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We examine the effects of 3 interventions designed to support Grades 2—5 children’s
growth in measuring rectangular regions in different ways. We employed the
microgenetic method to observe and describe conceptual transitions and investigate how
they may have been prompted by the interventions. We compared the interventions with
respect to children’s learning and then examined patterns in observable behaviors before
and after transitions to more sophisticated levels of thinking according to a learning
trajectory for area measurement. Our findings indicate that creating a complete record of
the structure of the 2-dimensional array—by drawing organized rows and columns of
equal-sized unit squares—best supported children in conceptualizing how units were

built, organized, and coordinated, leading to improved performance.
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Structuring

Geometric measurement is an important topic in school mathematics because it
has practical applications to daily life, connects to multiple disciplines, and is a specific
branch of mathematics that links number and space (Clements & Sarama, 2007). In this
study, we examined and supported children’s thinking and learning about area
measurement in Grades 2 to 5. We take area measurement to mean the quantification of
the amount of space within a two-dimensional, planar, closed surface or region (Sarama
& Clements, 2009; Weisstein, 2016).

In this study, we extend the research on the learning of area measurement by
investigating shifts in children’s observable behaviors in response to one of three
interventions designed to support children’s growth in measuring rectangular regions but
in different ways. We used a hypothetical learning trajectory for area measurement
(Barrett, Clements, Sarama, Miller, et al., 2017) as a tool to track children’s shifts and
growth. To date, most learning trajectory-related research has been focused on building
(e.g., Blanton, Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015), revising (e.g.,
Sarama, Clements, Barrett, Van Dine, & McDonel, 2011), and extending (e.g., Barrett,
Clements, & Sarama, 2017) learning trajectories. In 2010, Simon et al. asserted that

“generally missing from the literature is research that examines the process by which
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students progress from one of these conceptual steps to a subsequent one” (p. 70). In this
study, we incorporate the microgenetic method with a learning trajectory to identify level
transitions, which can help teachers and researchers notice important shifts in observable
behaviors, anticipate when level transitions are about to happen, and become more

efficient at motivating these level transitions.

Review of the Related Literature

Although area measurement is a commonly taught form of geometric
measurement (Curry, Mitchelmore, & Outhred, 2006), research indicates that the
teaching and learning of area measurement has been inadequate for years (e.g., Bell,
Hughes, & Rogers, 1975; National Assessment of Educational Progress [NAEP], 1983,
2016). In 2007, only 42% of fourth graders (9 year olds) taking the Trends in
International Mathematics and Science Study (TIMSS, 2016) assessment chose the
correct area of a fenced-in region when given the whole number length and width (e.g., a
4-meter by 3-meter rectangle). Although the fourth graders in the United States and
England performed slightly better than this international average, only 48% and 44% of
their participants selected the correct area, respectively. In contrast, only 28% of fourth
graders in Australia made the correct selection. On the 2013 National Assessment of
Educational Progress (NAEP, 2016), only 23% of fourth graders in the United States
correctly chose the gym floor with the greatest area when given the whole number length
and width of four gym floors (e.g., 95 feet by 40 feet). In the same year, only 47% of
eighth graders correctly determined the area of a rectangle when given the length of one
side and the perimeter of the rectangle: “One side of a rectangle is 14 meters. The
perimeter of the rectangle is 44 meters. What is the area of this rectangle?” (NAEP,
2016). Most of the tasks on these large-scale assessments only required children to apply
the area formula for rectangles.

Research indicates that assessing children’s understanding of area measurement
based on their application of a formula is insufficient because children in multiple
countries are taught to apply area formulas without understanding (Battista, 2003;
Clements & Sarama, 2007; Kamii & Kysh, 2006; Outhred, Mitchelmore, McPhail, &
Gould, 2003). Zacharos (2006) asserted that this lack of understanding stems from
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teaching the formula prematurely. Battista (2003) posited that children’s difficulty with
understanding the area formula is related to a lack of understanding of the structure:
Children multiply the length and width of a rectangle to produce a measure of area
without realizing that this product produces an array of rows and columns of identical
square units. Stephan and Clements (2003) argued that there is too much focus on
procedures for measuring and not enough on the “big ideas” (p. 14) of measurement.
These researchers agree that understanding area measurement requires the integration of
experiences learning about unit concepts and spatial structuring of two-dimensional

space.

Unit Concepts

Several researchers (e.g., Stephan and Clements, 2003) have investigated
children’s difficulties with area measurement in terms of unit concepts, such as unitizing,
composing units to create units of units, iterating individual or groups of units, and
coordinating units. Below we delineate each of these four unit concepts.

Unitizing. According to Steffe (1991), “Segmenting sensory experience into units
is the result of a unitizing activity prior to measuring or to counting that makes these
activities possible” (p. 63). In an area measurement context, unitizing requires the
identification of a repeatable shape, piece, or object (i.e., the unit) that is part of the
whole or region and segments or covers the two-dimensional space well.

Research indicates that children struggle to recognize area units. In their work
with children in Grade 2, Lehrer, Jacobsen, et al. (1998) found that children initially
selected objects that resembled the shape of the regions to be covered. For example, to
cover the region within a traced hand outline, children selected beans, spaghetti, and rope
as units of area measure. In another study, Lehrer, Jenkins, and Osana (1998) reported
that 43% of the first-, second-, and third-grade participants selected circles as their unit of
measure for covering the interior of a closed curve and that 73% of their participants
were unperturbed by the suggested use of circles to cover a square region, even when
directly asked about the gaps between the circles. Because the circles resembled the
closed curve region, they posited that the children were again attending to resemblance

rather than space-filling properties. These researchers also argued that even when
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children begin to recognize that some shapes or objects tessellate or cover regions better
than others (i.e., without gaps or overlaps), they may not recognize the need for same size
shapes or objects. Lehrer, Jenkins, and Osana (1998) also reported that when asked to
measure the area of a square, 55% of their participants used a combination of squares and
other shapes such as triangles to cover and thus “used manipulatives as a unit of cover”
(p. 155). This is in contrast to consistently using one shape or object as a unit of measure.

In time and with experience or instruction, children can learn about space-
covering and space-filling properties and begin to appreciate the square unit as a unit that
segments, covers, fills, and tessellates rectilinear regions well (Lehrer, 2003; Lehrer,
Jenkins, & Osana, 1998). However, Kamii and Kysh (2006) found that, given traditional
instruction, it is not obvious to older children (Grades 4-8) that the square unit is the
standard unit for area measurement. In other words, although older children may
recognize the need for equal units of area that tessellate or cover space well, they may not
recognize the square as the shape of the standard unit for area measurement.

Composing. Research indicates that children initially draw and count individual
shapes that increasingly resemble squares when asked to copy an array (Sarama,
Clements, Van Dine, et al., 2017), complete a partially-drawn array (Battista, Clements,
Arnoff, Battista, & Barrow, 1998; Outhred & Mitchelmore, 2000; Sarama & Clements,
2009), or determine how many tiles (of the size and shape of the one provided) would be
needed to cover a region and show how they fit (Miller, 2013; Outhred & Mitchelmore,
2000). With experience or instruction, children transition to thinking about individual
squares as units and then to thinking about grouping units together to compose a
composite unit (e.g., a row or column). This transition indicates that the child has “begun
the coordinating action of seeing a square as both a unit and a component of a unit of
units” (Sarama & Clements, 2009, p. 298), which Outhred and Mitchelmore (1992)
claimed was a critical step. These composite units may or may not be rows or columns.
Children may group units together to compose a nonrow unit of units, such as a partial
row or column (Miller, 2013; Sarama, Clements, Van Dine, et al., 2017).

Iterating. Piaget, Inhelder, and Szeminska (1960) asserted that iteration is
integral to measuring: “to measure is to take out of a whole one element, taken as a unit,

and to transpose this unit on the remainder of the whole: measurement is therefore a
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synthesis of sub-division and change of position” (p. 3). In development, children’s
ability to iterate a single unit is an important conceptual advancement over a level of
thinking in which they require enough physical tiles to cover a region completely to
determine area. Children’s early unit iterations may not be mathematically rigorous, but
with experience, they modify their actions to minimize gaps and overlaps (Lehrer, 2003;
Stephan & Clements, 2003). This development is difficult for children (Barrett,
Clements, & Sarama, 2017) because unit iteration involves the repetition of an area unit,
either an actual physical object (e.g., a square tile) or a mental image of a unit, which is
geometrically translated repeatedly through two-dimensional space to occupy successive
locations, always in an adjacent position with one concurrent edge. Later, children
transition from iterating individual units to iterating units of units, a more sophisticated
and efficient approach.

Coordinating. Moving from thinking about a square as an individual unit to
thinking about a square as a component of a row and then to thinking about a square as a
component of a row and a column requires a great deal of unit coordination. First,
children must learn to coordinate area units within rows and columns (i.e., the child sees
a unit as a member of both a row and a column, even as it covers only a single portion of
space) by creating identical composite units and aligning composite units so that
individual units are also aligned as that composite unit is repeated (Outhred &
Mitchelmore, 1992, 2000; Sarama & Clements, 2009). Second, children must coordinate
linear and area units to determine the number of area units that will fit along each side
(Battista, 2003; Kara et al., 2011; Outhred & Mitchelmore, 1996, 2000; Sarama &
Clements, 2009). The coordination of linear and area units involves using the linear
dimensions to position area units, which can be taken for granted without consequence
when the unit is a square unit (cf. Kara et al., 2011; Miller, 2013). Third, after creating a
unit of units or row of units that fits along a side, children must learn to coordinate linear
units—using the length and the width of both the unit and the region to be covered—to
iterate that row or column of units in the orthogonal direction exhaustively (Outhred &
Mitchelmore, 2000; Sarama & Clements, 2009). For example, when asked to cover an 8
cm by 9 cm rectangular region by drawing 2 cm by 3 cm rectangular area units, the child

may use the length of the unit (3 cm) and length of the region (9 cm) to determine that
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three units would fit along that side, building a row of three rectangular units along the
bottom side of the rectangle. The child may then repeat that row over the rectangular
region, using the linear units of the width of both the unit (2 cm) and the region (8 cm) to
determine that four rows would completely cover the region (cf. Barrett, Cullen, et al.,

2017; Kara et al., 2011).

Spatial Structuring

Sarama and Clements (2009) defined spatial structuring as “the mental operation
of constructing an organization or form for an object or set of objects in space, a form of
abstraction, the process of selecting, coordinating, unifying, and registering in memory a
set of mental objects and actions” (p. 296) and argued that the mental structuring of a
two-dimensional array precedes the meaningful use of the mathematical structures of the
array. To structure a two-dimensional array, a child may partition or cut the two-
dimensional space into parts, or they may build the two-dimensional region from parts.

