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Abstract

Despite remarkable recent progress on both uncondi-

tional and conditional image synthesis, it remains a long-

standing problem to learn generative models that are ca-

pable of synthesizing realistic and sharp images from re-

configurable spatial layout (i.e., bounding boxes + class

labels in an image lattice) and style (i.e., structural and

appearance variations encoded by latent vectors), espe-

cially at high resolution. By reconfigurable, it means that

a model can preserve the intrinsic one-to-many mapping

from a given layout to multiple plausible images with dif-

ferent styles, and is adaptive with respect to perturba-

tions of a layout and style latent code. In this paper, we

present a layout- and style-based architecture for genera-

tive adversarial networks (termed LostGANs) that can be

trained end-to-end to generate images from reconfigurable

layout and style. Inspired by the vanilla StyleGAN, the

proposed LostGAN consists of two new components: (i)

learning fine-grained mask maps in a weakly-supervised

manner to bridge the gap between layouts and images,

and (ii) learning object instance-specific layout-aware fea-

ture normalization (ISLA-Norm) in the generator to realize

multi-object style generation. In experiments, the proposed

method is tested on the COCO-Stuff dataset and the Vi-

sual Genome dataset with state-of-the-art performance ob-

tained. The code and pretrained models are available at

https://github.com/iVMCL/LostGANs.

1. Introduction

1.1. Motivation and Objective

Remarkable recent progress has been made on both un-

conditional and conditional image synthesis [6, 27, 35,

23, 1, 24, 17, 18]. The former aims to generate high-

fidelity images from some random latent codes. The latter

needs to do so with given conditions satisfied in terms of

some consistency metrics. The conditions may take many

forms such as categorical labels, desired attributes, descrip-

tive sentences, scene graphs, and paired or unpaired im-

ages/semantic maps. From the perspective of generative
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Figure 1. Illustration of the proposed method. Left: Our model

preserves one-to-many mapping for image synthesis from layout

and style. Three samples are generated for each input layout by

sampling the style latent codes. Right: Our model is also adaptive

w.r.t. reconfigurations of layouts (by adding new object bounding

boxes or changing the location of a bounding box). The results are

generated at resolution 128× 128. See text for details.

learning, the solution space of the latter is much difficult

to capture than that of the former. Conditional image syn-

thesis, especially with coarse yet complicated and reconfig-

urable conditions, remains a long-standing problem. Once

powerful systems are developed, they can facilitate to pave

a way for computers to truly understand visual patterns via

analysis-by-synthesis. They will also enable a wide range

of practical applications, e.g., generating high-fidelity data

for long-tail scenarios in different vision tasks such as au-

tonomous driving.

In this paper, we are interested in conditional image syn-

thesis from layout and style. The layout consists of labeled

bounding boxes configured in an image lattice (e.g., 64×64
or 128 × 128). The style is represented by some latent

code. Layout represents a sweet yet challenging spot for
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Figure 2. Illustration of the proposed layout- and style-based GANs (LostGANs) for image synthesis from reconfigurable layout and style.

Both the generator and discriminator use ResNets as backbones. See text for details.
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Figure 3. Illustration of the generator (a) and the ISLA-Norm (b) in

our LostGAN. See text for details. Best viewed in magnification.

conditional image synthesis: First, layout is usually used as

the intermediate representation for other conditional image

synthesis such as text-to-image [36, 34] and scene-graph-

to-image [16]. Second, layout is more flexible, less con-

strained and easier to collect than semantic segmentation

maps [15, 33]. Third, layout-to-image requires address-

ing challenging one-to-many mapping and consistent multi-

object generation (e.g., occlusion handling for overlapped

bounding boxes and uneven, especially long-tail distribu-

tions of objects).

Layout-to-image is a relatively new task with many new

technical challenges for state-of-the-art image synthesis

frameworks and only a few work have been proposed in the

very recent literature [16, 12, 38]. Recently, we have seen

remarkable progress on the high-fidelity class-conditional

image synthesis in ImageNet by the BigGAN [1], and on

the amazing style control for specific objects (e.g., faces and

cars) by the unconditional StyleGAN [18] (which may be

considered as implicitly conditional image synthesis since

only one category is usually handled in training). Despite

the big successes in generative learning, the problem con-

sidered in this paper is still more challenging since the so-

lution space is much more difficult to capture and has much

more complicated distributions. For example, we can use

the BigGAN to generate a cat image, and as long as the

generated image looks realistic and sharp, we think it does

a great job. Similarly, we can use the StyleGAN to generate

a face image, and we are happy (even shocked sometimes)

if a realistic and sharp face image is generated with a nat-

ural style (e.g., smile or sad). Layout-to-image needs to

tackle many spatial and semantic (combinatorial) relation-

ships among multiple objects besides the naturalness.

