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Abstract: Sonar echoes can provide more than only range information, but recording the full
sonar echo is challenging in resource constrained systems. This paper introduces an approach for
reconstructing under-sampled sonar echo signals in environments that are not cluttered using
Compressive Sensing. This technique requires sampling only around 20% of the total samples
in order to achieve good reconstruction results. An experimental validation of the approach is

presented.
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1. INTRODUCTION

One common goal in the problem of autonomous explo-
ration is to take measurements of the environment being
explored and to compile the information into a coherent
(and ideally accurate) picture or map of the surroundings.
If the pose of the robot is also unknown a priori, the
problem is called Simultaneous Localization and Mapping
(SLAM). SLAM is a fairly mature field with a deep and
extensive literature; an overview of its many flavors can
be found in, e.g., (Cadena et al., 2016). While many of
the algorithms for translating sensor data into maps are
generalized in that they do not depend on the details of any
given sensor, one common feature is that they rely on large
amounts of data to yield accurate and reliable maps. In
practice, mapping is often performed using visual sensors
such as cameras and laser rangefinders which naturally
produce the large volume of data needed.

Despite its proven efficacy, this familiar approach to map-
ping is not equally appropriate in all situations, due in
part to the size and cost of the sensors, and in part to
the power and storage required to gather and process
data in real time. In recent years, there has been in-
creasing interest and ongoing developments in very small,
low power robots such as autonomous flying micro-robots
(RoboBees) (Wood et al., 2013), micro air vehicles (Scara-
muzza et al., 2014), bat-like robots (Colorado et al., 2015),
and insect-scale flapping wing robots (Zou et al., 2018).
Such vehicles do not have the payload capability for large
sensors such as laser rangefinders nor the energy or storage
budget for high resolution cameras. Additionally, given
their small size, it is natural to consider deploying many
such robots in an environment to collect data and then
return to a central hub to generate a large scale map.
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Subject to these limitations, ideally one needs a light,
low-powered sensor along with algorithms which can still
produce good maps from potentially heavily undersampled
data. In light of this, we focus on the use of ultrasonic
sensors. These are low-cost, light-weight sensors which
have been used in both mapping and SLAM (Jung et al.,
2009). In general, they are used to measure the range
to the nearest target, but, unlike laser rangefinders, their
signal expands through an approximately conic domain in
space. While this can make the location of a specific target
ambiguous, there is also significantly more information
that can be extracted from the received signal than simply
the range to the nearest object. This can be seen in the
medical environment, where ultrasound can be used for
safe, in-body imaging (Quistgaard, 1997). The application
of ultrasound in mapping was expanded upon in recent
work to infer the shape of a polyhedral room from a single
source and multiple sensors (that is, to “hear the shape
of a room” ) (Dokmanic et al., 2013) and on performing
SLAM using these echoes (Krekovic et al., 2016).

In previous work by two of the authors (Sanchez and
Andersson, 2018), an optimization approach was used to
extract information from a single ultrasound pulse. The
aim of that work was to determine (possible) locations
of a sparse set of point-like objects within the cone of
the ultrasound signal, in essence attempting to create
a local map of the region within that cone. That work
demonstrated the viability of recovering range information
from multiple targets using a single ultrasonic echo signal
and some of the advantages of having the full echo signal
instead of only range information.

In this work, instead of focusing on translating the echo
signal into a local map, we aim towards making the echo
signal acquisition feasible for low power and low memory-
capacity systems through the use of Compressive Sensing



(CS). The essential idea of CS is to leverage the fact
that most signals, when expressed in an appropriate basis,
are approximately sparse. Because of this, a small (sub-
Nyquist rate) number of measurements can be acquired
and reconstruction algorithms used offline that, under cer-
tain assumptions, can exactly recreate the original signal
(Candes and Wakin, 2008). Because the signal can be
highly undersampled, the approach can greatly reduce the
amount of memory needed to store a signal without the
need for computationally expensive data compression. In
this work in particular, the sampling strategy is to choose
at each sample time whether or not, with a given proba-
bility, to acquire a measurement. Using CS reconstruction
algorithms offline, we aim to obtain a good approximation
of the original signal.