Spatial structuring may take a long time to develop, especially with a lack of
guided experience (Smith, Males, & Gonulates, 2016). Young children may partition the
space into unequal parts, such as by drawing shapes that vary in size and shape (e.g.,
Outhred & Mitchelmore, 2000; Sarama & Clements, 2009). Their organization of tiles or
drawn objects is inadequate and unsystematic, causing them to have difficulty keeping
track of what they have counted (e.g., Battista et al., 1998). Older children may partition
the space into equal parts by drawing or iterating individual units (e.g., Sarama &
Clements, 2009). According to Battista, Clements, Arnoff, Battista, and Barrow (1998),
Outhred and Mitchelmore (1992, 1996, 2000), and Sarama and Clements (2009), with
experience or explicit instruction, children begin to organize their units initially by
utilizing a row structure (i.e., thinking about a unit of units), then a row-and-column
structure (i.e., flexibly thinking about units of units—focusing on rows or columns but
not both), and eventually an array structure (i.e., thinking about coordinated rows and
columns—a unit of units of units). This array structure can be created by breaking
down—subdividing the region into an array by drawing parallel row and column line

segments—or building up—building an array by establishing a row of unit squares and
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iterating the row to fill the region. Taken together, these findings suggest that children’s
area measurement knowledge is supported by their ability to structure space.

Although arrays imply or suggest structure, children’s ability to detect and use
that structure is dependent on purposeful and repeated experiences (e.g., Battista et al.,
1998; Outhred & Mitchelmore, 1992, 1996, 2000, 2004; Sarama & Clements, 2009).
Initially, children may produce an array of squares by covering with physical tiles or by
drawing parallel row and column line segments without visualizing the spatial structuring
of rectilinear regions or the row and column array of squares. In other words, they may
organize or structure a two-dimensional space before they can have a well-developed
understanding of that structure (Sarama & Clements, 2009).

In their review, Outhred and Mitchelmore (2000) argued that using physical tiles
to tile a rectangle “may conceal the very relations they are intended to illustrate” (p. 146).
Some manipulatives, such as foam squares or grid-overlays, prestructure an array,
allowing children to determine correctly the area of the region without attending to the
structure (Lehrer, 2003; Outhred & Mitchelmore, 2000). In other words, children are
often able to correctly create an array with square units and imitate the organization of an
array by relying on discrete counting of objects or operating on rows or columns of
individual units without conceptually understanding the array structure. Children need
opportunities to mentally construct, organize, and integrate existing structures into new
structures (Battista et al., 1998; Outhred & Mitchelmore, 1992; Sarama & Clements,
2009).

Goals and Research Questions

We sought to extend the research on area measurement by exploring interventions
that were designed to support children’s understanding of area measurement as a
structuring process. We created and compared the effectiveness of three interventions,
two of which were designed to support children’s growth in measuring rectangular
regions using spatial structuring. First, we describe two experimental interventions: (1)
subdividing a region into an array by drawing parallel row and column line segments and
(2) building an array by establishing a row of unit squares and iterating the row to fill a

rectangular space. The third intervention was a comparison intervention in which the
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children were repeatedly exposed to an arithmetic approach of multiplication of two
linear measures without direct appeal to an area unit.

Based on our review of the related literature, we conjectured that both
experimental interventions would provide greater support than the comparison
intervention. The present study is part of a larger investigation in which we conducted
one-on-one sessions with children in Grades 1-5 from the Rocky Mountain and Midwest
regions of the United States to evaluate the three interventions. Elsewhere (Clements et
al., 2017), we discuss the results from our work with 70 children in Grades 1-3 to
illuminate the transition to operating on composite units. In this article, we present the
results from our work with 54 children in Grades 2—5 to focus on the transition to using
an array structure. The following research questions framed our work:

1. How are children’s observable behaviors and numerical responses when
measuring rectangular regions affected by repeated exposure to a video
demonstration that focuses on either

a. building an array by establishing a row of unit squares and iterating the
row or

b. subdividing a region into an array by drawing parallel line segments
for rows and for columns?

2. What patterns emerge in children’s observable behaviors just before and after
they shift from measuring area by operating on individual or composite area

units to using an array structure?

Theoretical Framework

To answer these questions, we employed a learning trajectory (LT) for area
measurement (Barrett, Clements, Sarama, Miller, et al., 2017) to (a) inform the design of
instructional tasks by focusing our attention on unit concepts and spatial structuring and
(b) provide descriptions of the children’s observable actions. According to Clements and
Sarama (2007), an LT has three parts: an instructional goal in a mathematical domain, a
likely path for learning through levels of increasing sophistication, and the instructional
tasks specifically designed to engender the mental processes or actions that support

children’s progression through those levels.
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The LT for area measurement (Barrett, Clements, Sarama, Miller, et al., 2017)
utilized in this study is a revised and extended version of Sarama and Clements’ (2009)
LT for area measurement. The LT for area measurement produced by Sarama and
Clements was based on a review of the literature as well as years of their cross-sectional
research that included clinical interviews, individual teaching experiments, and
classroom-based teaching experiments. The LT for area measurement produced by
Barrett, Clements, Sarama, Miller, et al. was based on their retrospective analysis of a
multi-site, 4-year longitudinal study of elementary children’s developing measurement
knowledge, which was funded by the National Science Foundation (for more information
on the study, the revisions and extensions made to the initial LT, and justifications of
those modifications, see Barrett, Clements, & Sarama, 2017).

We view the LT for area measurement employed in the present study from the
hierarchic interactionalist perspective on learning and development (Clements & Sarama,
2007), which is a cognitive theoretical framework that synthesizes empiricism, nativism,
and interactionalism. Specifically, this LT for area measurement is related to a key
precept of hierarchic interactionalism, which postulates that children progress through
domain-specific levels of understanding that build hierarchically out of the concepts and
processes that constitute the previous levels. In the present study, the levels of this LT for
area measurement served as a tool for measuring children’s concept growth.

According to the hierarchic interactionalist perspective, as children progress
through the levels of an LT, more than one level is within their reach on any given task.
A child has a “dominant” level, yet more and less sophisticated levels need to be
considered. This is a central aspect of the theory of hierarchical interactionalism
(Clements and Sarama, 2007), and it is consistent with the zone of proximal development
(ZPD) described by Vygotsky (1978) and the overlapping waves approach posited by
Siegler (2002). On the one hand, behaviors indicative of one level more sophisticated
than a child’s current dominant level may be in reach in certain contexts or under certain
conditions (e.g., with scaffolding and support from another). On the other hand, levels
less sophisticated than a child’s current dominant level are not abandoned. Children may
fall back to make use of behaviors indicative of less sophisticated levels under conditions

of increased stress, when confronted with more complex tasks, or when another process
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fails (Pirie & Kieren, 1994). Similarly, children may reach back (cf. Barrett, Clements, &
Sarama, 2017) to make use of concepts and processes that constitute less sophisticated
levels when a task can be efficiently and correctly resolved without making use of a more
sophisticated level of thinking. Therefore, in the present study when we make a claim that
a child is at a particular level of this LT for area measurement, we recognize that for a
child to respond “at that level” on a given task or in a given context depends on
additional factors. Thus, we are conservative in our claims regarding completed level
transitions in the Results section.

The theory of hierarchical interactionalism posits that instructional practices that
address the developmental progression are more effective, efficient, and generative for
the child than those that do not (Clements & Sarama, 2007). Such instruction based on
LTs builds on the hypothesized specific mental objects and actions that constitute
children’s thinking at a particular level by including the “external objects and actions that
mirror the hypothesized mathematical activity of the children as closely as possible”
(Clements & Sarama, 2007, p. 466). These characteristics are consistent with, but extend,
other theories such as Siegler’s (2002) overlapping waves approach, which focuses
mainly on strategies and does not include instruction as an integrated component. In the
following section we summarize the observable behaviors (hereafter referred to as
behaviors) as well as the hypothesized mental actions on objects indicative of the levels
of the LT for area measurement that we used to differentiate children’s responses in the

present study.

Levels of a Learning Trajectory for Area Measurement

The LT for area measurement (Barrett, Clements, Sarama, Miller, et al., 2017)
employed in this study includes a developmental progression for how children develop
area measurement concepts and spatial structuring schemes. Initially, children cannot or
do not organize or structure the two-dimensional space. Instead, they draw
approximations of rectangular shapes but leave gaps or overlaps to draw an incomplete
covering (Physical Coverer and Counter). In time, children begin drawing complete
coverings by drawing approximations of rectangular shapes without gaps or overlaps

(Complete Coverer and Counter), which leads to the development of unitizing and
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iterating unit concepts (Area Unit Relater and Repeater, see Table 1 for this and other
levels targeted in this study). This is followed by the transition to building, maintaining,
and manipulating a unit of units or a composite unit (Initial Composite Structurer). Next,
the coordination of area units within rows and columns emerges, which facilitates the
development of a unit of units of units; in time and with experience or instruction, the
coordination of linear and area units, the coordination of linear dimensions of the area
unit and the region, and a global scheme for creating, organizing, and operating on an
array are developed (Area Row and Column Structurer). The transition into the
subsequent level (Array Structurer) marks a shift in the focus of the LT for area
measurement from emphasizing spatial structuring and unit concepts to the development
of increasingly sophisticated logical thought, reflection, explanation, and justification in
geometric measurement situations (i.e., why multiplication creates a measure of area).
[Insert Table 1 here]

In our prior work in which we compiled longitudinal accounts of children’s
thinking and learning about geometric measurement from Grade 2 to Grade 5, we found
that five out of seven children plateaued at the Initial Composite Structurer level for 12—
30 months (Barrett, Cullen, et al., 2017). These participants were able to build, maintain,
and manipulate a composite unit to structure an array (indicating that they were at least at
the Initial Composite Structurer level) but struggled to coordinate linear and area units
(thus not yet at the Area Row and Column Structurer level) during Grades 3-5. We
considered this a plateau because the children transitioned into and out of other levels
within a 6—12 month time span. This made us wonder if the transition from the Initial
Composite Structurer level was more complicated than other transitions, if a level was
missing, or if instruction needed to have more conceptual supports. We designed the
present study, in part, to investigate ways of shortening this transition from the Initial

Composite Structurer level to Area Row and Column Structurer level.

