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ABSTRACT
We study the problem of load-balancing in path selection in anony-
mous networks such as Tor. We first find that the current Tor path
selection strategy can create significant imbalances. We then de-
velop a (locally) optimal algorithm for selecting paths and show,
using flow-level simulation, that it results in much better balancing
of load across the network. Our initial algorithm uses the complete
state of the network, which is impractical in a distributed setting
and can compromise users’ privacy. We therefore develop a revised
algorithm that relies on a periodic, differentially private summary
of the network state to approximate the optimal assignment. Our
simulations show that the revised algorithm significantly outper-
forms the current strategy while maintaining provable privacy
guarantees.
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1 INTRODUCTION
Users are increasingly turning to anonymous communication net-
works to protect themselves from surveillance, online tracking,
or government censorship. The Tor network has several million
daily active users [20] and has recently been integrated into the
privacy-focused Brave browser [4].

To achieve anonymity in Tor, users’ traffic is routed across a se-
ries of servers, called relays. There are several thousand relays, run
by volunteers; each user’s path through the network, called a circuit,
typically transits three of them. This creates a load-balancing prob-
lem of assigning circuits to relays while ensuring no relay gets over-
loaded and all circuits receive good performance. Complicating this
problem are the highly heterogeneous relay capacities—spanning
some five orders of magnitude—and the privacy requirements of cir-
cuit construction. In particular, no one except the user must know
the entirety of the circuit, precluding any centralized load-balancing
solution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5989-4/18/10. . . $15.00
https://doi.org/10.1145/3267323.3268953

Currently, the Tor network uses a randomized assignment of
flows circuits to relays, where each user chooses the relays for their
circuits randomly weighted by their measured capacity (with some
other constraints, see section 2.1). This ensures that each relay has
the same average load; however, as we demonstrate in Section 3,
this can create significant imbalances at any given point in time. We
therefore consider the question of whether it is possible to provide
better load balancing while satisfying the privacy requirements.

We first study a non-private load-balancing algorithm. We adapt
an algorithm that calculates the max-min-fair allocation of band-
width to circuits to select an optimal set of relays for a new path.
We show that this results in significantly better load-balancing.
Running this algorithm for each new flow would be impractical,
therefore we create a batch version of the algorithm, which spec-
ulatively generates new circuits using the optimal algorithm and
uses these circuits to induce a distribution over the relays, which
is then sampled from to generate new circuits. Note that, unlike
the Tor algorithm, the distribution reflects the current state of the
network and is periodically refreshed; we show that this results
in significantly better load-balancing performance than the Tor
algorithm.

We then design a private version of this algorithm. Rather than
working with a list of circuits, we break each hop into two 2-hop
segments. We can then summarize the state of the network by creat-
ing a histogram of segments with one entry for each pair of relays.
Our design is motivated by the fact that each entry in this histogram
can be filled in by a single relay; moreover, each relay can locally
add noise to the entry resulting in a differentially private histogram.
We show that using a private histogram, we can implement a modi-
fied batch algorithm that approximates the optimal load-balancing.
Our experiments show that the algorithm results in significantly
better balanced circuits than the Tor randomized approach, while
preserving privacy.

2 BACKGROUND
In this section we review the key properties of anonymous com-
munication networks relevant to load balancing. We then present
the max-min fair bandwidth allocation algorithm that we will use
to model the load-balancing performance, and introduce the dif-
ferential privacy framework that will be used to maintain users’
anonymity.

2.1 Anonymous Networks and Tor
Anonymity networks provide users a way to communicate without
revealing their identity, and without revealing their relationships
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Figure 1: Measured relay bandwidths from two Tor consen-
sus documents: February 5, 2018 at 19:00 (UTC) and July 26,
2018 at 00:00 (UTC). Note the logarithmic scale of the y-axis.

to third parties. Starting with Chaum’s seminal mix network de-
sign [6], anonymity has been most frequently achieved by forward-
ing traffic through a series of servers in order to disguise its origin.
In onion routing networks [24], each packet is multiply encrypted,
with a layer of encryption being removed by each server in the
path. This makes it impossible for any server to learn the entire
path; rather, it knows only the preceding and following hops.

Tor [9] is the most popular anonymity network. In Tor, paths
(called circuits) typically take three hops to transit the network.
These hops are chosen from a collection of volunteer-run servers,
called relays. These relays have vastly varying bandwidth capac-
ity; in order to balance the load among them, their bandwidth is
measured using TorFlow [17]. Relays are then allocated to circuits
randomly, weighted by their measured bandwidth (also known as
the consensus weight). The full Tor path selection algorithm [8] is
somewhat complex because it must account for some relays not
being usable in certain positions of the circuit as well as other con-
straints. For the purposes of this paper, we will approximate the
algorithm as picking three random relays, without replacement,
from the distribution induced by the measured bandwidth, leaving
simulations of the full Tor algorithm for future work.

An important feature of the Tor network is that the relays, due
to being supplied by volunteers, vary wildly in their bandwidth
capacity. Figure 1 shows the relays and their measured capacity
from two consensus documents take about five months apart. The
distribution is highly skewed, with measured capacities spanning
over five orders of magnitude. Note that the distribution in the two
consensus documents follows a similar pattern; we therefore use
the February 5, 2018 19:00 (UTC) consensus as representative for
our experiments in the remainder of the paper.

