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Abstract

Issue: Geodiversity (i.e., the variation in Earth's abiotic processes and features) has
strong effects on biodiversity patterns. However, major gaps remain in our under-
standing of how relationships between biodiversity and geodiversity vary over space
and time. Biodiversity data are globally sparse and concentrated in particular regions.
In contrast, many forms of geodiversity can be measured continuously across the
globe with satellite remote sensing. Satellite remote sensing directly measures envi-
ronmental variables with grain sizes as small as tens of metres and can therefore
elucidate biodiversity-geodiversity relationships across scales.

Evidence: We show how one important geodiversity variable, elevation, relates to
alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use el-
evation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest
Inventory and Analysis plots to quantify spatial scaling relationships between biodi-
versity and geodiversity with generalized linear models (for alpha and gamma diver-
sity) and beta regression (for beta diversity) across five spatial grains ranging from 5
to 100 km. We illustrate different relationships depending on the form of diversity;
beta and gamma diversity show the strongest relationship with variation in

elevation.
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1 | INTRODUCTION

The Earth is experiencing unprecedented global change, and spe-
cies face uncertain fates. Global changes, including climate change,
can cause species to shift their geographical ranges, resulting in the
(dis)assembly of communities and novel or no-analogue communi-
ties (Williams & Jackson, 2007) and ecosystems (Hobbs, Higgs, &
Harris, 2009). Shifts in species ranges present logistical and ethical
challenges for conservation prioritization (McLachlan, Hellmann, &
Schwartz, 2007). In response, conservationists have proposed fo-
cusing on “geodiversity” as a means to preserve biodiversity, because
areas with high geodiversity should harbour future biodiversity even
with changing species composition (Gill et al., 2015; Lawler et al.,
2015; Shaffer, 2015). This aptly named “conserving nature's stage”
approach has been adopted by The Nature Conservancy to prioritize
conservation of climate-resilient sites (Beier & Brost, 2010; Shaffer,
2015). However, there are major knowledge gaps in our understand-
ing and ability to predict how different forms of geodiversity influ-
ence biodiversity patterns across spatial and temporal scales (Figure
1a), and in adopting geodiversity data sources that span these scales
(Figure 1b). Such knowledge is essential for effective conservation
and policy, because many ecological processes and patterns are
scale dependent (Levin, 1992; McGill, 2010).

Here, we present an approach to identify relationships between
biodiversity and geodiversity across scales, provide results for a case
study with alpha, beta and gamma tree diversity across a large re-
gion of the USA, and identify a suite of global and near-global satel-
lite remotely sensed geodiversity data sources spanning spatial and

temporal scales.

2 | FORMS OF GEODIVERSITY

A range of definitions of geodiversity exist; some include climate,
whereas others explicitly exclude it (Gray, 2013; Lawler et al.,
2015; Parks & Mulligan, 2010; Tukiainen, Bailey, Field, Kangas, &
Hjort, 2017). In addition, geodiversity has commonly been treated

remote sensing are well

Conclusion: With the onset of climate change, it is more important than ever to exam-
ine geodiversity for its potential to foster biodiversity. Widely available satellite re-
motely sensed geodiversity data offer an important and expanding suite of
measurements for understanding and predicting changes in different forms of biodi-

versity across scales. Interdisciplinary research teams spanning biodiversity, geosci-

poised to advance understanding of

biodiversity-geodiversity relationships across scales and guide the conservation of

alpha diversity, beta diversity, biodiversity, elevation, gamma diversity, geodiversity, remote

sensing, satellite, scale dependence, trees

categorically by thematically mapping climate, geology, geomorphol-
ogy and soil features into land units (Anderson et al., 2015; Gray,
2013). To enable the use of continuous metrics in addition to ordinal
and categorical ones, and to evaluate scaling relationships between
biodiversity and geodiversity, we adopt the following definition of
geodiversity: the set of abiotic processes and features of Earth's crit-
ical zone (lithosphere, atmosphere, hydrosphere and cryosphere).
This comprehensive definition is inclusive of climate and reflects the
fact that Earth's fluid and solid components have strong influences
on each other (Jenny, 1994).

