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A B S T R A C T

Biodiversity is essential to healthy ecosystem function, influencing productivity and resilience to disturbance.
Biodiversity loss endangers essential ecosystem services and risks unacceptable environmental consequences.
Global biodiversity observations are needed to provide a better understanding of the distribution of biodiversity,
to better identify high priority areas for conservation and to help maintain essential ecosystem goods and ser-
vices. Traditional in situ biodiversity monitoring is limited in time and space and is usually a costly and time-
consuming enterprise. Remote sensing can provide data over a large area in a consistent, objective manner and
has been used to detect plant biodiversity in a range of ecosystems, typically based on relating spectral properties
to the distribution of habitat, species or functional groups. Recent years have witnessed the emergence of
methods using imaging spectroscopy to assess biodiversity via plant traits or spectral information content.
However, questions regarding the complex drivers of plant optical properties and the scale dependence of
spectral diversity – biodiversity relationship confound diversity monitoring using remote sensing and must first
be better understood before these methods can be operationally applied. To address some of these topics, we (1)
review the history of remote sensing approaches in biodiversity estimation, summarizing the pros and cons of
different methods, (2) illustrate successes and major gaps of remote sensing of biodiversity, and (3) identify
promising future directions. We focus on emerging methods using spectral diversity (optical diversity) as a proxy
for terrestrial plant diversity that offer to revolutionize the study of diversity in its different dimensions (phy-
logenetic, taxonomic, and functional diversity) from remote sensing. We also discuss remaining knowledge gaps
and ways spectral diversity might be effectively integrated into a global biodiversity monitoring system, bridging
a gap between ecology and remote sensing.

1. Introduction

Many biodiversity studies have addressed biodiversity losses due to
human action, with many studies concluding we are now facing the
beginning of a mass extinction (the Sixth Extinction) (Barnosky et al.,
2011) and by the middle of the current century, up to half of the Earth's
species may disappear (Thomas et al., 2004; Wake and Vredenburg,
2008). Phylogenetic and functional diversity loss, range collapse, ha-
bitat loss, population declines, species invasions, altered community
composition, and rapid environmental changes are relevant indicators
of imminent species loss (Pereira et al., 2010a). Many of these changes
can lead to unexpected and often negative effects on ecosystem function
(Pereira et al., 2010a). Human wellbeing depends upon the ecosystem
goods and services provided by diverse and stable ecosystems.

Starting in the late 1990s, experimental studies began to explore the
effects of biodiversity on ecosystem function, and biodiversity loss

emerged as an important global change issue in its own right (Pimm
et al., 1995; Sala et al., 2000; Pereira et al., 2010a). Biodiversity affects
productivity (Tilman et al., 1996; Isbell et al., 2009; Isbell et al., 2015),
community and ecosystem stability (Tilman and Downing, 1994;
Tilman et al., 2006), invasibility (Naeem and Li, 1997; Naeem et al.,
2000), and nutrient use and retention (Hector and Bagchi, 2007;
Maestre et al., 2012; Midgley, 2012), illustrating its critical role in
maintaining healthy ecosystem function. Variation in the relationship
between biodiversity and ecosystem function has been reported and is
known to depend on resource availability (Reich and Hobbie, 2013),
environmental drivers (Tilman and Haddi, 1992; Isbell et al., 2015) and
scale (Whittaker, 2010; Fraser et al., 2014). For example, a variety of
biodiversity-productivity relationships, including positive, negative,
hump-shaped and U-shaped have been reported at local scales (Adler
et al., 2011; Fraser et al., 2015), while a positive relationship has been
found at broad spatial scales (Oehri et al., 2017).
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An explicit field survey of all species can provide detailed in-
formation on biodiversity for a particular location, but it is infeasible to
apply this kind of census for every case and species in a region through
time (Robinson et al., 1994; McCollin et al., 2000). Sampling method,
with attention to factors like sampling objectives, where, when and how
to sample, size and number of sampling units, and randomly or sys-
tematically selected sampling units, must be considered to estimate
biodiversity (Bonar et al., 2010). Traditional field sampling generally
requires a lot of time, and human resources, and can be remarkably
expensive when sampling over a large area (Levrel et al., 2010; Pereira
et al., 2010b). Furthermore, sampling results are known to be context-
dependent, varying with environmental conditions and spatial scale
(Gaston, 2000; Palmer et al., 2002) and can be confounded by human
bias, even when conducted by experts (Asko et al., 2018).

The well-discussed gap between our knowledge of species, and the
estimated total number of species (sometimes called the “Linnaean
Shortfall” (Lomolino, 2004; Whittaker et al., 2005)), has led to calls for
monitoring biodiversity using remote sensing (Turner et al., 2003),
since consistent and repeatable remote sensing measurement can pro-
vide efficient and cost-effective means to determine plant and eco-
system diversity over large areas (Nagendra, 2001) and can be critical
to long term global biodiversity assessment (Turner, 2014). Early stu-
dies were typically based on habitat assessment (Stoms & Estes 1993;
Nagendra 2001; Turner et al, 2003). More recent remote sensing ap-
proaches have often involved the provision of remotely detectable
variables, like biomass or productivity and canopy structure (height,
LAI) that can be used as proxies to estimate species richness or dis-
tribution patterns (Turner et al., 2003). The proposed “Essential bio-
diversity variables” (EBVs) provide a means to relate remote sensing
measurements to ecosystem function or community composition vari-
ables (such as biomass or productivity, phylogenetic and taxonomic
diversity, phenology, and habitat structure) in ways that can help
predict responses of EBVs to environmental drivers at large scales
(Pereira et al., 2013). While there is a clearly identified need for a
global biodiversity monitoring system, it is less clear how such a system
should be designed, and the exact role remote sensing can play. In
addition, field biodiversity sampling criteria do not always match those
of remote sensing metrics, so it remains a challenge to relate metrics
derived from remote sensing to independently derived field metrics.
Recently, new methods of assessing biodiversity via spectral diversity
(optical diversity) have emerged, offering new ways to explore the re-
lationships between remote sensing and traditional metrics of biodi-
versity.