2.2 Max-min Fairness
In this section we introduce our model of Tor performance using
max-min fair bandwidth allocation. Our model of the Tor network
includes two simplifying assumptions: (a) each user holds a single
path through relays and (b) path capacities are constrained only by

the relays, and not by the links between relays. The former can be
easily adjusted by creating virtual users; the latter assumption is
standard in analyzing Tor, and indeed central to the Tor bandwidth
measurement and allocation architecture. We use the max-min fair
allocation as amodel because Tor schedules circuits in a round-robin
fashion, which has been shown to achieve max-min fairness [12].
One further assumption is that each path is in simultaneous active
use. We discuss some relaxations of this assumption in section 5.4,
and defer more complex modeling and simulation of circuit usage
to future work.

Notation. We introduce some notation for the rest of the paper.
For any positive integer k , [k] denotes the set {1, . . . ,k}. We denote
the number of relays byn and the number of users (and therefore the
number of paths) bym. We assign integer identifiers to the relays
and users, and thus, the sets of relays and users are [n] and [m],
respectively. The capacity of relay r ∈ [n] is the positive constant
C[r ]. The path assigned to user p ∈ [m] is a sequence of three relays
and is denoted by P[p]. We identify this sequence with the the pth
path. Given an allocation of paths to all users, for any relay r ∈ [n]
we define R[r ] = {p ∈ [m] | r ∈ P[p]} to be the set of identifiers of
the paths to which the relay r belongs.

Each relay r allocates some bandwidth to each of the paths inR[r ].
The bandwidth allocated to the pth path is the minimum bandwidth
allocated for it by its three relays and is denoted by band[p]. For
any relay r , the total allocated bandwidth to all paths in R[r ], must
be less than the capacity of r :

∀ r ∈ [n],
∑

p∈R[r ]

band[p] ≤ C[r ]. (1)

Allocations satisfying eq. (1) are said to be feasible.
A feasible allocation band is max-min fair if and only if an in-

crease of bandwidth allocation to any path ( within the set of feasible
allocations), must be at the cost of a decrease in allocation of an-
other path with an already lower bandwidth in band (See Section
6.5.2 in [3]). That is, for any other feasible allocation band ′ and any
path p1 ∈ [m], if band ′[p1] > band[p1], then there exists p2 ∈ [m]
such that band ′[p2] < band[p2] and band[p2] ≤ band[p1].

It is well-known that the allocation algorithm shown below
(algorithm 1) achieves max-min fairness. It takes as input a network
of relays and paths, and allocates a bandwidth to each path in an
iterative fashion. Specifically, the inputs are the array or map C of
all the relay capacities, the array of user paths P , and the array R.
The algorithm keeps track of the residual capacity, Cres, of each
relay after subtracting the bandwidths of the paths passing through
it. It also keeps track of the residual paths, Rres, that is, the set
of paths passing through each relay after removing those paths
whose bandwidths are already allocated. At each iteration, one relay
r∗ ∈ [n] is chosen and each path in Rres[r∗] is allocated a bandwidth.
The chosen relay r∗ is the one that has the smallest ratio Rat[r ] :=
Cres[r ]/|Rres[r ]| at the corresponding iteration (line 7). After it is
chosen, each of the paths in Rres[r∗] is assigned a bandwidth of
Rat[r∗] (line 9). Relay r∗ is called the bottleneck relay of these paths.
Then, these paths are removed from their corresponding relays
(line 12) and the capacities of these relays get subtracted by Rat[r∗]
(line 11). This is repeated until all paths are allocated bandwidth.
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Algorithm 1 Max-min Bandwidth Allocation Algorithm
1: input: C,R, P
2: Cres[r ] ← C[r ], ∀ r ∈ [n]
3: Rres[r ] ← R[r ], ∀ r ∈ [n]
4: band[p] ← 0, ∀p ∈ [m]
5: while ∃ p | band[p] = 0 do

6: Rat[r ] ←

{
Cres[r ]
|Rres[r ] | ∀ r ∈ [n] | |Rres[r ]| , 0
∞ otherwise

7: r∗ ← argmin
r ∈[n]

Rat[r ]

8: for p ∈ Rres[r∗] do
9: band[p] ← Rat[r∗]
10: for r ∈ P[p] do
11: Cres[r ] ← Cres[r ] − Rat(r∗)
12: Rres[r ] ← Rres[r ] \ {p}
13: return band

Remark 1. Suppose the relay r∗ chosen at line 7 of algorithm 1
belongs to a path p. Then, path p is allocated bandwidth of Rat[r∗],
that is band[p] = Rat[r∗]. Further, this allocation is not changed in
subsequent iterations.

2.3 Differential Privacy
To perform load-balancing, we would like to incorporate feedback
about the state of the network into the path selection process. How-
ever, as discussed above, the state of the network is explicitly re-
quired to be private, as this is key to preserving users’ anonymity.
We will use differential privacy to ensure our feedback mechanism
does not result in privacy loss.

Differential privacy was first proposed by Dwork [10]. It formal-
izes the notion that a mechanism operating over a private data set
must produce an output that depends only minimally on each item
in the data set. We will use the formulation given by Vadhan [25]:

Definition 1 ((Approximate) differential privacy). [25, Definition
1.4] For ϵ ≥ 0,δ ∈ [0, 1] we say that a randomized mechanism
M : χn × Ω→ Y is (ϵ,δ )-differentially private if for every pair of
neighboring datasets x ∼ x ′ ∈ χn (i.e. x and x ′ differ in one row),
and every query q ∈ Ω, we have:

∀T ⊆ Y, Pr[M(x, q) ∈ T ] ≤ eϵ · Pr[M(x ′, q) ∈ T ] + δ ,
where Ω is the set of possible queries. Moreover, δ should typically
satisfy δ ≤ n−ω(1) for this definition to be meaningful.

In our case, the dataset in question will be the complete list of
circuits in the Tor network, with each circuit representing a row.
As a result, differential privacy will guarantee the privacy of each
individual circuit while providing aggregate traffic statistics. We
note that differential private mechanisms have previously been
used to study traffic properties of Tor [15].

