in real-life applications. Several open-

source recursive resolver (RecRes) implementations, including Un-

bound [8] and Knot Resolver [5], currently support DNS-over-TLS.

∗Work done while visiting University of California, Irvine, as a US-UK Fulbright Cyber
Security Scholar.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACSAC ’19, December 9ś13, 2019, San Juan, PR, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7628-0/19/12.
https://doi.org/10.1145/3359789.3359793

In addition, commercial support for DNS-over-TLS has been increas-

ing, e.g., Android P supports it [2] as does Cloudflare’s 1.1.1.1

RecRes [1]. However, despite attracting interest in both academia

and industry, some problems remain.

One major issue is lack of means to determine whether a given

RecRes is trustworthy. For example, even if communication be-

tween client stub (client) and RecRes, and between RecRes and the

name server (NS) is encrypted using TLS, RecRes must decrypt

the DNS query in order to resolve it and contact the relevant NS-

s. This allows RecRes to learn unencrypted DNS queries, which

poses privacy risks if a malicuous RecRes misuses this data, e.g.,

profiling users or selling their DNS data. Some RecRes operators

go to great lengths to assure users that their data is private. For

example, Cloudflare promises łWe will never sell your data or use

it to target adsž and goes on to say łWe’ve retained KPMG to audit

our systems annually to ensure that we’re doing what we sayž [1].

Although helpful, this still requires users to trust the auditor and

can only be used by operators who can afford an auditor.

The second problem is that clients authenticate RecRes using

certificates. Certificate-based authentication is natural for websites,

since the user (client) already knows the website and the certificate

securely binds a public key to that website’s URL. However, the

same does not hold for DNS, since most users have little or no idea

what DNS is, much less which resolver’s organization is trustworthy.

Therefore, ideally, we need a way to authenticate RecRes without

any user involvement. One way to address this issue is by creating a

white-list of trusted RecRes-s’ public keys. However, this is neither

scalable nor maintainable, because the white-list would have to

include all possible RecRes operators, ranging from large public

services (e.g., 1.1.1.1) to small-scale providers, e.g., a local RecRes

provided by a coffee-shop.

An alternative approach is to use Remote Attestation (RA) so that

clients can check what software a given RecRes is running. In this

context, the identity of RecRes is no longer relevant, since clients

can make trust decisions based on how RecRes behaves. RA is one

of the main features of modern hardware-based Trusted Execution

Environments (TEEs), such as Intel Software Guard Extensions

(SGX) [24] and ARM TrustZone [9]. Such TEEs are now widely

available, with Intel CPUs after the 7th generation supporting SGX,

and ARM Cortex-A CPUs supporting TrustZone. TEEs with RA

capability are now also available in cloud services, such asMicrosoft

Azure [25]. In this paper, we use these features to address the two

problems posed above. Specifically, our contributions are:

• We design a Private DNS-over-TLS (PDoT ) architecture, the

main component of which is a privacy-preservingDNSRecRes

that operates within a commodity TEE. Running an RecRes

inside a TEE prevents even the RecRes operator from learn-

ing clients’ DNS queries, thus providing query privacy. Our

RecRes design also addresses the authentication challenge by



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

enabling clients to trust the RecRes based on how it behaves,

and not on who it claims to be. (See Section 4).

• We implement a proof-of-concept PDoT RecRes using In-

tel SGX and evaluate its security, deployability, and perfor-

mance. All source code and evaluation scripts are publicly

available [? ]. Our results show that PDoT handles DNS

queries without leaking information while achieving suf-

ficiently low latency and offering acceptable throughput

(Sections 5 and 6).

• In order to quantify privacy leakage via traffic analysis, we

performed an Internet measurement study. It shows that

94.7% of top 1,000,000 domain names can be served from a

privacy-preservingNS that serves at least two distinct domain

names, and 65.7% from a NS that serves 100+ domain names.

(See Section 7).

2 BACKGROUND

2.1 Domain Name System (DNS)

DNS is a distributed system that translates host and domain names

into IP addresses. DNS includes three types of entities: Client Stub

(client), Recursive Resolver (RecRes), and Name Server (NS). Client

runs on end-hosts. It receives DNS queries from applications, cre-

ates DNS request packets, and sends them to the configured RecRes.