In this paper, we further focus on image synthesis from

reconfigurable layout and style. By reconfigurable, it means

that a model can preserve the intrinsic one-to-many map-

ping from a given layout to multiple plausible images with

different styles, and is adaptive with respect to perturbations

of layout and style latent code (Figure 1). State-of-the-art

methods on reconfigurable layout-to-image still mainly fo-

cus on low resolution (64× 64) [16, 38] (which are, in part,

due to computationally expensive designs in the pipelines

such as convolutional LSTM used in [38]). Beside the res-

olution issue, another drawback of existing methods is that

the diversity of generated images (i.e., style control) is not

sufficiently high to preserve the intrinsic one-to-many map-

ping. We aim to improve both the resolution and the style

diversity in reconfigurable layout-to-image.

1.2. Method Overview

To address the challenges in layout-to-image and in-

spired by the recent StyleGANs [18], we present a LayOut-

and STyle-based architecture for GANs (termed LostGANs)

in the paper (Figure 2).

First, since layout-to-image entails highly expressive

neural architectures handling multi-object generation and

their diverse occurrence and configurations in layouts. We

utilize ResNet [8] for both the generator and discriminator

in the proposed LostGAN, as done in the projection-based

cGAN [24] and BigGAN [1].

Second, to account for the gap between bounding boxes

in a layout and underlying object shapes, we introduce an

encoder for layout to predict masks for each bounding box.

As we will show in experiments, our LostGAN can pre-

dict reasonably good masks in a weakly-supervised man-

ner. The masks help place objects in the generated im-

ages with fine-grained geometric properties. So, we ad-

dress layout-to-image by computing layout-to-mask-to-
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image (Figure 3), which is motivated by impressive recent

progress on conditional image synthesis from semantic la-

bel maps [15, 33].

Third, to achieve instance-sensitive and layout-aware

style control, we extend the Adaptive Instance Normaliza-

tion (AdaIN) used in the StyleGAN [18] to object instance-

specific and layout-aware feature normalization (ISLA-

Norm) for the generator for fine-grained spatially dis-

tributed multi-object style control. ISLA-Norm computes

the mean and variance as done in BatchNorm [14], but

computes object instance-specific and layout-aware affine

transformations (i.e., gamma and beta parameters) sepa-

rately for each sample in a min-batch as done in AdaIN

(Figure 3). We utilize the projection-based approach pro-

posed in [1]. From the layout encoder, we compute ob-

ject instance-specific style latent codes (gamma and beta

parameters) via simple linear projection. Then, we place

the projection-based latent codes in the corresponding pre-

dicted masks, and thus induce layout-aware affine transfor-

mations for recalibrating normalized feature responses.

Lastly, we utilize both image and object adversarial

hinge losses [32, 22] as adopted in [23, 24] in the end-to-

end training. Object adversarial loss follows the projection

based method in [24] which is the state-of-the-art approach

for embedding labels.

We deliberately try to keep our LostGAN as simple as

possible by exploiting the best practices in the literature

of conditional image synthesis. We hope it can stimulate

more exploration on this relatively new task, image synthe-

sis from reconfigurable layout and style.

In experiments, our LostGAN is tested in the COCO-

Stuff dataset [2] and the Visual Genome (VG) dataset [20].

It obtains state-of-the-art performance on both datasets in

terms of the inception score [30], Frèchet Inception Dis-

tance [9], diversity score [37], and classification accu-

racy [28], which supports the effectiveness of our ILSA-

Norm and LostGAN.

2. Related Works

Conditional Image Synthesis. Generative Adversarial

Networks (GANs) [6] have achieved great success in image

synthesis conditioned on additional input information (i.e.

class information [25, 24, 35], source image [19, 39, 13],

text description [29, 36], etc). How to feed conditional in-

formation to model has been studied in various ways. In

[25, 29] vector encoded from conditional information con-

catenated with noise vector is passed as input to genera-

tor. In [3, 5, 1, 26], conditional information is provided

to generator by conditional gains and bias in BatchNorm

[14] layers. Concurrent work [26] learns spatially adaptive

normalization from well annotated semantic masks, while

our proposed ISLA-Norm learns from coarse layout infor-

mation. [29, 4, 36] feed the conditional information into

discriminator by naively concatenation with the input or in-

termediate feature vector. In [24], projection based way to

incorporate conditional information to discriminator effec-

tively improve the quality of class conditional image gener-

ation. In our proposed method, layout condition is adopted

to generator with ISLA-Norm, and objects information is

utilized in projection based discriminator as [24].