Method
Because we wanted to describe the transition from less sophisticated levels into
the Area Row and Column Structurer level (and using an array structure), we designed a

study that would allow us to observe children as they made this shift. To guide the design
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of these observations, we employed the microgenetic method (Siegler & Svetina, 2006).
This method allows for the study of the circumstances preceding a conceptual change, the
change itself, and the potential generalizability of the results beyond the context of the
present study (Siegler & Crowley, 1991). It is historically rooted in the work of Heinz
Werner and Lev Vygotsky who argued that change can be motivated through focused
experiences and that change can be observed (Vygosky, 1978; Werner, 1925; as cited in
Siegler & Crowley, 1991). There are three main characteristics of the microgenetic
method: a) observations span the entire period from the beginning of the change to the
time at which it reaches a relatively stable state; b) the density of observations within this
period is high, relative to the rate of change; and c) observations of the changing
performance are analyzed intensively to indicate the processes that give rise to them

(Siegler, & Svetina, 20006).

Participants

To identify children not yet at the Area Row and Column Structurer (ARCS)
level—specifically, children at the Area Unit Relater and Repeater (AURR) and Initial
Composite Structurer (ICS) levels—we recruited children in 17 Grade 2 to 5 classes from
two school districts in the Midwest (three classes each from Grades 2 and 3, six classes
from Grade 4, and five classes from Grade 5). Both school districts had adopted the
Common Core State Standards in Mathematics (CCSSM, National Governor’s
Association for Best Practices & Council of Chief State School Officers, 2010) and thus
taught area during Grades 3—5. The Grade 2 children had not yet been formally exposed
to the rectangular area formula, but the children in Grades 3—5 had. None of the teachers
of participating classrooms were teaching measurement lessons during the study;
therefore, the participants did not receive instruction about area measurement between

our sessions.

Initial Screening Instrument
We administered a four-item LT-based screening instrument (see Appendix A) to
all of the children (n = 240) in the participating classrooms. For Part 1 (Items 1 and 2),

children did not have access to a ruler. After Part 1 was collected, we distributed Part 2
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(Items 3 and 4) and rulers. This instrument included items from our earlier work that
were designed to elicit different behaviors indicative of levels described in the LT for
arca measurement (Barrett, Clements, Sarama, Miller, et al., 2017).

To analyze the responses, we distributed the children’s screening instruments
among the researchers, each of whom had a minimum of 3 years (at the time) experience
working with the LT levels and descriptions and identifying levels of thinking using that
LT. We used Item 1 to analyze children’s conceptions of area and area measurement
through their definition of area. We used Items 2—4 to identify an LT level per item. On
Item 2, we analyzed the children’s drawings because the prompt elicited a range of
responses that are describable by language in the LT.

For example, children exhibiting thinking at the Complete Coverer and Counter
(CCC) level show an understanding that they must cover the entire region. John, a
second-grade child, drew mostly closed individual squares using existing squares to guide
his placement to cover the region (see Figure la). However, John had errors in the
alignment of the squares and did not show that he recognized the need for equal sized
units. Thus, we interpreted John’s drawing as illustrating thinking at the CCC level but
not yet at the AURR level.
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Figure 1. Three second grade children’s drawings on Item 2: a) John’s drawing indicating
that he was not yet utilizing behaviors indicative of the AURR level, b) Elizabeth’s
drawing illustrating the AURR level, and c¢) Micah’s drawing demonstrating thinking at
the ICS level.

As children progress to the AURR level, they can still have some alignment errors
but draw a complete covering. However, they attend to drawing equal-sized units, one at

a time. Elizabeth, a second-grade child, illustrated thinking at the AURR level when she
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drew individual, approximately equal-sized units without gaps or overlaps (see Figure
1b). Because her placement of these units was strongly guided only by the previously
drawn adjacent units, we take this as evidence that she was using the intuitive structure of
a row as a marker to guide her drawing actions. However, Elizabeth did not use a row as
a unit of units (e.g., she did not curtail the process to produce rows of individual units)
nor did she show evidence that she understood that each row should have the same
number of units, which is indicative of the next level.

Children operating at the ICS level can identify a square unit as both a unit and a
component of a unit of units (e.g., a row, column). They can apply this unit of units
repeatedly but not exhaustively. They may draw several rows by using line segments but
then revert to drawing individual squares. Or they may begin drawing individual squares
and then curtail this process to draw line segments to indicate rows. They also understand
that each row must have the same number of units. Micah, a second-grade student,
alternated between drawing individual units and completing rows and columns with line
segments, as indicated by places in which he picked up his pencil and drew over existing
marks (see Figure 1c).

The ARCS level is an advancement over the ICS level because children have
moved from identifying squares as individual units to seeing the square also as a
component of a row and a component of a column (i.e., coordinating area units). They
also use the dimensions to constrain the unit size—the length of a side of a rectangle
indicates the number of area units that will fit along that side. Because the dimensions of
the rectangle in Item 2 are indicated by the printed row and column, we could not use this
task to determine if children were operating at the ARCS level. At most, we could claim
that they were operating at least at the ICS level. We used Items 3 and 4 to determine if
they were already operating at the ARCS level. We wanted to know if they could use the
dimensions (the lengths of two orthogonal sides) to determine how many units fit along
those sides (i.e., coordinate linear and area units) as well as use the length and the width
to constrain the unit size (i.e., coordinate linear units; see Coordination section in our
Review of the Related Literature for more information on coordinating area units,

coordinating linear units, and coordinating linear and area units).
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Children not yet at the ARCS level are unable to produce a rectangle that has an
area of 8 square inches and show how they fit when only given a ruler, writing utensil,
and blank piece of paper for Item 3. They would also struggle to show how 10 square
inches fit within a drawn rectangle when told the area is 10 square inches for Item 4. For
example, John, who showed thinking at the CCC level on Item 2, did not draw 10 shapes
(see Figure 2a). We interpret his line segments to indicate that he subdivided one side
into centimeter length units. He did not produce a complete covering of units. However,
because we used the word “area” in the prompt, this may indicate that he does not
connect area with covering nor does he have an understanding of unit. Thus, we take this

as evidence that he is not yet at the AURR level.

a) b) c)

Figure 2. Three second grade children’s drawings on Item 3: a) John’s drawing showing
that he is not yet at the AURR level, b) Elizabeth’s drawing illustrating the AURR level,
and ¢) Micah’s drawing demonstrating thinking at the ICS level.

In contrast, Elizabeth, who provided evidence that she was at the AURR level on
Item 2, drew 10 shapes individually but seemed to struggle to attend to unit size as well
as collinearity of rows (see Figure 2b). We also do not have evidence that she used the
length of a side to determine how many units would fit along that side. We take this as
additional evidence that she was operating at the AURR level.

Micah continued to show evidence of thinking at the ICS level (see Figure 2¢). He
drew parallel row and column line segments to completely cover the rectangle with
approximately equal sized units. However, he did not use the dimensions to determine
how many units fit along those sides nor use the length and the width to constrain the unit
size. We used the LT codes for Items 2—4 to determine each potential participant’s
dominant or summary LT level based on his or her responses across all of the items on

instrument.
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From the group of 240 children who took the screening instrument, we selected a
total of 54 participants, all initially placed at the AURR (n = 24) and ICS levels (n = 30).
Note that the purpose of identifying initial placements using the four-item LT-based
screening instrument was to select participants who were at least at the AURR level but
not yet at the ARCS level. We wanted to observe and describe conceptual transitions
(from AURR into ICS, from AURR to ARCS, or from ICS to ARCS) and investigate
how they may have been prompted by one of three interventions. John and other children
who were not yet exhibiting thinking at the AURR level were not included among the 54
participants in the study. Children who exhibited thinking at the ARCS level on the initial
screener were also not included in the study.

Using block random assignment, we divided the 54 participants into three groups
of 18 participants and created three homogeneous groups in terms of the relevant
attributes (i.e., grade and LT for area measurement levels). Each intervention group (n =
18) consisted of eight children initially placed at the AURR level, two from each grade
(Grades 2-5) and 10 children initially placed at the ICS level, two per grade in Grades 2—
4 and four in Grade 5.

Procedure

All of the 54 children participated in three 10- to 20-minute one-on-one sessions
with a member of the research team. For each participant, these three sessions occurred
on three separate days, and the mean time elapsed between the first and third sessions
was 3.5 school days with a maximum of 6 school days. Every session was videotaped and
was conducted during the school day in the child’s school during the spring semester.

Each of the three sessions consisted of three trials, for a total of nine trials. Each
trial consisted of a single task-intervention pair (Siegler & Crowley, 1991): finding the
area of a given rectangle (task) and then watching a video that corresponded to their

intervention group and the specific rectangle (intervention).'

' Simon et al. (2010) also utilized microgenetic methods by posing a sequence of
instructional tasks that increased in complexity (from less to more sophisticated). This
contrasts with our approach of repeated presentation of the task-intervention pair, varying
only the rectangle’s dimensions, to provide participants with opportunities to reflect on
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Throughout each session, children were provided access to a standard 12-inch
ruler, seven foam square-inch tiles, and a roll of transparent tape. Each of these tools was
purposefully selected. First, the ruler was provided as a tool that would help the children
identify linear units and therefore provided the children with an opportunity to coordinate
linear and area units. Second, seven foam square-inch tiles were provided for two
reasons: (1) none of the nine rectangles used in the study had an area less than 12 square
inches, prohibiting the children from using a cover and count all strategy, and (2) none of
the rectangles had a length or width of more than seven inches, allowing the children to
build (and possibly iterate) a row for any given rectangle. Each trial began with the
interviewer giving the child a pen and a rectangle (with side lengths of at least two and at
most seven inches) printed on a piece of paper. Similar to the second condition of Nunes,
Light, and Mason’s (1993) study, each participant was provided with a ruler as well as
the restricted number of area units (i.e., for the present study, seven foam square-inch
tiles). In contrast to the Nunes et al. study, we did not provide them with a unit of units or
row of area units glued together, yet we did provide them with the roll of transparent tape
and the opportunity to create their own unit of units.

Our design decisions about the size of the nine rectangles used in this study as
well as the order in which they were posed were also informed by prior research. To
control for a possible effect of computational complexity on children’s responses (cf.
Vasilyeva, Ludlow, Casey, & St. Onge, 2009), we categorized the nine rectangles used in
the study by area into three size groups: small, ranging from 10 to 12 square inches;
medium, ranging from 15 to 24 square inches; and large, ranging from 24 to 30 square
inches. Within each session we randomly assigned to each child one small, one medium,
and one large rectangle. We randomly assigned the order in which we presented these
rectangles with each of the rectangles presented to each of the 54 children exactly once.

