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Abstract

Genetic monitoring estimates temporal changes in population parameters from mo-
lecular marker information. Most populations are complex in structure and change
through time by expanding or contracting their geographic range, becoming frag-
mented or coalescing, or increasing or decreasing density. Traditional approaches to
genetic monitoring rely on quantifying temporal shifts of specific population metrics—
heterozygosity, numbers of alleles, effective population size—or measures of geo-
graphic differentiation such as F¢;. However, the accuracy and precision of the results
can be heavily influenced by the type of genetic marker used and how closely they
adhere to analytical assumptions. Care must be taken to ensure that inferences reflect
actual population processes rather than changing molecular techniques or incorrect
assumptions of an underlying model of population structure. In many species of con-
servation concern, true population structure is unknown, or structure might shift over
time. In these cases, metrics based on inappropriate assumptions of population struc-
ture may not provide quality information regarding the monitored population. Thus,
we need an inference model that decouples the complex elements that define popula-
tion structure from estimation of population parameters of interest and reveals, rather
than assumes, fine details of population structure. Encompassing a broad range of
possible population structures would enable comparable inferences across biological
systems, even in the face of range expansion or contraction, fragmentation, or changes
in density. Currently, the best candidate is the spatial A-Fleming-Viot (SLFV) model, a
spatially explicit individually based coalescent model that allows independent infer-
ence of two of the most important elements of population structure: local population
density and local dispersal. We support increased use of the SLFV model for genetic
monitoring by highlighting its benefits over traditional approaches. We also discuss
necessary future directions for model development to support large genomic datasets

informing real-world management and conservation issues.
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... the development of statistical procedures to uncover
the demographic or selection history of a set of popula-
tions that best explains the observed genetic structure is
certainly one of the most interesting challenges of popu-

lation genetics. —L. Excoffier (2007)

1 | TRADITIONAL GENETIC MONITORING

Genetic monitoring is concerned with estimating temporal
changes in population demographic processes such as abundance,
vital rates, and rates of exchange using information obtained
from molecular markers (Schwartz, Luikart, & Waples, 2007).
With the evolution of low-cost, high-throughput next-generation
sequencing methods, there is greater power to detect changes
over time or space. This greatly facilitates discovery of popula-
tion structure and makes genetic monitoring a valuable source
of information for conservation policy decisions that would be
difficult to obtain otherwise (Allendorf, England, Luikart, Ritchie,
& Ryman, 2008; Duforet-Frebourg & Blum, 2013; Fromentin,
Ernande, Fablet, & de Pontual, 2009; Kardos, Taylor, Ellegren,
Luikart, & Allendorf, 2016; Laikre et al., 2009; Lankau, Jgrgensen,
Harris, & Sih, 2011; Leblois et al., 2014; Lloyd, Campbell, & Neel,
2013; Mijangos, Pacioni, Spencer, & Craig, 2015; Ovenden, Berry,
Welch, Buckworth, & Dichmont, 2015; Paz-Vinas et al., 2013;
Pierson et al., 2016; Rodrguez-Trelles & Rodrguez, 2010; Waples,
Punt, & Cope, 2008).

However, because studies can span long time frames and also
incorporate results of other studies, care must be taken to ensure
that inferences reflect actual population processes rather than
changing molecular techniques (Allendorf, 2017; Charlesworth &
Charlesworth, 2017) or incorrect model assumptions (Morin et al.,
2010; Peery et al., 2012; Samarasin, Shuter, Wright, & Rodd, 2017).
Moreover, populations tend to be complex in structure and change
through time by expanding or contracting their geographic range,
becoming fragmented or coalescing, or increasing or decreasing
density (Hey & Machado, 2003). Indeed, all of these can be occur-
ring simultaneously in different parts of a single species’ geographic
range, and are more likely occurring in species of conservation con-
cern (Whitlock & McCauley, 1999). While these changes are often in
and of themselves important to conservation and basic population
genetics, they can also cause challenges in the interpretation of anal-
yses that are often overlooked.

In traditional approaches to genetic monitoring, the predom-
inant approach quantifies patterns of variation or differentiation
using measures such as heterozygosity, nucleotide diversity, num-
bers of alleles and percentage of polymorphic loci, and estimates
of effective population size, N, (Aravanopoulos, 2011; Excoffier,
2007; Schwartz et al., 2007; Tallmon et al., 2010). The underlying
assumption is that temporal changes in these quantities are related
to demographic parameters of conservation concern (Hoffmann &
Willi, 2008; Pertoldi, Bijlsma, & Loeschcke, 2007; Schwartz et al.,
2007). However, these relationships can be affected by changes in

population processes (Schwartz et al., 2007) and by the number and
type of genetic markers used and how closely they adhere to the an-
alytical assumptions (Narum et al., 2008; Smith & Seeb, 2008; Smith
et al.,, 2007). Consequently, metric-based approaches to genetic
monitoring or to quantifying population structure can be misleading
when the necessary a priori assumptions are incorrect.

As an example, one of the most commonly used measures of dif-
ferentiation is F¢, which was originally defined by Wright (1965) as
the correlation of two alleles randomly sampled from a single sub-
population relative to the correlation of two alleles randomly sam-
pled from the population as a whole. Under some conditions, F¢ is
also related to the inverse of the migration rate: Fsr~1/(4N,m+ 1),
where N,m is the effective number of reproducing migrants per gen-
eration (Wright, 1931). This relationship has led to widespread use of
F¢r as anindirect measure of gene flow (Slatkin, 1985).

However, this relationship is based on Wright'’s island model of
population structuring in which all members of a population have
an equal probability of contributing gametes to the next generation,
generations are temporally nonoverlapping, all members of a popu-
lation have an equal and constant probability of migrating, all popu-
lations are the same constant size, and populations are in equilibrium
with respect to migration and genetic drift (Wright, 1931). While this
model has proven to be a useful simplification, it is widely recognized
that in most empirical populations these assumptions are practically
never satisfied (Waples, 1998; Whitlock & McCauley, 1999). In fact,
populations of conservation concern are very likely to demonstrate
deviations from ideal conditions. These populations often change in
size rapidly and are not in equilibrium (Archer et al., 2010; Whitlock
& McCauley, 1999). A genetic monitoring study of such species that
compares values of Fo; among samples from different time points,
each of which can be out of equilibrium to differing degrees, is likely
to be misleading, because estimates of gene flow derived from Fg;
integrate long-term demographic effects (Neigel, 2002). Strand,
Milligan, and Pruitt (1996) also demonstrated that Fg is informative
about gene flow only if equilibrium under Wright's island model is as-
sumed; while alternatively, the same value of F¢ is informative about
the time since population divergence only if a strict radiation model
of subdivision with no gene flow is assumed.

Finally, for most standard tests of population structure, there is
a requirement that the samples are a priori partitioned into discrete
populations. Population stratification schemes are necessary sim-
plifications of real population structure and are often hypotheses
being tested with the data at hand. Unless independent sources of
data exist for comparison (Charpentier et al., 2012; Musiani et al.,
2007), it can be difficult to assess how well putative stratifications
reflect real populations. However, even when such datasets exist,
population stratification defined by genetic data often differs from
stratification defined by, for example, morphology or behavior, be-
cause they are influenced differently by demography and selection
(Ortego, Garca-Navas, Noguerales, & Cordero, 2015; Serrouya et al.,
2012). In the absence of independent sources of data, populations
are usually defined either based on how samples have been collected
or as perceived centers of density within the species’ distribution,
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both of which can be biased by collection methods and might not
reflect actual distribution or mating patterns.

Thus, most uses and interpretations of gene flow from estimates
of F¢r are accompanied by implicit acceptance of a particular model
of population structure, and their relevance depends crucially on the
appropriateness of the model used to relate the pattern-based quan-
tities to underlying biological processes of interest. Further, models
of population structure and models of population size change can
make identical predictions for observable genetic quantities, and
therefore, these processes cannot be distinguished without consid-
ering the full distribution of genetic variation (Mazet, Rodrguez, &
Chikhi, 2015; Mazet, Rodriguez, Grusea, Boitard, & Chikhi, 2016). In
the context of genetic monitoring, differentiating these is of crucial
importance, so confounding them as a consequence of a priori as-
sumptions is a serious issue. The inherent complexity of populations
therefore poses a nontrivial problem for the prospect of discovering
population structure, and presents significant challenges to the de-
velopment of a coherent means of monitoring populations using ge-
netic information gathered over any reasonably large spatiotemporal
extent (Crandall, Bininda-Emonds, Mace, & Wayne, 2000; Excoffier,
2007; Segelbacher et al., 2010). Nevertheless, this is a problem that
must be addressed. What follows is our view of the path forward.