Like biodiversity, geodiversity can be described in different
forms: as heterogeneity or variability within a site; as spatial turn-
over or the difference between sites; and as total variability across
all sites. Unlike ground-based biodiversity observations, geodiver-
sity can be spatially continuous when measured via satellite remote
sensing. Some forms of geodiversity are categorical (e.g., number of
distinct features) and can be summarized with measures of diversity,
whereas heterogeneity in continuous variables (e.g., elevation) can
be determined using various metrics, such as standard deviation,
kurtosis or texture measurements. Scaling relationships in geodiver-
sity are common. For example, variation in soil moisture decreases
with sampling extent (Choi, Jacobs, & Cosh, 2007), and the hydrau-
lic geometry of stream channels (Leopold & Maddock, 1953) and
river networks dictates how variability in slope changes with extent
(Tarboton, Bras, & Rodriguez-Iturbe, 1989).

Historically, it has been difficult to obtain reliable, consistent
and continuous geodiversity data at regional or global scales. For
this reason, spatial models of species distributions and biodiver-
sity have traditionally used topographic data as a proxy variable
for climatic or environmental variance, often combining them
with gridded data interpolated from weather stations (Waltari,
Schroeder, McDonald, Anderson, & Carnaval, 2014). However,
recent work highlighted the wide range of methods and accu-
racies among products, showing that there is no “best” product
and that higher-resolution products are not necessarily more
accurate (Behnke et al., 2016). Recent satellite missions, such as
Landsat 8, Sentinel-1, Sentinel-2 and ICESat-2, enable accurate
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FIGURE 1 Geodiversity across scales. (a) Examples of
geodiversity variables and the spatial and temporal extents at
which they vary. Geodiversity encompasses abiotic components
of the Earth's critical zone, specifically the lithosphere (brown),
atmosphere (red), hydrosphere (blue) and cryosphere (grey) (Natural
Resources Council, 2001; Parks & Mulligan, 2010). In general,
surficial geodiversity at regional to global scales remains constant
over short time-frames (e.g., days to years), whereas local-scale
surficial geodiversity (e.g., micro-topography and the physical

and chemical properties of soil) vary over short to intermediate
time-frames (e.g., years to centuries). (b) Examples of satellite
remotely sensed geodiversity (black). As point data, biodiversity
data (green) are often high resolution, but are lacking in spatial
and temporal extent. Networked sites, such as the National
Ecological Observatory Network (NEON) and Long-Term Ecological
Research (LTER) sites, provide a combination of biodiversity and
geodiversity (dark green). See an interactive table with a more
complete list of NASA missions and products for geodiversity

at: https://bioxgeo.github.io/bioXgeo_ProductsTable/, also in
Suporting Information Appendix A. Additional abbreviations are
as follows: BBS = Breeding Bird Survey; FIA = forest inventory

and analysis; G-LiHT = Goddard's LiDAR hyperspectral thermal
imager; GPM = global precipitation measurement mission; GRACE
= gravity recovery and climate experiment; MODIS = MODerate
resolution imaging spectroradiometer; SMAP = soil moisture
active passive; SRTM = shuttle radar topography mission; TRMM =
tropical rainfall measuring mission
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and continuous acquisition of global geodiversity data in space
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and time (Figure 1b; Supporting Information Appendix A). The
resulting data products include surface temperature, snow cover,
clouds, topography and more. In addition, reanalysis products,
such as MERRAclim (Vega, Pertierra, & Olalla-Tarraga, 2017), com-
bine satellite Earth observations (from 1979 to the present) to de-
velop global models of geodiversity variables with coarse spatial
resolution but high temporal resolution at temporally and spatially
consistent scales. Although satellite-derived estimates of tem-
perature and rainfall have limitations (e.g., Maggioni, Meyers, &
Robinson, 2016; Wan, Zhang, Zhang, & Li, 2004), their coverage is
global or near global. For other geodiversity variables, such as soil
moisture and groundwater (see Supporting Information Appendix
A), no station-derived global gridded products exist; thus, satellite
remote sensing provides a needed data source. The gridded sta-
tion dataset perhaps most widely used by ecologists is WorldClim
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). The newly re-
leased WorldClim-2 dataset (Fick & Hijmans, 2017) now includes
MODIS land surface temperature (LST) and cloud cover data, high-

lighting the importance of satellite remotely sensed data.