Image Synthesis from Layout. Spatial layout condi-

tioned image generation has been studied in recent litera-

ture. In [16, 12, 11, 21], layout and object information is

utilized in text-to-image generation. [11] controls location

of multiple objects in text-to-image generation by adding

an object pathway to both the generator and discriminator.

[16, 12, 21] performs text-to-image synthesis in two steps:

semantic layout (class label and bounding boxes) gener-

ation from text first, and image synthesis conditioned on

predicted semantic layout and text description. However,

[12, 21] requires pixel-level instance segmentation annota-

tion, which is labor intensive to collect, for training of shape

generator, while our method does not require pixel-level

annotation and can learn segmentation mask in a weakly-

supervised manner. [38] studied similar task with us, where

variational autoencoders based network is adopted for scene

image generation from layout.

Our Contributions. This paper makes the following main

contributions to the field of conditional image synthesis.

• It presents a layout- and style-based architecture for

GANs (termed LostGANs) which integrates the best

practices in conditional and unconditional GANs for a

relatively new task, image synthesis from reconfigurable

layout and style.

• It presents an object instance-specific and layout-aware

feature normalization scheme (termed ISLA-Norm)

which is inspired by the projection-based conditional

BatchNorm used in cGANs [1] and the Adaptive Instance

Normalization (AdaIN) used in StyleGAN [18]. It ex-

plicitly accounts for the layout information in the affine

transformations.

• It shows state-of-the-art performance in terms of the in-

ception score [30], Frèchet Inception Distance [9], diver-

sity score [37] and classification accuracy [28] on two

widely used datasets, the COCO-Stuff [2] and the Visual

Genome [20].

3. The Proposed Method

In this section, we first define the problem and then

present details of our LostGAN and ISLA-Norm.

3.1. Problem Formulation

Denote by Λ an image lattice (e.g., 64 × 64). Let

L = {(ℓi, bboxi)
m
i=1} be a layout consisting of n labeled

bounding boxes, where label ℓi ∈ C (e.g., |C| = 171 in
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the COCO-Stuff dataset), and bounding box bboxi ⊆ Λ.

Different bounding boxes may have occlusions. Let zimg

be the latent code controlling image style and zobji the la-

tent code controlling object instance style for (ℓi, bboxi)
(e.g., the latent codes are sampled from the standard nor-

mal distribution, N (0, 1) under i.i.d. setting). Denote by

Zobj = {zobji}
m
i=1 the set of object instance style latent

codes.

Image synthesis from layout and style is the prob-

lem of learning a generation function which is capable

of synthesizing an image defined on λ for a given input

(L, zimg, Zobj),

I = G(L, zimg, Zobj ; ΘG) (1)

where ΘG represents the parameters of the generation func-

tion. Ideally, G(·) is expected to capture the underlying

conditional data distribution p(I|L, zimg, Zobj) in the high-

dimensional space.

Reconfigurability of G(·). We are interested in three

aspects in this paper:

• Image style reconfiguration: If we fix the layout L, is

G(·) capable of generating images with different styles

for different (zimg, Zobj)?

• Object style reconfiguration: If we fix the layout L, the

image style zimg and object styles Zobj \ zobji , is G(·)
capable of generating consistent images with different

styles for the object (ℓi, bboxi) using different zobji?

• Layout reconfiguration: Given a (L, zimg, Zobj), is G(·)
capable of generating consistent images for different

(L+, zimg, Z
+
obj) where we can add a new object to L+

or just change the bounding box location of an existing

object? When a new object is added, we also sample a

new zobj to add in Z+
obj .

It is a big challenge to address the three aspects by learn-

ing a single generation function. It may be even difficult

for well-trained artistic people to do so at scale (e.g., han-

dling the 171 categories in the COCO-Stuff dataset). Due to

the complexity that the generation function (Eqn. 1) needs

to handle, it is parameterized (often over-parameterized) by

powerful deep neural networks (DNNs). It is also well-

known that training the DNN-based generation function in-

dividually is a extremely difficult task. Generative adversar-

ial networks (GANs) [6] are entailed which are formulated

under two-player minmax game settings.