2 | THEORY AND REALITY IN
POPULATION GENETICS

The rich theoretical foundation of population genetics has inspired
numerous models to describe how genetic characteristics vary over
space and time. This creates a challenge for discovering population
structure or guiding genetic monitoring, because choices among
models must be made a priori and available models might not cor-
respond to biological reality. The range of patterns of structure in
natural populations can be viewed as a triangular space described by
patchiness and individual dispersal distance (Figure 1). If both patch-
iness and dispersal are low, individuals are relatively uniformly dis-
tributed. As patchiness increases, individuals become more clumped
into discrete populations. As dispersal increases, all cases converge
to a single panmictic population. In reality, groups of individuals
within a metapopulation can exist at multiple locations in this space.
Certainly for the discovery of population structure and often for the
purposes of genetic monitoring, we are interested in where in this
space a set of individuals lies, whether the location is shifting over
time, and if so, the rate of change. To maximize analytical tractability,
however, traditional population genetics models typically make sim-
plifying assumptions about life histories and demographic and evo-
lutionary processes. This limits their applicability by interpreting the
study system with respect to a small subset of the parameter space.

In the most widely adopted paradigm, individuals are assumed to
assort themselves into semi-discrete subpopulations, within which
matings occur at random. The two most commonly used models of
this class are Wright's island model, introduced in Wright (1931) but
not named until Wright (1943), and the stepping-stone model (Kimura
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& Weiss, 1964; Weiss & Kimura, 1965). These models limit them-
selves to the right border of the spatial structure triangle (Figure 1).
Here, subpopulations are convenient, and often necessary, units for
subsequent analyses of genetic diversity within (heterozygosity, al-
lelic and nucleotide diversity) and among (F¢ and related measures)
groups of individuals. The primary parameters governing these mod-
els are the effective size of each subpopulation (Ne) and the rate of
migration among subpopulations (in the island model, m is the sin-
gle migration rate among all subpopulations; in the stepping-stone
model, m; is the migration rate among subpopulations separated by
j steps and m_, is the rate of long-range migration, equivalent to min
the island model). Spatial heterogeneity is captured mainly through
analysis of pairwise combinations of connected, discrete populations
(Rousset, 1997; Slatkin, 1993), or by the estimation of migration ma-
trices (Beerli & Felsenstein, 2001).

In contrast, the most widely adopted alternative paradigm is
Wright's IBD model (Wright, 1943, 1946), which focuses on individ-
uals assumed to be distributed continuously and uniformly across
space. These models limit themselves to the left border of the spatial
structure triangle (Figure 1). Here the primary parameters govern-
ing the models are local density (d) and the variance of parent-off-
spring dispersal distance (62). Together these define the concept of
neighborhood size as the geographic area within which most matings
take place. Spatial heterogeneity is generally not considered in these
models.

Some attempts to bridge these two paradigms have been made,
but they are limited to identifying special cases that can transform

one into the other. Stepping-stone models, for example, converge

Panmixia

Dispersal

Complex
spatial
structure

Discrete
clumps

Uniform
distribution

Patchiness

FIGURE 1 The parameter space for complex populations.
Populations with complex spatial structure are located within

a parameter space defined by dimensions corresponding to the
degrees of patchiness and connectivity. For simplicity, an additional
dimension corresponding to the local population density is not
shown. Increasing connectivity for any population structure
converges to the same outcome, that is, panmixia, so the feasible
parameter space is shown as triangular
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to Wright's island model if migration rates except for m_ are zero
(Kimura & Weiss, 1964; Weiss & Kimura, 1965). Conversely, as the
number of subpopulations increases and effective size of each be-
comes arbitrarily small, the stepping-stone model approaches the
IBD model. Kimura and Weiss (1964) suggested that their stepping-
stone model could be analyzed in terms of IBD by replacing m, with
o2 and by substituting the effective density d(N,/N) for N,.
Importantly, neither dominant paradigm penetrates the inte-
rior of the spatial structure parameter space (Figure 1), which cre-
ates problems when models based on those paradigms are used to
discover population structure or are applied to genetic monitoring.
Although some real-world species fall neatly into one or the other of
these paradigms, many others exist somewhere in the interior space
of the triangle. In some species, individuals are neither randomly dis-
tributed across the landscape nor neatly clumped into semi-discrete
subpopulations, while for others individuals are arrayed in different
spatial patterns in different areas and/or at different times. And for
many other species, connectivity depends strongly on features of
the habitat (which might change at different spatiotemporal scales)
rather than being a simple function of distance as implied by the IBD

model.

3 | INDIVIDUALLY BASED LANDSCAPE
GENETICS MODELS

In general, the area within the spatial structure triangle (Figure 1)
can be considered the domain of landscape genetics, which inte-
grates population genetics, landscape ecology, and spatial statis-
tics to identify landscape and environmental factors that affect
genetic and genomic variation (Milligan, 2017; Segelbacher et al.,
2010). Landscape genetics, a term coined in 2003 (Manel, Schwartz,
Luikart, & Taberlet, 2003) to describe increasingly spatially explicit
advances in population genetics (Dyer, 2015a), has had a strong
focus on the flow of genetic information across the landscape and
hence population structure. Further, it is well recognized that model
output and inference in landscape genetics is heavily influenced by
and dependent on the scale and resolution (i.e., how finely resolved
are measures of ecological differences) of ecological processes (e.g.,
dispersal and demography) that influence gene flow and population
structure (Cushman & Landguth, 2010; Galpern & Manseau, 2013;
Hand, Cushman, Landguth, & Lucotch, 2014; Wasserman, Cushman,
Schwartz, & Wallin, 2010).

Most landscape genetic studies rely strongly on the dichotomy
of individual versus population-based models for inference (Dyer,
2015a; Storfer, Murphy, Spear, Holderegger, & Waits, 2010). The
approach of using pattern-based measures such as F¢; and correlat-
ing them with spatial and/or environmental factors, has long domi-
nated landscape genetics (Waits & Storfer, 2016). These approaches
require a priori stratification of samples into putative populations.
Newer approaches like population graph approaches (Dyer, 2007,
2015b; Dyer & Nason, 2004; Murphy, Dyer, & Cushman, 2016) have
been largely applied in population-based frameworks, often where

sampling locations, not genetically discrete populations, define the
vertices of the graph. Individual-based analyses in landscape ge-
netics can help overcome problems with predefining populations,
and many landscape genetic statistics can be adapted to individual-
based measures of genetic differentiation. However, individual-
based studies often yield thousands of pairwise values, making it
difficult to make biologically relevant inferences of genetic structure
(Kierepka & Latch, 2015). Furthermore, popular tests of associa-
tion between matrices of pairwise distances, for example, Mantel
tests, suffer from statistical errors (Graves, Beier, & Royle, 2012;
Kierepka & Latch, 2015) and are easily susceptible to sampling biases
(Kierepka & Latch, 2015; Oyler-McCance, Fedy, & Landguth, 2013;
Schwartz & McKelvey, 2009). Thus, despite its promise, much of the
core of landscape genetics must be improved before it is ready to
tackle the challenges of long-term genetic monitoring and discovery
of population structure.

Improvement of landscape genetics models for genetic moni-
toring might start from either of two points. The first is the family
of spatially explicit, individually based ancestry clustering models,
which includes ceneLanp (Guillot, Estoup, Mortier, & Cosson, 2005),
TESS (Chen, Durand, Forbes, & Francois, 2007), BAPS (Corander &
Marttinen, 2006), and POPS (Jay, Durand, Francois, & Blum, 2015),
many of which are derived from the nonspatial sTrRucTurRE model
(Falush, Stephens, & Pritchard, 2003; Pritchard, Stephens, & Donnelly,
2000). All of these models interpret the observed multilocus gen-
otypes as samples from putative populations, which are inferred
during the modeling process. As a consequence, they are limited to
the right border of the spatial parameter space (Figure 1). In addi-
tion, a range of covariates are often included. For example, sTRUCTURE
(Pritchard et al., 2000) allows prior distributions to be influenced by
the sampled spatial location of each individual, while ceneLanD (Guillot
et al., 2005), TESS (Chen et al., 2007), spatial BAPS (Corander, Sirén,
& Arjas, 2008), and POPS (Jay et al., 2015) explicitly include the sam-
pled spatial location of each individual in the model. In addition, POPS
(Jay et al., 2015) explicitly includes environmental as well as spatial
information. However, none of these models explicitly includes gene
flow, despite it being one of the most important genetic mechanisms
influencing variability and local adaptation (Holderegger & Wagner,
2008). Thus, despite their promise, these models also need improve-
ment if they are to be used to handle the complexities of long-term
genetic monitoring. Specific areas of improvement include the addi-
tion of more biologically relevant mechanisms such as gene flow in
ways that acknowledge the spatial heterogeneity required for genetic
monitoring and discovery of population structure (Milligan, 2017).