3 | SATELLITE REMOTELY SENSED
GEODIVERSITY DATA ARE CRUCIAL FOR
UNDERSTANDING PATTERNS OF BIODIVERSITY

Geodiversity affects patterns of biodiversity directly and indirectly.
Environmental conditions map directly to individuals’ physiological
limits, whereas topographic complexity, habitat patch arrangement
and geophysical feature configuration are associated with niche di-
versity. Physical barriers to movement and the persistence of land-
scape features can also affect biodiversity indirectly by enabling or
restricting biotic interactions among species (Zarnetske et al., 2017)
and affecting dispersal ability (Urban, Zarnetske, & Skelly, 2013).
Components of geodiversity provide resources for species, including
energy, water, nutrients and space (Parks & Mulligan, 2010).
Without satellite remotely sensed geodiversity data, it can be
difficult to detect drivers of biodiversity patterns across large ex-
tents. With satellite remote sensing, spatially continuous, direct and
independent measures of climate and elevation provide a means to
identify when and where climate and elevation covary, enabling bio-
diversity scientists to ask persistent questions about the drivers of
patterns of biodiversity at larger extents, with finer resolutions and

at multiple scales.

4 | KNOWLEDGE GAP: GEODIVERSITY
AND BIODIVERSITY ACROSS SPATIAL
SCALES

Despite their inherent coupling and individual scale dependence
(Rahbek, 2005; Willig, Kaufman, & Stevens, 2003), biodiversity and
geodiversity scaling relationships across taxa, regions and diversity
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portant insights into scaling relationships between the taxonomic
alpha diversity of alien vascular plant species and the geodiversity
of landforms from geological surveys and airborne remote sensing
across Great Britain (Bailey, Boyd, Hjort, Lavers, & Field, 2017). In
that study, landform diversity explained the most variation in alpha
diversity at smaller spatial scales, whereas climate became more im-
portant at larger spatial scales. Yet biodiversity can be calculated in
several forms: as alpha (within-site), beta (turnover between sites, or
the ratio of within-site to across all sites) or gamma diversity (total
across all sites). Further investigations could reveal how consistent
biodiversity-geodiversity relationships are across species, regions
and forms of biodiversity. Both the data and the computational
tools are now becoming available to address these relationships
(Supporting Information Appendix A). Here we ask: how do the re-
lationships between geodiversity and different forms of biodiversity
change across spatial scale? In Box 1 and associated Supporting
Information, we present an approach to identify these biodiversity-
geodiversity scaling relationships, illustrated with a case study of
trees and elevation spanning 16.5° latitude in the western USA.

Globally, the highest levels of species richness are likely to be
observed where high geodiversity, such as topographic heterogene-
ity, coincides with relatively productive and stable climatic regimes,
such as the tropical Andes (Buckley & Jetz, 2008; Kreft & Jetz,
2007; Rahbek & Graves, 2001). One explanation for this pattern is
that warmer, stable climates promote higher biodiversity (Hawkins,
Porter, & Felizola Diniz-Filho, 2003), and biodiversity promotes pro-
ductivity and system sustainability (Tilman, Wedin, & Knops, 1996),
even in fluctuating environments (Yachi & Loreau, 1999) and across
heterogeneous landscapes (Oehri, Schmid, Schaepman-Strub, &
Niklaus, 2017). In addition, geodiverse regions, such as those that
are tectonically active, exhibit high species richness and spatial turn-
over of species (Badgley et al., 2017). Such heterogeneous environ-
ments provide refuge habitat to support species persistence after
environmental change and can isolate populations, resulting in spe-
ciation events (Stein, Gerstner, & Kreft, 2014). Increased richness
in geodiverse areas may also occur because resource and habitat
partitioning allow more species to coexist. Greater environmental
heterogeneity at a given site is often correlated with higher species
richness, but this relationship depends on the scale at which a spe-
cies perceives the heterogeneity (Tews et al., 2004).