3 ANALYZING THE RANDOMIZED
ALLOCATION ALGORITHM

In this section, we will present the current method used to create
paths in the Tor network. Incoming users sample without replace-
ment three relays using the distribution over relays where each
relay is weighed by its capacity.

Algorithm 2 Random Path Allocation Algorithm
1: input: C
2: Sample three relays {r1, r2, r3} without replacement from the

set of relay where each relay is weighed by its capacity.
3: return: {r1, r2, r3}
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Figure 2: Bandwidth allocation of 1 million paths using the
random algorithm 2.

0 2000 4000 6000 8000 10000
Circuit number

101

102

103

104

B
an

dw
id

th

Figure 3: Bandwidth allocation of 10 000 paths using the ran-
dom algorithm 2.

We evaluate the performance of this algorithmwith respect to the
parameters of the Tor network. Jansen and Johnson [15] estimated
that there were approximately 1.2 million active circuits (95% CI
+/- 500,000) in the network. We therefore created 1 million paths
using the random algorithm 2 and then computed their bandwidth
allocation using max-min fair algorithm 1. The results are in fig. 2.
We can see that the majority of circuits receive an allocation close
to the average of 10.9, but there are significant tails at both ends of
the distribution: the minimum circuit has allocation of 1.0 and the
maximum of 190. (The standard deviation is 1.28.)

Jansen and Johnson define an active circuit as one that has ever
been used to forward data; however, at any given moment, most
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circuits are idle. This can be seen by comparing the data about the
aggregate Tor network traffic of approximately 100Gbps [19] to
the performance of a sustained download, which is roughly 10 s
for 5MiB [18]. Given that each circuit gets carried by 3 relays, this
suggests that 100Gbps/3/(5MiB/10 s) ≈ 10 000 circuits are active
at any given time. Figure 3 shows the bandwidth allocation of 10 000
circuits generated by algorithm 2. Observe that the imbalances in
this case are much more significant: the minimum allocation is 14
and the maximum is 6419, with a standard deviation of 475.8. 932
out of 10 000 flows receive less than half of the average bandwidth
of 980, and 37 receive less than 10%.

4 LOCALLY OPTIMAL INCREMENTAL PATH
ALLOCATION

In this section, wemodify the max-min fair allocation algorithm 1 to
design an algorithm that, given the state of the Tor network, returns
three relays that would result in an optimal allocated bandwidth for
a new path. The result is algorithm 3. This algorithm assumes that
the bandwidths of the existing paths in the network are allocated
using max-min fairness (algorithm 1).

4.1 Algorithm Description
The algorithm iteratively creates a listB of (bandwidth, relay)-pairs.
This list determines how much bandwidth would be allocated to a
newly added path to the network. That is, of the relays appearing
in a new path, the one that appears earliest in B determines the
bandwidth of the path.

The idea of algorithm 3 is to simulate the behaviour of the max-
min fairness algoirthm algorithm 1 on the network when an arbi-
trary new path is added. This simulation allows us to know how
much bandwidth it would get allocated. A trivial but key observa-
tion is that when a new path is added, the number of paths passing
through each of its three relays will be incremented by one. For all
other relays, the number of paths will remain unchanged. More-
over, as per remark 1, the relay that is chosen first from a path
determines the path’s bandwidth allocation. Since we are searching
for the relays that would maximize the bandwidth allocation for
a newly added path, algorithm 3 computes the different possible
allocations based on the different possible bottlenecks.

In addition to the ratio Cres[r ]/|Rres[r ]| tracked in algorithm 1
(line 7), algorithm 3 also tracksCres[r ]/(|Rres[r ]| + 1), for each relay
r (line 8). In other words, Rat is now a 2 × n matrix: row 1 stores
Cres[r ]/|Rres[r ]| and row 2 stores Cres[r ]/(|Rres[r ]| + 1).

At each iteration, a minimum of all the 2n ratios is chosen. We
denote the minimizing row by t∗ ∈ {1, 2} and the corresponding
relay by r∗ ∈ [n]. If the minimizing row t∗ = 1, the algorithm
proceeds as max-min fair allocation algorithm 1 by allocating band-
width of Rat[1, r∗] to each of the paths in Rres[r∗]. Then, it removes
them from the other relays in which they pass (lines 17 and 18).
Both ratios in the same column of Rat, i.e., ratios corresponding
to the same relay, are updated in the same way unless the ratio
in the second row is already added to B (line 8). That is because
both ratios use the same arrays Cres and Rres for their numerator
and denominator. Otherwise, if t∗ = 2, the pair (Rat[2, r∗], r∗) is
added to the end of B. It is added at the end since the r∗ will be the
bottleneck of the added path only when its other relays are not in

already in B at this iteration. If one of its relays is already in B at
this iteration, that would be its bottleneck instead of r∗. This will be
proved in the next section. The algorithm iterates until all n relays
have entries in B.