Upon receiving a request, the RecRes sends DNS queries to NS-s

to resolve the query on client’s behalf. When NS receives a DNS

query, it responds to RecRes with either the DNS record that an-

swers client’s query, or the IP address of the next NS to contact.

RecRes thus recursively queries NS-s until the record is found or a

threshold is reached. The NS that holds the queried record is called:

Authoritative Name Server (ANS). After receiving the record from

ANS, RecRes forwards it to client. It is common for RecRes to cache

records so that repeated queries can be handled more efficiently.

2.2 Trusted Execution Environment (TEE)

A Trusted Execution Environment (TEE) is a security primitive

that isolates code and data from privileged software such as the

OS, hypervisor, and BIOS. All software running outside TEE is

considered untrusted. Only code running within TEE can access

data within TEE, thus protecting confidentiality and integrity of

this data against untrusted software. Another typical TEE feature

is remote attestation (RA), which allows remote clients to check

precisely what software is running inside TEE.

One recent TEE example is Intel SGX, which enables applications

to create isolated execution environments called enclaves. CPU

enforces that only code running within an enclave can access that

enclave’s data. SGX also provides RA functionality.

Memory Security. SGX reserves a portion of memory called

Processor Reserved Memory (PRM). It holds 4KB pages of Enclave

Page Cache (EPC) that stores code and data that run in that enclave.

PRM is protected by CPU to prevent non-enclave access to this

memory region. Also, processes can enter and leave an enclave

only through special functions: ECALLs and OCALLs, respectively.

These functions are realized by adding special CPU instructions.

Any illegal attempt to enter or leave without calling these functions

forces an enclave to shut down.

Attestation Service. SGX provides two types of attestation:

local and remote. Local attestation enables one enclave to attest

another (running on the same machine) to verify that the latter

is a genuine enclave actually running on the same CPU. Remote

attestation involves more entities. First, an application enclave to

be attested creates a report that summarizes information about

itself, e.g., code it is running. This report is sent to a special enclave,

called quoting enclave which is provided by Intel and available

on all SGX machines. Quoting enclave confirms that requesting

application enclave is running on the same machine and returns a

quote, which is a report with the quoting enclave’s signature. The

application enclave sends this quote to the Intel Attestation Service

(IAS) and obtains an attestation verification report. This is signed by

the IAS saying that the application enclave is indeed running the

code that it claims to be running. Once it receives an attestation

verification report, the verifier can make an informed trust decision

about behavior of the attested enclave.

Side-ChannelAttacks. SGX is vulnerable to several side-channel

attacks [22, 30], and various mechanisms have been proposed [13,

27? ] to mitigate them. Since defending against side-channel attacks

is orthogonal to our work, we expect that a production implemen-

tation would include relevant mitigation mechanisms.

3 ADVERSARY MODEL & REQUIREMENTS

3.1 Adversary Model

The adversary’s goal is to learn or infer information about DNS

queries sent by clients. We consider two different types of adver-

saries, based on their capabilities:

Our first type of adversary is a malicious RecRes operator who

has full control over the physical machine, its OS and all applica-

tions, including RecRes. We assume that the adversary cannot break

any cryptographic primitives, assuming that they are correctly im-

plemented. We also assume that it cannot physically attack hard-

ware components, e.g., probe CPU physically to learn TEE secrets.

This adversary also controls all of RecRes’s communication inter-

faces, allowing it to drop/delay packets, measure the time required

for query processing, and observe all cleartext packet headers.

The second adversary type is a network adversary, which is

strictly weaker than the malcious RecRes operator. In the passive

case, this adversary can observe any packets that flow into and out

of the RecRes. In the active case, this adversary can also modify

and/or forge network packets. DNS-over-TLS alone (without PDoT )

is sufficient to thwart a passive network adversary. However, since

an active adversary could attempt to redirect clients to a malicious

RecRes, clients need a efficient mechanism for authenticating the

RecRes and determining whether it is trustworthy, which is the

main contribution of PDoT .

For either adversary, we do not consider Denial-of-Service (DoS)

attacks against RecRes, since these do not help to achieve either ad-

versary’s goal of learning clients’ DNS queries. Connection-oriented

RecRes-s can defend against DoS attacks using cookie-based mech-

anisms to prevent SYN flooding [33].