3.2. The LostGAN
As Figure 2 shows, our LostGAN follows the traditional

GAN pipeline with the following modifications.

3.2.1 The Generator

Figure 3 (a) shows the generator which utilizes the

ResNet [8] architecture as backbone. Consider generating

64×64 images, the generator consists of 4 residual building

blocks (ResBlocks). The image style latent code zimg is a

dnoise-dim vector (dnoise = 128 in our experiments) whose

elements are sampled from standard normal distribution un-

der i.i.d. setting. Through a linear fully connected (FC)

layer, zimg is projected to a 4× 4× (16× ch) dimensional

vector which is then reshaped to (4, 4, 16×ch) (representing

height, width and channels) where ch is a hyperparameter

to control model complexity (e.g., ch = 64 for generating

64× 64 images). Then, each of the four ResBlocks upsam-

ples its input with ratio 2 and bilinear interpolation. In the

meanwhile, the feature channel will be decreased by ratio 2.

For generating 128× 128 images, we use 5 ResBlocks with

ch = 64 and the same dnoise = 128 for zimg .

3.2.2 The ISLA-Norm

Figure 3 (b) shows the detail of ResBlock and the proposed

ISLA-Norm. The ResBlock uses the basic block design

as adopted in the projection-based cGAN [24] and Big-

GAN [1]. Our ISLA-Norm first computes the mean and

variance as done in BatchNorm [14], and then learns ob-

ject instance-specific layout-aware affine transformation for

each sample in a batch similar in spirit to the AdaIN used by

the StyleGAN [18]. So, the feature normalization is com-

puted in a batch manner, and the affine transformation is

recalibrated in a sample-specific manner.

Denote by x the input 4D feature map of ISLA-Norm,

and xnhwc the feature response at position (n, h, w, c) (us-

ing the convention order of axes for batch, spatial height

and width axis, and channel). We have n ∈ [0, N − 1], h ∈
[0, H−1], w ∈ [0,W−1] and c ∈ [0, C−1] where H,W,C

depend on the stage of a ResBlock.

In training, ISLA-Norm first normalizes xnhwc by,

x̂nhwc =
xnhwc − µc

σc

, (2)

where the channel-wise batch mean µc =
1

N ·H·W

∑

n,h,w xnhwc and standard deviation (std)

σc =
√

1
N ·H·W

∑

n,h,w(xnhwc − µc)2 + ǫ (ǫ is a small

positive constant for numeric stability). In standard Batch-

Norm [14], for the affine transformation, a channel-wise γc
and βc will be learned and shared with all spatial locations

and all samples in a batch. our ISLA-Norm will learn object

instance-specific and layout-aware affine transformation

parameters, γnhwc and βnhwc, and then recalibrate the

normalized feature responses by,

x̃nhwc = γnhwc · x̂nhwc + βnhwc. (3)

Computing γnhwc and βnhwc. Without loss of gener-

ality, we show how to compute the gamma and beta pa-

rameters for one sample, i.e., γhwc and βhwc. As shown in

Figure 3 (b), we have the following four steps.
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i) Label Embedding. We use one-hot label vector for the

m object instances and then we obtain the m × dℓ one-hot

label matrix (e.g., dℓ = 171 in COCO-Stuff). For label em-

bedding, we use a learnable dℓ × de embedding matrix to

obtain the vectorized representation for labels, resulting in

the m × de label-to-vector matrix, where de represents the

embedding dimension (e.g., de = 128 in our experiments).

We also have the object style latent codes Zobj which is a

m × dnoise noise matrix (e.g., dnoise = 128 the same as

zimg). We then concatenate the label-to-vector matrix and

the noise matrix as the final m × (de + dnoise) embedding

matrix. So, the object instance style will depends on both

the label embedding (semantics) and i.i.d. latent code (ac-

counting for style variations).

ii) Object instance-specific projection. With the final

embedding matrix, we compute object instance-specific

channel-wise γ and β via linear projection with a learnable

(de+dnoise)×2C projection matrix where C is the number

of channels.

iii) Mask prediction. The s × s mask for each object

instance (e.g., s = 16 in our experiments) is predicted

by a sub-network consisting of several up-sample convolu-

tion followed by sigmoid transformation. So, our predicted

masks are not binary. Then, we resize the predicted masks

to the sizes of corresponding bounding boxes.

iv) ISLA γ and β computation. We unsqueeze the object

instance-specific channel-wise γ and β to their correspond-

ing bounding boxes with the predicted mask weights multi-

plied. Then, we add them together with averaged sum used

for overlapping regions.

