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We examine the effects of 3 interventions designed to support Grades 2–5 children’s 

growth in measuring rectangular regions in different ways. We employed the 

microgenetic method to observe and describe conceptual transitions and investigate how 

they may have been prompted by the interventions. We compared the interventions with 

respect to children’s learning and then examined patterns in observable behaviors before 

and after transitions to more sophisticated levels of thinking according to a learning 

trajectory for area measurement. Our findings indicate that creating a complete record of 

the structure of the 2-dimensional array—by drawing organized rows and columns of 

equal-sized unit squares—best supported children in conceptualizing how units were 

built, organized, and coordinated, leading to improved performance.  

 

Keywords: Elementary grades; Geometric measurement; Learning trajectory; Spatial 

structuring 

 

Geometric measurement is an important topic in school mathematics because it 

has practical applications to daily life, connects to multiple disciplines, and is a specific 

branch of mathematics that links number and space (Clements & Sarama, 2007). In this 

study, we examined and supported children’s thinking and learning about area 

measurement in Grades 2 to 5. We take area measurement to mean the quantification of 

the amount of space within a two-dimensional, planar, closed surface or region (Sarama 

& Clements, 2009; Weisstein, 2016).  

In this study, we extend the research on the learning of area measurement by 

investigating shifts in children’s observable behaviors in response to one of three 

interventions designed to support children’s growth in measuring rectangular regions but 

in different ways. We used a hypothetical learning trajectory for area measurement 

(Barrett, Clements, Sarama, Miller, et al., 2017) as a tool to track children’s shifts and 

growth. To date, most learning trajectory-related research has been focused on building 

(e.g., Blanton, Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015), revising (e.g., 

Sarama, Clements, Barrett, Van Dine, & McDonel, 2011), and extending (e.g., Barrett, 

Clements, & Sarama, 2017) learning trajectories. In 2010, Simon et al. asserted that 

“generally missing from the literature is research that examines the process by which 
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students progress from one of these conceptual steps to a subsequent one” (p. 70). In this 

study, we incorporate the microgenetic method with a learning trajectory to identify level 

transitions, which can help teachers and researchers notice important shifts in observable 

behaviors, anticipate when level transitions are about to happen, and become more 

efficient at motivating these level transitions.  

 

Review of the Related Literature 

 Although area measurement is a commonly taught form of geometric 

measurement (Curry, Mitchelmore, & Outhred, 2006), research indicates that the 

teaching and learning of area measurement has been inadequate for years (e.g., Bell, 

Hughes, & Rogers, 1975; National Assessment of Educational Progress [NAEP], 1983, 

2016). In 2007, only 42% of fourth graders (9 year olds) taking the Trends in 

International Mathematics and Science Study (TIMSS, 2016) assessment chose the 

correct area of a fenced-in region when given the whole number length and width (e.g., a 

4-meter by 3-meter rectangle). Although the fourth graders in the United States and 

England performed slightly better than this international average, only 48% and 44% of 

their participants selected the correct area, respectively. In contrast, only 28% of fourth 

graders in Australia made the correct selection. On the 2013 National Assessment of 

Educational Progress (NAEP, 2016), only 23% of fourth graders in the United States 

correctly chose the gym floor with the greatest area when given the whole number length 

and width of four gym floors (e.g., 95 feet by 40 feet). In the same year, only 47% of 

eighth graders correctly determined the area of a rectangle when given the length of one 

side and the perimeter of the rectangle: “One side of a rectangle is 14 meters. The 

perimeter of the rectangle is 44 meters. What is the area of this rectangle?” (NAEP, 

2016). Most of the tasks on these large-scale assessments only required children to apply 

the area formula for rectangles. 

Research indicates that assessing children’s understanding of area measurement 

based on their application of a formula is insufficient because children in multiple 

countries are taught to apply area formulas without understanding (Battista, 2003; 

Clements & Sarama, 2007; Kamii & Kysh, 2006; Outhred, Mitchelmore, McPhail, & 

Gould, 2003). Zacharos (2006) asserted that this lack of understanding stems from 
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teaching the formula prematurely. Battista (2003) posited that children’s difficulty with 

understanding the area formula is related to a lack of understanding of the structure: 

Children multiply the length and width of a rectangle to produce a measure of area 

without realizing that this product produces an array of rows and columns of identical 

square units. Stephan and Clements (2003) argued that there is too much focus on 

procedures for measuring and not enough on the “big ideas” (p. 14) of measurement. 

These researchers agree that understanding area measurement requires the integration of 

experiences learning about unit concepts and spatial structuring of two-dimensional 

space. 

 

Unit Concepts 

 Several researchers (e.g., Stephan and Clements, 2003) have investigated 

children’s difficulties with area measurement in terms of unit concepts, such as unitizing, 

composing units to create units of units, iterating individual or groups of units, and 

coordinating units. Below we delineate each of these four unit concepts. 

 Unitizing. According to Steffe (1991), “Segmenting sensory experience into units 

is the result of a unitizing activity prior to measuring or to counting that makes these 

activities possible” (p. 63). In an area measurement context, unitizing requires the 

identification of a repeatable shape, piece, or object (i.e., the unit) that is part of the 

whole or region and segments or covers the two-dimensional space well.  

Research indicates that children struggle to recognize area units. In their work 

with children in Grade 2, Lehrer, Jacobsen, et al. (1998) found that children initially 

selected objects that resembled the shape of the regions to be covered. For example, to 

cover the region within a traced hand outline, children selected beans, spaghetti, and rope 

as units of area measure. In another study, Lehrer, Jenkins, and Osana (1998) reported 

that 43% of the first-, second-, and third-grade participants selected circles as their unit of 

measure for covering the interior of a closed curve and that 73% of their participants 

were unperturbed by the suggested use of circles to cover a square region, even when 

directly asked about the gaps between the circles. Because the circles resembled the 

closed curve region, they posited that the children were again attending to resemblance 

rather than space-filling properties. These researchers also argued that even when 
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children begin to recognize that some shapes or objects tessellate or cover regions better 

than others (i.e., without gaps or overlaps), they may not recognize the need for same size 

shapes or objects. Lehrer, Jenkins, and Osana (1998) also reported that when asked to 

measure the area of a square, 55% of their participants used a combination of squares and 

other shapes such as triangles to cover and thus “used manipulatives as a unit of cover” 

(p. 155). This is in contrast to consistently using one shape or object as a unit of measure. 

In time and with experience or instruction, children can learn about space-

covering and space-filling properties and begin to appreciate the square unit as a unit that 

segments, covers, fills, and tessellates rectilinear regions well (Lehrer, 2003; Lehrer, 

Jenkins, & Osana, 1998). However, Kamii and Kysh (2006) found that, given traditional 

instruction, it is not obvious to older children (Grades 4–8) that the square unit is the 

standard unit for area measurement. In other words, although older children may 

recognize the need for equal units of area that tessellate or cover space well, they may not 

recognize the square as the shape of the standard unit for area measurement.  

 Composing. Research indicates that children initially draw and count individual 

shapes that increasingly resemble squares when asked to copy an array (Sarama, 

Clements, Van Dine, et al., 2017), complete a partially-drawn array (Battista, Clements, 

Arnoff, Battista, & Barrow, 1998; Outhred & Mitchelmore, 2000; Sarama & Clements, 

2009), or determine how many tiles (of the size and shape of the one provided) would be 

needed to cover a region and show how they fit (Miller, 2013; Outhred & Mitchelmore, 

2000). With experience or instruction, children transition to thinking about individual 

squares as units and then to thinking about grouping units together to compose a 

composite unit (e.g., a row or column). This transition indicates that the child has “begun 

the coordinating action of seeing a square as both a unit and a component of a unit of 

units” (Sarama & Clements, 2009, p. 298), which Outhred and Mitchelmore (1992) 

claimed was a critical step. These composite units may or may not be rows or columns. 

Children may group units together to compose a nonrow unit of units, such as a partial 

row or column (Miller, 2013; Sarama, Clements, Van Dine, et al., 2017).  

 Iterating. Piaget, Inhelder, and Szeminska (1960) asserted that iteration is 

integral to measuring: “to measure is to take out of a whole one element, taken as a unit, 

and to transpose this unit on the remainder of the whole: measurement is therefore a 
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synthesis of sub-division and change of position” (p. 3). In development, children’s 

ability to iterate a single unit is an important conceptual advancement over a level of 

thinking in which they require enough physical tiles to cover a region completely to 

determine area. Children’s early unit iterations may not be mathematically rigorous, but 

with experience, they modify their actions to minimize gaps and overlaps (Lehrer, 2003; 

Stephan & Clements, 2003). This development is difficult for children (Barrett, 

Clements, & Sarama, 2017) because unit iteration involves the repetition of an area unit, 

either an actual physical object (e.g., a square tile) or a mental image of a unit, which is 

geometrically translated repeatedly through two-dimensional space to occupy successive 

locations, always in an adjacent position with one concurrent edge. Later, children 

transition from iterating individual units to iterating units of units, a more sophisticated 

and efficient approach.  

 Coordinating. Moving from thinking about a square as an individual unit to 

thinking about a square as a component of a row and then to thinking about a square as a 

component of a row and a column requires a great deal of unit coordination. First, 

children must learn to coordinate area units within rows and columns (i.e., the child sees 

a unit as a member of both a row and a column, even as it covers only a single portion of 

space) by creating identical composite units and aligning composite units so that 

individual units are also aligned as that composite unit is repeated (Outhred & 

Mitchelmore, 1992, 2000; Sarama & Clements, 2009). Second, children must coordinate 

linear and area units to determine the number of area units that will fit along each side 

(Battista, 2003; Kara et al., 2011; Outhred & Mitchelmore, 1996, 2000; Sarama & 

Clements, 2009). The coordination of linear and area units involves using the linear 

dimensions to position area units, which can be taken for granted without consequence 

when the unit is a square unit (cf. Kara et al., 2011; Miller, 2013). Third, after creating a 

unit of units or row of units that fits along a side, children must learn to coordinate linear 

units—using the length and the width of both the unit and the region to be covered—to 

iterate that row or column of units in the orthogonal direction exhaustively (Outhred & 

Mitchelmore, 2000; Sarama & Clements, 2009). For example, when asked to cover an 8 

cm by 9 cm rectangular region by drawing 2 cm by 3 cm rectangular area units, the child 

may use the length of the unit (3 cm) and length of the region (9 cm) to determine that 
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three units would fit along that side, building a row of three rectangular units along the 

bottom side of the rectangle. The child may then repeat that row over the rectangular 

region, using the linear units of the width of both the unit (2 cm) and the region (8 cm) to 

determine that four rows would completely cover the region (cf. Barrett, Cullen, et al., 

2017; Kara et al., 2011). 

 

Spatial Structuring 

 Sarama and Clements (2009) defined spatial structuring as “the mental operation 

of constructing an organization or form for an object or set of objects in space, a form of 

abstraction, the process of selecting, coordinating, unifying, and registering in memory a 

set of mental objects and actions” (p. 296) and argued that the mental structuring of a 

two-dimensional array precedes the meaningful use of the mathematical structures of the 

array. To structure a two-dimensional array, a child may partition or cut the two-

dimensional space into parts, or they may build the two-dimensional region from parts.  