The second family contains the individually based explicitly ge-
nealogical models of ancestry, which are based upon the coalescent
(Kingman, 1982). This includes a large set of models that infer, gen-
erally from DNA sequence data, such quantities as effective pop-
ulation size and growth rate, gene flow, and population divergence
(Kuhner, 2008). Unlike most of the models in the first category,
these are not truly spatially explicit; at best individuals are gathered
into predefined populations for analysis using a structured coales-
cent (Hudson, 1990; Notohara, 1990). Furthermore, many of the
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TABLE 1 Current problems in the implementation of genetic monitoring models and important qualities of a genetic monitoring model

Primary problem

Current metrics heavily influenced by scale and
vary greatly depending on the scale used

Many genetic metric models require assignment of
individuals to predetermined groups

Genetic metrics are often divorced from the
underlying genetic process, leading to poor
estimation of the process itself

Genetic metrics can be sensitive to the marker

Examples of potential consequences

Multi-scale studies show that landscape effects are
evident at one scale and absent at another (Balkenhol
et al.,, 2014; Millete & Keyghobadi, 2015)

Potential for erroneous groups from clustering algorithms
(Frantz, Cellina, Krier, Schley, & Burke, 2009; Latch,
Dharmarajan, Glaubitz, & Rhodes, 2006; Schwartz &
McKelvey, 2009)

Inaccurate estimates of migration rates, especially at low
values of F; (Allendorf, Luikart, & Aitken, 2013)

Violation of assumptions can greatly impact estimates of
effective population size (Neel et al., 2013)

Different spatial genetic structures between marker types

Improvements needed in
genetic monitoring models

Scale-independent
quantification of local
population structure and
connectivity

Spatial heterogeneity in
model parameters

No a priori grouping

Directly incorporate known
population genetics
mechanisms

Technology independent

type used and could therefore change temporally
based solely on the methodology

(Bradbury et al., 2015)

Limited applicability across studies for wide-ranging

species (de Groot et al., 2016)

parameters inferred in these models are averages across the entire
sample. Thus, for example, spatially dependent density or gene flow
cannot be ascertained, both of which are important for long-term
genetic monitoring or for discovery of population structure. As a re-
sult, while offering much promise, this set is likewise not immediately
suitable.

The main approaches to population and landscape genetics
provide strong foundations for genetic monitoring. However, they
generally require making a priori assumptions about quantities that
are the subject of inference and the models exhibit many prob-
lems when applied to the challenge of genetic monitoring (Table 1).
Consequently, a new look at genetic monitoring and discovery of
population structure is required.

4 | MODELS FOR GENETIC MONITORING
AND DISCOVERY OF POPULATION
STRUCTURE

A more general approach to population genetic analysis must place
the focal system within the spatial structure triangle (Figure 1) as
a natural outcome of the analysis, not start with a priori assump-
tions about its location within the parameter space. Additionally, the
model would directly quantify the full distribution of actual popula-
tion or evolutionary processes of interest as best as possible, de-
coupling these parameters from the elements that define population

structure (Excoffier, 2007). In particular, this model would:

e Encompass a broad range of possible population structures, so
that inferences made would be comparable across different geo-
graphic scales and types of biological systems,

e Utilize spatial information,

e Simultaneously quantify processes influencing population struc-
ture and connectivity, and assess changes in both over time,

o Allow for spatial heterogeneity in model parameters,

e Directly estimate parameters of interest and their uncertainty,
while not being confounded by range expansion or contraction,
fragmentation, or changes in density, and

e Be compatible with multiple types of genetic data, allowing it to
be informed by legacy microsatellite or potentially allozyme data
sets, next-generation sequencing data, or data generated by fu-

ture technologies.

The basic observations for a general analysis with this hypothetical
model would be multilocus genotypes, multilocus sequences, or full
genome sequences of individuals, their geographic locations, and in-
formation on covariates that might influence local density, movement,
and selection. The model should serve as a bridge between the two
main paradigms of individual neighborhood and island/stepping-stone
models (i.e., the left and right borders of the spatial structure trian-
gle (Figure 1)), and encompass these models as boundary conditions.
Preliminary analyses using the model might indicate that a given sys-
tem fits comfortably onto either border, justifying the use of one or
the other set of standard analytical regimes. However, most empirical
cases are more likely to lie in the interior, so the model could also give
an indication of the appropriateness of measures deriving from one or
the other of the main paradigms.

5 | SPATIAL A-FLEMING-VIOT MODEL

Currently, the only model with immediate potential to address most
of the requirements for long-term genetic monitoring is the spatial
A-Fleming-Viot (SLFV) model (Barton, Etheridge, & Véber, 2013;
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Guindon, Guo, & Welch, 2016; Joseph, Hickerson, & Alvarado-
Serrano, 2016; Kelleher, Barton, & Etheridge, 2013). The SLFV is a
spatially explicit extension of the A-Fleming-Viot model which is it-
self an extension of the Fleming-Viot model (Fleming & Viot, 1979).
Equivalently, itis a spatially explicit version of the A-coalescent which
is an extension of Kingman’s coalescent (Kingman, 1982; Tellier &
Lemaire, 2014). Specifically, coalescence in the SLFV model is not
limited to two lineages, and individuals can be distributed arbitrarily
across space, avoiding the restriction in classical island and stepping-
stone models of discrete population boundaries. As a result, the
SLFV model permits the simultaneous, yet independent, estimation
of local population density and local dispersal rates, two key param-
eters of population processes integral to genetic monitoring studies.
The mathematical background for the SLFV model was introduced
in Etheridge (2008) and is well described in Barton, Etheridge, and
Véber (2010), Barton et al. (2013), Berestycki, Etheridge, and Véber
(2013), and Véber and Wakolbinger (2015). Extensions to the model
including selection, mutation, recombination, and skewed reproduc-
tive success are thoroughly covered by Dawson and Greven (2014),
Etheridge and Véber (2012), Etheridge, Freeman, and Straulino
(2017), and Montano (2016). Efficient implementations of the selec-
tively neutral, spatially homogeneous SLFV model, with and with-
out recombination, are described in Kelleher et al. (2013), Kelleher,
Etheridge, and Barton (2014) and Kelleher, Etheridge, and McVean

(2016). In what follows, we introduce informally this simple model,

then present the steps involved in a more mathematically rigorous
form to illustrate explicitly how the restrictive assumptions can be
relaxed to obtain a model with the desired characteristics outlined
in the previous section.

In its simplest form, the SLFV model constructs coalescent ge-
nealogies of subgroups of haploid individuals through iterations of
reproduction and movement events backwards in time (Figure 2).
The sequence begins with a set of individuals, arbitrarily distributed
across a continuous landscape (Figure 2a), each carrying their empir-
ical genotypic data (although they can also optionally be associated
with other data such as sex, demographic or reproductive state). In
the first step, a neighborhood center (x) and radius (r) are randomly
selected (Figure 2b). All coalescent events will be limited to individ-
uals within this neighborhood. A new location within the neighbor-
hood is randomly selected for the ancestor (a) and its genotype is
selected from the distribution in the neighborhood associated with
that location (Figure 2c). Existing individuals within the neighbor-
hood are then randomly selected to be descendants of the new an-
cestor. Finally, as for the Moran (1958) model, the descendants are
removed, having been replaced by the ancestor (Figure 2d), and a
new iteration begins, with iterations continuing until only a single
ancestor remains.

As outlined below, the individuals need not be haploid. Sexual
reproduction can be accommodated by selecting more than a sin-

gle ancestor. Note that small-scale, for example, single generation,

(@) ” o (b) ° o
(@)
©
(@)

FIGURE 2 lllustration of one iteration
of the SLFV model. (a) Initial condition
involving individuals at their empirical
sampling locations with two haplotypes
(white and gray), (b) placement of a
random neighborhood (circle) defined

by its center (x) and radius (r), (c) random
placement of a putative ancestor (square)
and coalescence of ancestry of randomly
selected descendants, and (d) distribution
of remaining individuals after removal of
the descendants
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reproduction events will necessarily involve two ancestors, but
large-scale events, that is, those with long intervals or covering
large areas, can involve more than two because multiple generations
might have intervened (Kelleher et al., 2013).

The steps in this process can be formalized to illustrate the gen-
eralizations that are possible. For clarity of exposition we will con-
sider the single locus model, because it captures the spatially explicit
nature that is crucial for genetic monitoring; multilocus extensions
are straightforward (Kelleher et al., 2013, 2014, 2016). Consider a
sample of n, not necessarily haploid, individuals, each from a known
location x within a d-dimensional landscape L and with a known state
s (e.g., genotype, sex, etc.). Thus, each individual i can be represented
by the quantities i, x;, and s,. Let C(t) be the set of individuals extant at
time t; this can change at discrete points in time as reproductive or
movement events occur. Initially, C= {(i,x;, s;)Vi}. Iterate through the
following steps until C contains only a single individual, the ancestor
of the entire sample.

1. Generate an event at a location, which will involve a mixture
of reproduction and movement. To do so, sample a spatial
probability distribution E(x) from a family of spatial distributions
across the landscape L. In the simplest case (Kelleher etal.,
2013), the family of distributions E(x) for a d + 1 dimensional
landscape L is composed of uniform distributions within d-
spheres of radius r centered at points e. Alternatively, a Gaussian
distribution for the selection has been used (Guindon etal.,
2016). Nonhomogeneity in the landscape can be incorporated
with different families of E(x), which might, for example, de-
pend on the distribution of habitats, land use patterns, other
environmental characteristics, or the state (genetic or demo-
graphic) of the individuals.