3.2 System Requirements

In the context of the aforementioned adversary model, we now

define system requirements for a privacy-preserving RecRes:



PDoT: Private DNS-over-TLS with TEE Support ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

R1: Query Privacy. Contents of client’s query (specifically, do-

main name to be resolved) should not be learned by the

adversary. Ideally, payload of the DNS packets should be

encrypted. However, even if packets are encrypted, their

headers convey information, such as source and destina-

tion IP addresses. In Section 7.1, we quantify the amount of

information that can be learned via traffic analysis.

R2: Deployability. Clients using a privacy-preserving RecRes

should require no special hardware. Only minimal software

modifications should be imposed. Also, for the purpose of

transition and compatibility, a privacy-preserving RecRes

should be able to effectively interact with legacy clients that

support DNS-over-TLS.

R3: Response Latency. A privacy-preserving RecRes should

achieve similar response latency to that of a regular RecRes.

R4: Scalability. A privacy-preserving RecRes should process a

realistic volume of queries generated by a realistic number

of clients.

Note: the query privacy guarantees provided by PDoT rely on

the forward-looking assumption that the communication between

RecRes and the respective NS-s will also be protected by DNS-over-

TLS. The DNS Privacy (DPrive) Working Group is working towards

a standard for encryption and authentication of DNS resolver-to-

authoritative communication [? ], using essentially the same mech-

anism as DNS-over-TLS. We expect an increasing number of NS-s

to begin to support this standard in the near future. Once PDoT is

enabled at the RecRes, it can provide incremental query privacy

for any queries served from a DNS-over-TLS NS. As we explain in

Section 5, with small design modifications, PDoT could be adapted

for use in NS-s.

4 SYSTEM MODEL & DESIGN CHALLENGES

4.1 PDoT System Model

Figure 1 shows an overview of PDoT . It includes four types of enti-

ties: client, RecRes, TEE, NS-s. We now summarize PDoT operation,

reflected in the figure. (1) After initial start-up, TEE creates an at-

testation report. (2) When client initiates a secure TLS connection,

the attestation report is sent from RecRes to the client alongside

all other information required to setup a secure connection. (3)

Client authenticates and attests RecRes by verifying the attestation

report. It checks whether RecRes running inside TEE is genuine

and runs code that it trusts. (4) Client proceeds with the rest of the

TLS handshake procedure only if verification succeeds. (5) Client

sends a DNS query to the RecRes through the secure TLS channel it

has just set up. (6) RecRes receives a DNS query from client (in its

secure memory) and learns the domain name that the client wants

to resolve. (7) RecRes sets up a secure TLS channel to appropriate

NS in order to resolve the DNS query. (8) RecRes sends a DNS query

to NS over that channel. If NS’s reply includes an IP address of the

next NS, RecRes sets up another TLS channel to that NS. This is

done repeatedly, until RecRes successfully resolves the name to an

IP address. (9) Once RecRes obtains the final answer, it sends it to

client over the secure channel. Client can reuse the TLS channel

for future queries.

Note that we assume RecRes is not under the control of the

user. In some cases, users could run their own RecRes-s, which

Figure 1: Overview of the proposed system.

would side-step the concerns about query privacy. For example,

modern home routers are sufficiently powerful to run an in-house

RecRes. However, this approach cannot be used in public networks

(e.g., airports or coffee shop WiFi networks), which are the target

scenarios for PDoT .

4.2 Design Challenges

The following key challenges were encountered in the process of

PDoT ’s design:

C1: TEE Limited Functionality. In order to satisfy their secu-

rity requirements, TEE-s often limit the functionality pro-

vided to applications that run within them. One example

is the inability to fork within the TEE. Forking a process

running inside the TEE forces the child process to run out-

side the TEE, breaking RecRes security guarantees. Another

example is that system calls, such as socket communication,

cannot be made from within the TEE.

C2: TEE Memory Limitations. Typically, the amount of mem-

ory that a TEE can use is small. The size of an SGX enclave

is virtually as large as the size of the host machine’s mem-

ory. However, this is realized through page swapping, which

itself requires additional instructions. Moreover, the page to

be swapped must be encrypted due to SGX enclave security

requirements of SGX, thus adding even more instructions.