Spatial structuring may take a long time to develop, especially with a lack of 

guided experience (Smith, Males, & Gonulates, 2016). Young children may partition the 

space into unequal parts, such as by drawing shapes that vary in size and shape (e.g., 

Outhred & Mitchelmore, 2000; Sarama & Clements, 2009). Their organization of tiles or 

drawn objects is inadequate and unsystematic, causing them to have difficulty keeping 

track of what they have counted (e.g., Battista et al., 1998). Older children may partition 

the space into equal parts by drawing or iterating individual units (e.g., Sarama & 

Clements, 2009). According to Battista, Clements, Arnoff, Battista, and Barrow (1998), 

Outhred and Mitchelmore (1992, 1996, 2000), and Sarama and Clements (2009),	with 

experience or explicit instruction, children begin to organize their units initially by 

utilizing a row structure (i.e., thinking about a unit of units), then a row-and-column 

structure (i.e., flexibly thinking about units of units—focusing on rows or columns but 

not both), and eventually an array structure (i.e., thinking about coordinated rows and 

columns—a unit of units of units). This array structure can be created by breaking 

down—subdividing the region into an array by drawing parallel row and column line 

segments—or building up—building an array by establishing a row of unit squares and 
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iterating the row to fill the region. Taken together, these findings suggest that children’s 

area measurement knowledge is supported by their ability to structure space.  

Although arrays imply or suggest structure, children’s ability to detect and use 

that structure is dependent on purposeful and repeated experiences (e.g., Battista et al., 

1998; Outhred & Mitchelmore, 1992, 1996, 2000, 2004; Sarama & Clements, 2009). 

Initially, children may produce an array of squares by covering with physical tiles or by 

drawing parallel row and column line segments without visualizing the spatial structuring 

of rectilinear regions or the row and column array of squares. In other words, they may 

organize or structure a two-dimensional space before they can have a well-developed 

understanding of that structure (Sarama & Clements, 2009).  

In their review, Outhred and Mitchelmore (2000) argued that using physical tiles 

to tile a rectangle “may conceal the very relations they are intended to illustrate” (p. 146). 

Some manipulatives, such as foam squares or grid-overlays, prestructure an array, 

allowing children to determine correctly the area of the region without attending to the 

structure (Lehrer, 2003; Outhred & Mitchelmore, 2000). In other words, children are 

often able to correctly create an array with square units and imitate the organization of an 

array by relying on discrete counting of objects or operating on rows or columns of 

individual units without conceptually understanding the array structure. Children need 

opportunities to mentally construct, organize, and integrate existing structures into new 

structures (Battista et al., 1998; Outhred & Mitchelmore, 1992; Sarama & Clements, 

2009).  

 

Goals and Research Questions 

We sought to extend the research on area measurement by exploring interventions 

that were designed to support children’s understanding of area measurement as a 

structuring process. We created and compared the effectiveness of three interventions, 

two of which were designed to support children’s growth in measuring rectangular 

regions using spatial structuring. First, we describe two experimental interventions: (1) 

subdividing a region into an array by drawing parallel row and column line segments and 

(2) building an array by establishing a row of unit squares and iterating the row to fill a 

rectangular space. The third intervention was a comparison intervention in which the 
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children were repeatedly exposed to an arithmetic approach of multiplication of two 

linear measures without direct appeal to an area unit. 

Based on our review of the related literature, we conjectured that both 

experimental interventions would provide greater support than the comparison 

intervention. The present study is part of a larger investigation in which we conducted 

one-on-one sessions with children in Grades 1–5 from the Rocky Mountain and Midwest 

regions of the United States to evaluate the three interventions. Elsewhere (Clements et 

al., 2017), we discuss the results from our work with 70 children in Grades 1–3 to 

illuminate the transition to operating on composite units. In this article, we present the 

results from our work with 54 children in Grades 2–5 to focus on the transition to using 

an array structure. The following research questions framed our work: 

1. How are children’s observable behaviors and numerical responses when 

measuring rectangular regions affected by repeated exposure to a video 

demonstration that focuses on either  

a. building an array by establishing a row of unit squares and iterating the 

row or 

b. subdividing a region into an array by drawing parallel line segments 

for rows and for columns? 

2. What patterns emerge in children’s observable behaviors just before and after 

they shift from measuring area by operating on individual or composite area 

units to using an array structure? 	

	

Theoretical Framework 

To answer these questions, we employed a learning trajectory (LT) for area 

measurement (Barrett, Clements, Sarama, Miller, et al., 2017) to (a) inform the design of 

instructional tasks by focusing our attention on unit concepts and spatial structuring and 

(b) provide descriptions of the children’s observable actions. According to Clements and 

Sarama (2007), an LT has three parts: an instructional goal in a mathematical domain, a 

likely path for learning through levels of increasing sophistication, and the instructional 

tasks specifically designed to engender the mental processes or actions that support 

children’s progression through those levels.  
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The LT for area measurement (Barrett, Clements, Sarama, Miller, et al., 2017) 

utilized in this study is a revised and extended version of Sarama and Clements’ (2009) 

LT for area measurement. The LT for area measurement produced by Sarama and 

Clements was based on a review of the literature as well as years of their cross-sectional 

research that included clinical interviews, individual teaching experiments, and 

classroom-based teaching experiments. The LT for area measurement produced by 

Barrett, Clements, Sarama, Miller, et al. was based on their retrospective analysis of a 

multi-site, 4-year longitudinal study of elementary children’s developing measurement 

knowledge, which was funded by the National Science Foundation (for more information 

on the study, the revisions and extensions made to the initial LT, and justifications of 

those modifications, see Barrett, Clements, & Sarama, 2017).  

We view the LT for area measurement employed in the present study from the 

hierarchic interactionalist perspective on learning and development (Clements & Sarama, 

2007), which is a cognitive theoretical framework that synthesizes empiricism, nativism, 

and interactionalism. Specifically, this LT for area measurement is related to a key 

precept of hierarchic interactionalism, which postulates that children progress through 

domain-specific levels of understanding that build hierarchically out of the concepts and 

processes that constitute the previous levels. In the present study, the levels of this LT for 

area measurement served as a tool for measuring children’s concept growth.  

According to the hierarchic interactionalist perspective, as children progress 

through the levels of an LT, more than one level is within their reach on any given task. 

A child has a “dominant” level, yet more and less sophisticated levels need to be 

considered. This is a central aspect of the theory of hierarchical interactionalism 

(Clements and Sarama, 2007), and it is consistent with the zone of proximal development 

(ZPD) described by Vygotsky (1978) and the overlapping waves approach posited by 

Siegler (2002). On the one hand, behaviors indicative of one level more sophisticated 

than a child’s current dominant level may be in reach in certain contexts or under certain 

conditions (e.g., with scaffolding and support from another). On the other hand, levels 

less sophisticated than a child’s current dominant level are not abandoned. Children may 

fall back to make use of behaviors indicative of less sophisticated levels under conditions 

of increased stress, when confronted with more complex tasks, or when another process 
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fails (Pirie & Kieren, 1994). Similarly, children may reach back (cf. Barrett, Clements, & 

Sarama, 2017) to make use of concepts and processes that constitute less sophisticated 

levels when a task can be efficiently and correctly resolved without making use of a more 

sophisticated level of thinking. Therefore, in the present study when we make a claim that 

a child is at a particular level of this LT for area measurement, we recognize that for a 

child to respond “at that level” on a given task or in a given context depends on 

additional factors. Thus, we are conservative in our claims regarding completed level 

transitions in the Results section. 

The theory of hierarchical interactionalism posits that instructional practices that 

address the developmental progression are more effective, efficient, and generative for 

the child than those that do not (Clements & Sarama, 2007). Such instruction based on 

LTs builds on the hypothesized specific mental objects and actions that constitute 

children’s thinking at a particular level by including the “external objects and actions that 

mirror the hypothesized mathematical activity of the children as closely as possible” 

(Clements & Sarama, 2007, p. 466). These characteristics are consistent with, but extend, 

other theories such as Siegler’s (2002) overlapping waves approach, which focuses 

mainly on strategies and does not include instruction as an integrated component. In the 

following section we summarize the observable behaviors (hereafter referred to as 

behaviors) as well as the hypothesized mental actions on objects indicative of the levels 

of the LT for area measurement that we used to differentiate children’s responses in the 

present study.  

 

Levels of a Learning Trajectory for Area Measurement 

The LT for area measurement (Barrett, Clements, Sarama, Miller, et al., 2017) 

employed in this study includes a developmental progression for how children develop 

area measurement concepts and spatial structuring schemes. Initially, children cannot or 

do not organize or structure the two-dimensional space. Instead, they draw 

approximations of rectangular shapes but leave gaps or overlaps to draw an incomplete 

covering (Physical Coverer and Counter). In time, children begin drawing complete 

coverings by drawing approximations of rectangular shapes without gaps or overlaps 

(Complete Coverer and Counter), which leads to the development of unitizing and 
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iterating unit concepts (Area Unit Relater and Repeater, see Table 1 for this and other 

levels targeted in this study). This is followed by the transition to building, maintaining, 

and manipulating a unit of units or a composite unit (Initial Composite Structurer). Next, 

the coordination of area units within rows and columns emerges, which facilitates the 

development of a unit of units of units; in time and with experience or instruction, the 

coordination of linear and area units, the coordination of linear dimensions of the area 

unit and the region, and a global scheme for creating, organizing, and operating on an 

array are developed (Area Row and Column Structurer). The transition into the 

subsequent level (Array Structurer) marks a shift in the focus of the LT for area 

measurement from emphasizing spatial structuring and unit concepts to the development 

of increasingly sophisticated logical thought, reflection, explanation, and justification in 

geometric measurement situations (i.e., why multiplication creates a measure of area).  

 [Insert Table 1 here] 

 In our prior work in which we compiled longitudinal accounts of children’s 

thinking and learning about geometric measurement from Grade 2 to Grade 5, we found 

that five out of seven children plateaued at the Initial Composite Structurer level for 12–

30 months (Barrett, Cullen, et al., 2017). These participants were able to build, maintain, 

and manipulate a composite unit to structure an array (indicating that they were at least at 

the Initial Composite Structurer level) but struggled to coordinate linear and area units 

(thus not yet at the Area Row and Column Structurer level) during Grades 3–5. We 

considered this a plateau because the children transitioned into and out of other levels 

within a 6–12 month time span. This made us wonder if the transition from the Initial 

Composite Structurer level was more complicated than other transitions, if a level was 

missing, or if instruction needed to have more conceptual supports. We designed the 

present study, in part, to investigate ways of shortening this transition from the Initial 

Composite Structurer level to Area Row and Column Structurer level. 

 

Method 

Because we wanted to describe the transition from less sophisticated levels into 

the Area Row and Column Structurer level (and using an array structure), we designed a 

study that would allow us to observe children as they made this shift. To guide the design 
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of these observations, we employed the microgenetic method (Siegler & Svetina, 2006). 