Algorithm 3 Locally Optimal Path Allocation Algorithm
1: input: C,R, P
2: B ← ∅
3: Cres[r ] ← C[r ], ∀ r ∈ [n]
4: Rres[r ] ← R[r ], ∀ r ∈ [n]
5: band[p] ← 0, ∀p ∈ [m]
6: while ∃ i < B do

7: Rat[1, r ] ←
{

Cres[r ]
|Rres[r ] | if |Rres[r ]| , 0
∞ otherwise

8: Rat[2, r ] ←
{

Cres[r ]
|Rres[r ] |+1 if r < B
∞ otherwise

9: (t∗, r∗) ← argmin
t ∈
{
1,2

}
,r ∈[n]

Rat[t , r ]

10: if t∗ == 2 then
11: B.push([Rat[t∗, r∗], r∗])
12: Rat[t∗, r∗] ← ∞
13: else
14: for p ∈ Rres[r∗] do
15: band[p] ← Rat[t∗, r∗]
16: for r ∈ P[p] do
17: Cres[r ] ← Cres[r ] − Rat[t∗, r∗]
18: Rres[r ] ← Rres[r ] \ {p}
19: Let ((b1, r1), (b2, r2), (b3, r3)) be the last three elements of B
20: return: {r1, r2, r3}

4.2 Algorithm Correctness
In this section, we will prove that the output of algorithm 3 is a
path with maximum bandwidth allocation possible, for a new path
that is to be added to the given network. In this analysis, we will
compare the state of algorithm 3 with the state of max-min fair
allocation algorithm 1, in the same iteration. We will add bars on
top of the variable names of algorithm 3 to distinguish them from
the variables with the same names in algorithm 1. A subscript of
zero refers to the initial values of the variables. A subscript l > 0
denotes the value of the variable at the end of the l th while-loop
iteration, for the corresponding program1. For example, Cres2 is
the value of Cres of algorithm 3 at the end of the second iteration
of its while loop. We will use ⊕ to represent sum of sets.

The following key lemma is used to prove an equivalence be-
tween the behaviors of algorithm 1 and algorithm 3: given any
new path p, the bandwidth allocated to p by algorithm 1 equals the
bandwidth associated with the relay in p that appears earliest in B
(computed by algorithm 3).

Lemma 1. Let the new path beH = {h1,h2,h3} ∈ [n]3. Assume (a)
C = C , (b) R[r ] = R[r ] for all r ∈ [n] \H and R[r ] = R[r ] ∪ {m + 1}
for r ∈ H , and (c) P[p] = P[p] for all p ∈ [m], and P[m + 1] = H .
1For algorithm 1, it is the value of the variable after the execution of line 12 and for
algorithm 3 it is the value after the execution of line 18
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Assume w.l.o.g thath1 is the first relay to be added by algorithm 3 to B.
Let l1, l2, . . . lk be the iterations in algorithm 3 at which t∗ = 1 before
h1 is added to B. Then, for all s ≤ k , Cress = Cresls and Rress [r ] =
Rresls [r ] for all r ∈ [n] \ H and Rress [r ] = Rresls [r ] ∪ {m + 1} for
r ∈ H .

Proof. First, Cres0 = C1 = C2 = Cres0. Second, note that
Rat1[r ] = Rat1[1, r ] for all r ∈ [n] \ H and Rat1[r ] = Rat1[2, r ]
for all r ∈ H . Hence, if the minimum ratio at the first iteration
of algorithm 3 exists in Rat1, that same ratio will be chosen by
algorithm 1 at its first iteration. Thus, if t∗1 = 2 and r∗1 = h1 (r∗1
cannot be h2,h3 as we assumed that h1 is chosen first), then the
lemma would hold with k = 0 and r∗1 = h1.

If t∗1 = 2 and r∗1 , h1, then the minimum ratio of algorithm 3
does not belong to Rat1 and neither Cres nor Rres would be changed
in this iteration, i.e. Cres1 = Cres0 and Rres1 = Rres0. In that case,
Rat2 would still be a subset of Rat2.

The casewhere t∗1 = 1 and r∗1 ∈ H cannot happen since Rat1[2, r ] ≤
Rat1[1, r ] for all r ∈ [n].

Finally, if t∗1 = 1 and r∗1 < H , then l1 = 1 and both algorithms
will have the same minimum ratio, the else branch would be taken
in algorithm 3 and Cres and Rres would be updated in the same
manner as those Cres and Rres. Thus, the property in the lemma
would be preserved.

Hence, the above analogy can be repeated to shown that the l th
iteration of algorithm 3 at which t∗ = 1will run the same updates as
that of the l th iteration of algorithm 1 till h1 is added to B. Iterations
of the while loop in algorithm 3 at which t∗ = 2 does not affect Cres,
Rres, and the ratios common with algorithm 1 until h1 is chosen.
Once h1 is added to B, that corresponds to the k + 1th iteration of
algorithm 1 where h1 will be chosen as the minimizing relay too
and the bandwidth of the new path would be determined. □

Corollary 1. For any new pathH = {h1,h2,h3}. The bandwidth
associated with h1 in B (algorithm 3) equals the bandwidth allocated
for H by algorithm 1.

Since in the following lemma we will be only analyzing algo-
rithm 3, there will be no confusion with the variables of algorithm 1
so we drop the bars.

Lemma 2. The ratios in B appear in increasing order.

Proof. Consider the l th iteration of algorithm 3 at which a ratio-
relay pair (b, r∗l ) is added to B, i.e. t∗l = 2. If in the preceding it-
eration l − 1, t∗l−1 = 2, another ratio-relay (b1, r∗l−1) would have
been added to B before it. Moreover, both Cres and Rres would not
have changed and since b1 was chosen first means it is smaller
than b2 and thus in this case the B would be increasing. Otherwise,
if t∗l−1 = 1, the “else” branch would be taken. Denote the num-
ber of paths r∗l−1 and r

∗
l share at the (l − 1)th iteration be s . Then,

Ratl [2, r∗l ] =
Cresl−1[r ∗l ]−Ratl−1[1,r

∗
l−1]

|Rresl−1[r ∗l ] |+1−s
. We will show that it is larger

than Ratl−1[1, r∗l−1] =
Cresl−1[r ∗l−1]
|Rresl−1[r ∗l−1] |

.
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Figure 4: Graph comparing the bandwidth allocation of
one million paths generated using the locally optimal algo-
rithm 2 and the random algorithm 3. Note the logarithmic
scale of the y-axis.