The interviewer asked the child, “What is the area of this rectangle? You may use
any of the tools on the table here to help you. Please write on the page while you think.”
If the child did not draw to produce her answer, the interviewer prompted the child to

draw by stating, “Please show me how the <insert child’s answer> fit” (e.g., If the child

repeated experience as well as provide researchers with the fine-grained detail needed to
examine shifts in children’s trial-by-trial behaviors.
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provided a numeric answer of 15 without drawing, the interviewer responded with,
“Please show me how the 15 fit”). We included this prompt because research indicates
that a child’s drawings of rectangular arrays, both their process and product (Miller,
2013), can provide insight into the child’s thinking (e.g., Battista et al., 1998; Outhred &
Mitchelmore, 2000; Stephen & Clements, 2003). After the child responded, the
interviewer showed the child the instructional intervention video corresponding to the
intervention group to which the child had been assigned (described below) and to the
rectangle the child had just completed. Each child watched nine videos, one per rectangle,
to provide repeated exposure to their assigned intervention.

Although each set of intervention videos was different (which we discuss below),
there were some characteristics common to all of them. First, we delivered each
intervention through short videos (25 s to 1 min 14 s) shown to individual participants on
a laptop computer.” Second, in each intervention video the teacher used a ruler to
measure the lengths of two adjacent sides of the rectangle and recorded those lengths
outside of the rectangle. Third, in each video, the teacher provided the correct numerical
answer (e.g., 10 square inches) to provide feedback in the form of knowledge of the
correct response for the specific rectangle they were measuring in that trial.

Subdivision Intervention. We designed one of the interventions, hereafter
referred to as the Subdivision Intervention, to emphasize coordinating linear and area
units, coordinating linear dimensions of the area unit and the region, and subdividing
(i.e., partitioning to establish the area unit). These intervention videos consisted mainly of
a teacher using a ruler to draw parallel row and column line segments—in orthogonal
directions, vertically then horizontally—to create a drawn array of square inches and
reporting the correct area of the given rectangle. First, the teacher measured the length of
one side of the rectangle, recording the length outside of the rectangle. Then she placed
the ruler along that edge and used a pen to draw (freechandedly) a line segment extending
across the region from each numbered tick mark on the ruler to the opposite side of the

rectangle. While drawing this set of line segments, the teacher said, “This side is a inches

*In each video, the video camera was focused on the tabletop and depicted only the
teacher’s hands as she worked with the tools. Hence, her voice could be heard, but her
face was not shown.
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so that makes a rows [or a columns].” This process was repeated on an adjacent side thus
creating an array of square inches. Finally, in the videos, the teacher skip counted along
the rows. For example, in the case of the 3 x 7 rectangle, the teacher said, “So that makes
7, 14, 21 square inches.” Hence, the Subdivision Intervention videos illustrated big ideas
of measurement, including spatial structuring and the unit concepts of unitizing and
coordinating units.

Iteration Intervention. We designed a second intervention, hereafter referred to
as the Iteration Intervention, to support the transition from covering with individual units
to building, maintaining, and manipulating a unit of units or a composite unit as well as
coordinating area units within rows and columns. The Iteration Intervention videos
consisted of a teacher first measuring the length of a side, making tick marks at each of
the inch markings from the ruler along the side, and iterating a single tile while saying,
“So that makes 1, 2, 3... rows.” She then used the ruler to measure an adjacent side and
placed a collection of tiles along that side while saying, “So that makes 1, 2, 3... in a
row.” Next, the teacher taped the row of tiles together and iterated the taped row up
through the tick marks on the adjacent side while skip-counting by the number of tiles in
the row (e.g., “So that makes 7, 14, 21 square inches”). Hence, the Iteration Intervention
videos also highlighted big ideas of measurement, including spatial structuring as well as
unit concepts—unitizing, composing units to create units of units, iterating groups of
units, and coordinating units.

Comparison Intervention. To help isolate the key features of the experimental
interventions, we included a third intervention, which offered no visually supportive
structural display and did not highlight any of the big ideas of measurement. We refer to
this intervention as the Comparison Intervention. Similar to the experimental
interventions, the teacher in the Comparison Intervention videos provided feedback to the
child by reporting the correct linear measures of a pair of adjacent sides as well as the
correct area of the rectangle measured in that trial. However, in contrast to the
Subdivision and Iteration Intervention videos, the Comparison Intervention videos did
not include a visual display of the structuring. For example, in the case of the 3 x 7
rectangle, the teacher demonstrated measuring two adjacent sides with a ruler, recording

the length of each, and then reported and wrote the area. In the video the teacher stated,
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“This side is 3 inches, this side is 7 inches, so the area is 21 square inches.” The inclusion
of this intervention allowed us to examine the effects of repeated exposure to a rectangle
area task and to check for the effect of modeling a procedure to multiply the measures
found for the length and width to produce a measure of area. However, the teacher’s use
of an arithmetic approach of multiplying two linear measures was not explicitly

identified.

Data Sources

The data set included the written LT-based screening instrument from the sample
of 240 children, as well as researcher notes and participant written work taken from each
of the nine trials with 54 participants. We used one video camera focused on the tabletop
in front of the child to capture verbal responses, drawings, gestures, and use of tools. We
organized the children’s written work and researchers’ notes per child, per session, and
per trial. We present our data analysis and findings in two phases, one for each research

question.

Phase 1

Research Question 1 asked: How are children’s observable behaviors and
numerical responses when measuring rectangular regions affected by repeated exposure
to a video demonstration that focuses on either a) building an array by establishing a row
of unit squares and iterating the row, or b) subdividing a region into an array by drawing
parallel row and column line segments? To investigate the children’s responses, we
identified and examined shifts in their behaviors and numerical answers within and across
the three intervention groups (including the Comparison Intervention, which offered no
support for spatial structuring or unit concepts beyond the implicit procedure of

multiplication for length and width).

Data Analysis
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We coded the children’s responses for each of the nine trials for both correctness
and according to the levels of the LT for area measurement’ (Barrett, Clements, Sarama,
Miller, et al., 2017). Across all three interventions, we determined correctness based on
the final numeric answer, which may or may not have included correct identification of
the unit (square inches).” When coding for levels of the LT for area measurement, only
three levels were germane to this study (see Table 1 for level descriptions). At times, the
child’s level of thinking was unclear, such as when the child did not produce a drawing
and provided only a numeric answer. This is an example of when we made no level
claim, hereafter referred to as “No claim.”

To control for the effect of a potential covariate on the main dependent variable
(i.e., the LT level exhibited on each trial by each child on correctness), we employed a
mediation analysis adapted for categorical variables (Iacobucci, 2012). This mediation
analysis technique allows for a combination of logistic and ordinary least squares
regression models to test a hypothetical process or mechanism through which an
independent variable, trial number (7), might elicit a dependent variable, correctness (C),
through a mediating variable, the level of the LT for area measurement observed for each
child for each trial (L). Our mediation analysis procedures involved the development,
evaluation, and synthesis of three intermediate models for each intervention group (see

Figure 3).

? Although it is possible for children to produce a correct numeric answer while using
behaviors indicative of the AURR or ICS level (i.e., levels below the ARCS level), such
behaviors are less sophisticated, in part because they are less efficient. Tracing one tile or
drawing individual units to cover (AURR) takes much longer than building and repeating
a composite unit with a mixed drawing strategy (ICS), which in turn takes longer than
drawing parallel rows and column segments to produce an array of individual units
(ARCS). Our design of repeated trials in a short amount of time has the potential to
prompt children to adopt more efficient (and more sophisticated) behaviors due to the
tediousness and the time and effort required by less sophisticated behaviors.

* We accepted numeric answers as evidence of children’s claims for a measure of area
given the children’s tendencies to abbreviate their verbal report by neglecting to name a
unit. We note this assumption as one limitation of the present study.
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Figure 3. Illustrating model development procedures.

Additionally, we conducted a series of two-proportion z tests to investigate differences in
the cumulative number of each LT level observed for each intervention group. Note that

data from all 54 participants were included in Phase 1.

Findings for Phase 1

Models 1 and 2: Examining growth by correctness across trials or LT levels.
A logistic regression was conducted to examine the direct relationship between trial
number (7) and correctness (C) for each of the three intervention groups, and results are
presented under Model 1 of Table 2. For each of the three intervention groups, a
significant association between trial number (7) and correctness (C) was observed.
Increases of 41%, 36%, and 18% in the odds of providing a correct answer with each
subsequent trial (7) were observed for the Subdivision, Iteration, and Comparison
Groups, respectively. Model 2 adds the levels of the LT for area measurement (L). The

levels of the LT for area measurement (L) had significant associations with correctness
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(C) for the Iteration and Comparison Groups, but this association was not significant for
the Subdivision Group.
Table 2

Logistic Regression of Trial Number or LT Level on Correctness for Each Intervention

Group
Model 1 Model 2
Independent variable Odds Standard Odds Standard
ratio error ratio error
Constant 0.95 .39 0.70 31
£ Trial Number (7) 1.41%* 13 1.32% 13
g S Trial LT Level (L) - 1.41 27
ko) =
20 5
a Pseudo R 10 13
Model y? 16.49, df =1, p <.0001 19.75, df =2, p <.001
Constant 1.16 47 0.49 25
o Trial Number (77) 1.36** A2 1.28%* A2
2 5 Trial LT Level (L)) - 2.0%* 49
s 2
— Pseudo R .08 13
Model y? 13.02,df=1, p <.001 20.94, df =2, p <.0001
Constant 0.88 31 0.44* 18
&  Trial Number (T¢) 1.18% .08 1.19% .08
'S 2 Trial LT Level (Lc) - 2.00%* 36
a.
£0 )
3 Pseudo R .03 12
Model y? 6.37,df=1,p<.05 24.41,df=2, p<.0001

* significant at a level of p <.05
** significant at a level of p <.01
**% significant at a level of p <.001

A key assumption underpinning Model 2 is that, within each intervention group,
trial number (7) and trial LT level (L) are both independent variables that affect the
probability that a child will respond correctly. However, with each subsequent trial,
children in the Subdivision and Iteration Groups were exposed to instruction designed to
support their growth along the LT for area measurement. Thus, we conjectured that a
child’s predominant LT level (L) is dependent upon the trial number (7) and intervention
group the child was assigned to.

Model 3: Examining growth along the LT for area measurement across

trials. To test this conjecture, we calculated a simple linear regression to predict the level
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of the LT for area measurement (L) exhibited by each child based on trial number (7) for
each intervention group. For the Subdivision and Iteration Groups, significant regression
equations were found (F(1, 160) = 26.91, p <.0001 and F(1, 160) = 11.25, p < .01), with
R’ values of .14 and .06, respectively. A significant regression equation was not found for
the Comparison Group. Children’s LT level (L) is predicted by the equations Ls = 1.09 +
17T and L; = 1.33 + .08T for the Subdivision and Iteration Groups, respectively. A ¢ test
used to compare the slopes of the regression equations for the Subdivision and Iteration
Groups revealed a significant difference with 1 = 2.16, p < .05. This suggests that, for the
Subdivision Group, children’s LT level increased by .17 for each subsequent trial
number’. For the Iteration Group, children’s LT level increased by .08 levels per trial.
These findings suggest that the children in the Subdivision and Iteration Groups exhibited
concept growth along the LT for area measurement, with children in the Subdivision
Group growing significantly faster and demonstrating an overall higher gain along the LT
than the children in the Iteration Group. Children in the Comparison Group did not
exhibit significant growth along the LT for area measurement across the nine trials.