Although different species may exhibit different scaling relation-
ships with geodiversity, these relationships are likely to be driven
by common mechanisms at certain scales, regardless of taxonomic
group. At continental to global scales, broad gradients of biological
diversity result from interactions among climate, the degree of con-
nectedness among populations and the amount of time over which
evolutionary processes act (Forest et al., 2007). At these broad
scales, beta diversity among sampling units should have a strong
positive relationship with geodiversity because of differences in
biogeographical and evolutionary histories (Barton et al., 2013).
Regionally within a continent, variation in habitat complexity should
influence biodiversity further. At regional scales, alpha and beta

diversity should decline regardless of heterogeneity in geodiversity,
because fewer new species are added from the regional species pool
(Barton et al., 2013). At more local scales within an ecoregion, sto-
chastic processes yield large variability in species occurrence among
sites (Barton et al., 2013), resulting in increased variation in alpha
and beta diversity. At these local scales, geodiversity is likely to in-
teract with species’ life-history characteristics, biotic interactions
and dispersal to mediate species-specific occurrences (McGill, 2010;
Shmida & Wilson, 1985).

We expect the relationship between biodiversity and geodi-
versity to be stronger at broader extents where gamma diversity
or macro-scale richness is highest in both measures (MacArthur &
Wilson, 1967; Rosenzweig, 1995; Turner, 1989). We expect that of all
the forms of biodiversity, beta diversity will be linked most strongly
with heterogeneity in geodiversity, because variation in geodiver-
sity can lead to concomitant shifts in abiotic resource availability
that alter habitat types and drive species turnover (Ricklefs, 1977).
Biodiversity-geodiversity relationships are likely to be scale de-
pendent owing to varying influences of local community assembly
processes, such as dispersal limitation, biotic interactions and envi-

ronmental filtering (e.g., Tello et al., 2015).

BOX 1

Biodiversity-geodiversity scaling relationships in western
U.S. trees

We analysed spatial scaling relationships between geodi-
versity and different forms of tree biodiversity: alpha, beta
and gamma. For geodiversity, we focused on variation in
elevation because it is the most commonly used form of
geodiversity (Stein et al., 2014), and many geodiversity
variables are correlated with topography, especially at re-
gional scales (Hjort & Luoto, 2012). We note that numer-
ous geodiversity variables have been proposed (Gray,
2013; Parks & Mulligan, 2010), and investigation of their
scaling relationships with different facets of diversity (tax-
onomic, functional and phylogenetic) is a needed area of
research. Our approach provides a means to quantify such
relationships. Data sources included western U.S. (CA, OR
and WA) Forest Inventory and Analysis (FIA) plots, which
consist of four 7.2 m fixed-radius subplots in which all trees
>12.7 cm diameter at breast height are measured
(Bechtold & Patterson, 2005), and a 1 arc s (c. 30 m) digital
elevation model (DEM) from SRTM (NASA JPL, 2013;
Supporting Information Appendix B).

To investigate biodiversity-geodiversity scaling relation-
ships, we varied the grain size of analysis systematically. At
different radii (5, 10, 20, 50 and 100 km) centred on each of
the c. 16,000 FIA plots, we calculated tree taxonomic
Shannon diversity (effective species number) and the
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standard deviation of all elevation pixels. We calculated the
median abundance-weighted effective species number (Jost,
2006) of all plots falling within the radius, including the focal
plot (alpha), the mean abundance-weighted pairwise dissimi-
larity of all pairs of plots in the radius, including the focal plot
(beta), and the median abundance-weighted effective spe-
cies number of all plots in the radius as if they were a single
community (gamma). We used the total basal area of each
tree species in each plot as a measure of their abundance.
We discarded all plots within 100 km of the political borders
of the study region to avoid edge effects. To avoid pseudor-
eplication, we used an iterative search to generate a subsam-
ple of plots separated by > 100 km, yielding c. 20 plots per
subsample. We used generalized linear models (GLMs) for
alpha and gamma diversity (gamma distribution and log link),
and beta regression for beta diversity (Cribari-Neto & Zeileis,
2010), to relate the univariate diversity of all the focal plots
to the standard deviation of elevation. We assessed how
standardized slope coefficients changed with spatial grain
and computed confidence intervals by repeating the sub-
sampling procedure 100,000 times (Box Figure 1).