3.2.3 The Discriminator

As shown in Figure 2, our discriminator consists of three

components: the shared ResNet backbone, the image head

classifier and the object head classifier.

The ResNet backbone has several ResBlocks (4 for

64×64 and 5 for 128×128) as in [24, 1]. The image head

classifier consists of a ResBlock, a global average pooling

layer and a fully-connected (FC) layer with one output unit,

while object head classifier consists of ROI Align [7], a

global average pooling layer and a FC layer with one output

unit.

Following the projection-based cGANs [24] and the

practice in BigGANs [1], we learn a separate label embed-

ding for computing object adversarial hinge loss.

Denote by D(·; ΘD) the discriminator with parameters

ΘD. Given an image I (real or synthesized) and a layout L,

the discriminator computes the prediction score for image

and the average score for cropped objects, and we have,

(simg, sobj) = D(I, L; ΘD) (4)

3.2.4 The Loss Functions

To train (ΘG,ΘD) in our LostGAN, we utilize the hinge

version [32, 22] of the standard adversarial loss [6],

lt(I, L) =

{

min(0,−1 + st); if I is real

min(0,−1− st); if I is fake
(5)

where t ∈ {img, obj}. Let l(I, L) = limg(I, L) + λ ·
lobj(I, L) with λ the trade-off parameter for controlling the

quality between synthesized images and objects (λ = 1 in

our experiments). We have the expected losses for the dis-

criminator and the generator,

L(ΘD|ΘG) =− E
(I,L)∼p(I,L)

[l(I, L)]

L(ΘG|ΘD) =− E
(I,L)∼pfake(I,L)

[D(I, L; ΘD)]
(6)

where p(I, L) represents all the real and fake (by the current

generator) data and pfake(I, L) represents the fake data.

4. Experiments
We test our LostGAN in the COCO-Stuff dataset [2] and

the Visual Genome (VG) dataset [20]. We evaluate it for

generating images at two resolutions 64×64 and 128×128.

In comparison, the state-of-the-art methods include the very

recent Layout2Im method [38], the scene graph to image

(sg2im) method [16] and the pix2pix method [15].

4.1. Datasets
The COCO-Stuff 2017 [2] augments the COCO dataset

with pixel-level stuff annotations. The annotation contains

80 thing classes (person, car, etc.) and 91 stuff classes (sky,

road, etc.) Following settings of [16], objects covering less

than 2% of the image are ignored, and we use images with

3 to 8 objects. The Visual Genome dataset [20]. Following

settings of [16] to removing small and infrequent objects,

we have 62,565 training, 5,506 val and 5,088 testing images

with 3 to 30 objects from 178 categories in each image.

4.2. Evaluation Metrics
We evaluate quality and visual appearance of gener-

ated images by Inception Score (higher is better) [30]

and Frèchet Inception Distance (FID, lower is better) [10],

which use pretrained Inception [31] network to encourage

recognizable objects within images and diversity across im-

ages. Diversity score computes perceptual similarity be-

tween two images (higher is better). We adopt LPIPS met-

ric [37] to compute perceptual similarity in feature space

between two images generated from same layout as diver-

sity score. We also evaluate our model by recently proposed

Classification Accuracy Score (CAS) [28].

4.3. Quantitative results
Table 1, 2 summarizes comparisons between our model

and state-of-the-art models with respect to inception score,
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Figure 4. Generated samples from given layouts on COCO-Stuff (top) and Visual Genome (bottom). Images generated by pix2pix, sg2im,

and layout2im are at 64×64 resolution.

FID, diversity score and classification accuracy. Our Lost-

GAN outperforms the most recent Layout2Im [38] in terms

of both Inception score and Diversity score. For 64×64 im-

ages, the improvement of Inception score, FID and classi-

fication accuracy indicates higher visual quality of image

generated by our model. Diversity score is improved sig-

nificantly which shows that our LostGAN can generate im-

ages with various appearance for a given layout. We also
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Methods
Inception Score FID Diversity Score