A synthesis of models: Measuring the mediation effect. Because children in the
Comparison Group did not exhibit significant growth along the LT for area measurement,
we examined the mediation effect of the LT (L) on correctness (C) only for the
Subdivision and Iteration Groups. To examine the mediating effect of the LT for area
measurement (L), we calculated Zmediaion (Iacobucci, 2012)°. These calculations yielded
Zmediation = 3.65, p < .001 and Zmediation = 2.55, p < .05 for the Subdivision and Iteration
Groups, respectively. These findings suggest that the independent variable of trial

> The levels of the LT for area measurement are discrete and hierarchically ordered.
However, we treated the LT as a continuous scale in Model 3 for the purpose of
comparing the effects of the interventions on children’s growth along the LT. Some may
argue that this is a potential limitation of our model development approach, but we see
this as analogous to lacobucci’s (2012) treatment of rating scales as continuous.

% This involves computing the standardized elements for the trial number (7) parameter in
Model 3, zy3, and LT level parameter (L) in Model 2, zi,, by using the parameter
estimates and their standard errors. Determining Zmediation then consists of calculating the
ratio of the product of these standardized elements, zt3 z1,, to their collected standard

error, \/z3, +z,, +1.
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number (7) elicits correctness (C) indirectly through a mediating variable, which is the
trial LT level (L) for the Subdivision and Iteration Groups.

Comparing by concept growth. Pairwise two-tailed, two-proportion z tests’
revealed that the Iteration Intervention prompted significantly more instances of ICS-
level behaviors over the nine trials than the Subdivision and Comparison Interventions,
with z = 6.80, p < 0.001 and z = 7.49, p < 0.001, respectively. Because our sampling
method produced intervention groups with the same number of AURR and ICS level
children at the beginning of the study, this finding suggests that the Iteration Intervention
may be effective in promoting growth into the ICS level of the LT for area measurement.
The Subdivision Intervention supported significantly more ARCS-level behaviors over
the nine trials than the Iteration and Comparison Groups, with z = 7.44, p <0.001 and z =
6.10, p < 0.001, respectively. We also observed significantly fewer instances of no level
claim in the Subdivision and Iteration Groups than in the Comparison Group, with z =
5.68, p < 0.001 and z = 7.03, p < 0.001, respectively. Furthermore, we observed
significantly more instances of no level claim than AURR (with z = 7.41, p <0.001), ICS
(z=4.63, p <0.001), or ARCS (z = 6.44, p < 0.001) level claims for the Comparison
Group. These findings suggest that the Comparison Intervention was not effective in
eliciting behaviors that could be associated with the concepts or mental actions on objects

described in the LT for area measurement.

Phase 2
Research Question 2 asked: What patterns emerge in children’s observable
behaviors just before and after they shift from measuring area by operating on individual
or composite area units to using an array structure? Thus, during Phase 2 we studied our
set of dense observations “before the change began and...continue[d] until a point of
relative stability was reached” (Siegler & Crowley, 1991, p. 607), which is a tenet of the

microgenetic method.

7 To control for a potential Type I error, a Bonferroni adjusted p-value of p = 0.005 was
used as the significance criteria for the sequence of pairwise two-tailed, two-proportion z
tests reported here.
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Data Analysis

To account for and make sense of these changes observed in Phase 1, we
performed a qualitative, comparative analysis during Phase 2 (Corbin & Strauss, 2008).
The comparative analysis consisted of constant comparisons, a process of watching one
child’s videos from the three sessions, describing the behaviors we observed, creating
phrases (codes) to describe these behaviors, and creating categories to group codes.® We
repeated this process with two researchers independently coding each child’s videos,
measuring interrater reliability, discussing code discrepancies, and modifying codes and
code descriptors until the interrater reliability between all pairs exceeded 80%.” We then
used this initial list of codes to independently code three children, with each child being
coded by two researchers. After coding these children independently, we met to discuss
code discrepancies, modifying code descriptors to increase consistency and clarity when
necessary. At that point, we deemed the code list as final and deleted the coding sheets
for the previously coded children. These children remained in the list of 54 children to be
coded.

We distributed the 54 participants among three researchers, maintaining efforts to
distribute children from each intervention equally among the researchers. At least two
researchers coded each child’s data. We triple coded a child’s data (n = 6) when interrater
reliability was less than 70% between any two coders. Hence, all three researchers agreed

upon each coding decision when there was a discrepancy.

Relevant Findings for Phase 2: Behavior Shifts and Level Transitions
Although the LT was applicable to all of the participants because their behaviors,

behavior shifts, and level transitions exhibited during the study were consistent, 25

® These codes reflected observable behaviors and inferred “mental actions on objects”
that spanned multiple levels of the LT for area measurement. Assignment of these codes
occurred simultaneously with assignment of the correctness and level placement codes.

9 We evaluated reliability through interrater reliability measures using percent agreement:
R = number of agreements / (number of agreements + number of disagreements) x 100.
In examining our interrater reliability, we did not correct for chance agreement for two
reasons. First, there were a large number of codes, and the likelihood for two coders to
agree by chance was low. Second, three researchers met during each code discrepancy
meeting, even if one researcher did not participate in the coding of a particular child’s
data.
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children did not exhibit relatively stable growth—placed at a specific level at least three
times on subsequent trials (Siegler & Svetina, 2006)—during the time of the study (see
Figure 4).

T1 | T2 | T3 | T4 | TS | T6 | T7 | T8 | T9

S1
S2
S3
S4 C C C C C
S5

S6

S7

S8 C C C C C C C C C
S9 C

S10
S11 C C C
S12
S13 | C C C C C C C C
S14
S15 | C C

S16 C
S17 | C C

S18

Subdivision Intervention

10 | 10 | 16 | 14 | 15 | 17 | 15 | 16 | 18

Iteration Intervention
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Figure 4. LT level placement and correctness by trial per intervention group. Within each
subfigure, participants are represented by subrows: S1-S18 for Subdivision Group; 11—
118 for Iteration Group; and C1-C18 for Comparison Group. The nine trials are indicated
by each of the nine subcolumns within each subfigure as T1-T9. LT level placement per
trial is indicated by shading: darkest shading is for ARCS, second darkest shading for
ICS, third darkest shading for AURR, lightest shading for levels less sophisticated than
AURR, and no shading for No claim. Correctness per trial is indicated by text in the cell:
C for Correct or no text for Incorrect numeric response.

No level transitions and no behavior shifts. Ten of the 25 children who did not
exhibit a change in their level of thinking across trials were also consistent in their trial-
by-trial behaviors. Nine consistently used a ruler or tiles to measure side lengths and then
reported a numeric answer (correct or incorrect) without drawing, even when asked to
show how they fit. We were unable to make a level claim based on the children’s written,
verbal, or nonverbal responses for most of the trials (eight or nine) for these nine
children. One of the 10 children consistently drew individual units by tracing one tile,
providing a correct numeric answer and correct drawing for all trials—although there was
some alignment and spacing issues. This child demonstrated behaviors indicative of the
AURR level on all trials.

No level transitions but small behavior shifts. Four of the 25 children who did
not show stable growth during the study did not exhibit a change in their level of thinking
but did show a shift in their trial-by-trial behaviors. They still exhibited ICS-level

behaviors but in different ways across the trials. They built composite units for one or
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two trials before transitioning to building and repeating composite units for the remaining
trials.

No overall level transitions but some behavior shifts. Two of the 25 children
who did not show stable growth during the study did not exhibit an overall change in
their levels but did shift in their trial-by-trial behaviors by exhibiting at least one reach
back. For example, these children built and repeated composite units on Trials 2 and 3
but then operated on individual units on Trial 4. One child used tiles to cover, placing one
by one until they ran out of tiles then iterated the previously used tiles to finish covering.
The other child traced tiles to cover, creating a correct drawing and counting one by one
to report an answer. For both of these children, their level of thinking on previous and
subsequent trials was coded at the ICS level but on Trial 4, they exhibited thinking at the
AURR level.

Incomplete level transitions and behavior shifts. The remaining nine of the 25
children exhibited some growth, but that growth did not meet our requirements for
relatively stable growth. We identified two of these nine children as operating at the
AURR level with the screening instrument and determined that they had demonstrated
behaviors indicative of the ICS level on one or two (nonconsecutive) trials during the
study. That is, they used tiles to cover, through tracing or iterating individual tiles, on
some trials but used a mixed drawing strategy—alternating between drawing individual
units and drawing rows or columns of individual units—on other trials. Hence, these two
children had started to build and operate on a composite but not consistently.

Seven of the nine children started the study at the ICS level and exhibited ARCS
level thinking at some point during the study but not consistently. They started to
coordinate linear and area units in one dimension or in two dimensions but not
consistently. Many seemed to have other misconceptions to overcome. Two of the
children confounded area and perimeter on some of the trials and a third child made
errors while using the ruler. We posit that these nine children may have been
transitioning and exhibiting shifts in their trial-by-trial behaviors, but they had not
completed that transition by the end of the study. We removed these nine children, as

well as the previously discussed 16 children, from our Phase 2 analysis because we
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wanted to examine the level shifts, and these 25 children did not exhibit a complete level
transition.

Complete level transitions that may have begun prior to Trial 1. Eleven
children started the study at the AURR level and demonstrated behaviors described at the
ICS level by Trial 1 or 2, and five children started the study at AURR or ICS and
exhibited thinking indicative of the ARCS level by Trial 2. We removed these 16
children from further analysis because they exhibited growth so quickly that their
transition to the next level may have begun prior to Trial 1. Thus, we could not document
the entire period from the beginning of the change until reaching stability (Siegler &
Svetina, 2006)..

Complete level transitions that occurred after Trial 2. The remaining 13
children met the criteria for relatively stable growth: Three demonstrated growth into the
ICS level and 10 demonstrated growth into the ARCS level at least three times on
subsequent trials. Nine of these 13 children were in the Subdivision Group, three were in
the Iteration Group, and one was in the Comparison Group. Background information for
these 13 children'” is presented in Table 3.