The effect of elevation variability on biodiversity varies

with scale and form of diversity

The relationship between topographic heterogeneity and
tree gamma and beta diversity shows scale dependence, in-
creasing in magnitude between 5 and 20 km, then plateau-
ing (Box Figure 1d). Overall, tree gamma diversity is most
strongly related to topographic heterogeneity (Box Figure
1c; Supporting Information Appendix B). The maximal mag-
nitude of the biodiversity-geodiversity relationship at inter-
mediate to large grain sizes might be attributable, in part, to
tree biodiversity levelling off at larger grain sizes (50-
100 km), whereas elevational variability increases monoton-
ically with scale (Box Figure 1a-d). This pattern suggests
that for a given extent, there is a maximal grain size where
the biodiversity-geodiversity relationship is strongest. The
form of this relationship is likely to be related to historical
processes or biogeography involving topographic con-
straints that affect dispersal (e.g., at treeline, across large
rivers or at biome boundaries). For example, particular tree
species may thrive on steep slopes, whereas other species
are found in flat regions or riparian zones, but this sorting is
unrelated to how many species are present in these differ-
ent habitats. At even larger spatial extents, such as conti-
nents or the globe, we expect that the
biodiversity-geodiversity relationship will weaken as his-
torical processes at the biome scale play a larger role in de-

termining patterns of biodiversity.
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5 | WAYS FORWARD

5.1 | The future of geodiversity with satellite
remote sensing

Satellite remote sensing elucidates biodiversity-geodiversity scaling
relationships because data are continuously measured and can be
aggregated across different extents and grains. The field of remote
sensing is changing rapidly, with advances in computational and
engineering allowing researchers to measure geodiversity, capture
climate variability and map biodiversity patterns at multiple scales.
Advances include new satellite missions that measure geodiversity,
publicly available big data from online biodiversity repositories, and
new statistical approaches to model abiotic and biotic drivers of mul-
tiple species distributions simultaneously. Satellite missions provide
global or near-global data coverage for generating geodiversity vari-
ables at increasingly fine spatial resolutions and to help address scal-
ing questions (Supporting Information Appendix A). For example,
with the combination of the SRTM and ASTER global DEMs, it is pos-
sible to calculate a variety of topographic diversity variables at 30 m
resolution at a near-global extent (Simard, Neumann, & Buckley,
2016). The rise of RADAR and LiDAR technology on air- and space-
borne platforms makes it possible to quantify fine-scale topographic
geodiversity (e.g., Parks & Mulligan, 2010). Climatic variables can be
derived from MODIS (e.g., Wan et al., 2004), SMAP (e.g., Chan et al.,
2018), GPM (e.g., Hou et al., 2014), AMSR (e.g., Parinussa, Holmes,
Wanders, Dorigo, & Jeu, 2015) and other spaceborne sensors and
platforms, and provide the basis for compiling standard bioclimatic
variables at multiple spatial and temporal scales. Other satellite sen-
sors, such as GRACE and ICESat-2, can provide new information
about groundwater and the cryosphere, respectively (e.g., Kwok,
2018; Landerer & Swenson, 2012). These advances are coupled with
a long history of optical satellite and airborne data. When coupled
with multispectral (e.g., Landsat, MODIS, VIIRS and AVHRR) and hy-
perspectral (e.g., Hyperion and proposed future missions) capability,
these data enable measures of geodiversity (soil cover and rock type)
and biodiversity (ecosystem types, plant communities, functional

types, species identities and genetic variability).