Therefore, introducing page swapping places heavy burden

on the performance of the application in the enclave. To

avoid page swapping, enclave size should be the same as

EPC of the Intel CPU ś typically, 128MB. Since RecRes is

a performance-critical application, its size should ideally

not exceed 128MB. This limit negatively impacts RecRes

throughput, as it bounds the number of threads that can

spawn in TEE.

C3: TEECall-in/Call-outOverhead.Applications that require

functionality that is not present within the TEE must switch

to the non-TEE side. This introduces additional overhead

since switching between TEE and non-TEE łworldsž requires

additional instructions. Identifying and limiting the number

of times RecRes switches back and forth (while keeping

RecRes functionality correct) is a substantial challenge.



ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

Figure 2: Overview of PDoT implementation.

5 IMPLEMENTATION

Figure 2 shows an overview of the PDoT design. Since our design

is architecture-independent, it can be implemented on any TEE

architecture that provides the features outlined in Section 2.2. We

chose to use off-the-shelf Intel SGX as the platform for the proof-

of-concept PDoT implementation in order to support an accurate

performance evaluation on real hardware (Section 6). This means

that our implementation is subject to the performance and memory

constraints in the current version of Intel SGX, and is thus best

suited for small-scale networks (e.g., the public WiFi network pro-

vided by a coffee shop). However, as TEE technology advances, we

expect that our design will be able to scale to larger networks.

5.1 PDoT

PDoT consists of two parts: (1) trusted part residing in TEE enclaves,

and (2) untrusted part that operates in the non-TEE region. The

former is responsible for resolving DNS queries, and the latter ś

for accepting incoming connections, assigning file descriptors to

sockets, and sending/receiving data received from the trusted part.

Enclave Startup Process.When the application enclave starts,

it generates a new public-private key-pair within the enclave. It

then creates a report that summarizes enclave and platform state.

The report includes an SHA256 hash of the entire code that is sup-

posed to run in the enclave (called MRENCLAVE value) and other

attributes of the target enclave. PDoT also includes an SHA256 hash

of the previously generated public key in the report. The report is

then passed on to the SGX quoting enclave to receive a quote. The

quoting enclave signs the report and thus generates a quote, which

cryptographically binds the public key to the application enclave.

The quoting enclave sends the quote to the application enclave

which forwards it to Intel Attestation Service (IAS) to obtain an

attestation verification report. It can be used in the future by clients

to verify the link between the public key and MRENCLAVE value.

After receiving the attestation verification report from IAS, the

application enclave prepares a self-signed X.509 certificate required

for the TLS handshake. This certificate, in addition to the public key,

includes: (1) attestation verification report, (2) attestation verifica-

tion report signature, and (3) attestation report signing certificate

(extracted from (1)). MRENCLAVE value and hash of public key are

enclosed in the attestation verification report.

TLS Handshake Process.1 Once the application enclave is cre-

ated, PDoT can create TLS connections and accept DNS queries

from clients. The client initiates a TLS handshake process by send-

ing a message to PDoT . This message is captured by untrusted part

of PDoT and triggers the following events2. First, untrusted part

of PDoT tells the application enclave to create a new TLS object

within the enclave for this incoming connection. This forces the

TLS endpoint to reside inside the enclave. The TLS object is then

connected to the socket where the client is waiting to be served.

RecRes then exchanges several messages with the client, including

the self-signed certificate that was created in the previous section.

Having received the certificate from RecRes, the client authenti-

cates RecRes and validates the certificate. (For more detail, see

Section 5.2). Only if the authentication and validation succeed, the

client resumes the handshake process.

DNS Query Resolving Process. The client sends a DNS query

over the TLS channel established earlier. RecRes receives a DNS

query from the client, decrypts it within the application enclave

and obtains the target name. It starts to resolve the name starting

from root NS, by doing the following repeatedly: 1) set up a TLS

channel with NS, 2) send DNS queries and receive replies via that

1In implementing this process, we heavily relied on SGX RA TLS [20] whitepaper.
2Since we consider a malicious RecRes operator, it has an option not to trigger these
events. However, clients will notice that their queries are not being answered and can
switch to a different RecRes.





ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik

trust RecRes based on its behavior, and not its organization (recall

that the MRENCLAVE value is a hash of RecRes code). There are

various possible options for deciding which MRENCLAVE values

are trustworthy. For example, the recursive resolver vendors could

publish lists of expected MRENCLAVE values for their resolvers.