Table 3
Intervention Group, Initial Placement, and Grade per Selected Child

Child  Intervention Group  Initial Placement  Final Placement Grade  Figure 4*

Sadie, Subdivision AURR ICS 2 S11
Tany Iteration AURR ICS 4 115
Iantos Iteration AURR ICS 5 17
Samuely Subdivision AURR ARCS 4 S6
Sauly Subdivision AURR ARCS 4 S15
Sarahs Subdivision AURR ARCS 5 S9
Sierra, Subdivision ICS ARCS 2 S1
Sidney; Subdivision ICS ARCS 3 S3
Sidras Subdivision ICS ARCS 5 S7
Sibleys Subdivision ICS ARCS 5 S17
Simons Subdivision ICS ARCS 5 S18
liagoa Iteration ICS ARCS 4 116

' All names are pseudonyms. The first letter of the name indicates intervention group,
the second letter indicates initial level placement, and the number subscript indicates
grade level. For example, Sadie, was a Grade 2 child (subscript of a 2) in the subdivision
group (first letter of her name is an s) who started the study at the AURR level (second
letter of her name is an a).
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Cameron, Comparison AURR ARCS 2 C13

“This is the identifier from Figure 4 to show how children identified in Table 2
correspond to children in Figure 4.

Sadie,, Ians, and lantos demonstrated relatively stable growth from AURR into
the ICS level without then transitioning into the ARCS level. For the first three to five
trials of the study, these children traced one tile to draw complete or incomplete arrays.
On the first five trials, Sadie, traced one tile to complete an array of individual squares,
and although they were aligned in rows and columns, she did not provide evidence that
she was coordinating area units within rows and columns (e.g., demonstrated that she
expected rows to have the same number of units). On the first three trials, lans and Iantos
both showed evidence that they were building a composite unit and coordinating area
units within rows and columns by either using a mixed drawing strategy—alternating
between drawing row line segments and tracing individual tiles—or by indicating one
row and one column with tiles. Then on Sadie,’s sixth trial and Ians’s and lantos’s fourth
trials, a shift occurred.

Sadie, started by tracing one tile but then curtailed her drawing actions by using
the ruler as a straight edge to finish some but not all row and column segments to produce
a correct and complete drawing of an array. We take her curtailment as evidence that she
was coordinating area units within rows and columns and beginning to think about a
column of two squares as a repeatable unit. lantos used a sequence of behaviors similar to
what was displayed in the Iteration Intervention video by drawing tick marks along the
vertical side, but he did this without using the ruler or tiles. He then placed six tiles along
the horizontal side of the rectangle, taped the tiles, and then iterated this composite unit
five times, once per tick mark, skip counting “6, 12, 18, 24, 29 [sic]” as he went. In
contrast, lan, iterated a single tile to determine that four square inches would fit along the
vertical side of the rectangle and six along the horizontal side. He asserted that he made
“four rows of six” and that “6 times 4 is 24.” Because all three children built and repeated
a composite area unit as well as coordinated area units within rows and columns, we
claimed that they were exhibiting behaviors at the ICS level.

Throughout the remaining trials, these three children continued to operate on

composite area units. However, they did not provide evidence that they had begun (much
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less completed) the transition from ICS to ARCS. Specifically, they did not yet
demonstrate that they were applying the concept that the side length determines the
number of units that will fit along the side; using the length and the width, coordinating
linear dimensions of both the area unit and the region to be covered to iterate a row or
column of units in the orthogonal direction exhaustively; or drawing parallel row and
column line segments during the study. Hence, they did not exhibit any of the behaviors

indicative of the ARCS level by the end of the study.

Main Findings for Phase 2: Complete Level Transition to ARCS.

To describe the typical patterns in children’s behaviors as they shifted from
measuring area by operating on individual or composite area units to utilizing an array
structure, we examined 10 children who made this transition. For each of the 10 children
who exhibited growth to the ARCS level during this study (see Table 3), we isolated the
first trial on which we assigned an ARCS level code. To identify patterns during level
transitions, we highlighted the behaviors present surrounding the change by reassigning
the trial on which we first coded the child at the ARCS level as Trial 0. We then
identified the two trials preceding and the three trials following Trial 0 as Trials -2, -1,
+1, +2, and +3. We made comparisons among these 10 children per behavior and per LT
level. For seven of these 10 children, Trial 0 was Trial 3 (Sidneys;, Samuels, Sidras,
Sarahs, Sauly, Sibleys, and Cameron,). For Simons, Trial 0 was Trial 4; for liagos, Trial 0
was Trial 5; and for Sierra,, Trial 0 was Trial 6 (see Table 4).

Table 4
Learning Trajectory for Area Measurement Placement per Selected Child per Trial

Child Tl T2 T3 T4 ) T6 T7 T8 T9

Samuely ICS NC ARCS ARCS ARCS ARCS ARCS ARCS ARCS
Sauly NC NC ARCS ARCS ICS ARCS ARCS ARCS ARCS
Sarahs AURR AURR [ARCS ARCS ARCS ARCS ARCS ARCS ARCS
Sierra, PCC NC ICS NC ICS ARCS ARCS ARCS ARCS
Sidneys NC NC ARCS ARCS ARCS ARCS ARCS ARCS ARCS
Sidras ICS ICS ARCS ARCS ARCS ARCS ARCS ARCS ARCS
Sibleys NC NC ARCS ARCS ARCS ARCS ARCS ARCS ARCS
Simons ICS ICS ICS ARCS ARCS ARCS ARCS ARCS ARCS
liagoy ICS ICS ICS ICS ARCS ARCS ARCS ICS ARCS
Cameron,  ICS ICS ARCS ICS ARCS ARCS ARCS ARCS ARCS
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Note. NC = No level claim was made for that particular child on that trial; Trial 0
identified with italicized and bolded ARCS per child. PCC = Physical Coverer and
Counter.

Behavior patterns surrounding the change. To identify patterns surrounding
the change for the 10 children who demonstrated growth into the ARCS level at least
three times on subsequent trials, we examined their behaviors on Trials -2, -1, +1, +2, and
+3. Six of these children (Samuely, Sierra;, Sidneys, Sidras, Sibleys, and Simons)
exhibited similar patterns of growth into and then within ARCS, despite some instances
of subtle within-child variability between trials before the shift for four of them (Samuels,
Sierra,, Sidneys, and Sidras). In contrast, three of the 10 children exhibited within-child
variability after the shift: Cameron,, Sauls, and liagos exhibited fallback between
sessions. Only one child (Sarahs) transitioned from AURR to ARCS without going
through the ICS level. We next discuss the typical patterns of growth demonstrated by the
six children before considering the more divergent cases.

Four of the children (Samuels, Sidras, Sibleys, and Simons) provided a correct
numeric response on Trial -2. Although Sierra, and Sidney; used the ruler to measure
adjacent sides, Sierra, and Sidney; reported numeric answers reflective of finding
semiperimeter and perimeter, respectively. Neither produced a drawing, even when asked
to show how their units fit. In comparison, Sibleys also did not produce a drawing, but
she did provide a correct numeric response. When asked to show how they fit, she
responded that she multiplied.

The other three children produced correct arrays. Initially, Samuels placed six
tiles along the horizontal side of the rectangle, removed these tiles, placed five tiles along
the vertical side, and then wrote 5 x 6 = 30. It was only after he was asked to show how
the 30 fit that he created a drawing: He extended horizontal parallel line segments from
the tiles still along the vertical side of the rectangle and then drew vertical parallel line
segments freehandedly. Sidras and Simons also produced correct arrays by drawing
parallel row and column line segments. Sidras used the ruler as a straightedge only, using
it to draw one horizontal line segment and four vertical line segments (left to right),
effectively and correctly partitioning it into 10 equal sized pieces. However, she did not

use the ruler to measure the sides first; hence, we do not have evidence that she knew
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how many vertical segments to draw before she started drawing them in. In contrast,
Simons measured the vertical and horizontal sides of the rectangle, recording their
measures. Then he drew three parallel but not equally spaced line segments to indicate
four rows. Before drawing four parallel but not equally-spaced line segments to subdivide
the region into five columns, he wrote, “4 colums [sic] and 5 colums [sic] would equal 20
square inches” above the rectangle (see Figure 5).
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Figure 5. Simons’s imprecise coordination of linear and area units on Trial -2.

This provided us with evidence that Simons was starting to attempt to coordinate linear
and area units. Without tools, he coordinated linear and area units imprecisely (i.e.,
numerically but less precisely spatially) along the vertical and horizontal sides of the
rectangle (see Appendix B for definitions). For this trial, Samuely, Sidras, and Simons,

were placed at the ICS level because of the combination of behaviors.'' No level claim

"'Recall that level placement is based on a combination of observed behaviors. To be
placed at the ARCS level, a child needs to apply the concept that the side length
determines the number of linear and area units that will fit along the side and coordinate
the linear dimensions of both the area unit and the region to be covered to iterate a row or
column of units in the orthogonal direction exhaustively. Thus, it is possible for a child to
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was made for Sierra; and Sibleys because neither made any marks to show how the units
would fit, nor for Sidneys; because her drawing did not match her numeric answer.

On Trial -1, only two of the children (Sibleys and Simons) provided a correct
numeric response, and there was less consistency in their behaviors. Two of the children
who provided incorrect numeric responses, Sierra, and Sidras, drew parallel row and
column line segments to produce incorrect arrays. Sierra, first measured the vertical side
of the rectangle to be 3 inches and the horizontal side to be 7 inches. Next, she drew three
row line segments (instead of two) and six column line segments freehandedly to produce
a 4 x 7 array (instead of a 3 x 7 array). Given a 4-inch by 5-inch rectangle, Sidras again
used the ruler as a straightedge only, using it to draw one horizontal line segment and
then three vertical line segments (left to right), partitioning the rectangle into eight
somewhat equal sized pieces (i.e., producing a 2 x 4 array instead of a 4 x 5 array).

In contrast, Sidneys; and Samuels used behaviors similar to the one displayed in
the Subdivision Intervention video. They measured adjacent sides of the rectangle and
used the tick marks on the ruler to draw parallel row and column line segments and
produce correct arrays. However, Sidney; and Samuels; reported numeric answers
reflective of finding semi-perimeter and perimeter, respectively. Similar to his behaviors
in Trial -2, Simons measured adjacent sides of the rectangle and recorded their linear
measures. Then he drew five parallel but not equally spaced, vertical line segments and
then three parallel but not equally spaced, horizontal line segments to produce a
numerically correct array.

Because of their use of the ruler to draw the line segments, Sidneys; and Samuely
coordinated linear and area units precisely with tools in both dimensions. Whereas,
Simons did not use the ruler, causing him to coordinate linear and area units imprecisely
(numerically but not spatially) without tools in both dimensions. Although Sibleys
provided a correct numeric response, she was the only child who did not create a drawing
on Trial -1. Again, when asked to show how they fit, she responded that she multiplied.