This method allows for the study of the circumstances preceding a conceptual change, the 

change itself, and the potential generalizability of the results beyond the context of the 

present study (Siegler & Crowley, 1991). It is historically rooted in the work of Heinz 

Werner and Lev Vygotsky who argued that change can be motivated through focused 

experiences and that change can be observed (Vygosky, 1978; Werner, 1925; as cited in 

Siegler & Crowley, 1991). There are three main characteristics of the microgenetic 

method: a) observations span the entire period from the beginning of the change to the 

time at which it reaches a relatively stable state; b) the density of observations within this 

period is high, relative to the rate of change; and c) observations of the changing 

performance are analyzed intensively to indicate the processes that give rise to them 

(Siegler, & Svetina, 2006).  

 

Participants 

To identify children not yet at the Area Row and Column Structurer (ARCS) 

level—specifically, children at the Area Unit Relater and Repeater (AURR) and Initial 

Composite Structurer (ICS) levels—we recruited children in 17 Grade 2 to 5 classes from 

two school districts in the Midwest (three classes each from Grades 2 and 3, six classes 

from Grade 4, and five classes from Grade 5). Both school districts had adopted the 

Common Core State Standards in Mathematics (CCSSM, National Governor’s 

Association for Best Practices & Council of Chief State School Officers, 2010) and thus 

taught area during Grades 3–5. The Grade 2 children had not yet been formally exposed 

to the rectangular area formula, but the children in Grades 3–5 had. None of the teachers 

of participating classrooms were teaching measurement lessons during the study; 

therefore, the participants did not receive instruction about area measurement between 

our sessions.  

 

Initial Screening Instrument 

We administered a four-item LT-based screening instrument (see Appendix A) to 

all of the children (n = 240) in the participating classrooms. For Part 1 (Items 1 and 2), 

children did not have access to a ruler. After Part 1 was collected, we distributed Part 2 
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(Items 3 and 4) and rulers. This instrument included items from our earlier work that

were designed to elicit different behaviors indicative of levels described in the LT for 

area measurement (Barrett, Clements, Sarama, Miller, et al., 2017).  

To analyze the responses, we distributed the children’s screening instruments

among the researchers, each of whom had a minimum of 3 years (at the time) experience 

working with the LT levels and descriptions and identifying levels of thinking using that 

LT. We used Item 1 to analyze children’s conceptions of area and area measurement 

through their definition of area. We used Items 2–4 to identify an LT level per item. On

Item 2, we analyzed the children’s drawings because the prompt elicited a range of 

responses that are describable by language in the LT.  

For example, children exhibiting thinking at the Complete Coverer and Counter 

(CCC) level show an understanding that they must cover the entire region. John, a

second-grade child, drew mostly closed individual squares using existing squares to guide 

his placement to cover the region (see Figure 1a). However, John had errors in the

alignment of the squares and did not show that he recognized the need for equal sized 

units. Thus, we interpreted John’s drawing as illustrating thinking at the CCC level but

not yet at the AURR level. 

a) 

b)  

c) 

 

Figure 1. Three second grade children’s drawings on Item 2: a) John’s drawing indicating 
that he was not yet utilizing behaviors indicative of the AURR level, b) Elizabeth’s 
drawing illustrating the AURR level, and c) Micah’s drawing demonstrating thinking at 
the ICS level.  

As children progress to the AURR level, they can still have some alignment errors 

but draw a complete covering. However, they attend to drawing equal-sized units, one at 

a time. Elizabeth, a second-grade child, illustrated thinking at the AURR level when she 



Page 15 of 56	

drew individual, approximately equal-sized units without gaps or overlaps (see Figure 

1b). Because her placement of these units was strongly guided only by the previously 

drawn adjacent units, we take this as evidence that she was using the intuitive structure of 

a row as a marker to guide her drawing actions. However, Elizabeth did not use a row as 

a unit of units (e.g., she did not curtail the process to produce rows of individual units) 

nor did she show evidence that she understood that each row should have the same 

number of units, which is indicative of the next level. 

Children operating at the ICS level can identify a square unit as both a unit and a 

component of a unit of units (e.g., a row, column). They can apply this unit of units 

repeatedly but not exhaustively. They may draw several rows by using line segments but 

then revert to drawing individual squares. Or they may begin drawing individual squares 

and then curtail this process to draw line segments to indicate rows. They also understand 

that each row must have the same number of units. Micah, a second-grade student, 

alternated between drawing individual units and completing rows and columns with line 

segments, as indicated by places in which he picked up his pencil and drew over existing 

marks (see Figure 1c). 

The ARCS level is an advancement over the ICS level because children have 

moved from identifying squares as individual units to seeing the square also as a 

component of a row and a component of a column (i.e., coordinating area units). They 

also use the dimensions to constrain the unit size—the length of a side of a rectangle 

indicates the number of area units that will fit along that side. Because the dimensions of 

the rectangle in Item 2 are indicated by the printed row and column, we could not use this 

task to determine if children were operating at the ARCS level. At most, we could claim 

that they were operating at least at the ICS level. We used Items 3 and 4 to determine if 

they were already operating at the ARCS level. We wanted to know if they could use the 

dimensions (the lengths of two orthogonal sides) to determine how many units fit along 

those sides (i.e., coordinate linear and area units) as well as use the length and the width 

to constrain the unit size (i.e., coordinate linear units; see Coordination section in our 

Review of the Related Literature for more information on coordinating area units, 

coordinating linear units, and coordinating linear and area units).  
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Children not yet at the ARCS level are unable to produce a rectangle that has an 

area of 8 square inches and show how they fit when only given a ruler, writing utensil, 

and blank piece of paper for Item 3. They would also struggle to show how 10 square 

inches fit within a drawn rectangle when told the area is 10 square inches for Item 4. For 

example, John, who showed thinking at the CCC level on Item 2, did not draw 10 shapes

(see Figure 2a). We interpret his line segments to indicate that he subdivided one side 

into centimeter length units. He did not produce a complete covering of units. However, 

because we used the word “area” in the prompt, this may indicate that he does not 

connect area with covering nor does he have an understanding of unit. Thus, we take this 

as evidence that he is not yet at the AURR level.  

a) b) 

 

c) 

  

Figure 2. Three second grade children’s drawings on Item 3: a) John’s drawing showing 
that he is not yet at the AURR level, b) Elizabeth’s drawing illustrating the AURR level, 
and c) Micah’s drawing demonstrating thinking at the ICS level. 

In contrast, Elizabeth, who provided evidence that she was at the AURR level on 

Item 2, drew 10 shapes individually but seemed to struggle to attend to unit size as well 

as collinearity of rows (see Figure 2b). We also do not have evidence that she used the 

length of a side to determine how many units would fit along that side. We take this as 

additional evidence that she was operating at the AURR level. 

Micah continued to show evidence of thinking at the ICS level (see Figure 2c). He 

drew parallel row and column line segments to completely cover the rectangle with 

approximately equal sized units. However, he did not use the dimensions to determine 

how many units fit along those sides nor use the length and the width to constrain the unit 

size. We used the LT codes for Items 2–4 to determine each potential participant’s 

dominant or summary LT level based on his or her responses across all of the items on 

instrument. 
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From the group of 240 children who took the screening instrument, we selected a 

total of 54 participants, all initially placed at the AURR (n = 24) and ICS levels (n = 30). 

Note that the purpose of identifying initial placements using the four-item LT-based 

screening instrument was to select participants who were at least at the AURR level but 

not yet at the ARCS level. We wanted to observe and describe conceptual transitions 

(from AURR into ICS, from AURR to ARCS, or from ICS to ARCS) and investigate 

how they may have been prompted by one of three interventions. John and other children 

who were not yet exhibiting thinking at the AURR level were not included among the 54 

participants in the study. Children who exhibited thinking at the ARCS level on the initial 

screener were also not included in the study.  

Using block random assignment, we divided the 54 participants into three groups 

of 18 participants and created three homogeneous groups in terms of the relevant 

attributes (i.e., grade and LT for area measurement levels). Each intervention group (n = 

18) consisted of eight children initially placed at the AURR level, two from each grade 

(Grades 2–5) and 10 children initially placed at the ICS level, two per grade in Grades 2–

4 and four in Grade 5. 

 

Procedure 

All of the 54 children participated in three 10- to 20-minute one-on-one sessions 

with a member of the research team. For each participant, these three sessions occurred 

on three separate days, and the mean time elapsed between the first and third sessions 

was 3.5 school days with a maximum of 6 school days. Every session was videotaped and 

was conducted during the school day in the child’s school during the spring semester. 

Each of the three sessions consisted of three trials, for a total of nine trials. Each 

trial consisted of a single task-intervention pair (Siegler & Crowley, 1991): finding the 

area of a given rectangle (task) and then watching a video that corresponded to their 

intervention group and the specific rectangle (intervention).1  

																																																								
1 Simon et al. (2010) also utilized microgenetic methods by posing a sequence of 
instructional tasks that increased in complexity (from less to more sophisticated). This 
contrasts with our approach of repeated presentation of the task-intervention pair, varying 
only the rectangle’s dimensions, to provide participants with opportunities to reflect on 
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Throughout each session, children were provided access to a standard 12-inch 

ruler, seven foam square-inch tiles, and a roll of transparent tape. Each of these tools was 

purposefully selected. First, the ruler was provided as a tool that would help the children 

identify linear units and therefore provided the children with an opportunity to coordinate 

linear and area units. Second, seven foam square-inch tiles were provided for two 

reasons: (1) none of the nine rectangles used in the study had an area less than 12 square 

inches, prohibiting the children from using a cover and count all strategy, and (2) none of 

the rectangles had a length or width of more than seven inches, allowing the children to 

build (and possibly iterate) a row for any given rectangle. Each trial began with the 

interviewer giving the child a pen and a rectangle (with side lengths of at least two and at 

most seven inches) printed on a piece of paper. Similar to the second condition of Nunes, 

Light, and Mason’s (1993) study, each participant was provided with a ruler as well as 

the restricted number of area units (i.e., for the present study, seven foam square-inch 

tiles). In contrast to the Nunes et al. study, we did not provide them with a unit of units or 

row of area units glued together, yet we did provide them with the roll of transparent tape 

and the opportunity to create their own unit of units.  

Our design decisions about the size of the nine rectangles used in this study as 

well as the order in which they were posed were also informed by prior research. To 

control for a possible effect of computational complexity on children’s responses (cf. 

Vasilyeva, Ludlow, Casey, & St. Onge, 2009), we categorized the nine rectangles used in 

the study by area into three size groups: small, ranging from 10 to 12 square inches; 

medium, ranging from 15 to 24 square inches; and large, ranging from 24 to 30 square 

inches. Within each session we randomly assigned to each child one small, one medium, 

and one large rectangle. We randomly assigned the order in which we presented these 

rectangles with each of the rectangles presented to each of the 54 children exactly once. 

The interviewer asked the child, “What is the area of this rectangle? You may use 

any of the tools on the table here to help you. Please write on the page while you think.” 