We know that Ratl−1[2, r∗l ] :=
Cresl−1[r ∗l ]
|Rresl−1[r ∗l ] |+1

>
Cresl−1[r ∗l−1]
|Rresl−1[r ∗l−1] |

.
Hence,

Cresl−1[r
∗
l ]|Rresl−1[r

∗
l−1]| > Cresl−1[r

∗
l−1](|Rresl−1[r

∗
l ]| + 1)

=⇒ Cresl−1[r
∗
l ]|Rresl−1[r

∗
l−1]| − s(Cresl−1[r

∗
l−1])

> Cresl−1[r
∗
l−1](|Rresl−1[r

∗
l ]| + 1 − s)

=⇒ |Rresl−1[r
∗
l−1]|(Cresl−1[r

∗
l ] − s

Cresl−1[r∗l−1]

|Rresl−1[r∗l−1]|
)

> Cresl−1[r
∗
l−1](|Rresl−1[r

∗
l ]| + 1 − s)

=⇒

Cresl−1[r∗l ] − s
Cresl−1[r ∗l−1]
|Rresl−1[r ∗l−1] |

|Rresl−1[r∗l ]| + 1 − s
>

Cresl−1[r∗l−1]

|Rresl−1[r∗l−1]|
.

Therefore, the ratios are non decreasing in the iterations at which
t∗ = 1 and constant (other than the one added to B) when t∗ = 2
which means that every time a ratio is added to B, it will be equal
or larger than all previously added ones. □

Corollary 2. Choosing the last three relays of the resulting B for
the new path would result in maximum bandwidth allocated for it
by algorithm 1. That bandwidth is the one associated with the third
relay from the end of B.

4.3 Results in Tor Network
Starting with an empty set, one million paths were created by
repetitively running our locally optimal algorithm 3 while adding
the output path to the network. The bandwidth allocation of the one
million paths generated is found using the max-min fair algorithm 1.
Those results were then compared to the bandwidth allocations of
one million paths generated using the random algorithm 2. The
results are shown in fig. 4.

The locally optimal algorithm 3 produces a much more well-
balanced set of paths: the minimum allocation if 10.96 is nearly the
same as the average of 10.97, and the maximum is 21. In contrast,
the paths created using the random algorithm 2, while having a
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similar average bandwidth allocation of 10.94, span a much broader
range, with a minimum allocation of 1 and a maxium of 210.14.

5 DIFFERENTIALLY PRIVATE ALGORITHM:
The locally optimal algorithm 3 requires the knowledge of the state
of the network as input. Thus, if it is going to be used, every user
will need to know the state of the network, i.e., the paths of every
other user, in order to be able to construct a path for herself. This
will defeat the purpose of onion routing as it will then be possible
to deanonymize users. In this section, we will be discussing how to
implement a differentially private version of algorithm 3.

In the private version of the algorithm, we first decompose each
circuit (r1, r2, r3) into two circuit segments, (r2, r1) and (r2, r3). We
then adapt the locally optimal algorithm 3 to use these segments,
rather than complete circuits, in creating an optimal new path. To
add privacy, we summarize the list of segments as a histogram,
indexed by pairs of relays, of the number of circuit segments (ri , r j )
that are present. We then create a differentially private version
of this histogram by using a threshold-based differentially private
count, to account for the sparse nature of the histogram.

One feature of the private count algorithm is that each histogram
entry can be processed individually. Therefore, a relay ri can apply
it to the count of each histogram entry (ri , r j ), since it knows the
(actual, non-private) number of such flow segments. The private
counts can then be aggregated and distributed using a modification
of the existing Tor directory mechanism or another peer-to-peer
broadcast scheme.

Since the private histogram can only be updated periodically, we
use this histogram to generate the next N near-optimal circuits. We
cannot assign these circuits directly to each new user; instead, we
count the number of times each relay appears in theseN circuits and
use it to induce a distribution over relays that the users sample from
for their circuit. This approach is similar to the random algorithm 2,
except that the weights reflect relays that are underloaded in the
current state of the network, rather than the static relay capacities.

5.1 Pair-baserd Algorithm Description
As in the locally optimal algorithm 3, we denote the capacity of the
r th relay by C[r ]. As discussed before, the paths are now ordered
pairs of relays. Being ordered is essential for the correctness of
the pair-based algorithm 4 as will be discussed later. We denote
by P the map from these paths to the ordered pairs of relays to
which they belong. For example, those corresponding to the pth
path are P[p] = (rp,1, rp,2). Also, as before, we define R[r ] to be
the set {p | r ∈ P[p]} of paths to which relay r belongs. However,
we decompose R into two maps: Rc mapping relays to the paths in
which they appear in the first component of the ordered pair, i.e.
the central relay, and Re mapping relays to the paths in which they
appear in the second component of the ordered pair, i.e. the end
relay.

We finally define Nres[r ] as the number of actual paths (paths
with three relays) containing relay r .We can compute it as:Nres[r ] =
|Rresc [r ]|/2+ |Rrese [r ]|, since for an actual path in the Tor network
where r is the central relay, it will appear as two pairs in Rresc [r ]
while it should be counted once. It will only appear once in Rrese [r ]
if r is one of its end relays.