In the next section, we state our problem more formally
and describe our approach to addressing it. There, we
give a brief overview of CS and explain how sensing us-
ing an ultrasonic transducer fits into this framework and
how reconstruction is achieved. In Sec. 3 we describe the
experimental setup and our scheme for creating bases for
a sparse description of the ultrasound echo signal. We de-
velop different bases, one by measuring the signal from one
ultrasonic sensor pointed directly at another (to represent
a point source), one from the return echoes off a small,
flat target and additional overcomplete bases described in
Sec. 3.2. The experimental results are described in Sec.
4, including a comparison of the reconstruction quality
between the different sparsity bases and using two different
standard CS reconstruction algorithms, basis pursuit (an
exact, optimal solution) and matching pursuit (a fast,
greedy, sub-optimal algorithm). We conclude in Sec. 5 with
a few final remarks.

2. PROBLEM STATEMENT AND APPROACH

In this paper, we address the problem of acquiring sub-
sampled ultrasound echo data in a simple environment
as a means to minimize storage requirements without
significant loss in signal information. Reconstructions are
performed offline with simulated subsampling to ensure
the signal can be recovered. In the following subsection
we present a brief background on CS. A more complete
description can be found in a variety of sources in the
literature, including, e.g. (Candeés and Wakin, 2008) and
(Nam et al., 2013). In Sec. 2.2 we describe how to fit the
ultrasound signal problem into this framework.

2.1 Background on Compressive Sensing

Compressive sensing is a joint measurement and signal
processing technique which can produce good (or even
exact) reconstructions of signals from significantly fewer
measurements than the Nyquist-Shannon sampling the-
orem requires. At the heart of CS is the assumption of
compressibility (or true sparsity) of the signal of interest,
that is, when described in an appropriate basis, most of
the coefficients are negligible (compressibility) or exactly
zero (sparsity).

Some of the most significant results in the CS literature
rely on the matrix describing the measurements satisfying
a requirement known as the Restricted Isomery Property

(RIP) (Candeés and Wakin, 2008). However, certifying
whether a particular matrix has this property is an NP-
hard problem (Bandeira et al., 2013). An alternative ap-
proach to determine the theoretical performance of CS has
been developed using the concept of Mutual Coherence.
Given a basis ¥ of R”, with normalized columns, its
mutual coherence () is defined as (Donoho et al., 2006)
T

p(w) = Vit max 0T (1)
where Uy is the k-th column of W. If a signal ¢ is s-sparse
in the ¥ basis (i.e. it has only s non zero coefficients in
the representation § = ¥x), then, assuming

m > Cu*(¥)slogn (2)
where C is a constant, then the linear program
min ||z|; subject to y=dVx (3)

where ® is a matrix that extracts m random lines of ¥
and y = Py, then the probability of § # Wz* decreases
exponentially with the value of m (Bruckstein et al., 2009).
The optimization problem in (3) is known as Basis Pursuit
(BP). In other words, if you have a signal § = Wz, where
x is s-sparse and you take m random measurements of
¢ where m satisfies (2) then, with an overwhelming high
probability, the solution obtained by BP will be a perfect
reconstruction of the original signal x. In the case where
perfect reconstruction is not possible due, for example, to
noise in the measurements, then the mutual coherence can
be used to bound the reconstruction error.

Notice that the expression (2) depends on the value of
a constant C' and the sparseness assumption on z. In
practice, these are both generally unknown. In fact, in
real world scenarios, signals are not truly sparse and they
are corrupted by noise. Thus, perfect reconstruction is not
usually achievable. However, most real-world signals are
approximately sparse and CS is still a powerful tool for
reconstructing signal from highly under sampled data with
good quality.

Additionally, it has been shown that the k—sparse approx-
imation Z, composed with only the k largest coefficients of
2 being non-zero, minimizes the error

e — &l

for any ¢, norm with an error that is bounded by an
expression involving the mutual coherence (Bruckstein
et al., 2009). Some CS algorithms take advantage of this
and search only for the k largest coefficients of = instead of
an exact optimal solution. These so called greedy methods
may provide lower-quality reconstructions but typically
require far less computational effort and can be solved
much more quickly than BP. In the remainder of this
paper we will use a common greedy algorithm, known
as Matching Pursuit (MP) (Tropp and Gilbert, 2007) in
addition to BP.

It is also worth mentioning that although it was estab-
lished earlier that W is a basis of R™, this notion can
be extrapolated for cases in which ¥ is overcomplete or
redundant, i.e., it is a full rank matrix with more columns
than rows. This follows from the intuitive notion that
adding extra columns to W cannot increase the optimal
cost in (3) since the original columns remain. A more in
depth discussion of the usage of overcomplete dictionaries



can be found in, e.g., (Candes et al., 2011) and (Donoho
et al., 2006).