If the child did not draw to produce her answer, the interviewer prompted the child to 

draw by stating, “Please show me how the <insert child’s answer> fit” (e.g., If the child 

																																																																																																																																																																					
repeated experience as well as provide researchers with the fine-grained detail needed to 
examine shifts in children’s trial-by-trial behaviors. 
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provided a numeric answer of 15 without drawing, the interviewer responded with, 

“Please show me how the 15 fit”). We included this prompt because research indicates 

that a child’s drawings of rectangular arrays, both their process and product (Miller, 

2013), can provide insight into the child’s thinking (e.g., Battista et al., 1998; Outhred & 

Mitchelmore, 2000; Stephen & Clements, 2003). After the child responded, the 

interviewer showed the child the instructional intervention video corresponding to the 

intervention group to which the child had been assigned (described below) and to the 

rectangle the child had just completed. Each child watched nine videos, one per rectangle, 

to provide repeated exposure to their assigned intervention.  

Although each set of intervention videos was different (which we discuss below), 

there were some characteristics common to all of them. First, we delivered each 

intervention through short videos (25 s to 1 min 14 s) shown to individual participants on 

a laptop computer.2 Second, in each intervention video the teacher used a ruler to 

measure the lengths of two adjacent sides of the rectangle and recorded those lengths 

outside of the rectangle. Third, in each video, the teacher provided the correct numerical 

answer (e.g., 10 square inches) to provide feedback in the form of knowledge of the 

correct response for the specific rectangle they were measuring in that trial.  

Subdivision Intervention. We designed one of the interventions, hereafter 

referred to as the Subdivision Intervention, to emphasize coordinating linear and area 

units, coordinating linear dimensions of the area unit and the region, and subdividing 

(i.e., partitioning to establish the area unit). These intervention videos consisted mainly of 

a teacher using a ruler to draw parallel row and column line segments—in orthogonal 

directions, vertically then horizontally—to create a drawn array of square inches and 

reporting the correct area of the given rectangle. First, the teacher measured the length of 

one side of the rectangle, recording the length outside of the rectangle. Then she placed 

the ruler along that edge and used a pen to draw (freehandedly) a line segment extending 

across the region from each numbered tick mark on the ruler to the opposite side of the 

rectangle. While drawing this set of line segments, the teacher said, “This side is a inches 

																																																								
2 In each video, the video camera was focused on the tabletop and depicted only the 
teacher’s hands as she worked with the tools. Hence, her voice could be heard, but her 
face was not shown.	
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so that makes a rows [or a columns].” This process was repeated on an adjacent side thus 

creating an array of square inches. Finally, in the videos, the teacher skip counted along 

the rows. For example, in the case of the 3 × 7 rectangle, the teacher said, “So that makes 

7, 14, 21 square inches.” Hence, the Subdivision Intervention videos illustrated big ideas 

of measurement, including spatial structuring and the unit concepts of unitizing and 

coordinating units. 

Iteration Intervention. We designed a second intervention, hereafter referred to 

as the Iteration Intervention, to support the transition from covering with individual units 

to building, maintaining, and manipulating a unit of units or a composite unit as well as 

coordinating area units within rows and columns. The Iteration Intervention videos 

consisted of a teacher first measuring the length of a side, making tick marks at each of 

the inch markings from the ruler along the side, and iterating a single tile while saying, 

“So that makes 1, 2, 3… rows.” She then used the ruler to measure an adjacent side and 

placed a collection of tiles along that side while saying, “So that makes 1, 2, 3… in a 

row.” Next, the teacher taped the row of tiles together and iterated the taped row up 

through the tick marks on the adjacent side while skip-counting by the number of tiles in 

the row (e.g., “So that makes 7, 14, 21 square inches”). Hence, the Iteration Intervention 

videos also highlighted big ideas of measurement, including spatial structuring as well as 

unit concepts—unitizing, composing units to create units of units, iterating groups of 

units, and coordinating units. 

Comparison Intervention. To help isolate the key features of the experimental 

interventions, we included a third intervention, which offered no visually supportive 

structural display and did not highlight any of the big ideas of measurement. We refer to 

this intervention as the Comparison Intervention. Similar to the experimental 

interventions, the teacher in the Comparison Intervention videos provided feedback to the 

child by reporting the correct linear measures of a pair of adjacent sides as well as the 

correct area of the rectangle measured in that trial. However, in contrast to the 

Subdivision and Iteration Intervention videos, the Comparison Intervention videos did 

not include a visual display of the structuring. For example, in the case of the 3 × 7 

rectangle, the teacher demonstrated measuring two adjacent sides with a ruler, recording 

the length of each, and then reported and wrote the area. In the video the teacher stated, 
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“This side is 3 inches, this side is 7 inches, so the area is 21 square inches.” The inclusion 

of this intervention allowed us to examine the effects of repeated exposure to a rectangle 

area task and to check for the effect of modeling a procedure to multiply the measures 

found for the length and width to produce a measure of area. However, the teacher’s use 

of an arithmetic approach of multiplying two linear measures was not explicitly 

identified.  

 

Data Sources 

The data set included the written LT-based screening instrument from the sample 

of 240 children, as well as researcher notes and participant written work taken from each 

of the nine trials with 54 participants. We used one video camera focused on the tabletop 

in front of the child to capture verbal responses, drawings, gestures, and use of tools. We 

organized the children’s written work and researchers’ notes per child, per session, and 

per trial. We present our data analysis and findings in two phases, one for each research 

question.  

 

Phase 1 

Research Question 1 asked: How are children’s observable behaviors and 

numerical responses when measuring rectangular regions affected by repeated exposure 

to a video demonstration that focuses on either a) building an array by establishing a row 

of unit squares and iterating the row, or b) subdividing a region into an array by drawing 

parallel row and column line segments? To investigate the children’s responses, we 

identified and examined shifts in their behaviors and numerical answers within and across 

the three intervention groups (including the Comparison Intervention, which offered no 

support for spatial structuring or unit concepts beyond the implicit procedure of 

multiplication for length and width). 

 

Data Analysis 
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We coded the children’s responses for each of the nine trials for both correctness 

and according to the levels of the LT for area measurement3 (Barrett, Clements, Sarama, 

Miller, et al., 2017). Across all three interventions, we determined correctness based on 

the final numeric answer, which may or may not have included correct identification of 

the unit (square inches).4 When coding for levels of the LT for area measurement, only 

three levels were germane to this study (see Table 1 for level descriptions). At times, the 

child’s level of thinking was unclear, such as when the child did not produce a drawing 

and provided only a numeric answer. This is an example of when we made no level 

claim, hereafter referred to as “No claim.” 

To control for the effect of a potential covariate on the main dependent variable 

(i.e., the LT level exhibited on each trial by each child on correctness), we employed a 

mediation analysis adapted for categorical variables (Iacobucci, 2012). This mediation 

analysis technique allows for a combination of logistic and ordinary least squares 

regression models to test a hypothetical process or mechanism through which an 

independent variable, trial number (T), might elicit a dependent variable, correctness (C), 

through a mediating variable, the level of the LT for area measurement observed for each 

child for each trial (L). Our mediation analysis procedures involved the development, 

evaluation, and synthesis of three intermediate models for each intervention group (see 

Figure 3).  

  

																																																								
3 Although it is possible for children to produce a correct numeric answer while using 
behaviors indicative of the AURR or ICS level (i.e., levels below the ARCS level), such 
behaviors are less sophisticated, in part because they are less efficient. Tracing one tile or 
drawing individual units to cover (AURR) takes much longer than building and repeating 
a composite unit with a mixed drawing strategy (ICS), which in turn takes longer than 
drawing parallel rows and column segments to produce an array of individual units 
(ARCS). Our design of repeated trials in a short amount of time has the potential to 
prompt children to adopt more efficient (and more sophisticated) behaviors due to the 
tediousness and the time and effort required by less sophisticated behaviors.	
4 We accepted numeric answers as evidence of children’s claims for a measure of area 
given the children’s tendencies to abbreviate their verbal report by neglecting to name a 
unit. We note this assumption as one limitation of the present study.  
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Figure 3. Illustrating model development procedures. 

Additionally, we conducted a series of two-proportion z tests to investigate differences in 

the cumulative number of each LT level observed for each intervention group. Note that 

data from all 54 participants were included in Phase 1. 

Findings for Phase 1 

Models 1 and 2: Examining growth by correctness across trials or LT levels.

A logistic regression was conducted to examine the direct relationship between trial 

number (T) and correctness (C) for each of the three intervention groups, and results are 

presented under Model 1 of Table 2. For each of the three intervention groups, a 

significant association between trial number (T) and correctness (C) was observed. 

Increases of 41%, 36%, and 18% in the odds of providing a correct answer with each 

subsequent trial (T) were observed for the Subdivision, Iteration, and Comparison 

Groups, respectively. Model 2 adds the levels of the LT for area measurement (L). The 

levels of the LT for area measurement (L) had significant associations with correctness 

Trial	Number	(T)	
	

{1,	2,	3,	4,	5,	6,	7,	8,	9}	
	

Correctness	(C)	
	

0	–	incorrect	
1	-	correct	

LT Level per Trial (L) 
 

0 – No Claim
1 – AURR 
2 – ICS 
3 – ARCS 

 

Model 1: 
Examining growth by correctness across trials 

 

Model 2: 
Examining growth by 

correctness across trials and LT 
 Model 3: 

Examining growth 
along LT levels across trials 

Model 2:
Examining growth  

correctness across trials   
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(C) for the Iteration and Comparison Groups, but this association was not significant for 

the Subdivision Group. 

Table 2 

Logistic Regression of Trial Number or LT Level on Correctness for Each Intervention 

Group 

 
Independent variable 

Model 1 Model 2 
Odds 
ratio 

Standard 
error 

Odds 
ratio 

Standard 
error 

Su
bd

iv
is

io
n 

G
ro

up
 

Constant 0.95 .39 0.70 .31 
Trial Number (TS) 1.41** .13 1.32** .13 
Trial LT Level (LS) -  1.41 .27 
   
Pseudo R2 .10 .13 
Model 𝜒𝜒! 16.49, df = 1, p < .0001 19.75, df = 2, p < .001 

Ite
ra

tio
n 

G
ro

up
 

Constant 1.16 .47 0.49 .25 
Trial Number (TI) 1.36** .12 1.28** .12 
Trial LT Level (LI) -  2.0** .49 
   
Pseudo R2 .08 .13 
Model 𝜒𝜒! 13.02, df = 1, p < .001 20.94, df = 2, p < .0001 

C
om

pa
ris

on
 

G
ro

up
 

Constant 0.88 .31 0.44* .18 
Trial Number (TC) 1.18* .08 1.19* .08 
Trial LT Level (LC) -  2.00*** .36 
   
Pseudo R2 .03 .12 
Model 𝜒𝜒! 6.37, df = 1, p < .05 24.41, df = 2, p < .0001 

* significant at a level of p < .05 
** significant at a level of p < .01 
*** significant at a level of p < .001 
 

A key assumption underpinning Model 2 is that, within each intervention group, 

trial number (T) and trial LT level (L) are both independent variables that affect the 

probability that a child will respond correctly. However, with each subsequent trial, 

children in the Subdivision and Iteration Groups were exposed to instruction designed to 

support their growth along the LT for area measurement. Thus, we conjectured that a 

child’s predominant LT level (L) is dependent upon the trial number (T) and intervention 

group the child was assigned to. 