For open source resolvers like PDoT , anyone can recalculate the

expected MRENCLAVE value by recompiling the software (assum-

ing a reproducible build process). This would allow trusted third

parties (e.g., auditors) to inspect the source code, ascertain that it

upholds the required privacy guarantees, and publish their own

lists of trusted MRENCLAVE values.

Sending DNS request. Once the TLS connection is established,

the client sends the DNS query to RecRes over the TLS tunnel. If

it does not receive a response from RecRes within the specified

timeout, it assumes that there is a problem with RecRes and sends a

DNS reply message to the application with an error code SERVFAIL.

5.3 Overcoming Technical Challenges

As discussed in Section 4.2, PDoT faced three main challenges,

which we addressed as follows:

LimitedTEEFunctionality.The inability to use sockets within

TEE is a challenge for PDoT because the RecRes cannot commu-

nicate with the outside world. We address this issue by having a

process running outside the TEE, as described in Section 5.1. This

process forwards packets from the client to TEE through ECALLs

and sends packets received from TEE via OCALLs. However, this

processes might redirect the packet to a malicious process or sim-

ply drop it. We discuss this issue in Section 6.1. Another function

unavailable within TEE is forking a process. PDoT uses pthreads

instead of forking to run multiple tasks concurrently in a TEE.

Limited TEE Memory. We use several techniques to address

this challenge. First, we ensure no other enclaves (other than the

quoting enclave) run on RecRes machine. This allows PDoT to use

all available EPC memory. Second, we fix the number of Query-

Handler threads in order to save space. This is possible because of

dis-association of QueryHandler and ClientReader/Writer threads.

OCALL and ECALL Overhead. ECALLs and OCALLs require

additional instructions and therefore should be avoided as much as

possible. For example, all threads mentioned in the previous section

must wait until they receive the following information: for Clien-

tReader thread ś DNS query from the client, for QueryProcessor

thread ś query from inQueryList, and for ClientWriter thread ś

response from outQueryList. PDoT was implemented so that these

threads wait inside the enclave. If we were to wait outside the en-

clave, we would have to make an ECALL to enter the enclave each

time the thread proceeds.

6 EVALUATION

6.1 Security Analysis

This section describes how query privacy (Requirement R1) is

achieved, with respect to the two types of adversaries (Section 3.1).

Malicious RecRes operator. Recall that a malicious RecRes

operator controls the machine that runs PDoT RecRes. It cannot

obtain the query from intercepted packets since they flow over

the encrypted TLS channel. Also, because the local TLS endpoint

resides inside the RecRes enclave, the malicious operator cannot

retrieve the query from the enclave, as it does not have access to

the protected memory region.

However, a malicious RecRes operator may attempt to connect

the socket to a malicious TLS server that resides in either: 1) an

untrusted region, or 2) a separate enclave that the operator itself

created. If the operator can trick the client into establishing a TLS

connection with the malicious TLS server, the adversary can obtain

the plaintext DNS queries. For case (1), the verification step at the

client side fails because the TLS server certificate does not include

any attestation information. For case (2), the malicious enclave

might receive a legitimate attestation verification report, attesta-

tion verification report signature, and attestation report signing

certificate from IAS. However, that report would contain a differ-

ent MRENCLAVE value, which would be rejected by the client. To

convince the client to establish a connection with PDoT RecRes,

the adversary has no choice but to run the code of PDoT RecRes.

Therefore, in both cases, the adversary cannot trick the client into

establishing a TLS connection with a TLS server other than the one

running a PDoT RecRes.

Network Adversary. Recall that this adversary captures all

packets to/from PDoT . It cannot obtain the plaintext queries since

they flow over the TLS tunnel. The only information it can obtain

from packets includes cleartext header fields, such as source and

destination IP addresses. This information, coupled with a timing

attack, might let the adversary correlate a packet sent from the

client to a packet sent to an NS. The consequent amount of privacy

leakage is discussed in Section 7.1

6.2 Deployability

Section 5 explains how PDoT clients do not need special hardware,

and require only minor software modifications (Requirement R2).