2.2 Sonar Signals in Sparse Environments

In order to use sparse sampling and reconstruction in the
ultrasound setting, we need to frame ultrasonic sensing in
terms of a measurement model that fits the CS framework.
Most ultrasonic sensors have a transducer that acts as both
transmitter and receiver. During transmission, the trans-
ducer is vibrated by a pulse modulated wave, resulting
in a signal such as the one shown in Fig. 1la propagating
through the air. When an echo is received, the membrane
fluctuates due to the air motion, yielding a corresponding
voltage fluctuation that can be read out.

(a)“&%neric signal (b) Matrix ¥

Fig. 1. (a) Generic shape of the transmitted sonar signal.
(b) Graphical representation of the matrix . Non-
zero elements are shown in grayscale with darker
representing larger values. The j-th column of this
matrix is the signal s;, i.e. samples of the signal in
(a) delayed by j samples.

Consider a simple idealized case in which a single point-like
object is located in the environment at a distance d/2 from
the emitter. Sound waves travel through the environment,
are reflected by the object, and propagate back to the
emitter. If the sensor emits a pulse, s(t) at time ¢t = 0,
then the output at the receiver is

kI d
i = (¢ 1) @
where v, is the speed of sound,  is a constant representing
emitter and receiver gain coefficients which do not depend
on the object or its relative direction from the transmitter,
and T represents other sources of attenuation which may
depend on relative orientation, such as reflectivity of the
target and the receiver characteristics of the sensor.

Now suppose there are multiple point-like objects, all
positioned such that the transmitted signal can reach each
object (i.e. no object shadows another one). In this case,
under assumptions of a linear response of the sensor, the
received signal in (4) becomes

m

v =3 s (- 2) )

j=1 3 Us
where m is the total number of individual signals received
at the sensor. Note that this simple model can also describe
more complicated scenarios such as in the case of multi-
path (e.g. reflections of the sound wave off the floor and
back (Sanchez and Andersson, 2018)) and objects with
physical extent where there is a continuum of distances
to points on a given object. Thus, in this framework,
s(t — ), @ € RT, can be viewed a basis of all possible
signals y(t) one might expect to receive. If the number of
objects (or propagation paths) m is small, then y(t) is a

linear combination of a sparse subset of the basis s(t — «),
a € RT, motivating the use of subsampling combined with
CS to reconstruct the full signal z(t) from that under
sampled data.

In practice, the received signal is discretely sampled at a
given rate Ts. The sampled version of y(t) is

- Uk K;Fj
gk =>" 25 (k] (6)

j=1 7
where s;[k] = s (kTs — ‘Z—J) Now introduce the discrete

signal  whose elements are given by
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where §; = jT,vs. Now, recall that s; is a vector giving
the time response at the receiver due to a pulse emitted at
t = 0 and a target at distance 0;. With this we can express
the received (discrete) signal over N time samples as

§=[s1 52 -+ sn]u, (8)

if exists prop. path with dist. J;,

otherwise.

N4

Note that the discrete representation introduces a (small)
error as it assumes objects only exist at the discrete
distances §;, that is to integer multiples of v,T5.

The matrix W is a basis for the discrete signals generated
by the ultrasound pulse s(t). It is shown graphically in
Fig. 1b where each column j represents the response at
the receiver due to an object at distance d;. Note that the
non-zero entries in the upper-right corner of the matrix
are included to ensure VU is a circulant matrix. While these
entries are nonphysical, they ensure that ¥ is a basis of
RY and that it has a low mutual coherence, otherwise the
mutual coherence would be /n, i.e., its maximum value
possible (Candés and Wakin, 2008).

If the number of objects (and the number of multi-path
returns) in the environment is small, then x will be a
sparse vector and, given the discussion in Subsec. 2.1, a
good approximation of the signal can be made using a
small number of randomly acquired samples of g[k] using

CS.

Note that the basis represented by ¥ could be generated
using more complicated responses than that of a point
source if such responses are more representative of the
environment. The matrix could also be extended to include
multiple types of responses, leading to an overcomplete
dictionary.