Model 3: Examining growth along the LT for area measurement across 

trials. To test this conjecture, we calculated a simple linear regression to predict the level 



Page 25 of 56	

of the LT for area measurement (L) exhibited by each child based on trial number (T) for 

each intervention group. For the Subdivision and Iteration Groups, significant regression 

equations were found (F(1, 160) = 26.91, p < .0001 and F(1, 160) = 11.25, p < .01), with 

R2 values of .14 and .06, respectively. A significant regression equation was not found for 

the Comparison Group. Children’s LT level (L) is predicted by the equations LS = 1.09 + 

.17T and LI = 1.33 + .08T for the Subdivision and Iteration Groups, respectively. A t test 

used to compare the slopes of the regression equations for the Subdivision and Iteration 

Groups revealed a significant difference with t = 2.16, p < .05. This suggests that, for the 

Subdivision Group, children’s LT level increased by .17 for each subsequent trial 

number5. For the Iteration Group, children’s LT level increased by .08 levels per trial. 

These findings suggest that the children in the Subdivision and Iteration Groups exhibited 

concept growth along the LT for area measurement, with children in the Subdivision 

Group growing significantly faster and demonstrating an overall higher gain along the LT 

than the children in the Iteration Group. Children in the Comparison Group did not 

exhibit significant growth along the LT for area measurement across the nine trials. 

A synthesis of models: Measuring the mediation effect. Because children in the 

Comparison Group did not exhibit significant growth along the LT for area measurement, 

we examined the mediation effect of the LT (L) on correctness (C) only for the 

Subdivision and Iteration Groups. To examine the mediating effect of the LT for area 

measurement (L), we calculated zmediation (Iacobucci, 2012)6. These calculations yielded 

zmediation = 3.65, p < .001 and zmediation = 2.55, p < .05 for the Subdivision and Iteration 

Groups, respectively. These findings suggest that the independent variable of trial 

																																																								
5 The levels of the LT for area measurement are discrete and hierarchically ordered. 
However, we treated the LT as a continuous scale in Model 3 for the purpose of 
comparing the effects of the interventions on children’s growth along the LT. Some may 
argue that this is a potential limitation of our model development approach, but we see 
this as analogous to Iacobucci’s (2012) treatment of rating scales as continuous. 	
6 This involves computing the standardized elements for the trial number (T) parameter in 
Model 3, zT3, and LT level parameter (L) in Model 2, zL2, by using the parameter 
estimates and their standard errors. Determining zmediation then consists of calculating the 
ratio of the product of these standardized elements, zT3 zL2, to their collected standard 
error, 2 2

T3 L2 1z z+ + . 
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number (T) elicits correctness (C) indirectly through a mediating variable, which is the 

trial LT level (L) for the Subdivision and Iteration Groups. 

Comparing by concept growth. Pairwise two-tailed, two-proportion z tests7 

revealed that the Iteration Intervention prompted significantly more instances of ICS-

level behaviors over the nine trials than the Subdivision and Comparison Interventions, 

with z = 6.80, p < 0.001 and z = 7.49, p < 0.001, respectively. Because our sampling 

method produced intervention groups with the same number of AURR and ICS level 

children at the beginning of the study, this finding suggests that the Iteration Intervention 

may be effective in promoting growth into the ICS level of the LT for area measurement. 

The Subdivision Intervention supported significantly more ARCS-level behaviors over 

the nine trials than the Iteration and Comparison Groups, with z = 7.44, p < 0.001 and z = 

6.10, p < 0.001, respectively. We also observed significantly fewer instances of no level 

claim in the Subdivision and Iteration Groups than in the Comparison Group, with z = 

5.68, p < 0.001 and z = 7.03, p < 0.001, respectively. Furthermore, we observed 

significantly more instances of no level claim than AURR (with z = 7.41, p < 0.001), ICS 

(z = 4.63, p < 0.001), or ARCS (z = 6.44, p < 0.001) level claims for the Comparison 

Group. These findings suggest that the Comparison Intervention was not effective in 

eliciting behaviors that could be associated with the concepts or mental actions on objects 

described in the LT for area measurement. 

 

Phase 2 

Research Question 2 asked: What patterns emerge in children’s observable 

behaviors just before and after they shift from measuring area by operating on individual 

or composite area units to using an array structure? Thus, during Phase 2 we studied our 

set of dense observations “before the change began and…continue[d] until a point of 

relative stability was reached” (Siegler & Crowley, 1991, p. 607), which is a tenet of the 

microgenetic method. 

 

																																																								
7 To control for a potential Type I error, a Bonferroni adjusted p-value of p = 0.005 was 
used as the significance criteria for the sequence of pairwise two-tailed, two-proportion z 
tests reported here. 
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Data Analysis 

To account for and make sense of these changes observed in Phase 1, we 

performed a qualitative, comparative analysis during Phase 2 (Corbin & Strauss, 2008). 

The comparative analysis consisted of constant comparisons, a process of watching one 

child’s videos from the three sessions, describing the behaviors we observed, creating 

phrases (codes) to describe these behaviors, and creating categories to group codes.8 We 

repeated this process with two researchers independently coding each child’s videos, 

measuring interrater reliability, discussing code discrepancies, and modifying codes and 

code descriptors until the interrater reliability between all pairs exceeded 80%.9 We then 

used this initial list of codes to independently code three children, with each child being 

coded by two researchers. After coding these children independently, we met to discuss 

code discrepancies, modifying code descriptors to increase consistency and clarity when 

necessary. At that point, we deemed the code list as final and deleted the coding sheets 

for the previously coded children. These children remained in the list of 54 children to be 

coded. 

We distributed the 54 participants among three researchers, maintaining efforts to 

distribute children from each intervention equally among the researchers. At least two 

researchers coded each child’s data. We triple coded a child’s data (n = 6) when interrater 

reliability was less than 70% between any two coders. Hence, all three researchers agreed 

upon each coding decision when there was a discrepancy.  

 

Relevant Findings for Phase 2: Behavior Shifts and Level Transitions  

Although the LT was applicable to all of the participants because their behaviors, 

behavior shifts, and level transitions exhibited during the study were consistent, 25 
																																																								
8 These codes reflected observable behaviors and inferred “mental actions on objects” 
that spanned multiple levels of the LT for area measurement. Assignment of these codes 
occurred simultaneously with assignment of the correctness and level placement codes. 
9	We evaluated reliability through interrater reliability measures using percent agreement: 
R = number of agreements / (number of agreements + number of disagreements) × 100. 
In examining our interrater reliability, we did not correct for chance agreement for two 
reasons. First, there were a large number of codes, and the likelihood for two coders to 
agree by chance was low. Second, three researchers met during each code discrepancy 
meeting, even if one researcher did not participate in the coding of a particular child’s 
data.	
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children did not exhibit relatively stable growth—placed at a specific level at least three 

times on subsequent trials (Siegler & Svetina, 2006)—during the time of the study (see 

Figure 4). 
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Figure 4. LT level placement and correctness by trial per intervention group. Within each 
subfigure, participants are represented by subrows: S1–S18 for Subdivision Group; I1–
I18 for Iteration Group; and C1–C18 for Comparison Group. The nine trials are indicated 
by each of the nine subcolumns within each subfigure as T1–T9. LT level placement per 
trial is indicated by shading: darkest shading is for ARCS, second darkest shading for 
ICS, third darkest shading for AURR, lightest shading for levels less sophisticated than 
AURR, and no shading for No claim. Correctness per trial is indicated by text in the cell: 
C for Correct or no text for Incorrect numeric response. 
 

 

No level transitions and no behavior shifts. Ten of the 25 children who did not 

exhibit a change in their level of thinking across trials were also consistent in their trial-

by-trial behaviors. Nine consistently used a ruler or tiles to measure side lengths and then 

reported a numeric answer (correct or incorrect) without drawing, even when asked to 

show how they fit. We were unable to make a level claim based on the children’s written, 

verbal, or nonverbal responses for most of the trials (eight or nine) for these nine 

children. One of the 10 children consistently drew individual units by tracing one tile, 

providing a correct numeric answer and correct drawing for all trials—although there was 

some alignment and spacing issues. This child demonstrated behaviors indicative of the 

AURR level on all trials.  

No level transitions but small behavior shifts. Four of the 25 children who did 

not show stable growth during the study did not exhibit a change in their level of thinking 

but did show a shift in their trial-by-trial behaviors. They still exhibited ICS-level 

behaviors but in different ways across the trials. They built composite units for one or 
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two trials before transitioning to building and repeating composite units for the remaining 

trials. 

No overall level transitions but some behavior shifts. Two of the 25 children 

who did not show stable growth during the study did not exhibit an overall change in 

their levels but did shift in their trial-by-trial behaviors by exhibiting at least one reach 

back. For example, these children built and repeated composite units on Trials 2 and 3 

but then operated on individual units on Trial 4. One child used tiles to cover, placing one 

by one until they ran out of tiles then iterated the previously used tiles to finish covering. 

The other child traced tiles to cover, creating a correct drawing and counting one by one 

to report an answer. For both of these children, their level of thinking on previous and 

subsequent trials was coded at the ICS level but on Trial 4, they exhibited thinking at the 

AURR level.  

Incomplete level transitions and behavior shifts. The remaining nine of the 25 

children exhibited some growth, but that growth did not meet our requirements for 

relatively stable growth. We identified two of these nine children as operating at the 

AURR level with the screening instrument and determined that they had demonstrated 

behaviors indicative of the ICS level on one or two (nonconsecutive) trials during the 

study. That is, they used tiles to cover, through tracing or iterating individual tiles, on 

some trials but used a mixed drawing strategy—alternating between drawing individual 

units and drawing rows or columns of individual units—on other trials. Hence, these two 

children had started to build and operate on a composite but not consistently. 

Seven of the nine children started the study at the ICS level and exhibited ARCS 

level thinking at some point during the study but not consistently. They started to 

coordinate linear and area units in one dimension or in two dimensions but not 

consistently. Many seemed to have other misconceptions to overcome. Two of the 

children confounded area and perimeter on some of the trials and a third child made 

errors while using the ruler. We posit that these nine children may have been 

transitioning and exhibiting shifts in their trial-by-trial behaviors, but they had not 

completed that transition by the end of the study. We removed these nine children, as 

well as the previously discussed 16 children, from our Phase 2 analysis because we 
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wanted to examine the level shifts, and these 25 children did not exhibit a complete level 

transition.  

Complete level transitions that may have begun prior to Trial 1. Eleven 

children started the study at the AURR level and demonstrated behaviors described at the 

ICS level by Trial 1 or 2, and five children started the study at AURR or ICS and 

exhibited thinking indicative of the ARCS level by Trial 2. We removed these 16 

children from further analysis because they exhibited growth so quickly that their 

transition to the next level may have begun prior to Trial 1. Thus, we could not document 

the entire period from the beginning of the change until reaching stability (Siegler & 

Svetina, 2006)..  

Complete level transitions that occurred after Trial 2. The remaining 13 

children met the criteria for relatively stable growth: Three demonstrated growth into the 

ICS level and 10 demonstrated growth into the ARCS level at least three times on 

subsequent trials. Nine of these 13 children were in the Subdivision Group, three were in 

the Iteration Group, and one was in the Comparison Group. Background information for 

these 13 children10 is presented in Table 3. 