In this review, we briefly examine the history of remote sensing of
biodiversity and outline major and emerging applications involving
biodiversity assessment using remote sensing. We include a particular
focus on recent advances in detection of plant diversity through spectral
diversity (aka “optical diversity”) because the rapid advances in this
field offer a level of direct detection not previously possible, and be-
cause these new methods may offer significant contributions to a pro-
posed global biodiversity monitoring system (Jetz et al., 2016; Proença
et al., 2017; National Academies of Sciences, 2018). Ecological theory
and empirical evidence suggests that spectral diversity may work as an
indicator of biodiversity at several dimensions, a term we refer to as the
“surrogacy hypothesis,” building on a history of observations that di-
versity at one taxonomic level often relates to diversity at another level
(Magurran, 2004). We also consider the issue of sampling scale in re-
mote sensing of biodiversity, because this represents a major knowledge
gap and emerges as an area needing further research (Gamon et al., in
press).

2. History of remote sensing of biodiversity

Although the early terrestrial observation satellites were launched
in the 1970s, the potential of using remote sensing to measure, map,
monitor, and model spatial patterns and trends in biodiversity was

largely ignored until the 1990s (Stoms and Estes, 1993). A simple
survey of the number of published articles using “Remote Sensing” and
“Biodiversity” as Topic in Web of Science reveals the increasing interest
in using remote sensing for assessing biodiversity (Fig. 1). By 1990, only
one publication was found that used satellite remote sensing to assess
biodiversity and this tracked the effects of tropical forest loss on the
changes in species abundance (Westman et al., 1989). A larger number
of studies on this topic started to emerge in the 1990s (65 publications
from 1990 to 2000, defined as the number of publications in the Web of
Science core collection) and the numbers increased steadily in the first
15 years of this century (Fig. 1). Clearly, the remote sensing of diversity
topic is receiving ever-increasing attention in both ecological and re-
mote sensing communities and is generating new efforts to better in-
tegrate these two seemingly disparate fields.

The early applications of remote sensing in biodiversity estimation
mostly focused on mapping landscape or habitat through land cover
classification mainly using optical remote sensing products without
providing detailed verification of the habitat diversity – biodiversity
relationship (Stoms and Estes, 1993). Progress in this topic was con-
strained by a limited ecological understanding of the effects of biodi-
versity on ecosystem function, limited information provided by the
early remote sensing sensors, insufficient imaging processing techni-
ques (e.g., simple classification methods with no indices specifically
designed for biodiversity assessment), and lack of understanding of how
to interpret ecological information contained in the remote sensing
products (Stoms and Estes, 1993). Imaging spectroscopy and Light
Detection and Ranging (LiDAR) systems have greatly enriched the di-
mensionality of remotely sensed data (Asner et al., 2012; Thompson
et al., 2017) and have expanded the range of detectable plant bio-
chemical, physiological and structural properties that can contribute to
an assessment of diversity (Ustin and Gamon, 2010; Asner et al., 2012).
Furthermore, the price and availability of these technologies have been
improving, making it easier for more people to use remote sensing for
diversity monitoring.

3. Remote sensing of plant diversity

Studies exploring diversity using remote sensing can be generally
categorized into four types (Fig. 2): studies that estimate biodiversity
indirectly through habitat mapping; those that map distributions of
individuals as a basis for assessing community composition and di-
versity; studies that estimate functional diversity through plant func-
tional traits; and studies that assess species composition from patterns
of spectral variation (spectral diversity aka optical diversity) to yield
plant diversity. Here we treat these separately, but recognize that these
methods can also be used in combination.

Fig. 1. The yearly number of publications on ‘remote sensing of biodiversity’
(combining the search terms “biodiversity” and “remote sensing,” bar graph,
left Y-axis) and percentages of the total number of publications found using
search terms ‘remote sensing’ or ‘biodiversity,’ respectively (lines, right Y-axis)
from 1990 to 2018 in Web of Science core collection (updated in Jan, 2019).
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3.1. Estimating biodiversity indirectly with habitat mapping

Historically, habitat-based approaches have utilized indirect
methods of assessing biodiversity, e.g. via species-area curves (Stoms &
Estes 1993, Turner et al 2003) or via habitat heterogeneity, often using
textural metrics (Tuanmu & Jetz 2015). Habitat heterogeneity has been
regarded as one of the most important factors governing species rich-
ness and has been predicted to have a positive relationship with bio-
diversity (Stein et al., 2014), since habitats with higher heterogeneity
may be able to provide more niche space for species coexistence, per-
sistence and diversification (Hutchinson, 1957; Tews et al., 2004; Stein
et al., 2014; Tuanmu and Jetz, 2015). Even heterogeneity of the phy-
sical environment at small scales (< 1 km2) can be important to bio-
diversity because it defines the resource environment at scales relative
to many organisms (Hjort et al., 2015). Estimating biodiversity through
habitat mapping often applies remotely sensed indices to assess en-
vironmental parameters related to “geodiversity” (e.g., climate and
habitat structure (Gaston, 2000; Nagendra, 2001; Turner et al., 2003),
also geology and topography (Gray, 2008; Hjort and Luoto, 2012; Beier
et al., 2015)) and either relates the heterogeneity of the habitats to
biodiversity (Kerr et al., 2001; Bailey et al., 2004) or integrates this
information with regional models (e.g., National Gap Analysis Program
(GAP) (Jennings, 2000) or local models (Parviainen et al., 2009)) to
estimate biodiversity. Land cover mapping is one of the earliest and
most widely used applications of optical remote sensing and can serve
as the basis of habitat maps for biodiversity indicator extraction (Stoms
and Estes, 1993; Tomaselli et al., 2013). At the beginning of this cen-
tury, land cover data had been found to be helpful for predicting the
distributions of both individual species (Jennings, 2000; Saveraid et al.,
2001) and species assemblages (Kerr et al., 2001), establishing habitat
mapping as a useful way of applying remote sensing to infer spatial
patterns of biodiversity. This method is particularly useful for identi-
fying potential habitat of key species and has been an important tool for
conservation purposes (Corbane et al., 2015; Lucas et al., 2015;
Tuanmu and Jetz, 2015).

The accuracy of biodiversity estimation using habitat mapping is
highly scale dependent (Tews et al., 2004) and is affected by

characteristics of the species involved (Kerr and Ostrovsky, 2003).
Typically, land cover mapping estimates potential rather than real
species distributions for species that do not occupy all suitable habitats
(Kerr and Ostrovsky, 2003), analogous to the concept of the funda-
mental niche (Hutchinson, 1957; Tews et al., 2004). For example, the
estimation of the distributions of particular butterfly, plant or bird
species in Yellowstone National Park is possible when their distribu-
tions fit a specific habitat requirement, the number of their individuals
are abundant, or both (Saveraid et al., 2001). It is less practical to assess
distribution of rare species or species that are not specific to particular
habitats even from remarkably accurate and detailed land cover data
(Kerr and Ostrovsky, 2003).