2. Select a set C’ of individuals based upon the spatial distribution
E(x). For every individual j in C, select it with a probability of E(xj,sj).
This will yield a set C’ containing zero or more individuals, ran-
domly selected according to the spatial distribution associated
with the event and their state. In the case of no mutation, all indi-
viduals in C’" will have the same state, but this restriction is not
necessary. Depending on the number of individuals in C/, this
event either has no effect or involves a mixture of reproduction
and movement.

(a) If C'is empty, no individuals are affected by the event and C is
unchanged. Construct a new event.

(b) If C’' contains at least one individual, the event is potentially a
mixture of reproduction and movement (and possibly muta-
tion). Sample a set of individuals, which will replace those in C',
from the distribution R(x|C’). Some or all of these individuals
may be ancestors of (some of) those in C’; the remainder are
individuals in C’ that have simply moved. Thus, the distribution
R(x|C’") determines the mixture of reproduction and movement
that occurs in the event. For sexual reproduction, R(x|C’) can
generate locations for more than one ancestor, and even for
more than two in the case of large-scale events. In this case,
ancestry must be distributed across the selected individuals;
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Kelleher et al. (2016) compares the efficiency of alternative al-
gorithms for accomplishing this. In the simplest cases, R(x|C’)
is uniform across the d-sphere defined by E(x) (Kelleher et al.,
2013) or may only depend on the distance between individ-
uals (Guindon et al., 2016). However, more complex distri-
butions can depend on the locations of individuals in C’, on
environmental characteristics across L, or on individual states.
If mutation is possible, sample the state of these replacement
individuals from the distribution S(s|C’). Finally, remove all indi-
viduals in C’ from C and replace them with the newly sampled
ones.

Clearly the SLFV model is very general. It is applicable to 1- or
2-dimensional habitats, and the landscape can be homogeneous or
heterogeneous in any way. The suitable locations for individuals can be
continuously distributed (either uniformly or not) across the landscape,
can be patchily distributed, can be limited to discrete positions, or can
be a complex mixture of these. The flexibility of the SLFV model en-
ables the spatial structure to emerge from the analysis rather than be
imposed a priori. Developing software that reflects the range of appli-
cability of the SLFV model remains an open challenge that is crucial to
the advancement of genetic monitoring as well as population genetics.

The selectively neutral, spatially homogeneous SLFV model is
dependent on several parameters, the two most important of which
govern how R(x|C’), the spatial distribution of new ancestors and co-
alescent events, reflects local population density and local dispersal
rate. This means that the SLFV model is directly based on biologi-
cal processes of known importance to the genetic composition of
populations, a feature critical for genetic monitoring and discovery
of population structure. For example, it explicitly models the pro-
cesses of reproduction and local movement (Figure 2c), permitting
direct inference of the spatial distribution of relevant population
processes. This is in contrast to summary pattern-based measures
such as F¢; that can be related to biological mechanisms such as gene
flow only if a population fits a particular model.

The data required for the SLFV model are those already gen-
erally obtained for genetic monitoring: individual-specific genetic
data, either multilocus genotypes or DNA sequences, and individual-
specific geographic locations. Additionally, spatially or temporally
heterogeneous versions of the model could use spatial or temporal
covariates, such as habitat characteristics, to parameterize the local
population density and dispersal parameters. Analogous parameter-
izations are central to the success of landscape genetics (Balkenhol,
Cushman, Storfer, & Waits, 2016; Manel et al., 2003), which seeks
to relate landscape or environmental characteristics to, for example,
dispersal through surfaces that quantify flow of individuals through
the landscape (McRae, 2006).

Two applications of the SLFV model illustrate both its power
and the importance of relaxing the assumptions incorporated into
existing software. Joseph et al. (2016) developed an approximate
Bayesian computation (ABC) pipeline based upon the selectively
neutral, spatially homogeneous SLFV model (Kelleher et al., 2013,
2014). The pipeline was used to validate the estimation of neigh-
borhood size from simulated data and subsequently to estimate
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both neighborhood size and dispersal radius from empirical data on
Berkheya cuneata (Asteraceae) from South Africa. In their model, dis-
persal radius R was the maximum distance individuals could disperse,
and neighborhood size was the number of individuals within the area
of an event of radius R. For validation, 100,000 datasets were gen-
erated for eight individuals sampled at 10 unlinked loci. Each dataset
was composed of the genealogy generated by the SLFV model and
1 kb sequences simulated along each genealogy. Data generation
took 2 days on a 12-core computer. Subsequently, the posterior
distribution of neighborhood size was calculated using ABC based
upon 100 replicate leave-one-out cross-validations; regression of
the estimated neighborhood size on the actual neighborhood size
had R? = 0.87.

The empirical analysis of Berkheya cuneata used a total of 33 in-
dividuals with known locations and sequence data at one nuclear
and two plastid loci (Joseph et al., 2016). The same pipeline imple-
menting the selectively neutral, spatially homogeneous SLFV model
was used to generate 100,472 datasets; rejection ABC was used to
sample from the posterior distributions of both neighborhood size
and dispersal distance. The median estimates of neighborhood size
and dispersal distance were 502.50 (95% HPDI 56.03-962.00) and
7.33 km (HPDI 2.44-9.86 km), respectively. The process of generat-
ing datasets took 36 days to complete.

This study illustrates several important points regarding practi-
cal use of the SLFV model. First, the two most biologically important
parameters, neighborhood size and dispersal distance, are identifi-
able; that is, they can be estimated separately using the SLFV model.
Second, it is possible to obtain useful estimates even from relatively
small datasets composed of no more than dozens of individuals or
handfuls of loci. Third, there is room for improved computational ef-
ficiency to accommodate larger datasets. Finally, adding spatial het-
erogeneity in the form of known resistance surfaces or the like, as
is often done in landscape genetics (McRae, 2006; Spear, Cushman,
& McRae, 2016), will increase realism without adding parameters;
inferring properties of resistance surfaces adds no more parame-
ters than the equivalent multivariate regression or similar landscape
genetic analysis would. Thus, while the existing pipeline (Kelleher
et al., 2013, 2014) does not accommodate that flexibility, a spatially
heterogeneous SLFV model is both feasible and likely to be compu-
tationally tractable.

A second example using the selectively neutral, spatially ho-
mogeneous SLFV model reinforces these points and illustrates ad-
ditional ones. Guindon et al. (2016) also validated the SLFV model
with simulations and applied it to data, in this case from influenza A
virus (H1IN1 subtype) for the flu seasons from 2009 to 2014. Instead
of using ABC as did Joseph et al. (2016), Guindon et al. (2016) gen-
erated samples from the posterior distributions of the parameters
with the Metropolis-Hastings MCMC algorithm. For validation, 300
simulated datasets of 5,000 individuals were generated using the
SLFV model to generate genealogies and the Kimura 2-parameter
model (Kimura, 1980) to generate nucleotide sequences given the
genealogies. Effective population density (d) and dispersal intensity
(6?) (Wright, 1946) were estimated using the SLFV model based upon

a sample of 50 individuals sampled at either two or ten different
sites. Additionally, parameter estimates were obtained using the
structured coalescent (Hudson, 1990; Notohara, 1990) under the
assumption of either two or ten discrete populations. Estimates from
the structured coalescent were upwardly biased to a large degree,
though much less so for ten than for two populations. Estimates
from the SLFV model were much better, although the precision de-
clined with larger values of dispersal intensity. These computations
took 100 hr to complete on a computer with 2.7-2.8 GHz CPUs.

The empirical analysis of influenza (Guindon et al., 2016) was
based upon two biological replicates, each involving one sequence
of the NA segment of the influenza A virus (HIN1 subtype) per 48
contiguous state of the U.S.A. from each of the five flu seasons from
2009 to 2014. Each dataset yielded an estimate of the posterior
distributions for neighborhood size N, xc%d and dispersal radius o
(Wright, 1946). Comparison of the five distributions for these two
parameters revealed that the two biological replicates yielded simi-
lar distributions, an indication of consistency despite moderate sam-
ple size. Further, the 2009-2010 flu season was different from the
other four; it was characterized by a smaller neighborhood size and
a larger dispersal radius. This observation indicates limited infec-
tion rates and broader climatic tolerance, which is consistent with
the known history (longer duration and milder incidence) of that
epidemic.

This study reinforces the point that neighborhood size and dis-
persal rates can be estimated separately using the SLFV model.
Distinguishing between them is important, especially in the case
of genetic monitoring where either or both might shift (as they
did with influenza) through time. Detecting those shifts may in
fact be a major reason for undertaking a monitoring program. It
also reinforces the point that useful estimates can be obtained for
typical samples using a reasonable amount of computation. Thus,
the SLFV model can be developed into a practical approach to ge-
netic monitoring. It may also serve the task much better than other
methods, such as those based upon Fg; or the structured coales-
cent, that impose a priori assumptions upon the spatial structure
of the populations under study.