Sierra,, Sidras, and Simons, were placed at the ICS level for Trial -1 because of their

be placed at the ARCS level without drawing parallel row and column segments and for a
child to draw parallel row and column segments without being placed at the ARCS level.
The same is true for any other observed behavior in isolation.
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combination of behaviors, whereas no level claim was made for three children: Sidneys
and Samuel, because their drawings did not match their numeric answers, and Sibleys
because she did not show how the units would fit.

On Trial 0, all six of the children provided a correct numeric response. They also
produced correct drawings of the array, drew parallel row and column segments, and
coordinated linear and area units precisely with tools in both dimensions (vertical and
horizontal). Their sequence of actions was similar to those they watched in the
Subdivision Intervention video. This was a noticeable decrease in variability in
collections of behaviors from Trials -2 and -1. All six of the children continued to
produce correct drawings of arrays, draw parallel row and column line segments, and
coordinate linear and area units precisely with tools in both dimensions on the remaining
trials (Trials +1, +2, and +3). All of them also produced correct numeric responses on
Trials +1 and +2, and most of them did so on Trial +3. (Sidney; provided an incorrect
numeric response on Trial +3 when she asserted that 4 times 6 is 32.) This indicates that
for these six children, their behaviors were relatively consistent after transitioning into
the ARCS level.

Examining fallback from Area Row and Column Structurer. On Trial 0, all
10 of the children who exhibited growth to the ARCS level during this study had been
placed at the ARCS level (by definition). On each of Trials +1, +2, and +3, nine of these
children were at the ARCS level and one child was at the ICS level. However, the child at
the ICS level was different on each of those three trials (Cameron; on Trial +1, Sauls on
Trial +2, and liagos on Trial +3). Interestingly, Cameron; and liago, both fell back to ICS
when presented with Rectangle A (4 x 3), but Sauly fell back to ICS when presented with
Rectangle H (4 x 6). liagos and Cameron; still produced correct arrays for Rectangle A
but with less sophisticated behaviors than ARCS. Therefore, we claim that liagos and
Cameron; reached back to use ICS-level behaviors. However, Saul, did not.

To investigate how Sauly fell back, we returned to his work. Figure 6 illustrates
Sauly’s drawings before, when, and after he fell back to ICS-level behaviors on Trial +2
by drawing a 6 x 4 array of rectangular units rather than a 4 x 6 array of square units.
That is, Sauls partitioned a length of 6 inches into four sections and a length of 4 inches

into six sections. Interestingly, the units within the region are equivalent in area to square
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inches, and his answer was numerically correct; however, he exhibited a disconnect
between the length of a side and the number of area units fitting along that side in both
dimensions. Because Sauly used a collection of behaviors that exhibited a linear and area
unit disconnect to produce an incorrect array, we posit that he fell back to use an ICS-

level behavior (cf. Barrett, Clements, & Sarama, 2017; Pirie & Kieren, 1994).

‘ Trial 0
' Trial -1 (Dimensions: 2 x 5)
Trial -2 (Dimensions: 5 X 6)
(Dimensions: 5 x 3)
|
|
Trial +1 Trial +2 Trial +3
(Dimensions: 4 x 5) (Dimensions: 4 x 6) (Dimensions: 4 x 3)

Figure 6. Sauly’s drawings, indicating fall back to ICS on Trial +2.

Sauly then returned to using ARCS-level behaviors on Trial +3 by coordinating linear and
area units precisely with tools. Sauls continued to use ARCS-level behaviors for the
remainder of the trials in the study (see Trial +4, Trial +5, and Trial +6 in Table 4).
Examining growth from Area Unit Relater and Repeater. Sarahs was the only
child to exhibit a transition from AURR to ARCS without demonstrating behaviors
indicative of ICS. We did not see evidence of Sarahs curtailing her tracing actions to
build a composite unit (i.e., a row of individual units) and then repeat that composite unit,
nor did we see evidence that she was coordinating linear units or coordinating linear and
area units in one dimension. Instead, Sarahs shifted from thinking about individual area
units to thinking about an array, as demonstrated by her coordination of linear and area

units in both dimensions when she subdivided the region into an array by drawing
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parallel row and column line segments. We next examine the trials immediately
preceding and following this transition in terms of her drawings, operations on units, and
ability to coordinate linear and area units.

On Trials -2 and -1, Sarahs traced individual square tiles to structure the
rectangles (see Figure 7). Her tedious (over)attention to tracing square tiles indicated that
she was reliant on an individual area unit as a marker to help her keep track of where she
had previously iterated square tiles. These behaviors indicated that she was thinking
about an individual unit to cover. Sarahs may have used a row as an intuitive structure
because her individual units appear to be aligned in rows, but she did not indicate (e.g.,
verbally or with motion) that this was a row to her. Also, although her units within
“rows” also appear to be aligned within “columns,” Sarahs did not provide evidence that
she was coordinating area units within rows and columns (e.g., indicating that she
expected rows to have the same number of units). Thus, Sarahs was coded as exhibiting

the AURR level on those two trials.

Trial -1: AURR Trial 0: ARCS
Answer: 12 (correct)
(Dimensions: 2 x 6)

Trial -2: AURR

Answer: 24 (incorrect) Answer: 16 (incorrect)

(Dimensions: 5 x 3)

(Dimensions: 7 x 4)

Trial +2: ARCS Trial +3: ARCS
Answer: 10 (correct)
(Dimensions: 2 x 5)

Trial +1: ARCS
Answer: 22 (incorrect)
(Dimensions: 5 x 6)

Answer: 20 (correct)
(Dimensions: 4 x 5)

Figure 7. Sarahs’s numeric responses and drawings from Trials -2 through +3.
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In contrast, on Trial 0, when asked to find the area of a 3-inch by 5-inch rectangle,
Sarahs used the numbered tick marks on the ruler to constrain the placement of parallel
row and column line segments to produce a correct array. In other words, she used both
dimensions to constrain the placement of parallel row and column line segments,
behaviors indicative of the ARCS level. Although Sarahs produced a correct drawing, she
gave a numeric answer that reflected an attention to perimeter. When she was asked to
show how the 16 would fit, Sarahs numbered individual squares within the correct array
as she counted 15 squares (see Figure 7) but did not change her final answer from 16 to
15. On Trial +1 Sarahs repeated her drawing strategy to draw a correct array but reported
a numeric answer of 22 (i.e., the perimeter) as her numeric answer. It was not until Trial
+2 that Sarahs’s numeric answer matched the number of area units in the array. We have
two interpretations for Sarahs’s disconnect between space and number (i.e., coordinating
linear and area units in both dimensions to draw parallel row and line column segments
and produce a correct array but reporting a numeric answer that did not correspond to the
number of units drawn in the array). On the one hand, her shift from using just tiles to
using a ruler may have prompted her to confound perimeter and area. On the other hand,
Sarahs may be demonstrating an initial onset of ARCS-level thinking that is messy and

complicated because of her large conceptual leap from AURR.

Discussion
We evaluated three interventions designed to support Grades 2-5 children’s
growth in measuring the area of rectangular regions in different ways. The Subdivision
Intervention privileged the subdivision of a region into an array by drawing parallel row
and column line segments, the Iteration Intervention emphasized the building of an array
by establishing a row of unit squares and iterating the row, and the Comparison
Intervention reflected the implicit multiplication of length and width to obtain a numeric

answer for area.

Phase 1 Conclusions
We found that children’s observable behaviors and numerical responses when

measuring areas of rectangular regions were more affected by the Subdivision and
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Iteration Interventions than the Comparison Intervention. Specifically, although all three
groups exhibited an increased likelihood of answering correctly across the nine trials, the
children in the Subdivision and Iteration Groups were more likely to provide a correct
numeric response than the children in the Comparison Group. Furthermore, only the
children in the Subdivision and Iteration Groups exhibited significant growth along the
LT for area measurement, with the growth being the most rapid for the Subdivision
Group. These findings suggest that interventions designed to support concept growth
(e.g., big ideas of measurement) are more efficient and effective than an intervention that
does not.

In addition, for those children in the Subdivision and Iteration Groups, the LT
level exhibited on each trial served as a significant mediating variable for correctness.
This finding suggests that, although all of the children exhibited an increased likelihood
of responding correctly with each subsequent trial, only the Subdivision and Iteration
Groups’ increases were shown to be the result of more sophisticated conceptualizations.
In other words, the Comparison Intervention may help children produce more correct
answers; however, it does not help children improve their understanding of area
measurement concepts.

The Subdivision Intervention also prompted significantly more instances of
ARCS-level behaviors than the other interventions. Comparably, the Iteration
Intervention prompted significantly more instances of ICS-level behaviors than the other
interventions. It is our conjecture that a key characteristic contributing to the
effectiveness of the Subdivision Intervention was seeing a complete record of the
structure of the two-dimensional array. We believe that the teacher’s process of drawing
an array (as observed in the Subdivision Intervention video) supported children in the
Subdivision Group in conceptualizing how linear and area units were coordinated to
partition the region into an array by drawing parallel row and column line segments,
regardless of whether the children exhibited global structuring techniques themselves (cf.
Battista et al., 1998). This is in contrast to children in the Iteration Group who were
shown how to build an array by establishing a row of unit squares and iterating the taped

row to fill the region because there was no imprint, stamping, or other record of the
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structure of the two-dimensional array after the teacher finished the process of iterating

the row of square tiles.

Phase 2 Conclusions

We also examined the children’s observable behaviors before and after they
shifted from measuring area by operating on individual or composite area units to using
an array structure. Because we utilized the microgenetic method in this study, we were
able to investigate this variability within and among trials and children. Twenty-five
children were removed from Phase 2 analysis because they did not fit our conservative
criteria of relatively stable growth, and 16 children were removed from Phase 2 analysis
because they exhibited relatively stable growth so quickly that we could not document
and analyze the period of change. However, this does not mean that our interventions
were ineffective for 76% of our participants. As noted in our Phase 1 analysis, children in
all three groups exhibited an increased likelihood of responding correctly with each
subsequent trial. Thus, most of these 41 children made shifts in their ability to produce a
correct numeric answer.

The nine children who appeared to begin—but not complete—a level transition
during the study exhibited behavior shifts. These children exhibited variability in their
behaviors. Some had other misconceptions that may have been interfering with their
growth, such as confounding area and perimeter or making errors when using a ruler.