Table 3  

Intervention Group, Initial Placement, and Grade per Selected Child 

Child Intervention Group Initial Placement Final Placement Grade Figure 4a 

Sadie2 Subdivision AURR ICS 2 S11 

Ian4 Iteration AURR ICS 4 I15 

Ianto5 Iteration AURR ICS 5 I7 

Samuel4 Subdivision AURR ARCS 4 S6 
Saul4 Subdivision AURR ARCS 4 S15 

Sarah5 Subdivision AURR ARCS 5 S9 

Sierra2 Subdivision ICS ARCS 2 S1 
Sidney3 Subdivision ICS ARCS 3 S3 
Sidra5 Subdivision ICS ARCS 5 S7 

Sibley5 Subdivision ICS ARCS 5 S17 

Simon5 Subdivision ICS ARCS 5 S18 

Iiago4 Iteration ICS ARCS 4 I16 

																																																								
10 All names are pseudonyms. The first letter of the name indicates intervention group, 
the second letter indicates initial level placement, and the number subscript indicates 
grade level. For example, Sadie2 was a Grade 2 child (subscript of a 2) in the subdivision 
group (first letter of her name is an s) who started the study at the AURR level (second 
letter of her name is an a).	
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Cameron2 Comparison AURR ARCS 2 C13 
aThis is the identifier from Figure 4 to show how children identified in Table 2 
correspond to children in Figure 4. 
 

 Sadie2, Ian4, and Ianto5 demonstrated relatively stable growth from AURR into 

the ICS level without then transitioning into the ARCS level. For the first three to five 

trials of the study, these children traced one tile to draw complete or incomplete arrays. 

On the first five trials, Sadie2 traced one tile to complete an array of individual squares, 

and although they were aligned in rows and columns, she did not provide evidence that 

she was coordinating area units within rows and columns (e.g., demonstrated that she 

expected rows to have the same number of units). On the first three trials, Ian4 and Ianto5 

both showed evidence that they were building a composite unit and coordinating area 

units within rows and columns by either using a mixed drawing strategy—alternating 

between drawing row line segments and tracing individual tiles—or by indicating one 

row and one column with tiles. Then on Sadie2’s sixth trial and Ian4’s and Ianto5’s fourth 

trials, a shift occurred.   

Sadie2 started by tracing one tile but then curtailed her drawing actions by using 

the ruler as a straight edge to finish some but not all row and column segments to produce 

a correct and complete drawing of an array. We take her curtailment as evidence that she 

was coordinating area units within rows and columns and beginning to think about a 

column of two squares as a repeatable unit. Ianto5 used a sequence of behaviors similar to 

what was displayed in the Iteration Intervention video by drawing tick marks along the 

vertical side, but he did this without using the ruler or tiles. He then placed six tiles along 

the horizontal side of the rectangle, taped the tiles, and then iterated this composite unit 

five times, once per tick mark, skip counting “6, 12, 18, 24, 29 [sic]” as he went. In 

contrast, Ian4 iterated a single tile to determine that four square inches would fit along the 

vertical side of the rectangle and six along the horizontal side. He asserted that he made 

“four rows of six” and that “6 times 4 is 24.” Because all three children built and repeated 

a composite area unit as well as coordinated area units within rows and columns, we 

claimed that they were exhibiting behaviors at the ICS level. 

Throughout the remaining trials, these three children continued to operate on 

composite area units. However, they did not provide evidence that they had begun (much 
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less completed) the transition from ICS to ARCS. Specifically, they did not yet 

demonstrate that they were applying the concept that the side length determines the 

number of units that will fit along the side; using the length and the width, coordinating 

linear dimensions of both the area unit and the region to be covered to iterate a row or 

column of units in the orthogonal direction exhaustively; or drawing parallel row and 

column line segments during the study. Hence, they did not exhibit any of the behaviors 

indicative of the ARCS level by the end of the study.  

 

Main Findings for Phase 2: Complete Level Transition to ARCS. 

To describe the typical patterns in children’s behaviors as they shifted from 

measuring area by operating on individual or composite area units to utilizing an array 

structure, we examined 10 children who made this transition. For each of the 10 children 

who exhibited growth to the ARCS level during this study (see Table 3), we isolated the 

first trial on which we assigned an ARCS level code. To identify patterns during level 

transitions, we highlighted the behaviors present surrounding the change by reassigning 

the trial on which we first coded the child at the ARCS level as Trial 0. We then 

identified the two trials preceding and the three trials following Trial 0 as Trials -2, -1, 

+1, +2, and +3. We made comparisons among these 10 children per behavior and per LT 

level. For seven of these 10 children, Trial 0 was Trial 3 (Sidney3, Samuel4, Sidra5, 

Sarah5, Saul4, Sibley5, and Cameron2). For Simon5, Trial 0 was Trial 4; for Iiago4, Trial 0 

was Trial 5; and for Sierra2, Trial 0 was Trial 6 (see Table 4). 

Table 4  

Learning Trajectory for Area Measurement Placement per Selected Child per Trial  

Child T1 T2 T3 T4 T5 T6 T7 T8 T9 
Samuel4 ICS NC ARCS ARCS ARCS ARCS ARCS ARCS ARCS 

Saul4 NC NC ARCS ARCS ICS ARCS ARCS ARCS ARCS 
Sarah5 AURR AURR ARCS ARCS ARCS ARCS ARCS ARCS ARCS 
Sierra2 PCC NC ICS NC ICS ARCS ARCS ARCS ARCS 
Sidney3 NC NC ARCS ARCS ARCS ARCS ARCS ARCS ARCS 
Sidra5 ICS ICS ARCS ARCS ARCS ARCS ARCS ARCS ARCS 
Sibley5 NC NC ARCS ARCS ARCS ARCS ARCS ARCS ARCS 
Simon5 ICS ICS ICS ARCS ARCS ARCS ARCS ARCS  ARCS 
Iiago4 ICS ICS ICS ICS ARCS ARCS ARCS ICS ARCS 

Cameron2 ICS ICS ARCS ICS ARCS ARCS ARCS ARCS ARCS 
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Note. NC = No level claim was made for that particular child on that trial; Trial 0 
identified with italicized and bolded ARCS per child. PCC = Physical Coverer and 
Counter. 
 

Behavior patterns surrounding the change. To identify patterns surrounding 

the change for the 10 children who demonstrated growth into the ARCS level at least 

three times on subsequent trials, we examined their behaviors on Trials -2, -1, +1, +2, and 

+3. Six of these children (Samuel4, Sierra2, Sidney3, Sidra5, Sibley5, and Simon5) 

exhibited similar patterns of growth into and then within ARCS, despite some instances 

of subtle within-child variability between trials before the shift for four of them (Samuel4, 

Sierra2, Sidney3, and Sidra5). In contrast, three of the 10 children exhibited within-child 

variability after the shift: Cameron2, Saul4, and Iiago4 exhibited fallback between 

sessions. Only one child (Sarah5) transitioned from AURR to ARCS without going 

through the ICS level. We next discuss the typical patterns of growth demonstrated by the 

six children before considering the more divergent cases.  

Four of the children (Samuel4, Sidra5, Sibley5, and Simon5) provided a correct 

numeric response on Trial -2. Although Sierra2 and Sidney3 used the ruler to measure 

adjacent sides, Sierra2 and Sidney3 reported numeric answers reflective of finding 

semiperimeter and perimeter, respectively. Neither produced a drawing, even when asked 

to show how their units fit. In comparison, Sibley5 also did not produce a drawing, but 

she did provide a correct numeric response. When asked to show how they fit, she 

responded that she multiplied. 

The other three children produced correct arrays. Initially, Samuel4 placed six 

tiles along the horizontal side of the rectangle, removed these tiles, placed five tiles along 

the vertical side, and then wrote 5 × 6 = 30. It was only after he was asked to show how 

the 30 fit that he created a drawing: He extended horizontal parallel line segments from 

the tiles still along the vertical side of the rectangle and then drew vertical parallel line 

segments freehandedly. Sidra5 and Simon5 also produced correct arrays by drawing 

parallel row and column line segments. Sidra5 used the ruler as a straightedge only, using 

it to draw one horizontal line segment and four vertical line segments (left to right), 

effectively and correctly partitioning it into 10 equal sized pieces. However, she did not 

use the ruler to measure the sides first; hence, we do not have evidence that she knew 
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how many vertical segments to draw before she started drawing them in. In contrast,

Simon5 measured the vertical and horizontal sides of the rectangle, recording their 

measures. Then he drew three parallel but not equally spaced line segments to indicate 

four rows. Before drawing four parallel but not equally-spaced line segments to subdivide 

the region into five columns, he wrote, “4 colums [sic] and 5 colums [sic] would equal 20 

square inches” above the rectangle (see Figure 5).  

 

Figure 5. Simon5’s imprecise coordination of linear and area units on Trial -2. 

This provided us with evidence that Simon5 was starting to attempt to coordinate linear 

and area units. Without tools, he coordinated linear and area units imprecisely (i.e., 

numerically but less precisely spatially) along the vertical and horizontal sides of the 

rectangle (see Appendix B for definitions). For this trial, Samuel4, Sidra5, and Simon5, 

were placed at the ICS level because of the combination of behaviors.11 No level claim 

															
11 Recall that level placement is based on a combination of observed behaviors. To be 
placed at the ARCS level, a child needs to apply the concept that the side length 
determines the number of linear and area units that will fit along the side and coordinate 
the linear dimensions of both the area unit and the region to be covered to iterate a row or 
column of units in the orthogonal direction exhaustively. Thus, it is possible for a child to 
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was made for Sierra2 and Sibley5 because neither made any marks to show how the units 

would fit, nor for Sidney3 because her drawing did not match her numeric answer.  

On Trial -1, only two of the children (Sibley5 and Simon5) provided a correct 

numeric response, and there was less consistency in their behaviors. Two of the children 

who provided incorrect numeric responses, Sierra2 and Sidra5, drew parallel row and 

column line segments to produce incorrect arrays. Sierra2 first measured the vertical side 

of the rectangle to be 3 inches and the horizontal side to be 7 inches. Next, she drew three 

row line segments (instead of two) and six column line segments freehandedly to produce 

a 4 × 7 array (instead of a 3 × 7 array). Given a 4-inch by 5-inch rectangle, Sidra5 again 

used the ruler as a straightedge only, using it to draw one horizontal line segment and 

then three vertical line segments (left to right), partitioning the rectangle into eight 

somewhat equal sized pieces (i.e., producing a 2 × 4 array instead of a 4 × 5 array).  

In contrast, Sidney3 and Samuel4 used behaviors similar to the one displayed in 

the Subdivision Intervention video. They measured adjacent sides of the rectangle and 

used the tick marks on the ruler to draw parallel row and column line segments and 

produce correct arrays. However, Sidney3 and Samuel4 reported numeric answers 

reflective of finding semi-perimeter and perimeter, respectively. Similar to his behaviors 

in Trial -2, Simon5 measured adjacent sides of the rectangle and recorded their linear 

measures. Then he drew five parallel but not equally spaced, vertical line segments and 

then three parallel but not equally spaced, horizontal line segments to produce a 

numerically correct array. 