Habitat mapping using remote sensing is often applied at coarse
scales (Wulder et al., 2004; Corbane et al., 2015; Tuanmu and Jetz,
2015) (Table 1). Global land cover data can be provided by using
MODIS sensors at 500m pixel size (Friedl et al., 2010), while regional
land cover data have been retrieved using moderate resolution satellite
products such as Landsat that has a 30m spatial resolution (Tiede et al.,
2010). Detailed information on landscape complexity is lost when using
such relatively coarse resolution satellite products. As a consequence,
this approach, although useful and easy to apply, usually ignores
within-habitat variability by using a single mean value to predict di-
versity within each land cover class (Hernández-Stefanoni et al., 2012).
At a finer spatial scale, aerial photography has been used for forests
assessment since the 1990s (Wulder, 1998) and is still widely applied
today (e.g., (Alberta Biodiversity Monitoring Institute, 2015)). How-
ever, the limited spectral information contained in those products limits
the accuracy of habitat mapping and precludes widespread usage or
direct linkage to functional vegetation biophysical and biochemical
properties (e.g., pigment levels, nitrogen content, leaf or canopy
structure, etc.) that are often related to patterns of biodiversity.

3.2. Mapping distributions of species or functional types

Unlike habitat mapping, species mapping requires fine spectral and
spatial details, and most satellite data are too coarse spectrally and
spatially for direct species mapping. Species mapping using remote

Fig. 2. “Taxonomy” of remote sensing of biodiversity, illustrating four broad methodological categories, along with examples of specific sub-methods. Examples of
each category of biodiversity assessment are further discussed below.
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sensing has long been of interest to forest management and conserva-
tion sectors (Fassnacht et al., 2016). This approach has benefited
greatly from the availability of airborne hyperspectral and LiDAR data
that can provide high spatial resolution products with detailed spectral
and structural information at local or regional scales (Roberts et al.,
1998; Ustin et al., 2004; Xiao et al., 2004; Asner et al., 2008b; Somers
and Asner, 2013; Liu et al., 2017) and has most widely been used for
vegetation with large crown sizes (e.g. trees), which can be resolved
with the typical grain size (pixel size) of airborne remote sensing in-
struments (Table 2). Airborne spectra have also been successfully re-
lated to leaf traits (further discussed in section 3.3, below), providing
an approach to map functional types particularly when the pixel size
can be matched to the crown size, and when pixels can be stratified
according to their crown position and illumination (Asner and Martin,
2009; Dahlin et al., 2013; Féret and Asner, 2014; Singh et al., 2015).
Although it is typically impossible to distinguish every species using
remote sensing (Price, 1994), it is often feasible to differentiate domi-
nant species or community types using spectral differences (Ustin and
Gamon, 2010). For example, invasive species may have distinct re-
flectance and 3D structural properties from that of native species (Asner
et al., 2006; Asner et al., 2008a), and plants of different functional
types, e.g., nitrogen-fixing and non-fixing species, can often be sepa-
rated due to their biochemical composition (Asner et al., 2008a; Asner
et al., 2008b). Moreover, canopy structure, which can accentuate cer-
tain leaf spectral properties through multiple scattering and contrasting
illumination, can influence the overall canopy optical signal, which
may help distinguish different species or functional groups (Roberts
et al., 2004; Ollinger, 2011). By integrating imaging spectroscopy and
LiDAR, both leaf traits and canopy structure can be captured together.
As a consequence, mapping individual species can succeed when there
is sufficient biochemical and/or structural variation between species
(Ustin and Gamon, 2010) and adequate a priori knowledge about the
optical properties of all the possible present species (Price, 1994). A
recent literature review on tree species classification using remote
sensing (Fassnacht et al., 2016) illustrates the power of this approach.

An alternative approach for mapping dominant species or vegeta-
tion types is based on spectral mixture analysis (SMA) (Gamon et al.,

1993; Roberts et al., 1998; Roth et al., 2012; Thorp et al., 2013; Dudley
et al., 2015). SMA assumes that the spectral signal collected by a
spectrometer is either a linear or nonlinear combination of endmembers
(Somers et al., 2011). Constituent species and relative amount within a
mixed pixel can be identified by applying endmembers that have been
obtained from field or laboratory measurements or simulated using
radiative transfer models (Somers et al., 2016). As a consequence, the
accuracy of this approach depends heavily on the quality of the end-
member library that accounts for a priori knowledge of species' spectra
and the endmember variability. It also requires the species to be spec-
trally distinct, and this can be confounded when there is a high degree
of within species variability. Furthermore, it is difficult to distinguish
every species when the number of species within a single pixel is large
(Price, 1994). Nevertheless, this approach can be used to map “in-
dicator species” that might have conservation importance.

3.3. Estimating functional diversity through plant functional traits

Plants traits reflect both evolutionary history (Wright et al., 2005)
and environmental and resource limitations through leaf life span, al-
location to defense, rates of photosynthesis and respiration (Wright
et al., 2004; Niinemets et al., 2015), and investment in photoprotection
(Gamon et al., 2005, 1997). As a result, an individual organism's traits
represent the interaction between its genome, the changing environ-
ment, and random events (Fusco and Minelli, 2010; Cavender-Bares
et al., 2016a). Many plant traits affect plant light absorption and scat-
tering and consequently, cause variation in plant optical properties that
can be detected with remote sensing (Ustin et al., 2009; Ustin and
Gamon, 2010; Asner and Martin, 2016; Cavender-Bares et al., 2017).

One benefit of mapping plant functional traits is that it focuses on
capturing the range and variation in traits that can be related to di-
versity of species' niches or functions (Cadotte et al., 2011) without
necessarily having to identify every single species (Singh et al., 2015;
Anderson, 2018). Statistical methods like partial least squares regres-
sion (PLSR) yield coefficient spectra that can serve as proxies, com-
bining biochemical and structural traits to indicate plant functional
diversity (Kokaly et al., 2009; Schweiger et al., 2017). Remote sensing

Table 1
Examples of diversity estimation through habitat mapping, showing target ecosystems, sensors and platforms, specific methods used, and references.