In algorithm 4, as in the previous two algorithms, in the itera-
tions at which t∗ = 1, Rat[1, r∗] = Cres[r ]

Nres[r ] of bandwidth would be
allocated to each of the paths passing through it. After that, the
paths in Rrese [r∗], Rat[1, r∗]/2 would be deducted from the resid-
ual capacity of the central relay in the path. That is because the
bandwidth of the other path that corresponds to the same actual
path will be subtracted from the residual capacity of the central
relay in that path too. For the paths in Rresc [r∗], Rat[1, r∗] would
be deducted entirely from the residual capacity of the end relay of
the path. That is because the end relay of an actual path of the Tor
network only appears once in the two-relay paths corresponding
to that path. Using the same analogy, for the paths in Rresc [r∗],
Nres[r ], r being the end relay in the path, is deducted by one and
for paths in Rrese [r∗], Nres[r ], r being the central relay in the path,
is deducted by half. The rest of the algorithm follows the same steps
of algorithm 3.

Algorithm 4 Pair-based Locally Optimal Path Allocation Algo-
rithm
1: input: C,R, Rc, Re, P
2: B ← ∅
3: Cres[r ] ← C[r ], ∀ r ∈ [n]
4: Rres[r ] ← R[r ], ∀ r ∈ [n]
5: band[p] ← 0, ∀p ∈ [m]
6: Nres[r ] ← |Rresc [r ] |

2 + |Rrese [r ]|, ∀ r ∈ [n]
7: while ∃ i < B do

8: Rat[1, r ] ←
{

Cres[r ]
Nres[r ] ∀ r | Nres[r ] , 0
∞ otherwise

9: Rat[2, r ] ←
{

Cres[r ]
Nres[r ]+1 if r < B
∞ otherwise

10: (t∗, r∗) ← argmin
t ∈
{
1,2

}
,r ∈[n]

Rat[t , r ]

11: if t∗ == 2 then
12: B.push([Rat[t∗, r∗], r∗])
13: Rat[t∗, r∗] ← ∞
14: else
15: for p ∈ Rres[r∗] do
16: band[p] ← Rat[t∗, r∗]
17: for r ∈ P[p] do
18: if p ∈ Rresc [r ] then
19: Cres[r ] ← Cres[r ] − Rat[t∗, r∗]/2
20: Nres[r ] ← Nres[r ] − 1/2
21: Rres[r ] ← Rres[r ] \ {p}
22: Rresc[r ] ← Rresc[r ] \ {p}
23: else
24: Cres[r ] ← Cres[r ] − Rat[t∗, r∗]
25: Nres[r ] ← Nres[r ] − 1
26: Rres[r ] ← Rres[r ] \ {p}
27: Rrese[r ] ← Rrese[r ] \ {p}
28: return: {r1, r2, r3}

Hence, algorithm 4 takes as an input a path matrix of ordered
pairs of relays along with the capacity matrix. The output is the
path of three relays that when added to the system gives the highest
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Figure 5: Graph comparing the bandwidth allocation of
10 000 paths generated using the pair-based algorithm 4 and
the locally optimal algorithm 3.

bandwidth allocation compared to any other path that can be added
to the system.

5.2 Experimental Results
Starting from an empty set, the pair-based algorithm 4 was used
repetitively to generate a set of 10 000 paths of three relays. At each
run, a path matrix representing the decomposition of the paths in
the network into segments of two relays is constructed, and then
input to algorithm 4 along with the capacity matrix. The output, the
path of three relays, is then added to the network. The bandwidth
allocations for these paths are then computed using the max-min
fairness algorithm 1.

The results were then compared to the bandwidth allocations of
10 000 paths generated by repetitive application of locally optimal
algorithm 3 starting from an empty set to know howmuch accuracy
we lost by the decomposition of paths into pairs. The results are
shown in fig. 5. The two curves coincide which shows there is zero
loss of accuracy.

The same experiment is repeated but instead 1 million paths
were created using both algorithms. The results are shown in fig. 6.
The maximum difference between the two allocations was 0.918.

5.3 Batch Path Allocation Algorithm Results
As we discussed earlier, the server would periodically collect data
from the relays and create a histogram mapping each ordered pair
of relays to the number of paths passing through them. It would
then create a differentially private version of this histogram. After
that, given the current state of the network, it runs the pair-based
algorithm 4 repetitively to generate K additional paths. These paths
are not added to the actual network but to a virtual copy of the
network. The number of times each relay appeared in these K paths
is counted to generate a probability distribution over the relays. The
distribution is then released to the public. Incoming users would
sample that distribution (without replacement) to get three different
relays which would constitute their paths.
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Figure 6: Graph comparing the bandwidth allocation of one
million paths generated using pair-based algorithm 4 and
locally optimal algorithm 3 (in blue). Note the logarithmic
scale of the y-axis.

The batch algorithm 5 creates a batch of L random paths using the
procedure we just described. L represents the expected number of
paths that would be created in a single period before the distribution
gets updated.

Algorithm 5 Batch Path Allocation Algorithm
1: input: C,R, Rc, Re, P,K ,L
2: Repeat K times:
3: Input C, Rres, Rc, Re, P to algorithm 4.
4: Add the returned path to the network.
5: Update Rres, Rc, Re, P accordingly.
6: Compute the distribution of the relays in the added K paths.
7: Sample L paths with three relays from that distribution
8: return: Generated L paths

To evaluate the behaviour of the batch algorithm 5, K is set to
10 000 and L to 200. Then, starting from a network with no paths,
we ran it repetitively to create a network with 600 000 paths, 200 at a
time. At each run, a path matrix is constructed by decomposing the
paths in the network to paths of two ordered relays as previously
discussed and taken as input for the next run.

After that, the bandwidth allocations of the created paths were
computed using the max-min fair algorithm 1 and compared to
the bandwidth allocations of 600 000 paths generated using the the
random algorithm 2. The results are shown in fig. 7.