The 13 children who completed a level transition during the study, and especially
the 10 children who completed their transition into the ARCS level, also exhibited
behavior shifts but before the level transition. We noticed subtle variability in behaviors
among the 10 children who transitioned into the ARCS level before they transitioned. We
also found variability in behaviors within children from trial to trial: Four exhibited
slightly more variability before the shift (Samuels, Sierra,, Sidneys, and Sidras), and three
exhibited slightly more variability after the shift (Cameron,, Sauls, and liagos). Yet, this
slight variability after the shift was in the form of fall back or reach back on a single trial,
indicating that the 10 children’s behaviors were relatively stable after they transitioned to
the ARCS level. The before-shift variability has a different explanation. Siegler (2006)

demonstrated that variability within individuals can be a prelude for learning, which in
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our study was indicated by a transition to a more sophisticated level in the LT for area
measurement. In 2002, Siegler argued, “Just prior to discoveries, children show increased
solution times (Sielger & Jenkins, 1989), increased verbal disfluencies (Perry & Lewis,
1999), increased gesture-speech mismatches (Alibali & Goldin-Meadow, 1993), and
increased cognitive conflict (Piaget, 1952)” (p. 52). We concur that variability within a
child from trial to trial is not an anomaly, but instead a harbinger or early phase of
substantial change, and thus a component of the “path of change” (Siegler, 2006).

Our findings regarding variability are also consistent with our theoretical
perspective of hierarchic interactionalism. Because growth into the next level depends on
the concepts and processes that constitute the previous levels, “a critical mass of ideas
from each level must be constructed before thinking characteristic of the subsequent level
becomes ascendant in the child’s thinking and behavior” (Clements & Sarama, 2007, p.
465). We posit that the within-child variability that we observed on Trials -2 and -1 was
indicative that a proper subset of the requisite concepts and processes was emerging as
the children modified their mental models for coordinating and structuring each
individual unit and its relation to the group or groups of units. However, the full set had
not yet congealed in a cohesive, efficient, and dominant mental structure.

The six children who exhibited similar patterns of growth into and then within
ARCS were all in the Subdivision Group. A skeptic may argue that these children did not
learn about area measurement; instead they learned to mimic a sequence of behaviors
exhibited in the Subdivision Intervention video. Although the Subdivision Intervention
video could be interpreted as a form of demonstration, these children still required
repeated experience or exposure to that demonstration before exhibiting changes in their
own drawings or notations. It took the eight of 18 children in the Subdivision Group who
completed their transition into the ARCS level between two and five viewings of the
Subdivision Intervention video (see Table 4) to reflect upon (and perhaps use) what they
were observing to exhibit a sequence of behaviors that was similar to what was displayed
in the Subdivision Intervention video.

When a child observes another person (directly present or shown in a video
recording) constructing an array by drawing two orthogonal sets of line segments onto a

rectangle, the child must incorporate that example into their own activity to provide a
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basis for advancing their knowledge of the array as an organizing principle to guide the
measure of the area of that rectangle. In this study, other than asking the participants to
“show how the area units fit,” there was no prompt to compel them to use the collection
of behaviors illustrated in the videos, nor a way to ensure they used them meaningfully.
For example, Sauls did not meaningfully use the linear scale when he partitioned a length
of 6 inches into four sections and a length of 4 inches into six sections. He produced
approximately equal-sized rectangles to produce an array of units equivalent in area to
square inches. His numeric answer was correct, but he did not have an array of 24 square
inches. In other words, the meaningful use of a linear scale (i.e., a 12-inch ruler) to guide
the placement of area units and draw parallel row and column line segments and the
coordination of linear and area units in both dimensions are nontrivial behaviors and
cannot be incorporated prior to making sense of those actions. Therefore, we contend that
some of the participants learned that the numerical response to the question “What is the
area of this rectangle?” should indicate that that number of area units should cover the
space (i.e., they learned to associate the word area with structuring space); some learned
how to coordinate linear and area units; and some learned a more sophisticated way to
show how the area units fit. This implies more than mimicry; we take this as evidence of
cognitive restructuring. As for the participants who may have “just” learned to mimic
some of the behaviors illustrated in the videos, we argue that mimicry is still learning—

they still learned how parts fit into a whole and applied this to new situations.

Limitations

Although this study was designed to extend the research on the learning of area
measurement by investigating shifts in children’s behaviors in response to one of three
interventions, it is not without limitations. Some of the limitations of this study can be
attributed to the nature of the tasks posed in the study. In the present study, children had
access to seven square-inch foam tiles, a ruler, and a pen, and they were asked to
determine the area of a given rectangle. The growth exhibited here was observed in a
clinical setting with a researcher. It is unknown whether children would maintain the
growth observed in the study or transfer their knowledge when confronted with new

situations involving other aspects of area measurement, more complex tasks, or with
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different tools. In addition, a delayed posttest may have given additional credibility to our
findings.

Another limitation of the present study is related to our decision to determine
correctness based on children’s numeric answers. Our participants may not have realized
that they were often reporting the number of square units. Previous research indicates that
children do not think of a square unit as the standard unit of area (Kamii & Kysh, 2006).
However, our participants were not always counting unit squares. Sometimes they were
counting rectangular units equivalent in area to square units (e.g., Sauls). Other times
they were counting approximately rectangular shapes (e.g., Simons). Although we argue
that for most of the children in this study the unit is implied because the teacher in each
of the intervention videos reports both the numeric answer and the unit (e.g., “21 square
inches”), additional research is needed to investigate the impact of directly identifying the

unit for the child through instruction or demonstration.

Implications and Suggestions for Future Research

Our findings have several implications for teaching. First, the effectiveness of the
Subdivision and Iteration Interventions indicates that children benefit from experiences
learning about unit concepts (e.g., unitizing, composing units to create units of units,
iterating individual or groups of units, and coordinating units) and spatial structuring of
two-dimensional space. We recommend that teachers make these big ideas explicit and
help children connect these big ideas (e.g., how multiplying the length and width of a
rectangle to produce a measure of area is related to drawing an array of rows and columns
of identical square units). Second, the rate of change for children in the Subdivision
Group suggests that having a complete record of how the area units fit led to improved
performance. Thus, it is important for children to not only have opportunities to see a
complete record, but also to reflect on its creation and organization, such as by having
multiple children share their records of how the area units fit and comparing them in a
whole class discussion. Third, the relative ineffectiveness of the Comparison Intervention
indicates that a focus on procedures may contribute to children’s difficulties when

learning about area measurement (Smith et al., 2016).
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This study also has several implications for research. In this article, we report on
our findings from a multisite, cross-sectional study that integrated multiple
methodologies. We also utilized the microgenetic method with an LT for area
measurement as a lens to investigate children’s behavior shifts and level transitions.
Siegler (2002) argued that such analysis is important: “Examining the way that children
learn under various instructional procedures, contrasting the characteristics of more and
less successful learners, and identifying where learning goes awry when it goes awry—all
can contribute to improving instructional procedures” (p. 36). Hence, this research has
the potential to help teachers and researchers notice important shifts in behaviors,
anticipate level transitions, and provide meaningful experiences at important times.

Of the 10 children who transitioned from not yet ARCS into ARCS during this
study, only one transitioned from AURR to ARCS without providing evidence of
behaviors indicative of the ICS level. Did Sarahs skip a level? Or, did our session
protocol limit our ability to observe the intermediate transition? The tenets of hierarchical
interactionalism indicate that these levels are not only sequential, but also that growth
into the next level depends on the concepts and processes that constitute the previous
levels (although the theory does not prohibit advances on several contiguous levels
simultaneously nor a fast acquisition of multiple levels that occurs without observation of
each level in sequence, see Clements & Sarama, 2014; Sarama & Clements, 2009). We
do not consider Sarahs’s growth to be disconfirming evidence for the LT, but rather we
consider her a novel case. Additional research is needed. We wonder—is “skipping” a
level efficient or is it problematic in the long run for children like Sarahs?

Another suggestion for future research is the scale up of this study to a wider
range of children’s abilities and ages across various settings. This line of research should
examine the effectiveness of the Subdivision Intervention and Iteration Intervention both
with small groups of children and large groups of children in a classroom setting. We also
anticipate the extension of the study presented in this article to children at levels less
sophisticated than AURR. Thus far, we have studied how the Subdivision and Iteration
Interventions promoted growth and caused a change in behaviors of children beginning at
the AURR or ICS levels. One natural extension would be to investigate if or how the

Subdivision and Iteration Interventions promoted growth or caused changes in behaviors
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of children not yet at the AURR level. Another extension would be to examine
modifications of the existing Subdivision and Iteration Interventions, such as
synthesizing the Subdivision and Iteration Interventions (e.g., modifying the process of
iterating rows of taped tiles so that an imprint, stamp, or record of the structure of the
two-dimensional array is left behind; L. Steffe, personal communication, February 18,
2016) or privileging continuous motion (e.g., dragging or sweeping one length through

another; Kobiela, Lehrer, & Pfaff, 2010). We look forward to extensions of this research.
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Appendix A

Four-item Screening Instrument

Part 1: Without a ruler

1. What is area?

2. I wanted to cover this rectangle with these squares. I started drawing them in.
Please finish the drawing by completely covering the rectangle.

Part 2: With a ruler

3. The area of this rectangle is 10 square inches. Draw how each of the 10 square
inches fit.

4. Draw a rectangle that has an area of 8 square inches in the space below. You may
use a ruler to help you. Show on your rectangle how the 8 square inches fit.
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Appendix B

Codes

Descriptor

Unit coordination codes

No claim

Linear and area unit
disconnect

Coordinated linear and
area units imprecisely
(numerically but not
spatially) without tools

Coordinated linear and
area units precisely
(numerically and spatially)
without tools

Coordinated linear and
area units precisely with
tools

Unable to make a claim about unit coordination based on the
child’s written, verbal, or nonverbal responses.

Did not apply the concept that the length of a side indicates the
number of area units that should fit along that side (e.g.,
created a 6 by 4 array for a 4-in. by 6-in. rectangle, see Sauls’s
drawing for Trial +2 in Figure 6).

Placed tick marks or line segments on the rectangle, resulting
in the correct number of rows or columns, but the rows or
columns were not close to the same size (i.e., unequally
spaced).

Without tools applies the concept that the side length
determines the number of area units that will fit along the side
(i.e., did not use the ruler to guide the placement of tick marks
or line segments; may have used a mental image of an inch or
square inch to place tick marks appropriately). For example,
demonstrated or verbalized that a side length of 4 inches
would necessarily have 4 square units that would fit along that
side.

With tools applies the concept that the side length determines
the number of area units that will fit along the side (e.g., used
the numbered tick marks on the ruler to guide the placement of
tick marks or line segments). For example, used the linear
units on a ruler to measure the length of the side and then drew
line segments per inch to show where each square inch would
fit along that side.