Although analyses using the SLFV model to date (Guindon et al.,
2016; Joseph et al., 2016) have assumed spatial homogeneity in both
neighborhood size and dispersal, there is no inherent reason not to
allow spatial heterogeneity, just as it is routinely included in land-
scape genetics analysis (Balkenhol et al., 2016). For example, given
information on the spatial layout of distinct habitat types, one could
estimate different densities or dispersal rates for each habitat. In
turn, those parameters could be the focus of genetic monitoring to
detect changes in habitat-specific density or dispersal, information
that would be of great value to a monitoring program. It would also
reveal valuable information on the basic biology of the species under
study. Importantly, differences among habitats (or other spatially de-
fined factors) would emerge naturally from the analysis if they exist
rather than be imposed at the outset by selection of the analysis
framework. Of course, as with landscape genetics models, SLFV
models with too many parameters will be impossible to estimate.
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How many and which parameters can be estimated remains an open
question, and software implementations of more complex, and pos-

sibly biologically realistic, models are required to investigate this.

6 | POTENTIAL SHORTCOMINGS OF
CURRENT IMPLEMENTATIONS OF THE SLFV
MODEL

Current implementations of the SLFV model (Guindon et al., 2016;
Kelleher et al., 2013, 2016) include restriction to selectively neutral
markers and spatially homogeneous landscapes. Inefficiencies of
implementation or limited sets of MCMC operators might also be
shortcomings leading to analyses taking longer to complete or being
limited in scope. These are purely technical limitations related to the
early stage of development of the SLFV model, and can be over-
come by improvements in software design coupled with additional
investigation of model performance. Given that coalescent models
have recently been extended to genome-scale data for phylogenetic
analysis (Bansal, Burleigh, & Eulenstein, 2010; Boussau et al., 2013;
Jenkins, Fearnhead, & Song, 2015; Kumar, Hallstrém, & Janke, 2013),
itis likely that the same will be true for the SLFV model.

A feature of the SLFV model as currently implemented is that
no distinction, other than location, is made among individuals with
respect to their likelihood of birth; in the backward in time version
of the model described above, the probability distribution E(x) that
selects individuals influenced by an event depends only on location.
Greater biological realism could be incorporated into the model by
allowing E(x) to depend on, for example, the demographic state of
individuals or their genotype. These states need not even be static;
they could be projected through time from one event to the next
much as phylogenetic analysis projects state change along lineages.
Further, these projections could incorporate structured population
models (Caswell, 2000) in a natural way.

Like the Moran (1958) model, the SLFV model applies to over-
lapping generations, as reproductive events are not synchronized
across the population in any way other than by the geographic
scale of each event. Interestingly, this feature contrasts with most
other models, which have the opposite limitation of applying to
nonoverlapping generations. As many biological life cycles involve
overlapping generations, this gives the SLFV model greater practical
relevance than discrete generation models.

Despite these limitations of implementation, the SLFV model is
already useful for separate estimation of such biologically meaning-
ful parameters as local population density and dispersal, which are
confounded in other models. Current software implementations as-
sume that individuals are distributed uniformly in space, so variation
in density must be discovered by modeling different spatial parti-
tions. However, as outlined above this is a technical limitation of the
current implementations not of the SLFV model itself. One priority,
therefore, is to generalize the implementations to match the poten-
tial of the model so that population structure need not be imposed
in advance but can be obtained as a direct outcome of analysis. This
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would enable discovery of the nature of populations or monitoring
their state over time or space in ways that are impossible if the struc-
ture of the populations must be assumed a priori. For this reason, the
SLFV model offers distinct advantages both for the advancement of
our understanding of population genetics and our application of it to
genetic monitoring.

7 | ALONG-TERM GENETIC MONITORING
STRATEGY

What would a long-term genetic monitoring strategy based upon spa-
tially explicit coalescent models, such as the spatial A-Fleming-Viot
model, look like? From the data acquisition viewpoint, such a monitor-
ing strategy would largely resemble any other. Geo-referenced sam-
ples of individuals would be distributed across the species range, and
sampling would be repeated to create a time series. Environmental
and landscape data would be obtained as well to provide information
on potential covariates. As with all similar studies, the goal of sam-
pling is to ensure that each individual is equally likely to be sampled,
that individuals are sampled independently, and that the environmen-
tal and landscape covariates are spatially representative.

From the data analysis viewpoint, however, such a monitoring
strategy would look quite different from common practice. First,
different types of genetic data, for example, DNA sequences and
multilocus genotypes would be analyzed simultaneously in the
same model. In principle, this has long been possible for coalescent-
based methods (Beerli & Palczewski, 2010; Bouckaert et al., 2014;
Drummond & Rambaut, 2007); however, in practice different types
of data, for example, single nucleotide polymorphisms (SNPs) and
microsatellites, are analyzed separately. For genetic monitoring, the
focus is on basic properties of the populations, for example, spatially
dependent density and dispersal, not on data type-specific estimates
(Milligan, Leebens-Mack, & Strand, 1994). Joint analysis of the data is
likely to be better than independent analyses of partitions, in much
the same way that joint analysis of gene trees leads to better infer-
ence of species trees in phylogenetics (Liu, Xi, Wu, Davis, & Edwards,
2015).

Second, increasing emphasis would be placed on the posterior
distributions of parameters, as opposed to their point estimates.
Much as Guindon et al. (2016) were able to recognize similarities and
differences among distributions inferred for a sequence of influenza
outbreaks, genetic monitoring must recognize similarities and dif-
ferences in parameters across spatial and temporal dimensions. This
can only be done accurately if information on the full distributions
is available.

Third, the same model would be used for temporal comparisons
to identify biological, not methodological, shifts. Not only would this
make comparisons more meaningful, it would also enable direct and
guantitative analysis of changes. The current practice of using dif-
ferent data and models over time, coupled with ad hoc interpreta-
tions of the differences, does not lend itself to reliable monitoring
protocols.
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Finally, the nature of the models used must of course be im-
proved so that they will handle these demands. They must cover a
full range of data types and include a full range of biological mecha-
nisms to achieve this. Consequently, advances in genetic monitoring
depend crucially on advances in the models and analyses that are
possible. The rapid technological advances in data acquisition, for
example, the increasing accessibility of genome-scale data, make it
easy to forget that the data are meaningless without suitable anal-
yses. For long-term genetic monitoring, those analyses must yield
comparable information, and they must do so in the face of both
dynamically changing populations and changing types of data.

8 | CONCLUSIONS

In conservation biology, there has been a movement toward bet-
ter utilizing genomic data and information about adaptive genetic
markers to improve our understanding of evolutionary processes,
rates of dispersal, local adaptation, genotype-by-environment
interactions, and other important factors influencing population
structure at multiple scales (Allendorf, Hohenlohe, & Luikart,
2010; Garner et al., 2016). By enabling process-based, rather than
pattern-based, approaches, models such as the spatial A-Fleming-
Viot model will allow the quantitative, spatiotemporal compari-
sons required for rigorous and informative genetic monitoring and
for discovering the structure of natural populations. They will also
allow adaptive incorporation of additional monitoring effort to ef-
ficiently reduce uncertainties and iteratively improve inferences
about temporal changes in monitored systems. Finally, they will
allow integration of new samples, including historical ones from
archival collections, into a monitoring effort, thereby greatly ex-
panding the time scale over which monitoring can meaningfully
occur. As a consequence of the parallel development of these
models and genetics technology, genetic monitoring stands poised
to provide a rich source of information for more effectively guiding
real-time management decisions, monitoring the impact of human
activities including changes in policy, and informing us about fun-
damental biological processes such as responses to global climate

change.

ACKNOWLEDGEMENTS

This work was assisted through participation in the Next Generation
Genetic Monitoring Investigative Workshop at the National Institute
for Mathematical and Biological Synthesis and sponsored by the
National Science Foundation through NSF Award #DBI-1300426,
with additional support from The University of Tennessee, Knoxville.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation. BKH was
partially supported by funds from NSF (award #DOB-1639014) and
NASA (award #NNX14AB84G). We thank two anonymous reviewers
for comments that greatly improved our writing.

DATA ARCHIVING STATEMENT

There are no data associated with this article.

CONFLICT OF INTEREST

None declared.

REFERENCES

Allendorf, F. W. (2017). Genetics and the conservation of natural popula-
tions: Allozymes to genomes. Molecular Ecology, 26, 420-430.

Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A., & Ryman, N.
(2008). Genetic effects of harvest on wild animal populations. Trends
in Ecology and Evolution, 23, 327-337.

Allendorf, F., Hohenlohe, P., & Luikart, G. (2010). Genomics and the fu-
ture of conservation genetics. Nature Reviews Genetics, 11, 697-709.