Ecosystem & location Sensor or Platform Methods Reference

Grassland and deciduous woodland (Scotland) Landsat Unsupervised classification (Austin et al., 1996)
Grassland and deciduous woodland (Great Britain) Landsat Classification (Griffiths and Lee, 2000)
Greater Yellowstone Ecosystem (USA) SPOT Classification (Saveraid et al., 2001)
Pan Canada AVHRR, SPOT Classification by Canada Centre for Remote Sensing and

Canadian Forest Service
(Kerr et al., 2001)

Boreal agricultural landscape (Finland Landsat Supervised classification (Luoto et al., 2002)
Great Basin (USA) Landsat Maximum and heterogeneity of productivity (Bailey et al., 2004)
Great Britain AVHRR NDVI, temperature (Foody, 2005)
Pine/aspen forest (South Dakota, USA) LiDAR,

IKONOS
Vegetation index (Clawges et al., 2008)

Evergreen forest, transitional between lowland rain forest and
montane forest (Uganda)

Landsat, Quickbird NDVI, PCA (Stickler and Southworth,
2008)

Northern boreal forest (Finland) Landsat NDVI and local greenness models (Parviainen et al., 2009)
Coastal plain (Carolina, USA) Landsat, MODIS Mean NDVI - productivity (Costanza et al., 2011)

Table 2
Examples of species or functional types mapping with remote sensing.

Ecosystem & location Sensor or platform Methods Reference

California Chaparral (California, USA) AVIRIS Endmember spectral mixture analysis (classification) (Roberts et al., 1998)
Forest tree species in urban area AVIRIS Spectral mixture analysis (Classification) (Xiao et al., 2004)
Invasive forest species (Hawaii, USA) AVIRIS PLSR (Asner et al., 2008b)
Wetland (California, USA) PROBE Classification (Zomer et al., 2009)
Tundra (Alaska, USA) Hyperion Discriminant analysis (Huemmrich et al., 2013)
Mediterranean type ecosystem (California, USA) CAO-AToMS PLSR (Dahlin et al., 2013)
Invasive species urban area (British Columbia, Canada) CASI Spectral angle mapper classification (Chance et al., 2016)
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has been applied to map plant functional diversity through plant
functional traits at both leaf scale (Asner and Martin, 2008; Serbin
et al., 2014; Schweiger et al., 2018) and canopy scale (Asner et al.,
2015; Singh et al., 2015; Schweiger et al., 2017) (Table 3).

High variability in plant traits within functional groups (Violle
et al., 2012), which might be due to difference in soil conditions, mi-
croclimate, hydrology, topography, can introduce uncertainties in plant
functional diversity estimation using remote sensing (Dahlin et al.,
2013; Schweiger et al., 2017). Similarly, seasonal change in plant traits
due to leaf age and ontogeny can further confound trait detection
(Chavana-Bryant et al., 2017). Mapping plant functional traits (PFTs)
using remote sensing can also be sensitive to vegetation percentage
cover, since optical signals can be confounded by soil reflectance in
gaps between canopies and this can become a major problem for eco-
systems with low vegetation cover (Homolová et al., 2013) and for
sensors lacking sufficient spatial resolution (Anderson, 2018). Despite
these challenges, a recent review on imaging spectroscopy of forest
chemical traits revealed the potential of applying remote sensing to
monitor vegetation functional diversity (Hill et al., 2019).

3.4. Assessing diversity directly through spectral diversity

The spectral variation hypothesis (SVH) (Palmer et al., 2000, 2002),
relates the spectral heterogeneity or variability (the spatial variability
of remote sensed signal) to environmental heterogeneity, providing a
proxy of species diversity. This hypothesis has been reviewed by
(Rocchini et al., 2010) who concluded that the performance of this
approach depends on instrument characteristics, target vegetation
types, and metrics derived from remote sensing data (Schmidtlein and
Fassnacht, 2017; Rocchini et al., 2018).

“Spectral diversity”, sometimes called “optical diversity” (Ustin and
Gamon, 2010), indicates variation in spectral patterns detected by op-
tical remote sensing, which can in itself be related to species diversity,
functional diversity, and genetic diversity. The spectral (optical) di-
versity hypothesis links ecological resource theory to fundamental
physical principles to provide a rapid and accurate approach to measure
biodiversity via optical patterns (Ustin and Gamon, 2010). Optical type
is regarded not only as an indicator of plant physiological and bio-
chemical properties but also as a fundamental vegetation property,
resulting from “ecological rules” driven by strategies of resource allo-
cation. Instead of mapping species per se, spectral diversity typically
detects spectral patterns related to functional and structural properties,
which vary among species or functional groups (“optical types”)
(Gamon et al., 1997; Ustin and Gamon, 2010). The underlying reason is
that phylogenetic differences and resource limitations (e.g., light,
water, and nutrients) affect plant growth and leaf traits (e.g. carbon and
nitrogen composition, pigment or water content, dry mass and struc-
tural parameters such as lignin), canopy structure (e.g. leaf area and
leaf angle distribution) and phenology.

Many remote sensing indices based on spectral patterns have been
proposed to assess biodiversity (Table 4). In this context, an “index”
represents an abstract, statistical metric derived from spectral patterns,
representing either the information content of a set of spectra or the

number of kinds of spectra, as opposed to the more traditional concept
of a “vegetation index,” although such traditional indices also carry
considerable information content and can be used to infer biodiversity
(Gould, 2000; Fairbanks and McGwire, 2004; Gillespie, 2005; Levin
et al., 2007). We suggest that spectral diversity indices can be grouped
into three major categories: 1) metrics based on variation in vegetation
indices, 2) metrics based on information theory (e.g. spectral entropy);
and 3) metrics based on spectral species (Fig. 2).

The mean and variance of specific wavebands or traditional vege-
tation reflectance indices have been used to estimate biodiversity
(Gould, 2000; Gillespie, 2005; Carlson et al., 2007). A classic example is
the Normalized Difference Vegetation Index (NDVI), which often scales
with species richness (e.g. (Gillespie, 2005; Wang et al., 2016b)), in part
due to the well-known link between productivity and biodiversity
(Tilman et al., 2001; Zhang et al., 2012; Oehri et al., 2017).

Spectral diversity can also be related to plant diversity by conden-
sing spectral information into a number of statistical metrics of varia-
bility or information content. This category of full-spectral metrics in-
cludes the coefficient of variation (CV) of spectral reflectance across
space (Wang et al., 2016a), spectral angle mapper (SAM) (Zhang et al.,
2006), convex hull area or volume (Gholizadeh et al., 2018), or the
distance from the spectral centroid (Palmer et al., 2002). Alternatively,
these indices can be calculated based on patterns in principal compo-
nent space that compact spectral information and remove noise and
band collinearity. Examples include the distance from the centroid in
principal component space (Rocchini, 2007; Möckel et al., 2016) and
convex hull volume in principal component space (Dahlin, 2016). All of
these metrics provide information on the “dimensionality” of a dataset
for a given area, which can then be related to the number of species
present in that area. It is worth noting that several of these spectral
diversity metrics can be confounded by illumination conditions and
optical properties of background materials, since optical properties of
different backgrounds, such as soil and litter, can increase the image
heterogeneity that captured by the information based spectral diversity
metrics (Gholizadeh et al., 2018; Hakkenberg et al., 2018; Wang et al.,
2018b) (Table 4).