3. EXPERIMENTAL SETUP
3.1 Description of the Equipment and Fxperimental Design

Experiments were performed using an X1 Ranging Module
Pro Developers Kit (SensComp). This unit emits a 50 kHz
ultrasonic pulse, either at a fixed rate or upon activation
of a trigger signal. While not directly provided on the
board outputs, the raw return signal of the sonar can be
acquired from the kit. It is important to note that this
signal is subject to a time-dependent gain (independent of
the signal), presumably to enhance the signal magnitude
at longer distances. As a result, the 1/d? decay rate is not



observable in the signal. Since our approach relies on the
shape of the echo signal rather than its absolute amplitude,
this detail did not affect our results. If needed, the effect is
easily removed in post-processing. Data was acquired using
a National Instruments compact Reconfigurable Input
Output system (cRIO 9076) equipped with a high speed
voltage input module (NT 9233), programmed in Labview
2017 to sample at 250 kHz.

The ultrasonic transducer was centered on a laboratory
work bench which was covered in acoustic foam panels to
prevent the echo signal from bouncing off the surface of
the benchtop. Two targets were built, each consisting of a
30 cm by 30 cm acrylic panel as the reflective component,
mounted on a support bar to lift the center of the target,
and a base. Acoustic foam panels were mounted above and
below the panel to prevent the support bar from interfering
with the return signal data. The center of the acrylic panels
wora matchad tn tha heioht of the sonar sensor at 45 cm

|_ 30 cm — - the target, along with its
la. Targets were placed in a
1 free space in the horizontal
cal plane. Additionally, the
sred in foam tiling.
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Fig. 3. Experimentally-obtained pulses using either (a) two
sonar sensors pointed at each other or (b) a single
sensor and a single target. Note that the time scales
in the two plots are different and chosen to best show
the details of the signals.

The second set, shown in Fig. 3(b), was obtained by facing

ifferent configurations.
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ents, the green target was
nt of the sensor at a range

mjments bothathke gteen and
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(a) Flat target (b) Experimental setup

Fig. 2. Experimental setup. (a) Example of a target. (b)
Position of the targets (green and blue) relative to the
sonar sensor (red).

3.2 Construction of Sparsity Bases

For this work, we obtained several different U matrices
S0 as to compare their performance. These matrices were
designed using combinations of data obtained from two
sets of return data. The first set, shown in Fig.3(a),
was gathered by facing one sensor (source) at another
(receiver) and averaging the received signal over 20 pulses.

the send at one of the flat targets at a range of 10
differenMMistances (from 20 c¢cm to 3.5m), averaged=2%
return pulses at each distance, and ther meraglpg'th@e

Notice that the &gnal_sh@wﬂhe expected’ siaS0idad s/hape
but includes $50Th a ramp up and _firal decgy,’hkely due

- =t4 dynamlcs of the acoustlc acfliator. Additionally, note

that the time scale in & two grapbs/are different; the

rectangular target™return is apgo‘ﬁlmately twice as long
-

as the poitt source and exhlbrts a more complex shape.

_ ~TTe signal represefl ed 1rfF ig. 3(a) and its delayed versions

were used to bui matrix ¥ referred to as the “2-
sensor” basis. Simnilarly, the signal in Fig. 3(b) was used
to build tl}e"‘ﬁat—avg” basis. We then constructed two
overcomylete bases. The first, termed the “combo-2x”
basjs,ﬁvas a composition of the 2-sensor and flat-avg bases
(#haking U n x 2n). The second was a composition of
the 2-sensor basis with each of the 10 (averaged) returns
at each distance (which were used to make the flat-avg
basis), yielding a n x 11n matrix for W. This is referred
to as the “combo-11x" basis. Because this matrix is very
large, only MP was used to generated reconstructions
from it. The computed mutual coherence values were
0.9866+/9500 for the 2-sensor basis, and 0.99101/9500 for
both the flat-avg and ”combo-2x” bases. (Due to its size,
we did not compute the mutual coherence of the combo-
11x.) These values are all somewhat large and thus, from
the underlying theory, it is not expected that they will
lead to highly accurate reconstructions. Nevertheless, the
experimental results below show reasonable performance
in terms of reconstruction and good performance in terms
of the location of those coefficients in the signal.

4. EXPERIMENTS

In each case, reconstructions were performed over a time
window that started at approximately 0.001 s (the end
of the emitted pulse) and ended at approximately 0.04
s (long enough to allow for multipath echoes from the
far wall). With this choice of times, the length of z(¢)
during reconstruction is n = 9500 samples. The length




Table 1. Reconstruction error comparisons between the combinations of the two algorithms with the
3-4 sparsity bases used for each of the 2 experiments.