To aid deployability, PDoT also provides several configurable pa-

rameters, including: the number of QueryHandle threads (to adjust

throughput), the amount of memory dedicated to each thread (to

serve clients that send a lot of queries at a given time), and the time-

out of QueryHandle threads (to adjust the time for a QueryHandle

thread to acquire a resource). Another consideration is incremental

deployment, where some clients may request DNS-over-TLS with-

out supporting PDoT . PDoT can handle this situation by having

its TLS certificate also signed by a trusted root CA, since legacy

clients will ignore PDoT -specific attestation information.

On the client side, an ideal deployment scenario would be for

browser or OS vendors to update their stub resolvers to support

PDoT . In the same way that browser vendors currently include

and maintain a list of trusted root CA certificates in their browsers,

browser/OS vendors could include and periodically update a list of

trustworthy MRENCLAVE values for PDoT resolvers. This could

all be done transparently to end users. As with root CA certifi-

cates, expert users can manually add/remove trusted MRENCLAVE

values for their own systems. In practice there are only a handful

of recursive resolver software implementations, so even allowing

for multiple versions for each, the list of trusted MRENCLAVE

values will be orders of magnitude smaller than the list of public

keys of every trusted resolver, as would be required for standard

DNS-over-TLS.











PDoT: Private DNS-over-TLS with TEE Support ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

9 CONCLUSION & FUTURE WORK

In this paper, we propose PDoT , a novel design of a DNS RecRes

that operates within a TEE to protect privacy of DNS queries, even

from a malicious RecRes operator. In terms of query throughput,

our unoptimized proof-of-concept implementation matches the

throughput of Unbound, a state-of-the-art DNS-over-TLS recursive

resolver, while incurring an acceptable increase in latency (due to

the use of a TEE). In order to quantify the potential for privacy

leakage through traffic analysis, we performed an Internet measure-

ment study which showed that 94.7% of the top 1,000,000 domain

names can be served from a privacy-preserving ANS that serves

at least two distinct domain names, and 65.7% from an ANS that

serves 100+ domain names. As future work, we plan to port Un-

bound to Intel SGX and conduct a performance comparison with

PDoT , as well as explore methods to improve PDoT ’s performance

using caching while maintaining client privacy.

ACKNOWLEDGMENTS

The authors thank Geonhee Cho for the initial data collection for

the privacy-preserving ANS analysis (Section 7.1). The authors also

thank the paper’s shepherd, Roberto Perdisci, and the anonymous

reviewers for their valuable comments. First and third authors were

supported in part by NSF Award Number:1840197, titled: "CICI:

SSC: Horizon: Secure Large-Scale Scientific Cloud Computing". The

first author was also supported by The Nakajima Foundation. The

second author was supported by a US-UK Fulbright Cyber Security

Scholar Award.

REFERENCES
[1] [n. d.]. DNS over TLS - Cloudflare Resolver. https://developers.cloudflare.com/1.

1.1.1/dns-over-tls/
[2] [n. d.]. DNS over TLS support in Android P Developer Preview. https://security.

googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
[3] [n. d.]. DNSCrypt. https://dnscrypt.info/
[4] [n. d.]. Introduction to DNSCurve. https://dnscurve.org/index.html
[5] [n. d.]. Knot Resolver. https://www.knot-resolver.cz/
[6] [n. d.]. Majestic Million. https://blog.majestic.com/development/majestic-

million-csv-daily/
[7] [n. d.]. Stubby. https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Daemon+-

+Stubby
[8] [n. d.]. Unbound. https://nlnetlabs.nl/projects/unbound/about/
[9] ARM. [n. d.]. ARM Security Technology - Building a Secure System using

TrustZone Technology. http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.prd29-genc-009492c/index.html

[10] S. Bortzmeyer. 2016. DNS Query Name Minimisation to Improve Privacy. Technical
Report. https://doi.org/10.17487/RFC7816

[11] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. 2008. Anonymous Resolution of
DNSQueries. Springer, Berlin, Heidelberg, 987ś1000. https://doi.org/10.1007/978-
3-540-88873-4_5

[12] V.G. Cerf. 1991. Guidelines for Internet Measurement Activities. Technical Report.
https://doi.org/10.17487/rfc1262

[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. , 857ś
874 pages. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/costan

[14] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version
1.2. Technical Report. https://doi.org/10.17487/rfc5246

[15] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui Ren.
2017. LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed. (Jun
2017). arXiv:1706.06261 http://arxiv.org/abs/1706.06261