The minimum bandwidth of a path generated using the batch
algorithm 5 was 6.33, the maximum was 37.23 and the average was
17.29. On the other hand, for the set of paths generated randomly,
the minimum bandwidth of a path was 1, the maximum was 287.99
and the average was 17.23.

The simulation demonstrates the fairness property of algorithm 5
The range of the bandwidth allocations of the paths is [6.33, 37.23]
compared to a range of [1, 287.99] for the random paths, while
the average is being conserved. The algorithm hence avoids the
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Figure 7: Graph comparing the bandwidth allocation of
600 000 paths generated using the random algorithm 2 and
the batch algorithm 5. Note the logarithmic scale of the y-
axis.

use of paths with very low bandwidth and guarantees a more fair
distribution of the bandwidth between users.

5.4 Adding Differential Privacy
In this section, we show how the server ensures differential privacy
of the statistics it releases about the network. As discussed earlier, at
the end of each period, it generates a differentially private version of
a histogram (matrix) of sizen2. In this paper, we use the notion (ϵ,δ )-
differential privacy defined in section 2.3.We did not use the usual ϵ-
differential privacy since the histogram that we are making private
is very large (n2 ≈ 36 000 000) and is very sparse. Using (ϵ,δ )-
differential privacy allows us to operate on the sparse histogram,
as described below, rather than producing a noisy version of each
0 value in the histogram, which would overwhelm the algorithm.
We replace n with n2 in the original definition since in our case the
dataset is of size n2.

The following theorem shows that there is a mechanism that
ensures the differential privacy of the histogram against queries
consisting of point functions while guaranteeing an acceptable level
of accuracy of query responses. Before stating the theorem, let us
define formally the set of queries for which the mechanism ensures
privacy.

Definition 2 (page 6 in [25]). Point Functions (Histograms): LetX
be an arbitrary set and for eachy ∈ X, we consider the predicateqy :
X → {0, 1} that evaluates to 1 only on input y. The family Qpt =

Qpt (X) consists of the counting queries corresponding to all point
functions on data universe X. (Approximately) answering all of the
counting queries inQpt amounts to (approximately) computing the
histogram of the dataset.

As before we substitute n by n2 from the original theorem.

Theorem 3. (stability-based histograms [5]). For every finite data
universe χ ,n ∈ N, ϵ ∈ (0, 2 lnn), and δ ∈ (0, 1/n2) there is an (ϵ,δ )-
differentially private mechanism M : χn

2
→ Rχ that on every

dataset x ∈ χn
2
, with high probability M(x) answers all of the

counting queries in Qpt (χ ) to within error

O
(
log(1/δ )
ϵn2

)
In the proof of the theorem, the authors provided such mecha-

nismwhich takes a dataset (histogram) x ∈ χn
2 as input and returns

a privatized version of it. The mechanism is shown in algorithm 6.
It iterates over the elements of the histogram, those that are zero
are kept zero. A positive entry would be added to an independent
Laplace variable with λ = 2/(ϵn2). If the result is below the thresh-
old ((2 ln(2/δ ))/(ϵ))+ (1), the entry would be set to zero, otherwise
it is set to the result. Note that we multiplied the threshold that
is in the mechanism by n2 since we do not need the result of the
query to be normalized, i.e. between 0 and 1, so we do not need the
n2 factor.

Algorithm 6 (ϵ,δ )-differentially Private Histogram Mechanism
1: input: x , χ
2: For every y ∈ χ :
3: If qy (x) = 0 then:
4: Set ay = 0
5: If qy (x) > 0 then:
6: Set ay ←− qy (x) + Lap(2/(ϵn2)).
7: If ay < 2 ln(2/δ )/ϵn2 + 1/n2 then:
8: Set ay = 0
9: return: (ay )y∈χ

As discussed earlier, the server releases a distribution over the
relays at the beginning of every period based on the generated
private histogram. Thus, information about the paths that remain
over multiple periods in the network will be released several times.
This will deteriorate the level of privacy they are guaranteed. To
bound this deterioration we consult the following composition
theorem of differential privacy.

Theorem 4. (Composition of (ϵ,δ )-differentially-private algo-
rithms, Theorem 16 in [11]). LetT1 : D −→ T1(D) be (ϵ,δ )-differentially-
private, and for all J ≥ 2,Tj : (D, s1, ..., s J−1) −→ TJ (D, s1, ..., s J−1) ∈

ζ J be (ϵ,δ )-differentially-private, for all given (s1, ..., s J−1) ∈ ⊗
J−1
j=1 ζj ,

where "⊗" denotes direct product of spaces. Then for all neighboring
D, D ′ and all S ⊆ ⊗ J−1j=1 ζj :

P((T1, ...,TJ ) ∈ S) ≤ e J ϵP ′((T1, ...,TJ ) ∈ S) + Jδ

We can conclude that the parameters of privacy ϵ and δ that we
can guarantee for a certain path increase linearly in the number of
periods it stays in the network.

We chose the parameters ϵ and δ to be 0.3 and 0.001, respectively.
To evaluate the behaviour of algorithm 5 after we privatize the
histogram before using it to generate the distribution over relays,
we conducted the following experiment: starting from an empty
network, we generated N = 1 000 000 paths using repetitive appli-
cation of batch algorithm 5 with K = 10 000 and L = 200 while
using a private version of the histogram before each run, using
algorithm 7, and generating the distribution from the result.