Allendorf, F. W., Luikart, G., & Aitken, S. N. (2013). Conservation and the ge-
netics of populations, 2nd ed. Hoboken, New Jersey: Wiley-Blackwell.

Aravanopoulos, F. A. (2011). Genetic monitoring in natural perennial
plant populations. Botany-Botanique, 89, 75-81.

Archer, F. I, Martien, K. K., Taylor, B. L., LeDuc, R. G., Ripley, B. J., Givens,
G. H., & George, J. C. (2010). A simulation-based approach to eval-
uating population structure in non-equilibrial populations. Journal of
Cetacean Research and Management, 11, 101-113.

Balkenhol, N., Cushman, S. A,, Storfer, A. T., & Waits, L. P. (Eds.) (2016).
Landscape genetics: Concepts, methods, applications. Hoboken, New
Jersey: Wiley Blackwell.

Balkenhol, N., Holbrook, J. D., Onorato, D., Zager, P., White, C., & Waits,
L. P. (2014). A multi-method approach for analyzing hierarchical ge-
netic structures: A case study with cougars Puma concolor. Ecography,
37,1-12.

Bansal, M. S., Burleigh, J. G., & Eulenstein, O. (2010). Efficient genome-
scale phylogenetic analysis under the duplication-loss and deep co-
alescence cost models. BMC Bioinformatics, 11(supplement 1), S42.
https://doi.org/10.1186/1471-2105-11-51-542

Barton, N. H., Etheridge, A. M., & Véber, A. (2010). A new model for evo-
lution in a spatial continuum. Electronic Journal of Probability, 15(7),
162-216.

Barton, N. H., Etheridge, A. M., & Véber, A. (2013). Modelling evo-
lution in a spatial continuum. Journal of Statistical Mechanics:
Theory and Experiment, 2013(01), P01002. https://doi.
org/10.1088/1742-5468/2013/01/P01002

Beerli, P., & Felsenstein, J. (2001). Maximum likelihood estimation of a
migration matrix and effective population sizes in n subpopulations
by using a coalescent approach. Proceedings of the National Academy
of Science, 98, 4563-4568.

Beerli, P., & Palczewski, M. (2010). Unified framework to evaluate pan-
mixia and migration direction among multiple sampling locations.
Genetics, 185, 313-326.

Berestycki, N., Etheridge, A. M., & Véber, A. (2013). Large scale be-
haviour of the spatial A-Fleming-Viot process. Annales de I'Institut
Henri Poincaré, Probabilités et Statistiques, 49, 374-401.

Bouckaert, R., Heled, J., Kihnert, D., Vaughan, T., Wu, C.-H., Xie, D, ...
Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian
evolutionary analysis. Computational Biology, 10(4), e1003537.
https://doi.org/10.1371/journal.pcbi.1003537

Boussau, B., Széllosi, G. J., Duret, L., Gouy, M., Tannier, E., & Daubin,
V. (2013). Genome-scale coestimation of species and gene trees.
Genome Research, 23, 323-330.

Bradbury, I. R., Hamilton, L. C., Dempson, B., Robertson, M. J., Bourret,
V., Bernatchez, L., & Verspoor, E. (2015). Transatlantic second-
ary contact in Atlantic salmon, comparing microsatellites, a single


https://doi.org/10.1186/1471-2105-11-S1-S42
https://doi.org/10.1088/1742-5468/2013/01/P01002
https://doi.org/10.1088/1742-5468/2013/01/P01002
https://doi.org/10.1371/journal.pcbi.1003537

MILLIGAN ET AL.

nucleotide polymorphism array, and restriction-site associated DNA
sequencing for the resolution of complex spatial structure. Molecular
Ecology, 24, 5130-5144.

Caswell, H. (2000). Matrix population models: Construction, analysis, and
interpretation (2nd edn). Sunderland, MA: Sinauer.

Charlesworth, B., & Charlesworth, D. (2017). Population genetics from
1966 to 2016. Heredity, 118, 2-9.

Charpentier, M. J. E., Fontaine, M. C,, Cherel, E., Renoult, J. P., Jenkins, T.,
Benoit, L., ... Tung, J. (2012). Genetic structure in a dynamic baboon
hybrid zone corroborates behavioural observations in a hybrid popu-
lation. Molecular Ecology, 21, 715-731.

Chen, C., Durand, E., Forbes, F., & Francois, O. (2007). Bayesian clus-
tering algorithms ascertaining spatial population structure: A new
computer program and a comparison study. Molecular Ecology Notes,
7, 747-756.

Corander, J., & Marttinen, P. (2006). Bayesian identifica-
tion of admixture events using multilocus molecular
markers. Molecular Ecology, 15, 2833-2843. https://doi.

org/10.1111/j.1365-294X.2006.02994.x

Corander, J., Sirén, J., & Arjas, E. (2008). Spatial modelling of genetic pop-
ulation structure. Computational Statistics, 23, 111-129.

Crandall, K. A., Bininda-Emonds, O. R. P, Mace, G. M., & Wayne, R. K.
(2000). Considering evolutionary processes in conservation biology.
Trends in Ecology and Evolution, 15, 290-295.

Cushman, S. A., & Landguth, E. L. (2010). Scale dependent inference in
landscape genetics. Landscape Ecology, 25, 967-979.

Dawson, D. A., & Greven, A. (2014). Spatial Fleming-Viot models with selec-
tion and mutation. Lecture Notes in Mathematics: Springer.

Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary
analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://
doi.org/10.1186/1471-2148-7-214

Duforet-Frebourg, N., & Blum, M. G. B. (2013). Nonstationary patterns of
isolation-by-distance: Inferring measures of local genetic differentia-
tion with Bayesian kriging. Evolution, 68, 1110-1123.

Dyer, R. J. (2007). The evolution of genetic topologies. Theoretical
Population Biology, 71, 71-79.

Dyer, R. (2015a). Is there such a thing as landscape genetics? Molecular
Ecology, 24, 3518-3528.

Dyer, R. (2015b). Population graphs and landscape genetics. Annual
Review of Ecology and Systematics, 46, 327-342.

Dyer, R. J., & Nason, J. D. (2004). Population graphs: The graph theoretic
shape of genetic structure. Molecular Ecology, 13, 1713-1727.

Etheridge, A. M. (2008). Drift, draft and structure: Some mathemati-
cal models of evolution. Stochastic Models in Biological Sciences, 80,
121-144.

Etheridge, A., Freeman, N., & Straulino, D. (2017). The Brownian net and
selection in the spatial A-Fleming-Viot process. Electronic Journal of
Probability, 22(39), 1-36. https://doi.org/10.1214/17-EJP61

Etheridge, A. M., & Véber, A. (2012). The spatial A-Fleming-Viot pro-
cess on a large torus: Genealogies in the presence of recombi-
nation. Annals of Applied Probability, 22, 2165-2209. https://doi.
org/10.1214/12-AAP842

Excoffier, L. (2007). Analysis of population subdivision. In D. J. Balding,
M. Bishop & C. Cannings (Eds.), Handbook of statistical genetics (third,
Chap. 29, pp. 980-1020). Chichester: Wiley.

Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of popula-
tion structure using multilocus genotype data: Linked loci and cor-
related allele frequencies. Genetics, 164, 1567-1587.

Fleming, W. H., & Viot, M. (1979). Some measure-valued Markov pro-
cesses in population genetics theory. Indiana University Mathematics
Journal, 28, 817-843.

Frantz, A. C,, Cellina, S., Krier, A., Schley, L., & Burke, T. (2009). Using spa-
tial Bayesian methods to determine the genetic structure of a con-
tinuously distributed population: Clusters or isolation by distance?
Journal of Applied Ecology, 46, 493-505.

T\ || £y

Fromentin, J.-M., Ernande, B., Fablet, R., & de Pontual, H. (2009).
Importance and future of individual markers for the ecosystem ap-
proach to fisheries. Aquatic Living Resources, 22, 395-408.

Galpern, P.,&Manseau, M.(2013). Finding the functional grain: Comparing
methods for scaling resistance surfaces. Landscape Ecology, 28,
1269-1281. https://doi.org/10.1007/s10980-013-9873-1

Garner, B. A., Hand, B. K., Amish, S. J., Bernatchez, L., Foster, J. T., Miller,
K. M., ... Luikart, G. (2016). Genomics in conservation: Case studies
and bridging the gap between data and application. Trends in Ecology
and Evolution, 31, 81-83.

Graves, T. A., Beier, P., & Royle, J. A. (2012). Current approaches using
genetic distances produce poor estimates of landscape resistance to
interindividual dispersal. Molecular Ecology, 22, 3888-3903.

de Groot, G. A, Nowak, C., Skrbinek, T., Andersen, L. W., Aspi, J.,
Fumagalli, L., ... Mufoz-Fuentes, V. (2016). Decades of population
genetic research reveal the need for harmonization of molecular
markers: The grey wolf Canis lupus as a case study. Mammal Review,
46,44-59.