An alternative approach categorizes spectra according to a distinct
set of types or “spectral species.” Here, we expand the term ‘spectral
species’ (Féret and Asner, 2014) to a broader scope that includes a
classification, either unsupervised classification (Féret and Asner, 2014)
or supervised classification (Schäfer et al., 2016; Wang et al., 2018b), to
remotely sensed images and estimated biodiversity using spectral types
rather than actual species. In this case, spectral species are considered
proxies or analogues for biological species, and spatial variation in
spectral species can be used to infer species richness or other metrics of
α diversity (diversity at local scales), and over larger areas, β diversity
(variability in species composition among sites) (Whittaker, 1960;
1972). Species-based spectral diversity metrics may be less sensitive to
soil background than the information content-based metrics (Wang
et al., 2018b) because different backgrounds, which are often spectrally
unique, can be accurately classified given high spatial resolution (Roth
et al., 2015; Gholizadeh et al., 2018). However, species-based metrics
are of limited value for characterizing canopy with mixtures of several

Table 3
Examples of estimating functional diversity through plant functional traits.

Ecosystem & location Sensor & Platform Methods Reference

Tropical forest (Australia) Leaf reflectance (ASD) PLSR (Asner and Martin, 2008)
Raised bog and minerotrophic fen complex (Germany) HyMap PLSR (Schmidtlein et al., 2012)
Mediterranean type ecosystem (California, USA) CAO-AToMS PLSR (Dahlin et al., 2013)
Natural forest (north central and north eastern USA) Leaf reflectance (ASD) PLSR (Serbin et al., 2014)
Natural forest (Northeast USA) AVIRIS PLSR (Singh et al., 2015)
Andes-to-Amazon CAO-AToMS PLSR (Asner et al., 2015)
Grassland (Swiss) APEX PLSR (Schweiger et al., 2017)
Grassland (Minnesota, USA) Leaf reflectance and ground (Headwall) PLSR (Schweiger et al., 2018)
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species when the pixel size of the data cannot support the identification
of individual plant (Somers and Asner, 2014; Fassnacht et al., 2016).
For this reason, data involving coarse pixels (e.g. typical global satellite
data) are generally not suitable for this method (Schmidtlein and
Sassin, 2004; Fassnacht et al., 2016).

The spectral diversity - biodiversity relationship can be sensitive to
vegetation community composition (e.g., species richness, evenness,
and composition), particular sampling methods, and spectral diversity
metrics (Gholizadeh et al., 2018; Wang et al., 2018b). Several studies
demonstrate that species richness and evenness together can influence
spectral diversity (Rocchini et al., 2010; Wang et al., 2018a, 2018b).
Adding species evenness incorporates additional information on stand
composition that affects spectral variation and, as a result, combining
species richness and evenness typically yields a stronger relationship
between spectral diversity and biodiversity relative to either diversity
measure alone. Species identity substantially affects both categories of
spectral diversity metrics (information content-based and spectral spe-
cies-based), as species with large intra-specific variation in spectral
reflectance can also influence spectral diversity-biodiversity relation-
ships (Fig. 3), sometimes complicating the estimation of true diversity
(Dahlin et al., 2013; Peña et al., 2013; Roth et al., 2015; Wang et al.,
2018b).

Despite the challenges mentioned above, spectral diversity metrics
are emerging as a powerful set of tools for assessing plant biodiversity,
particularly with the advent of field spectrometers and imaging spec-
trometers from proximal and airborne platforms. New developments in
this area, including the advent of UAVs, promise further advances,
particularly as the spectral dimensionality expands. These emerging
methods provide rich alternatives to satellites for local and regional
biodiversity assessment and allow explicit studies of the biodiversity-
spectral diversity relationships at multiple scales, as further discussed
below.

4. Scale in remote sensing of biodiversity

4.1. Spatial scale

The spatial scale dependence of patterns are central topics in both
ecology (Levin, 1992; Costanza and Maxwell, 1994) and remote sensing
(Woodcock and Strahler, 1987). In ecology, the concept of spatial scale

defines the grain size and spatial extent at which a variety of ecological
processes occur in a landscape (Turner et al., 1989), and can also apply
to our sampling terminology. In remote sensing, spatial scale refers to
the resolution (pixel size, determined by sensor technology, sampling
platform, and flight characteristics) and extent (the total area mea-
sured). Increasing the grain size changes the level of observation, and
includes more objects e.g., leaves, branches, multiple crowns and
multiple species, decreasing the accuracy of vegetation discrimination
when pixel size is larger than the target size (Roberts et al., 2004), and
leading to information loss by applying spatial smoothing to the data
(O'Neill and King, 1998). Explicit scaling studies in remote sensing of
biodiversity are challenging and relatively rare because most cam-
paigns collect data at a single resolution and extent pre-determined by
the engineering requirements of the instrument and sampling platform.

At coarse scales (several meters to hundreds of meters), airborne
(Oldeland et al., 2010; Hakkenberg et al., 2018) and satellite images
(Rocchini, 2007) have sometimes been used to evaluate the effects of
spatial scale on spectral diversity-biodiversity relationship. Results
generally indicate that the power of detecting biodiversity through
spectral variability varies with spatial scales (Hakkenberg et al., 2018)
and pixel size (Rocchini, 2007). Not surprisingly, it has also been re-
ported that the spectral variability hypothesis failed at the landscape
scale when MODIS data (pixel size: 0.5 km by 0.5 km) was related to
vascular plant species richness in Germany (Schmidtlein and Fassnacht,
2017). Therefore, it appears that most conventional satellite pixels are
too coarse to directly assess α diversity, and care should be taken when
using remote sensing product to assess biodiversity at these relatively
large pixel sizes, although such large scales may be effective when used
with other approaches (e.g. broad-scale habitat mapping, described
above).