Because of their use of the ruler to draw the line segments, Sidney3 and Samuel4 

coordinated linear and area units precisely with tools in both dimensions. Whereas, 

Simon5 did not use the ruler, causing him to coordinate linear and area units imprecisely 

(numerically but not spatially) without tools in both dimensions. Although Sibley5 

provided a correct numeric response, she was the only child who did not create a drawing 

on Trial -1. Again, when asked to show how they fit, she responded that she multiplied. 

Sierra2, Sidra5, and Simon5, were placed at the ICS level for Trial -1 because of their 

																																																																																																																																																																					
be placed at the ARCS level without drawing parallel row and column segments and for a 
child to draw parallel row and column segments without being placed at the ARCS level. 
The same is true for any other observed behavior in isolation.  
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combination of behaviors, whereas no level claim was made for three children: Sidney3 

and Samuel4 because their drawings did not match their numeric answers, and Sibley5 

because she did not show how the units would fit.  

On Trial 0, all six of the children provided a correct numeric response. They also 

produced correct drawings of the array, drew parallel row and column segments, and 

coordinated linear and area units precisely with tools in both dimensions (vertical and 

horizontal). Their sequence of actions was similar to those they watched in the 

Subdivision Intervention video. This was a noticeable decrease in variability in 

collections of behaviors from Trials -2 and -1. All six of the children continued to 

produce correct drawings of arrays, draw parallel row and column line segments, and 

coordinate linear and area units precisely with tools in both dimensions on the remaining 

trials (Trials +1, +2, and +3). All of them also produced correct numeric responses on 

Trials +1 and +2, and most of them did so on Trial +3. (Sidney3 provided an incorrect 

numeric response on Trial +3 when she asserted that 4 times 6 is 32.) This indicates that 

for these six children, their behaviors were relatively consistent after transitioning into 

the ARCS level.  

Examining fallback from Area Row and Column Structurer. On Trial 0, all 

10 of the children who exhibited growth to the ARCS level during this study had been 

placed at the ARCS level (by definition). On each of Trials +1, +2, and +3, nine of these 

children were at the ARCS level and one child was at the ICS level. However, the child at 

the ICS level was different on each of those three trials (Cameron2 on Trial +1, Saul4 on 

Trial +2, and Iiago4 on Trial +3). Interestingly, Cameron2 and Iiago4 both fell back to ICS 

when presented with Rectangle A (4 × 3), but Saul4 fell back to ICS when presented with 

Rectangle H (4 × 6). Iiago4 and Cameron2 still produced correct arrays for Rectangle A 

but with less sophisticated behaviors than ARCS. Therefore, we claim that Iiago4 and 

Cameron2 reached back to use ICS-level behaviors. However, Saul4 did not.  

To investigate how Saul4 fell back, we returned to his work. Figure 6 illustrates 

Saul4’s drawings before, when, and after he fell back to ICS-level behaviors on Trial +2 

by drawing a 6 × 4 array of rectangular units rather than a 4 × 6 array of square units. 

That is, Saul4 partitioned a length of 6 inches into four sections and a length of 4 inches 

into six sections. Interestingly, the units within the region are equivalent in area to square 
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inches, and his answer was numerically correct; however, he exhibited a disconnect 

between the length of a side and the number of area units fitting along that side in both 

dimensions. Because Saul4 used a collection of behaviors that exhibited a linear and area 

unit disconnect to produce an incorrect array, we posit that he fell back to use an ICS-

level behavior (cf. Barrett, Clements, & Sarama, 2017; Pirie & Kieren, 1994). 
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Figure 6. Saul4’s drawings, indicating fall back to ICS on Trial +2. 

Saul4 then returned to using ARCS-level behaviors on Trial +3 by coordinating linear and 

area units precisely with tools. Saul4 continued to use ARCS-level behaviors for the 

remainder of the trials in the study (see Trial +4, Trial +5, and Trial +6 in Table 4). 

Examining growth from Area Unit Relater and Repeater. Sarah5 was the only 

child to exhibit a transition from AURR to ARCS without demonstrating behaviors 

indicative of ICS. We did not see evidence of Sarah5 curtailing her tracing actions to 

build a composite unit (i.e., a row of individual units) and then repeat that composite unit, 

nor did we see evidence that she was coordinating linear units or coordinating linear and 

area units in one dimension. Instead, Sarah5 shifted from thinking about individual area 

units to thinking about an array, as demonstrated by her coordination of linear and area 

units in both dimensions when she subdivided the region into an array by drawing 
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parallel row and column line segments. We next examine the trials immediately 

preceding and following this transition in terms of her drawings, operations on units, and 

ability to coordinate linear and area units.	

On Trials -2 and -1, Sarah5 traced individual square tiles to structure the 

rectangles (see Figure 7). Her tedious (over)attention to tracing square tiles indicated that 

she was reliant on an individual area unit as a marker to help her keep track of where she 

had previously iterated square tiles. These behaviors indicated that she was thinking 

about an individual unit to cover. Sarah5 may have used a row as an intuitive structure

because her individual units appear to be aligned in rows, but she did not indicate (e.g., 

verbally or with motion) that this was a row to her. Also, although her units within 

“rows” also appear to be aligned within “columns,” Sarah5 did not provide evidence that 

she was coordinating area units within rows and columns (e.g., indicating that she 

expected rows to have the same number of units). Thus, Sarah5 was coded as exhibiting 

the AURR level on those two trials.  

 
Trial -2: AURR 

Answer: 24 (incorrect) 
(Dimensions: 7 × 4) 

 
 
 

Trial -1: AURR 
Answer: 12 (correct) 
(Dimensions: 2 × 6) 

 
 

Trial 0: ARCS 
Answer: 16 (incorrect) 

(Dimensions: 5 × 3) 

 
Trial +1: ARCS 

Answer: 22 (incorrect) 
(Dimensions: 5 × 6) 

 
 
 

Trial +2: ARCS 
Answer: 10 (correct) 
(Dimensions: 2 × 5) 

 
 

Trial +3: ARCS 
Answer: 20 (correct) 
(Dimensions: 4 × 5) 

Figure 7. Sarah5’s numeric responses and drawings from Trials -2 through +3. 
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In contrast, on Trial 0, when asked to find the area of a 3-inch by 5-inch rectangle, 

Sarah5 used the numbered tick marks on the ruler to constrain the placement of parallel 

row and column line segments to produce a correct array. In other words, she used both 

dimensions to constrain the placement of parallel row and column line segments, 

behaviors indicative of the ARCS level. Although Sarah5 produced a correct drawing, she 

gave a numeric answer that reflected an attention to perimeter. When she was asked to 

show how the 16 would fit, Sarah5 numbered individual squares within the correct array 

as she counted 15 squares (see Figure 7) but did not change her final answer from 16 to 

15. On Trial +1 Sarah5 repeated her drawing strategy to draw a correct array but reported 

a numeric answer of 22 (i.e., the perimeter) as her numeric answer. It was not until Trial 

+2 that Sarah5’s numeric answer matched the number of area units in the array. We have 

two interpretations for Sarah5’s disconnect between space and number (i.e., coordinating 

linear and area units in both dimensions to draw parallel row and line column segments 

and produce a correct array but reporting a numeric answer that did not correspond to the 

number of units drawn in the array). On the one hand, her shift from using just tiles to 

using a ruler may have prompted her to confound perimeter and area. On the other hand, 

Sarah5 may be demonstrating an initial onset of ARCS-level thinking that is messy and 

complicated because of her large conceptual leap from AURR.  

 

Discussion 

We evaluated three interventions designed to support Grades 2–5 children’s 

growth in measuring the area of rectangular regions in different ways. The Subdivision 

Intervention privileged the subdivision of a region into an array by drawing parallel row 

and column line segments, the Iteration Intervention emphasized the building of an array 

by establishing a row of unit squares and iterating the row, and the Comparison 

Intervention reflected the implicit multiplication of length and width to obtain a numeric 

answer for area.  

 

Phase 1 Conclusions 

We found that children’s observable behaviors and numerical responses when 

measuring areas of rectangular regions were more affected by the Subdivision and 
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Iteration Interventions than the Comparison Intervention. Specifically, although all three 

groups exhibited an increased likelihood of answering correctly across the nine trials, the 

children in the Subdivision and Iteration Groups were more likely to provide a correct 

numeric response than the children in the Comparison Group. Furthermore, only the 

children in the Subdivision and Iteration Groups exhibited significant growth along the 

LT for area measurement, with the growth being the most rapid for the Subdivision 

Group. These findings suggest that interventions designed to support concept growth 

(e.g., big ideas of measurement) are more efficient and effective than an intervention that 

does not. 

In addition, for those children in the Subdivision and Iteration Groups, the LT 

level exhibited on each trial served as a significant mediating variable for correctness. 

This finding suggests that, although all of the children exhibited an increased likelihood 

of responding correctly with each subsequent trial, only the Subdivision and Iteration 

Groups’ increases were shown to be the result of more sophisticated conceptualizations. 

In other words, the Comparison Intervention may help children produce more correct 

answers; however, it does not help children improve their understanding of area 

measurement concepts.   

The Subdivision Intervention also prompted significantly more instances of 

ARCS-level behaviors than the other interventions. Comparably, the Iteration 

Intervention prompted significantly more instances of ICS-level behaviors than the other 

interventions. It is our conjecture that a key characteristic contributing to the 

effectiveness of the Subdivision Intervention was seeing a complete record of the 

structure of the two-dimensional array. We believe that the teacher’s process of drawing 

an array (as observed in the Subdivision Intervention video) supported children in the 

Subdivision Group in conceptualizing how linear and area units were coordinated to 

partition the region into an array by drawing parallel row and column line segments, 

regardless of whether the children exhibited global structuring techniques themselves (cf. 

Battista et al., 1998). This is in contrast to children in the Iteration Group who were 

shown how to build an array by establishing a row of unit squares and iterating the taped 

row to fill the region because there was no imprint, stamping, or other record of the 
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structure of the two-dimensional array after the teacher finished the process of iterating 

the row of square tiles. 

 

Phase 2 Conclusions 

 We also examined the children’s observable behaviors before and after they 

shifted from measuring area by operating on individual or composite area units to using 

an array structure. Because we utilized the microgenetic method in this study, we were 

able to investigate this variability within and among trials and children. Twenty-five 

children were removed from Phase 2 analysis because they did not fit our conservative 

criteria of relatively stable growth, and 16 children were removed from Phase 2 analysis 

because they exhibited relatively stable growth so quickly that we could not document 

and analyze the period of change. However, this does not mean that our interventions 

were ineffective for 76% of our participants. As noted in our Phase 1 analysis, children in 

all three groups exhibited an increased likelihood of responding correctly with each 

subsequent trial. Thus, most of these 41 children made shifts in their ability to produce a 

correct numeric answer.  

The nine children who appeared to begin—but not complete—a level transition 

during the study exhibited behavior shifts. These children exhibited variability in their 

behaviors. Some had other misconceptions that may have been interfering with their 

growth, such as confounding area and perimeter or making errors when using a ruler.  