Guillot, G., Estoup, A., Mortier, F., & Cosson, J. F. (2005). A spatial statisti-
cal model for landscape genetics. Genetics, 170, 1261-1280.

Guindon, S., Guo, H., & Welch, D. (2016). Demographic inference under
the coalescent in a spatial continuum. Theoretical Population Biology,
111, 43-50.

Hand, B. K., Cushman, S., Landguth, E. L., & Lucotch, J. (2014). Assessing
multi-taxa sensitivity to the human footprint, habitat fragmentation
and loss by exploring alternative scenarios of dispersal ability and
population size: A simulation approach. Biodiversity Conservation, 23,
2761-2779.

Hey, J., & Machado, C. A. (2003). The study of structured populations—
new hope for a difficult and divided science. Nature Reviews Genetics,
4,535-543.

Hoffmann, A. A., & Willi, Y. (2008). Detecting genetic responses to envi-
ronmental change. Nature Reviews Genetics, 9, 421-432.

Holderegger, R., & Wagner, H. H. (2008). Landscape genetics. BioScience,
58, 199-207.

Hudson, R. (1990). Gene genealogies and the coalescent process. Oxford
Survey of Evolutionary Biology, 7, 1-44.

Jay, F., Durand, E. VY., Francois, O., & Blum, M. G. B. (2015). POPS: A
software for prediction of population genetic structure using latent
regression models. Journal of Statistical Software, 68(9), https://doi.
org/10.18637/jss.v068.109

Jenkins, P. A, Fearnhead, P., & Song, Y. S. (2015). Tractable diffusion and
coalescent processes for weakly correlated loci. Electronic Journal of
Probability, 20, 1-26.

Joseph, T. A, Hickerson, M. J.,, & Alvarado-Serrano, D. F. (2016).
Demographic inference under a spatially continuous coalescent
model. Heredity, 117, 94-99.

Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G., & Allendorf, F. W.
(2016). Genomics advances the study of inbreeding depression in the
wild. Evolutionary Applications, 9, 1205-1218.

Kelleher, J., Barton, N. H., & Etheridge, A. M. (2013). Coalescent simula-
tion in continuous space. Bioinformatics, 29, 955-956.

Kelleher, J., Etheridge, A. M., & Barton, N. H. (2014). Coalescent simula-
tion in continuous space: Algorithms for large neighbourhood size.
Theoretical Population Biology, 95, 13-23.

Kelleher, J., Etheridge, A. M., & McVean, G. (2016). Efficient coalescent
simulation and genealogical analysis for large sample sizes. PLoS
Computational Biology, 12(5), e1004842. https://doi.org/10.1371/
journal.pcbi.1004842

Kierepka, E. M., & Latch, E. K. (2015). Performance of partial statistics
in individual-based landscape genetics. Molecular Ecology Resources,
15,512-525.

Kimura, M. (1980). A simple method for estimating evolutionary rates
of base substitutions through comparative studies of nucleotide se-
quences. Journal of Molecular Evolution, 16, 111-120.


https://doi.org/10.1111/j.1365-294X.2006.02994.x
https://doi.org/10.1111/j.1365-294X.2006.02994.x
https://doi.org/10.1186/1471-2148-7-214
https://doi.org/10.1186/1471-2148-7-214
https://doi.org/10.1214/17-EJP61
https://doi.org/10.1214/12-AAP842
https://doi.org/10.1214/12-AAP842
https://doi.org/10.1007/s10980-013-9873-1
https://doi.org/10.18637/jss.v068.i09
https://doi.org/10.18637/jss.v068.i09
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1371/journal.pcbi.1004842

MILLIGAN ET AL.

0
10 Ly y- e —

Kimura, M., & Weiss, G. H. (1964). The stepping stone model of popula-
tion structure and the decrease of genetic correlation with distance.
Genetics, 49, 561-576.

Kingman, J. F. C. (1982). The coalescent. Stochastic Processes and their
Applications, 13, 235-248.

Kuhner, M. K. (2008). Coalescent genealogy samplers: Windows into
population history. Trends in Ecology and Evolution, 24, 86-93.

Kumar, V., Hallstrém, B. M., & Janke, A. (2013). Coalescent-based genome
analyses resolve the early branches of the euarchontoglires. PLoS
ONE, 8(4), e60019. https://doi.org/10.1371/journal.pone.0060019

Laikre, L., Allendorf, F. W., Aroner, L. C., Baker, C. S., Gregovich, D. P,,
Hansen, M. M., ... Waples, R. S. (2009). Neglect of genetic diver-
sity in implementation of the Convention on Biological Diversity.
Conservation Biology, 24, 86-88.

Lankau, R., Jgrgensen, P. S., Harris, D. J., & Sih, A. (2011). Incorporating
evolutionary principles into environmental management and policy.
Evolutionary Applications, 4, 315-325.

Latch, E. K., Dharmarajan, G., Glaubitz, J. C., & Rhodes, O. E. Jr (2006).
Relative performance of Bayesian clustering software for inferring
population substructure and individual assignment at low levels of
population differentiation. Conservation Genetics, 7, 295-302.

Leblois, R., Pudlo, P., Néron, J., Bertaux, F., Beeravolu, C. R., Vitalis, R.,
& Rousset, F. (2014). Maximume-likelihood inference of population
size contractions from microsatellite data. Molecular Biology and
Evolution, 31, 2805-2823.

Liu, L., Xi, Z., Wu, S., Davis, C. C., & Edwards, S. V. (2015). Estimating
phylogenetic trees from genome-scale data. Annals of the New York
Academy of Sciences, 1360, 36-53.

Lloyd, M. W., Campbell, L., & Neel, M. C. (2013). The power to detect
recent fragmentation events using genetic differentiation methods.
PLoS ONE, 8(5), 63981.

Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape
genetics: Combining landscape ecology and population genetics.
Trends in Ecology and Evolution, 18, 189-197.

Mazet, O., Rodrguez, W., & Chikhi, L. (2015). Demographic inference
using genetic data from a single individual: Separating population
size variation from population structure. Theoretical Population
Biology, 104, 46-58.

Mazet, O., Rodriguez, W., Grusea, S., Boitard, S., & Chikhi, L. (2016). On
the importance of being structured: Instantaneous coalescence rates
and human evolution—lessons for ancestral population size infer-
ence? Heredity, 116, 362-371.

McRae, B. H. (2006). Isolation by resistance. Evolution, 60, 1551-1561.

Mijangos, J. L., Pacioni, C., Spencer, P. B. S., & Craig, M. D. (2015).
Contribution of genetics to ecological restoration. Molecular Ecology,
24,22-37.

Millete, K. L., & Keyghobadi, N. (2015). The relative influence of habitat
amount and configuration on genetic structure across multiple spa-
tial scales. Ecology and Evolution, 5, 73-86.

Milligan, B. G. (2017). Probabilistic graph models for landscape ge-
netics. Peer) Preprints, 5, e2225v5 https://doi.org/10.7287/peer;j.
preprints.2225v5

Milligan, B. G., Leebens-Mack, J., & Strand, A. E. (1994). Conservation
genetics: Beyond the maintenance of marker diversity. Molecular
Ecology, 3,423-435.

Montano, V. (2016). Coalescent inferences in conservation genet-
ics: Should the exception become the rule? Biology Letters, 12(6),
20160211. https://doi.org/10.1098/rsbl.2016.0211

Moran, P. A. P. (1958). Random processes in genetics. Mathematical
Proceedings of the Cambridge Philosophical Society, 54, 60-71.

Morin, P. A., Martien, K. K., Archer, F. I., Cipriano, F., Steel, D., Jackson,
J., & Taylor, B. L. (2010). Applied conservation genetics and the need
for quality control and reporting of genetic data used in fisheries and
wildlife management. Journal of Heredity, 101, 1-10.

Murphy, M., Dyer, R., & Cushman, S. A. (2016). Graph theory and net-
work models in landscape genetics. In N. Balkenhol, S. A. Cushman,
A. T. Storfer & L. P. Waits (Eds.), Landscape genetics: Concepts, meth-
ods, applications (Chap. 10, pp. 165-179). Hoboken, New Jersey:
Wiley Blackwell.

Musiani, M., Leonard, J. A., Cluff, H. D., Gates, C. C., Mariani, S., Paquet,
P. C., ... Wayne, R. K. (2007). Differentiation of tundra/taiga and bo-
real coniferous forest wolves: Genetics, coat colour and association
with migratory caribou. Molecular Ecology, 16, 4149-4170. https://
doi.org/10.1111/j.1365-294X.2007.03458.x

Narum, S. R., Banks, M., Beacham, T. D., Bellinger, M. R., Campbell, M.
R., Dekoning, J., ... Garza, J. C. (2008). Differentiating salmon popu-
lations at broad and fine geographical scales with microsatellites and
single nucleotide polymorphisms. Molecular Ecology, 17, 3464-3477.
https://doi.org/10.1111/j.1365-294X.2008.03851.x

Neel, M. C., McKelvey, K., Ryman, N., Lloyd, M. W., Short Bull, R,,
Allendorf, F. W., ... Waples, R. S. (2013). Estimation of effective pop-
ulation size in continuously distributed populations: There goes the
neighborhood. Heredity, 111, 189-199.