[16] Annie Edmundson, Paul Schmitt, and Nick Feamster. [n. d.]. ODNS: Oblivious
DNS. https://odns.cs.princeton.edu/

[17] Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and Christopher
Piosecny. 2011. Privacy-Preserving DNS: Analysis of Broadcast, Range Queries
and Mix-Based Protection Methods. Springer, Berlin, Heidelberg, 665ś683.
https://doi.org/10.1007/978-3-642-23822-2_36

[18] David Goltzsche, Signe Rusch, Manuel Nieke, Sebastien Vaucher, Nico Weich-
brodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fetzer, Pascal
Felber, Peter Pietzuch, and Rudiger Kapitza. 2018. EndBox: Scalable Middlebox
Functions Using Client-Side Trusted Execution. In 2018 48th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN). IEEE, 386ś397.
https://doi.org/10.1109/DSN.2018.00048

[19] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and P
Hoffman. 2016. Specification for DNS over Transport Layer Security (TLS).
https://doi.org/10.17487/RFC7858

[20] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
(Jan 2018). arXiv:1801.05863 http://arxiv.org/abs/1801.05863

[21] Matt Larson, Dan Massey, Scott Rose, Roy Arends, and Rob Austein. [n. d.]. DNS
Security Introduction and Requirements. ([n. d.]). https://tools.ietf.org/html/
rfc4033

[22] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 605ś622. https://doi.org/10.1109/SP.2015.43

[23] Y. Lu and G. Tsudik. 2010. Towards Plugging Privacy Leaks in the Domain Name
System. In 2010 IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P). IEEE, 1ś10. https://doi.org/10.1109/P2P.2010.5569976

[24] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy - HASP
’13. ACM Press, New York, New York, USA, 1ś1. https://doi.org/10.1145/2487726.
2488368

[25] Microsoft. [n. d.]. Introducing Azure confidential computing. https://azure.
microsoft.com/en-us/blog/introducing-azure-confidential-computing/

[26] P.V. Mockapetris. 1987. Domain names - implementation and specification. Tech-
nical Report. https://doi.org/10.17487/rfc1035

[27] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. InNDSS Sym-
posium. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-
sgx-eradicating-controlled-channel-attacks-against-enclave-programs/

[28] Haya Shulman and Haya. 2014. Pretty Bad Privacy: Pitfalls of DNS Encryption.
In Proceedings of the 13th Workshop on Privacy in the Electronic Society - WPES
’14. ACM Press, New York, New York, USA, 191ś200. https://doi.org/10.1145/
2665943.2665959

[29] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded Execu-
tion. In Proceedings of the Symposium on SDN Research - SOSR ’18. ACM Press,
New York, New York, USA, 1ś14. https://doi.org/10.1145/3185467.3185469

[30] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640ś656. https://doi.org/10.1109/
SP.2015.45

[31] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Analysis of Privacy
Disclosure in DNS Query. In 2007 International Conference on Multimedia and
Ubiquitous Engineering (MUE’07). IEEE, 952ś957. https://doi.org/10.1109/MUE.
2007.84

[32] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Two-Servers PIR
Based DNS Query Scheme with Privacy-Preserving. In The 2007 International
Conference on Intelligent Pervasive Computing (IPC 2007). IEEE, 299ś302. https:
//doi.org/10.1109/IPC.2007.27

[33] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and Nikita
Somaiya. 2015. Connection-Oriented DNS to Improve Privacy and Security. In
2015 IEEE Symposium on Security and Privacy. IEEE, 171ś186. https://doi.org/10.
1109/SP.2015.18


	Abstract
	1 Introduction
	2 Background
	2.1 Domain Name System
	2.2 Trusted Execution Environment

	3 Adversary Model and System Requirements
	3.1 Adversary Model
	3.2 System Requirements

	4 System Model & Design Challenges
	4.1 PDoT System Model
	4.2 Design Challenges

	5 Implementation
	5.1 PDoT
	5.2 Client with PDoT Support
	5.3 Overcoming Technical Challenges

	6 Evaluation
	6.1 Security Analysis
	6.2 Deployability
	6.3 Performance Evaluation

	7 Discussion
	7.1 Information revealed through IP addresses
	7.2 Caching and timing attacks

	8 Related Work
	9 Conclusion & Future Work
	References