The bandwidth allocations of those paths are then computed
using max-min fair allocation algorithm 1 and compared to the
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Algorithm 7 (ϵ,δ )-differentially Private Optimal Path Allocation
Algorithm
1: input: C,R, Rc, Re, P,N ,K ,L
2: for i ∈ [⌈NL ⌉] do
3: A histogram mapping the pairs of relays in the network to

the number of paths between each pair is constructed.
4: A private version of the histogram is generated using the

mechanism described in algorithm 6.
5: The private histogram is input to the batch algorithm 5

with parameters K and L.
6: The generated L paths are added to the network.
7: Update R, Rc, Re, P .
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Figure 8: Graph comparing the bandwidth allocation of one
million paths generated using the differentially private al-
gorithm 7 and using the random algorithm 2. Note the loga-
rithmic scale of the y-axis.

bandwidth allocations of one million paths generated using the
random algorithm 2. The sorted (in bandwidth) results are shown
in fig. 8.

The minimum bandwidth allocation of a path of differentially pri-
vate algorithm 7 was 8.2, the maximum was 9603.5 and the average
was 10.54. While for those generated randomly using algorithm 2,
the minimum was 1, the maximum was 210.14 and the average was
10.94. Although the average was lower for our algorithm, it has no
paths with low bandwidth as the random one. The tail on the left
is much shorter while the tail on the right is much longer than the
random one. The difference in most paths is negligible.

Finally we evaluate the scenario where only a subset of the
generated paths are active, as discussed in section 3. We take the
million circuits generated using the privacy-preserving algorithm 7,
as above, and choose a random sample of 10 000 circuits as being
active. We then compare the bandwidth allocated to those circuits
with 10 000 circuits chosen by the random algorithm 2 in fig. 9. Note
that the randomized algorithm has a significantly longer tail on
the left side of the graph, representing circuits with a pathological
bandwidth allocation. The minimum bandwidth in algorithm 2 is
7, whereas the minimum for the sampled algorithm 7 is 171. The
randomized algorithm produces 953 flows with a bandwidth less
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Figure 9: Comparing random allocation in algorithm 2 to a
sample of 10 000 circuits out of 1million thatwere generated
by the differentially private algorithm 7.

than half of the average, 980. The sampled circuits from the private
algorithm have a slightly lower average of 960, but only 326 flows
have a bandwidth of less than 980/2. The lower average performance
is due to some relays being underutilized, as evidenced by the longer
tail on the right-hand side of the graph; in our ongoing work we
are investigating adjustments to the algorithm to make better use
of these relays.

6 RELATED WORK
We next review some closely related work; for more comprehensive
of work covering all aspects of Tor performance we direct interested
readers to the survey by AlSabah and Goldberg [2].

Snader and Borisov studied the problem of path selection in
Tor and suggested biasing selection towards higher bandwidth re-
lays, showing that it improved performance in both simulation
and real-world Tor measurements [21, 23]. They also developed a
flow simulator based on max-min fair flow allocation, using an algo-
rithm similar to Algorithm 1. Herbert et al. modeled Tor traffic as an
M/D/1 queuing network and proposed a relay selection algorithm
for optimizing the queuing latency [13]. Both these papers argued
that the bandwidth-weighted relay selection results in suboptimal
path selection, but their solutions did not incorporate any feedback
mechanisms.

Wang et al. proposed a congestion-aware path selection algo-
rithm [26]. It suggests that user perform latency measurements on
circuits in the network to detect congested relays and avoid them
during path selection. Although each user will have a partial view of
the network, their experiments show that significant improvements
can be realized. Likewise, Conflux [1] mitigates congested paths
by multiplexing traffic across two paths through the Tor network;
this significantly improves performance although it cannot miti-
gate congestion at the last node in the circuits, where traffic must
converge. Both these schemes use a partial view of the network to
detect and avoid localized congestion, rather than balancing load
across the entire Tor network, as in our scheme.
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Load balancing in Tor requires an accurate measure of relay ca-
pacity, which is currently performed by TorFlow [17]. TorFlow uses
bandwidth authorities to proactively measure relay performance,
and incorporates a long-term feedback mechanism: relays that are
assigned too high a bandwidth value and become overloaded will
perform worse in subsequent measurements and thus have their
consensus weight reduced, and vice versa. This feedback, however,
occurs over a period of days and does not deal with more tran-
sient congestion and load imbalances. EigenSpeed [22] proposed
an alternate measurement approach that relied on opportunistic
measurements of relays by other relays; Johnson et al. identified
several attacks on both TorFlow and EigenSpeed and proposed an
improved peer measurement scheme called PeerFlow [16].

7 CONCLUSIONS AND FUTURE WORK
We have presented an algorithm that approximates locally optimal
load-balancing of circuits in the Tor network while preserving
user privacy. We demonstrated that the algorithm significantly
improves on the randomized relay assignment in Tor using flow-
level simulations of max-min fair bandwidth allocation.

Our promising results encourage the further exploration of us-
ing privacy-preserving feedback for load balancing in anonymity
networks. Several important challenges remain. First, load imbal-
ance occurs over short time scales, thus the private summary of
the network state must be quickly distributed to all users. We note
that this is a similar problem to that of distributing blocks in cryp-
tocurrencies; in the Bitcoin network, which is similarly sized to Tor,
measurements have shown that blocks reach the median node in
6.5s and the 90th percentile node in 26s [7]. Improving this latency
while maintaining resilience to attack is an area of active research.

A second problem is that malicious nodes may misreport their
contributions to the histogram to direct circuits away from honest
nodes and towards malicious ones. We note that this problem is
somewhat similar to the peer bandwidth measurement problem in
EigenSpeed [22] and PeerFlow [16] and thus some of the defenses
used in those systems may be adaptable to this setting.

Finally, flow-level simulation is a coarse-grained approximation
of Tor traffic; web browsing is a dominant use of Tor and web
traffic is known to be quite bursty. Further evaluation of the load-
balancing mechanism using queuing-based traffic models or full
network simulation [14] is needed.
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