5.2 | Challenges for data integration

Scale mismatches and gaps in measurements may hinder the in-
tegration of disparate datasets (Anderson, 2018). Biodiversity
measurements tend to be measured at single locations or in small
plots, whereas remotely sensed geodiversity variables are gener-
ally at least an order of magnitude larger (Figure 1b). Remotely
sensed geodiversity measurements are more likely to be global
and repeated through time, yet biodiversity observations remain
relatively sparse geographically and phylogenetically and are
rarely repeated through time (Amano, Lamming, & Sutherland,
2016; Urban et al., 2016). Furthermore, the spatial and temporal
resolutions of different geodiversity datasets often do not match
(Figure 1b), making it necessary to model or resample variables. In
general, the time-scales over which biodiversity changes are likely
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of the predicted values from the models. (d) Scaling relationships between variation in biodiversity and geodiversity, represented as the
standardized slope coefficients from generalized linear models (GLMs) for alpha and gamma diversity, and beta regression models for beta
diversity for each scatter plot in panel (c) above versus distance (in kilometres; grain size); error bars represent 25th-75th percentiles,

and points are offset slightly to avoid overlap. Standardized slopes are the increase in number of standard deviations in diversity with

1 mincrease in the standard deviation of elevation. See the Supporting Information (Appendix B) for alpha- and beta-diversity maps and
relationships. Values of gamma diversity for each combination of point and radius are the total aggregated diversity value of all plots within
the radius centred at the point

to be shorter than those over which most geodiversity changes. often span millennia (Figure 1a). Biodiversity at a given location
However, both forms of diversity can change over short to long can change rapidly (minutes to decades), as a result of habitat de-
time-scales. Geodiversity in fluvial systems can change mark- struction or species invasion, or gradually (centuries to millennia),

edly within minutes to decades or more, whereas orogenic events owing to evolution.
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The use of remotely sensed metrics of geodiversity to predict
biodiversity at certain scales will require knowledge of the scales
and processes by which geodiversity drives biodiversity for different
taxonomic groups and life-history characteristics. Multivariate or
ensemble geodiversity measures (Parks & Mulligan, 2010) should be
interpreted carefully, because their aggregate nature is likely to mask
important biodiversity-geodiversity relationships. Although explor-
atory research and data mining will help to identify key metrics and
scales, more process knowledge is necessary to pair specific types
of biological responses with geodiversity drivers at specific scales.
Feedbacks among geodiversity drivers at multiple scales are likely to
exist; therefore, understanding cross-scale interactions (Soranno et
al., 2014) is a research priority.

Finally, although satellite remotely sensed data are often pub-
licly available, the need to use big data management (Kelling et al.,
2009) and remote sensing techniques can be a hurdle for investi-
gators. Although many ecologists are familiar with MODIS and
Landsat data products, they may not be aware of other products,
such as GRACE, SMAP or Hyperion. Such underused geodiversity
measures should be assessed for their ability to explain and predict
biodiversity. The rise of cloud-based computing platforms, such as

Google Earth Engine, can facilitate data accessibility and operability.

5.3 | Networks and interdisciplinary research
opportunities

Coordinated observation networks and interdisciplinary research
teams are well positioned to advance knowledge of biodiversity-
geodiversity linkages across scales and, ultimately, to improve fore-
casts of future biodiversity change. Observation networks, such
as the National Ecological Observatory Network (NEON; Keller,
Schimel, Hargrove, & Hoffman, 2008), provide a means to scale up
ecology and can be used to investigate biodiversity-geodiversity
relationships using co-located ground-based biodiversity observa-
tions and remotely sensed geodiversity from tower-based, airborne
and satellite platforms. Teams of researchers and practitioners that
span disciplines can more effectively address fundamental and ap-
plied questions that are essential to forecast changes to biodiversity
across scales (Heffernan et al., 2014; Pettorelli, Safi, & Turner, 2014;
Reinhardt, Jerolmack, Cardinale, Vanacker, & Wright, 2010). In this
age of big data, the combination of coordinated research networks
and interdisciplinary teams of investigators may be the best way for-

ward to advance the conservation of nature.

DATA ACCESSIBILITY

Tree and location data used to generate these analyses can-
not be published, according to Forest Service Agreement no.
17-MU-11261919-021. Digital elevation model data from the
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