The 13 children who completed a level transition during the study, and especially 

the 10 children who completed their transition into the ARCS level, also exhibited 

behavior shifts but before the level transition. We noticed subtle variability in behaviors 

among the 10 children who transitioned into the ARCS level before they transitioned. We 

also found variability in behaviors within children from trial to trial: Four exhibited 

slightly more variability before the shift (Samuel4, Sierra2, Sidney3, and Sidra5), and three 

exhibited slightly more variability after the shift (Cameron2, Saul4, and Iiago4). Yet, this 

slight variability after the shift was in the form of fall back or reach back on a single trial, 

indicating that the 10 children’s behaviors were relatively stable after they transitioned to 

the ARCS level. The before-shift variability has a different explanation. Siegler (2006) 

demonstrated that variability within individuals can be a prelude for learning, which in 
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our study was indicated by a transition to a more sophisticated level in the LT for area 

measurement. In 2002, Siegler argued, “Just prior to discoveries, children show increased 

solution times (Sielger & Jenkins, 1989), increased verbal disfluencies (Perry & Lewis, 

1999), increased gesture-speech mismatches (Alibali & Goldin-Meadow, 1993), and 

increased cognitive conflict (Piaget, 1952)” (p. 52). We concur that variability within a 

child from trial to trial is not an anomaly, but instead a harbinger or early phase of 

substantial change, and thus a component of the “path of change” (Siegler, 2006).  

Our findings regarding variability are also consistent with our theoretical 

perspective of hierarchic interactionalism. Because growth into the next level depends on 

the concepts and processes that constitute the previous levels, “a critical mass of ideas 

from each level must be constructed before thinking characteristic of the subsequent level 

becomes ascendant in the child’s thinking and behavior” (Clements & Sarama, 2007, p. 

465). We posit that the within-child variability that we observed on Trials -2 and -1 was 

indicative that a proper subset of the requisite concepts and processes was emerging as 

the children modified their mental models for coordinating and structuring each 

individual unit and its relation to the group or groups of units. However, the full set had 

not yet congealed in a cohesive, efficient, and dominant mental structure.  

The six children who exhibited similar patterns of growth into and then within 

ARCS were all in the Subdivision Group. A skeptic may argue that these children did not 

learn about area measurement; instead they learned to mimic a sequence of behaviors 

exhibited in the Subdivision Intervention video. Although the Subdivision Intervention 

video could be interpreted as a form of demonstration, these children still required 

repeated experience or exposure to that demonstration before exhibiting changes in their 

own drawings or notations. It took the eight of 18 children in the Subdivision Group who 

completed their transition into the ARCS level between two and five viewings of the 

Subdivision Intervention video (see Table 4) to reflect upon (and perhaps use) what they 

were observing to exhibit a sequence of behaviors that was similar to what was displayed 

in the Subdivision Intervention video.  

When a child observes another person (directly present or shown in a video 

recording) constructing an array by drawing two orthogonal sets of line segments onto a 

rectangle, the child must incorporate that example into their own activity to provide a 
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basis for advancing their knowledge of the array as an organizing principle to guide the 

measure of the area of that rectangle. In this study, other than asking the participants to 

“show how the area units fit,” there was no prompt to compel them to use the collection 

of behaviors illustrated in the videos, nor a way to ensure they used them meaningfully. 

For example, Saul4 did not meaningfully use the linear scale when he partitioned a length 

of 6 inches into four sections and a length of 4 inches into six sections. He produced 

approximately equal-sized rectangles to produce an array of units equivalent in area to 

square inches. His numeric answer was correct, but he did not have an array of 24 square 

inches. In other words, the meaningful use of a linear scale (i.e., a 12-inch ruler) to guide 

the placement of area units and draw parallel row and column line segments and the 

coordination of linear and area units in both dimensions are nontrivial behaviors and 

cannot be incorporated prior to making sense of those actions. Therefore, we contend that 

some of the participants learned that the numerical response to the question “What is the 

area of this rectangle?” should indicate that that number of area units should cover the 

space (i.e., they learned to associate the word area with structuring space); some learned 

how to coordinate linear and area units; and some learned a more sophisticated way to 

show how the area units fit. This implies more than mimicry; we take this as evidence of 

cognitive restructuring. As for the participants who may have “just” learned to mimic 

some of the behaviors illustrated in the videos, we argue that mimicry is still learning—

they still learned how parts fit into a whole and applied this to new situations. 

 

Limitations 

Although this study was designed to extend the research on the learning of area 

measurement by investigating shifts in children’s behaviors in response to one of three 

interventions, it is not without limitations. Some of the limitations of this study can be 

attributed to the nature of the tasks posed in the study. In the present study, children had 

access to seven square-inch foam tiles, a ruler, and a pen, and they were asked to 

determine the area of a given rectangle. The growth exhibited here was observed in a 

clinical setting with a researcher. It is unknown whether children would maintain the 

growth observed in the study or transfer their knowledge when confronted with new 

situations involving other aspects of area measurement, more complex tasks, or with 



Page 45 of 56	

different tools. In addition, a delayed posttest may have given additional credibility to our 

findings.  

Another limitation of the present study is related to our decision to determine 

correctness based on children’s numeric answers. Our participants may not have realized 

that they were often reporting the number of square units. Previous research indicates that 

children do not think of a square unit as the standard unit of area (Kamii & Kysh, 2006). 

However, our participants were not always counting unit squares. Sometimes they were 

counting rectangular units equivalent in area to square units (e.g., Saul4). Other times 

they were counting approximately rectangular shapes (e.g., Simon5). Although we argue 

that for most of the children in this study the unit is implied because the teacher in each 

of the intervention videos reports both the numeric answer and the unit (e.g., “21 square 

inches”), additional research is needed to investigate the impact of directly identifying the 

unit for the child through instruction or demonstration.  

 

Implications and Suggestions for Future Research 

Our findings have several implications for teaching. First, the effectiveness of the 

Subdivision and Iteration Interventions indicates that children benefit from experiences 

learning about unit concepts (e.g., unitizing, composing units to create units of units, 

iterating individual or groups of units, and coordinating units) and spatial structuring of 

two-dimensional space. We recommend that teachers make these big ideas explicit and 

help children connect these big ideas (e.g., how multiplying the length and width of a 

rectangle to produce a measure of area is related to drawing an array of rows and columns 

of identical square units). Second, the rate of change for children in the Subdivision 

Group suggests that having a complete record of how the area units fit led to improved 

performance. Thus, it is important for children to not only have opportunities to see a 

complete record, but also to reflect on its creation and organization, such as by having 

multiple children share their records of how the area units fit and comparing them in a 

whole class discussion. Third, the relative ineffectiveness of the Comparison Intervention 

indicates that a focus on procedures may contribute to children’s difficulties when 

learning about area measurement (Smith et al., 2016).  
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This study also has several implications for research. In this article, we report on 

our findings from a multisite, cross-sectional study that integrated multiple 

methodologies. We also utilized the microgenetic method with an LT for area 

measurement as a lens to investigate children’s behavior shifts and level transitions. 

Siegler (2002) argued that such analysis is important: “Examining the way that children 

learn under various instructional procedures, contrasting the characteristics of more and 

less successful learners, and identifying where learning goes awry when it goes awry—all 

can contribute to improving instructional procedures” (p. 36). Hence, this research has 

the potential to help teachers and researchers notice important shifts in behaviors, 

anticipate level transitions, and provide meaningful experiences at important times.  

Of the 10 children who transitioned from not yet ARCS into ARCS during this 

study, only one transitioned from AURR to ARCS without providing evidence of 

behaviors indicative of the ICS level. Did Sarah5 skip a level? Or, did our session 

protocol limit our ability to observe the intermediate transition? The tenets of hierarchical 

interactionalism indicate that these levels are not only sequential, but also that growth 

into the next level depends on the concepts and processes that constitute the previous 

levels (although the theory does not prohibit advances on several contiguous levels 

simultaneously nor a fast acquisition of multiple levels that occurs without observation of 

each level in sequence, see Clements & Sarama, 2014; Sarama & Clements, 2009). We 

do not consider Sarah5’s growth to be disconfirming evidence for the LT, but rather we 

consider her a novel case. Additional research is needed. We wonder—is “skipping” a 

level efficient or is it problematic in the long run for children like Sarah5?  

Another suggestion for future research is the scale up of this study to a wider 

range of children’s abilities and ages across various settings. This line of research should 

examine the effectiveness of the Subdivision Intervention and Iteration Intervention both 

with small groups of children and large groups of children in a classroom setting. We also 

anticipate the extension of the study presented in this article to children at levels less 

sophisticated than AURR. Thus far, we have studied how the Subdivision and Iteration 

Interventions promoted growth and caused a change in behaviors of children beginning at 

the AURR or ICS levels. One natural extension would be to investigate if or how the 

Subdivision and Iteration Interventions promoted growth or caused changes in behaviors 
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of children not yet at the AURR level. Another extension would be to examine 

modifications of the existing Subdivision and Iteration Interventions, such as 

synthesizing the Subdivision and Iteration Interventions (e.g., modifying the process of 

iterating rows of taped tiles so that an imprint, stamp, or record of the structure of the 

two-dimensional array is left behind; L. Steffe, personal communication, February 18, 

2016) or privileging continuous motion (e.g., dragging or sweeping one length through 

another; Kobiela, Lehrer, & Pfaff, 2010). We look forward to extensions of this research. 
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Appendix A 
 

Four-item Screening Instrument 
 

Part 1: Without a ruler 
 

1. What is area? 
 

2. I wanted to cover this rectangle with these squares.  I started drawing them in.  
Please finish the drawing by completely covering the rectangle. 

 

 
 
Part 2: With a ruler 
 

3. The area of this rectangle is 10 square inches. Draw how each of the 10 square 
inches fit. 

 
4. Draw a rectangle that has an area of 8 square inches in the space below. You may 

use a ruler to help you. Show on your rectangle how the 8 square inches fit. 
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Appendix B 
 

Codes Descriptor 

Unit coordination codes  

No claim Unable to make a claim about unit coordination based on the 
child’s written, verbal, or nonverbal responses. 

Linear and area unit 
disconnect 

Did not apply the concept that the length of a side indicates the 
number of area units that should fit along that side (e.g., 
created a 6 by 4 array for a 4-in. by 6-in. rectangle, see Saul4’s 
drawing for Trial +2 in Figure 6).  

Coordinated linear and 
area units imprecisely 
(numerically but not 
spatially) without tools 

Placed tick marks or line segments on the rectangle, resulting 
in the correct number of rows or columns, but the rows or 
columns were not close to the same size (i.e., unequally 
spaced). 

Coordinated linear and 
area units precisely 
(numerically and spatially) 
without tools 

Without tools applies the concept that the side length 
determines the number of area units that will fit along the side 
(i.e., did not use the ruler to guide the placement of tick marks 
or line segments; may have used a mental image of an inch or 
square inch to place tick marks appropriately). For example, 
demonstrated or verbalized that a side length of 4 inches 
would necessarily have 4 square units that would fit along that 
side. 

Coordinated linear and 
area units precisely with 
tools 

With tools applies the concept that the side length determines 
the number of area units that will fit along the side (e.g., used 
the numbered tick marks on the ruler to guide the placement of 
tick marks or line segments). For example, used the linear 
units on a ruler to measure the length of the side and then drew 
line segments per inch to show where each square inch would 
fit along that side.  

 
 
 
 
 
 
 
 

 
	