Recently, imaging spectroscopy has been applied to test the spatial
scale dependence of spectral diversity-biodiversity relationship in ex-
perimental grassland plots at a range of fine scales (1 mm2 to several
square meters) (Lopatin et al., 2017; Wang et al., 2018a; Gholizadeh
et al., 2018, 2019). In these studies, the optical detectability of local
(alpha) biodiversity greatly declined with decreasing spatial resolution
(Fig. 4) and the optimal pixel size for distinguishing α diversity ap-
proximates a spatial scale similar to the size of an individual plant leaf
or crown (pixel size < 1 cm2). In some studies, most information on α
diversity was lost by a 1m2 grain sizes, the pixel size of many airborne
imaging spectrometers (Wang et al., 2018a). In contrast to these small
experimental plots, other studies showed that spectral diversity metrics
calculated using airborne data at approximately 1 m2 scale correlated
well with biodiversity metrics in another restored prairie experiment
(Gholizadeh et al., 2019) and a natural prairie ecosystem (Wang et al.,
2016a). In these latter cases, the large extent captured in airborne
sampling in these landscapes may have introduced higher-level di-
versity effects (e.g., β diversity), which might be missed in the smaller
experimental plots (Wang et al., 2018a; Gholizadeh et al., 2019). The
underlying reasons for such variation between sites, even within the
same biome, remain unclear, but point to the challenges of developing
operational approaches to remote sensing of local biodiversity that are
universally applicable.

Estimates of β diversity using remote sensing derive from (1) the
principle that landscapes with a larger variability in species composi-
tion have a larger difference in spectral properties, measured as vege-
tation indices (He et al., 2009) or the spectral similarity index (Somers
et al., 2015), or (2) the concept of spectral types by applying classifi-
cation methods to remote sensing data and calculating the Bray-Curtis
dissimilarity index (Bray and Curtis, 1957) based on species classified at
different sites (Baldeck and Asner, 2013; Féret and Asner, 2014). An
alternative approach (Hernández-Stefanoni et al., 2012) incorporated
the spatial dependence by applying a regression kriging procedure in
mapping β diversity in a tropical landscape in Yucatan Peninsula. Re-
mote sensing, especially airborne remote sensing, shows great potential
in β diversity estimation given the ability of providing spatially

Fig. 3. Within- and between-species spectral variation for six prairie grassland
species: Achillea millefolium L. (ACHMI), Andropogon gerardii Vitman (ANDGE),
Petalostemum villosum Nutt. (PETVI), Amorpha canescens Pursh (AMOCA),
Monarda fistulosa L.(MONFI), and Lupinus perennis L.(LUPPE). The large intra-
specific variation in Petalostemum villosum Nutt. confounded the spectral di-
versity-biodiversity relationship in this particular case. Reflectance data were
collected using an imaging spectrometer (E Series, Headwall Photonics Inc.,
Fitchburg, MA, USA) mounted on a tram system (Wang et al., 2018a). Axes are
the first and second principal components. Figure modified from (Wang et al.,
2018b).

R. Wang and J.A. Gamon Remote Sensing of Environment 231 (2019) 111218

7



continuous information over large areas (Rocchini et al., 2018).
Depending upon the sampling scale and metrics used (Tuomisto,

2010a, 2010b), β diversity can be confounded by α diversity and vice-
versa (Jost, 2007; Anderson et al., 2011). Consequently, a remaining
challenge in the remote sensing of biodiversity is clarifying the com-
bined and separate effects of α and β diversity on the sensor, since both
influence the optical signals detected and both can be scale dependent
(Gamon et al. in press). Since remote sensing cannot always perfectly
match the scale of individual organisms in field sampling and is char-
acterized instead by the operational scale of the sensor and platform, it
is often not clear that to what extent we are detecting α or β diversity,
or some combination of the two. It should be noted that effects of
spatial scale summarized here would most likely differ between vege-
tation types and biomes due to the different canopy sizes, but this topic
has not yet received much attention, with most studies of scale to date
focusing on a single vegetation type or biome. While direct detection of
α diversity via spectral diversity is clearly possible, the effects of sam-
pling scale must be carefully considered, and it is likely that high-re-
solution remote sensing methods (e.g. drones and aircraft) will be in-
strumental in developing these applications in the near future. Further
discussion of the scale dependence of the spectral diversity –

biodiversity relationship can be found in recent reviews (e.g. Anderson,
2018; Gamon et al., in press).

4.2. Spectral scale

Spectral resolution and range also affect the spectral diversity-bio-
diversity relationship (Rocchini, 2007; Wang et al., 2018a). Many sa-
tellite applications to date have focused on the NDVI related bands (red
and near infrared) (He and Zhang, 2009; Hernández-Stefanoni et al.,
2012). Besides NDVI bands, the Landsat short wave infrared band has
been reported to have strong association with species richness in a
tropical forest ecosystem (Hernandez-Stefanoni et al., 2009). In most
remote sensing of biodiversity studies, the spectral information has
been condensed into simple metrics (e.g., NDVI, CV or indices in the
principal component space). It is arguable that using full range spectra
including the shortwave infrared (400–2500 nm) adds information on
plant biochemical properties, e.g. leaf water content, pigment, nitrogen
content, and lignin (Asner and Martin, 2009). The effects of different
wavelengths on biodiversity detection warrant further investigation,
but most existing studies showed that more spectral bands are better
than fewer bands (Asner and Martin, 2009; Wang et al., 2018a).

Fig. 4. Different datasets for the same location (Cedar Creek Ecosystem Science Reserve, Minnesota, USA, including the BioDIV experiment at 45.4086° N, 93.2008°
W) illustrating scale dependence of remote sensing of biodiversity. Sampling at coarser scales leads to information loss seen as decreased spectral variation and, as a
consequence, decreases the accuracy of biodiversity estimation through spectral diversity. Data include satellite (a), proximal (b) and airborne (c) imagery and
spectra. The three-band satellite image (a) was taken by Sentinel 2-A, on June 21, 2016, and had the largest pixel size, the fewest bands, and the weakest ability to
detect diversity of all data shown here. By contrast, the proximal imagery (b) had the smallest pixel size, the most bands, and the greatest ability to distinguish
diversity levels. The dimension of the proximal remote sensed image (b) was 1000× 1000mm pixels (approx. 1× 1m), obtained by the Headwall E Series imaging
spectrometer on a tram system in summer 2016 (data are available from from NASA LPDAAC, doi: https://doi.org/10.5067/Community/Headwall/
HWHYPCCMN1MM.001). Airborne data (c) were intermediate in spatial scale (approx. 1m pixels), and collected with an imaging spectrometer (Aisa Eagle,
Specim, Oulu, Finland) operated by CALMIT, University of Nebraska-Lincoln, on July 22, 2016. Colored lines in the spectral plots show mean (black), standard
deviation (blue) and min/max (red) reflectance values for proximal (b) and airborne (c) imagery, with the spectral variation providing an indicator of spectral
diversity (Wang et al., 2018a, 2018b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.3. Temporal scale