COCO VG COCO VG

Real Images (64×64) 16.3 ± 0.4 13.9 ± 0.5 - - - -

Real Images (128×128) 22.3 ± 0.5 20.5 ± 1.5 - - - -

pix2pix 3.5 ± 0.1 2.7 ± 0.02 121.97 142.86 0 0

sg2im(GT Layout) 7.3 ± 0.1 6.3 ± 0.2 67.96 74.61 0.02 ± 0.01 0.15 ± 0.12

Layout2Im 9.1 ± 0.1 8.1 ± 0.1 38.14 40.07 0.15 ± 0.06 0.17 ± 0.09

Ours 64×64 9.8 ± 0.2 8.7 ± 0.4 34.31 34.75 0.35 ± 0.09 0.34 ± 0.10

Ours 128×128 13.8 ± 0.4 11.1 ± 0.6 29.65 29.36 0.40 ± 0.09 0.43 ± 0.09
Table 1. Quantitative comparisons using Inception Score (higher is better), FID (lower is better) and Diversity Score (higher is better)

evaluation on COCO-Stuff and VG dataset. Images for pix2pix [15], sg2im [16] and Layout2Im [38] are at 64×64 resolution.
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Figure 5. Generation results by adding new objects or change spatial position of objects.
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Figure 7. Linear interpolation of instance style. Top row indicates interpolation of style in sky, bottom row shows style morphing of grass.

conduct experiments at the resolution of 128×128, and our LostGAN obtains consistently better results.
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Figure 8. Synthesized images and learned masks for given layouts. Our proposed model learns masks from given layout in a weakly-

supervised manner as ground truth mask for each object is not utilized during training.

Methods
Classification Accuracy

COCO VG

Layout2im 27.32 23.25

Ours 64x64 28.81 27.50

Ours 128x128 28.70 25.89

Real Images 51.04 48.07
Table 2. Classification Accuracy Comparisons. We train resnet-

101 on cropped objects from generated images (generate five sam-

ples for each layout) and evaluate on objects from real images.

4.4. Qualitative results

Figure 4 shows results of different models generating im-

ages from the same layout on both COCO-Stuff and VG.

The input layouts are quite complex. Our LostGAN can

generate visually more appealing images with more recog-

nizable objects that are consistent with input layouts at reso-

lution 64×64, and is further capable of synthesizing images

at 128× 128 resolution with better image quality.

We also conduct some ablation studies on the three as-

pects of reconfigurability and mask prediction.

Layout reconfiguration is demonstrated by adding ob-

ject to or moving a bounding box in a layout (Figure 5).

Our LostGAN shows better layout reconfigurability than

the Layout2Im [38]. When adding extra objects or mov-

ing bounding box of one instance, our model can generate

reasonable objects at desired position while keeping exist-

ing objects unchanged as we keep the input style of existing

objects fixed. When moving bounding box of one object,

style of generated object in new position can also be kept

consistent, like (f) and (g), the person is moved while keep

style feature like pose and color of clothes unaffected.

Image style reconfiguration To assess diversity of gen-

eration, multiple images are sampled from our LostGAN

for each input layout (Figure 6). Our model can synthesize

images with different visual appearance for a given layout

while preserving objects at desired location.

Object instance style reconfiguration Our LostGAN is

also capable of controlling styles at object instance level.

Figure 7 shows results of gradually morphing styles of one

instance in different images. Top row shows how the style

of sky gradually turns from blue to dusk while keeping

styles of other objects unaltered. Bottom row displays how

the style of grass transforms from green to withered.

Weakly-supervised mask prediction Figure 8 shows

generated semantic label map when synthesizing images

from given layouts. For pixels where bounding boxes of

different objects overlap, their semantic labels are assigned

by objects with the highest predicted mask weight. Unlike

[12, 21] where ground truth masks is adopted to guide learn-

ing of shape generator, our model can learn semantic masks

in a weakly-supervised manner. Even for objects with over-

lapped bounding box, like person and surfboard in (f), syn-

thesized images and learned masks are consistent and se-

mantically reasonable.

5. Conclusion

This paper presents a layout- and style-based architec-

ture for generative adversarial networks (LostGANs) that

can be trained end-to-end to generate images from reconfig-

urable layout and style. The proposed LostGAN can learn

fine-grained mask maps in a weakly-supervised manner to

bridge the gap between layouts and images, and proposes

the object instance-specific layout-aware feature normaliza-

tion (ISLA-Norm) in the generator to realize multi-object

style generation. State-of-the-art performance is obtained

on COCO-Stuff and VG dataset. Qualitative results demon-

strate the proposed model is capable of generating scene

images with reconfigurable layout and instance-level style

control.
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