Neigel, J. E. (2002). Is F; obsolete? Conservation Genetics, 3, 167-173.

Notohara, M. (1990). The coalescent and the genealogical process in
geographically structured populations. Journal of Mathematical
Biology, 29, 59-75.

Ortego, J., Garca-Navas, V., Noguerales, V., & Cordero, P. J. (2015).
Discordant patterns of genetic and phenotypic differentiation in five
grasshopper species codistributed across a microreserve network.
Molecular Ecology, 24, 5796-5812.

Ovenden, J. R, Berry, O., Welch, D. J., Buckworth, R. C., & Dichmont, C.
M. (2015). Ocean’s eleven: A critical evaluation of the role of popula-
tion, evolutionary and molecular genetics in the management of wild
fisheries. Fish and Fisheries, 16, 125-159.

Oyler-McCance, S. J., Fedy, B. C., & Landguth, E. L. (2013). Sample
design effects in landscape genetics. Conservation Genetics, 14,
275-285.

Paz-Vinas,l.,Comte, L., Chevalier, M., Dubut, V., Veyssiere, C., Grenouillet,
G., ... Blanchet, S. (2013). Combining genetic and demographic data
for prioritizing conservation actions: Insights from a threatened fish
species. Ecology and Evolution, 3, 2696-2710.

Peery, M. Z., Kirby, R., Reid, B. N., Stoelting, R., Doucet-Béer, E.,
Robinson, S., ... Palsbgll, P. J. (2012). Reliability of genetic bottleneck
tests for detecting recent population declines. Molecular Ecology, 21,
3403-3418.

Pertoldi, C., Bijlsma, R., & Loeschcke, V. (2007). Conservation genetics in
a globally changing environment: Present problems, paradoxes and
future challenges. Biodiversity Conservation, 16, 4147-4163.

Pierson, J. C., Coates, D. J., Oostermeijer, J. G. B., Beissinger, S. R., Bragg,
J. G,, Sunnucks, P., & Young, A. G. (2016). Genetic factors in threat-
ened species recovery plans on three continents. Frontiers of Ecology
and the Environment, 14, 433-440.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of pop-
ulation structure using multilocus genotype data. Genetics, 155,
945-959.

Rodrguez-Trelles, F., & Rodrguez, M. A. (2010). Measuring evolutionary
responses to global warming: Cautionary lessons from Drosophila.
Insect Conservation and Diversity, 3, 44-50.

Rousset, F. (1997). Genetic differentiation and estimation of gene
flow from F-statistics under isolation by distance. Genetics, 145,
1219-1228.

Samarasin, P., Shuter, B. J., Wright, S. I., & Rodd, F. H. (2017). The prob-
lem of estimating recent genetic connectivity in a changing world.
Conservation Biology, 31, 126-135.

Schwartz, M. K, Luikart, G., & Waples, R. S. (2007). Genetic monitor-
ing as a promising tool for conservation and management. Trends in
Ecology and Evolution, 22, 25-33.


https://doi.org/10.1371/journal.pone.0060019
https://doi.org/10.7287/peerj.preprints.2225v5
https://doi.org/10.7287/peerj.preprints.2225v5
https://doi.org/10.1098/rsbl.2016.0211
https://doi.org/10.1111/j.1365-294X.2007.03458.x
https://doi.org/10.1111/j.1365-294X.2007.03458.x
https://doi.org/10.1111/j.1365-294X.2008.03851.x

MILLIGAN ET AL.

Schwartz, M. K., & McKelvey, K. S. (2009). Why sampling scheme mat-
ters: The effect of sampling scheme on landscape genetic results.
Conservation Genetics, 10, 441-452.

Segelbacher, G., Cushman, S. A., Epperson, B. K., Fortin, M.-J., Francois,
0., Hardy, O. J., & Manel, S. (2010). Applications of landscape genet-
ics in conservation biology: Concepts and challenges. Conservation
Genetics, 1, 375-385.

Serrouya, R., Paetkau, D., McLellan, S., Boutin, B. N., Jenkins, D., &
Campbell, M. (2012). Population size and major valleys explain micro-
satellite variation better than taxonomic units for caribou in western
Canada. Molecular Ecology, 21, 2588-2601.

Slatkin, M. (1985). Gene flow in natural populations. Annual Review of
Ecology and Systematics, 16, 393-430.

Slatkin, M. (1993). Isolation by distance in equilibrium and non-
equilibrium populations. Evolution, 47, 264-279.

Smith, C. T., Antonovich, A., Templin, W. D., Elfstrom, C. M., Naurm,
S. R., & Seeb, L. W. (2007). Impacts of marker class bias relative
to locus-specific variability on population inferences in Chinook
salmon: A comparison of single-nucleotide polymorphisms with
short tandem repeats and allozymes. Transactions of the American
Fisheries Society, 136, 1674-1687. https://doi.org/10.1577/
T06-227.1

Smith, C. T., & Seeb, L. W. (2008). Number of alleles as a predictor of
the relative assignment accuracy of short tandem repeat (STR) and
single-nucleotide-polymorphism (SNP) baselines for chum salmon.
Transactions of the American Fisheries Society, 137, 751-762. https://
doi.org/10.1577/T07-104.1

Spear, S. F., Cushman, S. A., & McRae, B. H. (2016). Resistance surface
modeling in landscape genetics. In N. Balkenhol, S. A. Cushman, A.
T. Storfer & L. P. Waits (Eds.), Landscape genetics: Concepts, methods,
applications (Chap. 8, pp. 129-148). Hoboken, New Jersey: Wiley
Blackwell.

Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P.
(2010). Landscape genetics: Where are we now? Molecular Ecology,
17,3496-3514.

Strand, A. E., Milligan, B. G., & Pruitt, C. M. (1996). Are populations is-
lands? Analysis of chloroplast DNA variation in Aquilegia. Evolution,
50, 1822-1829.

Tallmon, D. A., Gregovich, D., Waples, R. S., Baker, C. S., Jackson,
J., Taylor, B. L., ... Schwartz, M. K. (2010). When are genetic
methods useful for estimating contemporary abundance and
detecting population trends? Molecular Ecology Resources, 10,
684-692.

T\ || £y

Tellier, A., & Lemaire, C. (2014). Coalescence 2.0: A multiple branching
of recent theoretical developments and their applications. Molecular
Ecology, 23, 2637-2652.

Véber, A., & Wakolbinger, A. (2015). The spatial Lambda-Fleming-Viot
process: An event-based construction and a lookdown representa-
tion. Annales de I'Institut Henri Poincaré, Probabilités et Statistiques, 51,
570-598.

Waits, L. P, & Storfer, A. (2016). Basics of population genetics:
Quantifying neutral and adaptive genetic variation for landscape
genetic studies. In N. Balkenhol, S. A. Cushman, A. T. Storfer & L.
P. Waits (Eds.), Landscape genetics: Concepts, methods, applications
(Chap. 3, pp. 35-57). Hoboken, New Jersey: Wiley Blackwell.

Waples, R. S. (1998). Separating the wheat from the chaff: Patterns of
genetic differentiation in high gene flow species. Journal of Heredity,
89,438-450.

Waples, R. S., Punt, A. E., & Cope, J. M. (2008). Integrating genetic data
into management of marine resources: How can we do it better? Fish
and Fisheries, 9, 423-449.

Wasserman, T. N., Cushman, S. A., Schwartz, M. K., & Wallin, D. O.
(2010). Spatial scaling and multi-model inference in landscape ge-
netics: Martes Americana in northern Idaho. Landscape Ecology, 25,
1601-1612.

Weiss, G. H., & Kimura, M. (1965). A mathematical analysis of the step-
ping stone model of genetic correlation. Journal of Applied Probability,
2,129-149.

Whitlock, M. C., & McCauley, D. E. (1999). Indirect measures of gene flow
and migration: Fg; # 1/(4Nm + 1). Heredity, 82, 117-125.

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16,
97-159.

Wright, S. (1943). Isolation by distance. Genetics, 28, 114-138.

Wright, S. (1946). Isolation by distance under diverse systems of mating.
Genetics, 31, 39-59.

Wright, S. (1965). The interpretation of population structure by F-
statistics with special regard to systems of mating. Evolution, 19,
395-420.

How to cite this article: Milligan BG, Archer FI, Ferchaud A-L,
Hand BK, Kierepka EM, Waples RS. Disentangling genetic

structure for genetic monitoring of complex populations. Evol
Appl. 2018;11:1149-1161. https://doi.org/10.1111/eva.12622



https://doi.org/10.1577/T06-227.1
https://doi.org/10.1577/T06-227.1
https://doi.org/10.1577/T07-104.1
https://doi.org/10.1577/T07-104.1
https://doi.org/10.1111/eva.12622