Temporal effects on remote sensing of biodiversity have not re-
ceived as much attention as the spatial distribution of biodiversity due
to 1) limited knowledge of temporal changes in ecological communities
and 2) biodiversity data collection are time consuming and expensive so
that sampling campaigns are usually short-term (Magurran, 2008;
Magurran et al., 2010). Additional information about vegetation phe-
nology might be able to improve the performance of spectral diversity
metrics (Clark & Roberts, 2012). On the other hand, changing pheno-
logical state, e.g., due to leaf age (Chavana-Bryant et al., 2017), sea-
sonal adaptation (Wong and Gamon, 2015) and drought stress
(Cavender-Bares et al., 2016b) can also lead to spectral variability
within individual canopies as large as intra- and interspecific variations
in leaf morphological, biochemical and spectral traits and possibly
confound the spectral diversity - biodiversity relationship. Studies have
also shown that the biodiversity-productivity relationship can vary
across the growing season (Wang et al., 2016b) and proper timing can
to some extent compensate for the lower spectral resolution in terms of
mapping invasive species that have different phenological properties,
e.g., flowering phase (Müllerová et al., 2017b). Consequently, under-
standing the temporal changes of spectral diversity is also critical to
remote sensing of biodiversity and is an area needing further research.

5. Surrogacy hypothesis

Despite the limitations of spatial scale described above, remotely
sensed indices of spectral diversity often display significant correlations
with independent metrics of α and β diversity, even when the pixel
sizes appear to be too coarse for direct assessment of individual plant
crowns. One reason why these methods work may be due to the fact
that spectral diversity ties to various types of biodiversity through
physical and ecological rules, leading to the concept of “surrogacy.”

Many studies of biodiversity depend upon assumptions of surrogacy,
where biodiversity of one kind or dimension relates to biodiversity of
another kind or dimension. The classical surrogacy hypothesis has three
main aspects: 1) high species richness in one taxon is related to high
richness in others (cross-taxon surrogacy), 2) high genetic or family
richness is related to high species richness (within-taxon surrogacy),
and 3) high environmental e.g., temperature or topographical, diversity
is related to high species richness (environmental surrogacy)
(Magurran, 2004). For example, macrolichens serve as a good indicator
of species richness of mosses, liverworts, and woody plants in the Indian
Garwhal Himalaya (Negi and Gadgil, 2002), family and genus-level
diversity metrics are reported to be very good indicators of species
diversities (Lee, 1997) and vegetation canopy diversity is highly cor-
related with total plant diversity in a forest landscape (Hakkenberg
et al., 2018).

Here we expand the original surrogacy hypothesis (Magurran,
2004) to explain how variations in spectral information can encompass
several ‘dimensions’ of diversity (phylogenetic, taxonomic and func-
tional diversity), even when they are not all equally visible (Gamon,
2008). Presumably, species richness is often related to functional bio-
diversity, which can be captured by species and organismal traits that
affect one or more aspects of ecosystem functioning (Tilman, 2001;
Petchey and Gaston, 2002; Cadotte et al., 2011). Therefore, a more
diverse ecosystem should have a greater variety of functional beha-
viours as shown by plant traits that reflect different biochemical con-
tent, leaf structure, and physiological function. This variation of plant
traits can affect the optical properties of plants and lead to spectral
detectable features. Spectral (optical) diversity, which has been related
to plant functional traits (PFTs), might be able to provide more in-
formation than field PFT measurements (Schweiger et al., 2018).

As further examples of surrogacy, spectral diversity can provide an
indirect indicator of phylogenetic diversity (Cavender-Bares et al.,
2016b; Schweiger et al., 2018). Leaf spectra are associated with

phylogenetic similarity among species and genetically-based pheno-
typic differences among populations, species and clades can be differ-
entiated even when environmental heterogeneity is present (Cavender-
Bares et al., 2016b). Plant canopy traits can indicate hidden below-
ground diversity or composition through biogeochemical cycles, and
canopy spectra can sometimes discriminate aspen genets more accu-
rately than canopy chemistry or below-ground traits (Madritch et al.,
2014). These examples suggest a hierarchical organization of biodi-
versity that facilitates the remote detection of different levels and as-
pects of diversity, often in surprising ways, even when we lack direct
methods of detection, and this may explain some of the power of remote
sensing to detect different “dimensions” of biodiversity. Further work
on this concept would likely clarify the basic principles behind the plant
phylogenetic - functional- spectral relationship that could provide fur-
ther insights into the remote sensing of biodiversity.

6. A global biodiversity monitoring system (GBMS)

Recently, there have been several calls for a global biodiversity
monitoring system incorporating satellite data (Jetz et al., 2016;
Proença et al., 2017; National Academies of Sciences, 2018). Here we
examine the potential of such a system and provide a few caveats based
on our current state of knowledge. The ideal global biodiversity mon-
itoring system would include observations at different scales and ad-
dress different “dimensions” of biodiversity by assessing morphological
and structural features of the target ecosystem including remote sensing
measurements (satellites and aircrafts, drones and other proximal sen-
sors), field diversity sampling, and lab work (e.g., genomics) (Turner,
2014). We would expect that the global coverage that comes from
continuous satellite measurements could provide wide context and
measures of environmental drivers at coarse scales, while the specific
but critical details could be provided by “drilling into” particular areas
of interest with a combination of fine scale remote sensing observations
and fieldwork (Gamon et al. in press). By connecting local and regional
biodiversity measurements, biodiversity monitoring system can fill gaps
in the current biodiversity observation and enhance efforts to conserve
the Earth's biodiversity.

6.1. Tools for proximal remote sensing

Novel ground-level remote sensing platforms have been introduced
to ecological studies and have transformed ecological research
(Anderson and Gaston, 2013). For example, newly automated and low-
cost sensors allow great flexibility to accomplish continuously sampling
that can be used to monitor plant phenology (Gamon et al., 2015; Yang
et al., 2017), which can provide phenological information related to
biodiversity estimation. Remote sensors, such as cameras or hyper-
spectral and LiDAR sensors (Sankey et al., 2017), carried by unmanned
aerial vehicles (UAVs) have been successfully used in mapping invasive
species (Wan et al., 2014; Michez et al., 2016; Müllerová et al., 2017a)
and distinguishing vegetation types (Ahmed et al., 2017; Komárek
et al., 2018). Other methods (e.g. sound recording and radar) can also
be integrated with optical remote sensing as part of a monitoring
system, and these modern technologies are beginning to provide
quantitative and detailed information about our Earth and expanding
our abilities to detect the changes in Earth properties and processes
(Turner, 2014).