Error for Experiment 1: one target, varying distance.

80
cm

2-sensor
BP flat-avg
combo-2x

100
cm

150
cm

200
cm

250
cm

300
cm

350
cm

400
cm

0.367 0.278 0.196 0.386

2-sensor
flat-avg
combo-2x
combo-11x

MP

Error for Experiment 2: two targets, near one at 3 m and varying angle, further one at 4 m and fixed 0° angle.

2-sensor

BP flat-avg
combo-2x
2-sensor 0.579  0.626

MP flat-avg 0.540 0.349 0.297 0.401 0.493 0.329 0.331 0.284 0.511 0.393
combo-2x | 0.514 0.341 0.314 0.401 0.472 0.335 0.343 0.284 0.548 0.394
combo-11x | 0.535 0.345 0.389 0.451 0.349 0.398 0.344 0.556 0.405

of y(t) is chosen to be approximately 20% of that at
m = 1900 samples. The & matrix is constructed as a
random permutation of the rows of the n x n identity
matrix, and the ¥ matrix is constructed as described
above in Sec. 3.2. The same m samples are used across all
reconstructions so comparisons using different methods or
bases are meaningful. When MP is performed, estimates
are restricted to 50 coefficients. When BP is performed, the
algorithm terminates after 10m = 19000 iterations of the
iterative (gradient descent) solver or earlier if an optimal
solution is found.

Fig. 4 shows a typical reconstruction result for one of
the returns from the second set of experiments. Here,
one target is located 4 m away and directly in front of
the sensor while the second is 3 m away and offset 2.5°
from the sensor bearing. Further away, at approximately
6 m, there was a wall. Fig. 4a shows the full signal
return along with the MP reconstruction using the flat-
avg basis. Fig. 4b shows a closeup view of the true signal
and reconstruction corresponding to the near object return
signal, and Fig. 4d shows a closeup view of the same signal
corresponding to the far wall return. Fig. 4c shows a stem
plot of the coefficients found during the reconstruction,
with the top z-axis scaled to reflect the one-way distance to
a theoretical object that each coefficient represents. Notice
that the reconstructions do well at capturing the timing
and overall character of the signal but not the details.
This is expected from the large mutual coherence of the
bases. At the same time, it is important to note that the
reconstruction from the echo of the far wall is qualitatively
good, despite the fact that the wall looks neither like the
point source represented in the 2-sensor nor the flat target
represented in the flat-avg basis.

Table 1 shows the reconstruction error, scaled by the
true signal size for readability, averaged over 20 trials for
each combination of basis, algorithm and experimental
condition. The error is calculated by

_ &=l

(]2
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These tables show that, on average, BP performed better
than MP, and the flat-avg basis performed better than
the 2-sensor basis. In Experiment 1, the overcomplete
bases performed the best, and reconstruction error with
MP and the combo-11x basis was on par with the best
BP reconstructions. In Experiment 2, the overcomplete
basis combo-2x did help when combined with BP but
the additional flexibility of the combo-11x basis was not
beneficial in the MP reconstructions. It is no surprise that
BP performs better than MP when the same basis is
used. On the other hand, by providing MP with a basis
that has more columns, it is possible to achieve good
reconstructions in a fraction of the time. Indeed, average
computation time for MP (including overcomplete bases)
was 2 orders of magnitude lower than for BP.

5. CONCLUSIONS

In this paper, we showed that a simple random sub-
sampling scheme of ultrasonic echoes in simple environ-
ments can be used with CS to approximately reconstruct
the full unknown signal. Using experimentally acquired
data and experimentally designed reconstruction bases,
the results show efficacy while also indicating the impor-
tance of choosing a good representation basis for the signal.
Signal reconstruction from echoes off the far wall further
supports the method and the idea that an echo acquired
in an unknown environment can be approximated by a
collection of point-like objects and/or flat targets.
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(c) Stem plot of reconstruction coefficients (d) Zoom view of wall echo

Fig. 4. Example signal reconstruction using MP with the n x n flat-avg basis. One target is at (d, ) = (4m, 0°), another
at (3m,2.5°). (a) Ground truth, reconstruction and error signals. Error is calculated to be 0.305 (b) Zoom of the
near target return and (d) zoom of the wall return. (¢) Reconstruction coeflicient stem plot; zero-coefficients are
not shown for clarity. The top axis is included to correlate coefficients to distance from the sensor.