6.2. Advancing Earth observation technologies

Most biodiversity studies using satellite remote sensing have been
limited to data with a few bands and often at coarse spatial scales, al-
though some early work has shown that hyperspectral satellite data can
be used to distinguish functionally distinct vegetation types
(Huemmrich et al., 2013). Incorporating hyperspectral satellite data in
the future might enable us to better utilize the temporal and spectral
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information in biodiversity estimation than by using broad band ve-
getation indices available from current platforms. Proposed hyper-
spectral satellite missions, such as HISUI (Iwasaki et al., 2011), HYPXIM
(Michel et al., 2011), PRISMA (Stefano et al., 2013), EnMAP (Guanter
et al., 2015), and HyspIRI (Lee et al., 2015), currently renamed Surface
Biology and Geology (SBG) (The National Academies of Sciences,
Engineering, and Medicine, 2018) would provide repeat coverage
spanning a wide range of the solar spectrum (300–2500 nm) at fine
spatial resolution. For maximal effectiveness a “biodiversity monitoring
system” would also include regional and local monitoring (e.g. ground
and airborne sensing) nested within global monitoring (e.g. global sa-
tellites with repeat coverage), and suitable data systems for storing,
analyzing and sharing the vast amounts of data collected.

6.3. Sharing data and tools between remote sensing and ecology
communities

The potential for collaboration between remote sensing and ecolo-
gical communities has been discussed for a long time (Stoms and Estes,
1993; Kerr and Ostrovsky, 2003; Turner et al., 2003; de Araujo Barbosa
et al., 2015). Yet, these two communities do not always coordinate and
much work remains to be done to integrate remote sensing tools into
ecological studies (Pettorelli et al., 2014). Data dispersion and acces-
sibility rapidly becomes compounded by the large volumes of spectral
and image data associated with remote sensing and data affordability
and access limited the usage of remote sensing products (Turner et al.,
2015). Although agencies and archives like United States Geological
Survey (USGS), National Aeronautics and Space Administration
(NASA), Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC), Land Processes Distributed Active Archive
Center (LP DAAC), and European Space Agency (ESA) provide open
access to some public satellite products e.g., Landsat, MODIS and
Sentinel, commercial satellite products are still very expensive, and
accessible archival solutions for large datasets collected by individual
research programs remain largely unresolved. Furthermore, some re-
mote sensing products are too big or complicated for easy usage, in part
due to the shortage of software tools (Pettoretti et al., 2014; Cavender-
Bares et al., 2017). There is a need for better sharing tools e.g., open-
source software and algorithms, along with public databases, allowing
ecologists to obtain and process remote sensing images for biodiversity
information.

6.4. Citizen science

Citizen science (aka community science) has grown immensely and
been regarded as a tool for studies in ecology, conservation biology, and
environmental science over the last 10 years (Dickinson et al., 2010;
McKinley et al., 2017). Citizen science can provide data spanning large
spatial or temporal extents that can usually be laborious and costly
(Theobald et al., 2015; Turrini et al., 2018). For example, a study es-
timated that species monitoring currently done by volunteers in France
would cost 0.6 million to 4 million Euros per year if professionals were
to be hired (Levrel et al., 2010). These data can either complement
remote sensing measurements (Mihalik et al., 2012) or serve as cali-
bration and validation data for remote sensing data (Chandler et al.,
2017). With the advent of low price drone and other sensors (LiDAR),
and advanced computational capacities providing machine learning
algorithms for imaging processing and pattern recognition (Krizhevsky
et al., 2012), citizen science holds a great potential for future diversity
monitoring.

6.5. Integration of remote sensing and environmental DNA (eDNA)

Environmental DNA indicates ‘obtaining information of species,
populations, and communities by retrieving DNA from environmental
samples’ (Thomsen and Willerslev, 2015). It holds the potential to

provide a unique way to monitor biodiversity at different taxonomy
scales and has been applied in sediments and contemporary terrestrial
surface soil and aquatic ecosystems (Thomsen and Willerslev, 2015).
Combing eDNA and remote sensing can provide complementary in-
formation about the ecosystem: eDNA can assess diversity of organisms
that cannot be directly estimated with remote sensing, such as microbes
or animals, while remote sensing can deliver information on ecosystem
variables such as productivity and phenology that are not achievable
from eDNA (Yamasaki et al., 2017). The use of eDNA in diversity stu-
dies is greatly expanding (e.g. Madritch et al., 2014; Bush et al., 2017),
and combining eDNA and remote sensing holds great potential in global
biodiversity monitoring at vastly different scales (Turner, 2014).

7. Conclusions

Biodiversity loss is a form of “global change” with consequences
that may exceed those of climate change in generating unpredictable
perturbations to the Earth system (Rockström et al., 2009) with po-
tentially unacceptable consequences for human wellbeing. Given the
shortfall in biodiversity information (e.g. Jetz et al., 2016), the pro-
jected decline in biodiversity in the Anthropocene (Crutzen, 2002;
Pereira et al., 2010a) and the socioeconomic importance of biodiversity
(Mace et al., 2012), better methods of assessing biodiversity over large
areas are urgently needed.

In this review, we summarized the pros and cons of different remote
sensing methods in terrestrial plant diversity detection over the last
three decades and proposed that spectral (optical) diversity can be re-
lated to diversity in different dimensions (phylogenetic, taxonomic, and
functional diversity) in part by expanding the concept of surrogacy. We
also point out two major gaps in our current understanding of remote
sensing of plant diversity studies that deserve further work in the fu-
ture: the underlying drivers of phylogenetic – functional – spectral re-
lationships and the scale dependence of the spectral (optical) diversity –
biodiversity relationship.

It might be still too early to say that remote sensing has started a
new paradigm of biodiversity research, but there is little doubt that
remote sensing does offer novel perspectives on global diversity mon-
itoring and can contribute to future biodiversity conservation. To make
full use of this potential, we need to develop effective collaborations
between experts in remote sensing and experts in biodiversity mon-
itoring and conservation (Pettorelli et al., 2014). To be truly effective at
a policy level, emerging remote sensing methods will also need to be
better integrated with ecological, sociological, political and economic
aspects of biodiversity (e.g. Mace et al., 2012). By enhancing co-
operation from multidisciplinary scientists, policy makers, natural re-
source managers, economists and others, we can improve global bio-
diversity estimation and conservation.
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