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Abstract— Avoiding obstacles poses a significant challenge for
amputees using mechanically-passive transfemoral prosthetic
limbs due to their lack of direct knee control. In contrast,
powered prostheses can potentially improve obstacle avoidance
via their ability to add energy to the system. In past work,
researchers have proposed stumble recovery systems for pow-
ered prosthetic limbs that provide assistance in the event of a
trip. However, these systems only aid recovery after an obstacle
has disrupted the user’s gait and do not proactively help the
amputee avoid obstacles. To address this problem, we designed
an adaptive system that learns online to use kinematic data from
the prosthetic limb to detect the user’s obstacle avoidance intent
in early swing. When the system detects an obstacle, it alters
the planned swing trajectory to help avoid trips. Additionally,
the system uses a regression model to predict the required
knee flexion angle for the trip response. We validated the
system by comparing obstacle avoidance success rates with
and without the obstacle avoidance system. For a non-amputee
subject wearing the prosthesis through an adapter, the trip
avoidance system improved the obstacle negotiation success rate
from 37% to 89%, while an amputee subject improved his
success rate from 35% to 71% when compared to utilizing
minimum jerk trajectories for the knee and ankle joints.

I. INTRODUCTION

Avoiding obstacles on the ground is a necessity for main-
taining safety while performing a variety of locomotion tasks.
This behavior requires anticipation of an obstacle and active
leg control strategies to avoid it [1]. Transfemoral amputees,
however, have a compromised ability to negotiate obstacles,
as shown in Figure 1, as current prosthesis technology relies
on mechanically passive knees that necessitate significant
compensation at the hip in order to replicate able-bodied trip
recovery strategies [2]. Compromised ability to avoid and
recover from trips may contribute to the large number of
falls that leg amputees suffer. For instance, 58% of unilateral
amputees reported a fall within a year [3]. Moreover, the fear
of falling can cause amputees to avoid activity, leading to
further deterioration of their physical condition [4].

An increasing availability of powered prostheses in research
labs provides the opportunity to study active obstacle avoid-
ance strategies in prosthetics, although so far only a limited
number of studies exist on this topic. These studies focus
on detecting and classifying the correct response strategy
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after the amputee has tripped. For example, Lawson et al. [5]
developed a classifier that uses fast Fourier transform and
the root mean square of accelerometer data as features to
classify stumbles and recovery strategies, respectively. Zhang
et al. [6] found that adding EMG signals from the residual
limb to accelerometer data can help reduce false positives
for stumble and strategy detection. Finally, Shirota et al. [7]
identified the optimal sliding window lengths and increments
for feature calculation for trip detection and strategy selection
classifiers. While detecting and classifying trip recovery
strategies after their occurrence is a necessary step towards
obstacle avoidance, it does not provide a proactive prosthesis
control strategy that prevents obstacle encounters in the first
place.

Another major drawback of the previous studies is that
they train and test the classifiers offline. However, a deployed
trip classifier needs to function online and deal with temporal
adaptation of the learner and amputee. The adaptation is
required as the obstacle avoidance behavior triggered by a trip
classifier alters the amputee’s movements and, therefore, the
data used to train the classifier. Consequently, trip classifiers
trained offline may be ineffective due to the mismatch of
training and testing data, a common problem faced in imitation
and reinforcement learning [8].

Here we present the first pilot study that combines online
learning and proactive control of a powered transfemoral
prosthesis to implement obstacle avoidance in amputee
locomotion. The obstacle avoidance system uses early-swing
measurements of the residual limb angle, angular velocity, and
linear acceleration to recognize in-process obstacle avoidance
attempts. To address the online learning aspect of this system,
we adapted a previously proposed algorithm for detecting gait
modes [9]. We also changed the existing swing leg behavior
of the prosthesis to facilitate obstacle avoidance. This change
includes a regression to predict the appropriate degree of
knee and ankle flexion given the user’s previous obstacle
response motions. Finally, we evaluated the system behavior
in trials with both non-amputee and amputee subjects.

II. METHODS
A. Forward-Backward Classifier

In order to learn to classify trips online with minimal hand-
labeling of data, we rely primarily on the forward-backwards
classifier approach first proposed by Spanias et al. [9] for the
purpose of classifying different modes of gait such as level
ground walking, standing, and stair climbing. In their work,
a forward classifier predicts the next step’s gait mode using
data in a window shortly before the transition. In parallel, a
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Fig. 1.

a) Utilizing minimum jerk trajectories during swing does not allow for appropriate adaptation of swing trajectories to enable obstacle avoidance.

b) Our adaptive system learns online to detect the presence of an obstacle from the amputee’s late stance/early swing movements. Once detected, the
controller modifies the trajectories of the knee and ankle to achieve improved obstacle clearance.

backward classifier labels completed steps with their correct
gait mode in hindsight. Because the backwards classifier has
access to features from the completed step, it can achieve
accurate labels with a small amount of hand-annotated data.
Once trained, the backwards classifier can provide labels for
training the forward classifier, obviating the need for further
hand-labeling of steps.

In our work, the forward classifier predicts, shortly after toe-
off, if the upcoming swing will require obstacle avoidance
or not. For this purpose, we use a linear support vector
machine and features of the residual limb motion in the last
210ms of stance and first 90 ms of the swing phase. Because
user behavior changes over time in response to changes in
prosthesis obstacle avoidance behavior, we retrain the forward
support vector machine every ten steps using labels from the
backward classifier.

The backward classifier is another linear support vector
machine, trained once for each user, which uses features
extracted from the entire swing phase to label a step as
an avoidance attempt after the fact. To train the backwards
classifier we hand label obstacle avoidance attempts and
normal steps for roughly ten obstacles. Figure 2 provides an
overview of this system.

B. Target Knee Angle Regression

A prosthesis user will not always encounter obstacles of
the same height. As the obstacle avoidance response can be
disruptive to the user, it is desirable to give the user control
over the magnitude of the prosthesis response. We seek to
achieve this functionality by using the normalized backward
classifier score as a metric for the difficulty of avoiding an
obstacle. We then implement a simple linear feedback law
that assigns higher target flexion knee angles to obstacle
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Fig. 2. Forward-Backward Classifier Overview. The backwards classifier
uses features from the entire swing to provide training class labels to a
forwards classifier. The forwards classifier uses features from late stance and
early swing in order to predict if an upcoming swing will be an obstacle
avoidance attempt.

avoidance attempts that are more difficult according to this
metric. Figure 3 outlines this feedback mechanism, which
has the form

Oiitl = Hilgt - kdecay(eﬁlgt — Omin) + kscore‘,{?’ (D
~ &-¢ 10t percentile )

Eoqrh percentile — E1om percentile

where 0y is the current target angle for a given set of
features, n is the current time step, Kgecay iS a gain that
prevents continual target angle growth by decaying target
angles towards Opin, and kgore 1S @ gain on the normalized
class score, £. The system shifts class scores, &, so that scores
below the 10™ percentile of tripped step scores result in a
reduction of the target knee angle. Furthermore, the system
normalizes the scores by oo percentile — €10 percentile SO that
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Fig. 3. Knee Angle Regression Feedback. In order to enable volitional
control of the knee and ankle flexion angles to allow users to achieve greater
flexion angles for larger obstacles, we implement a feedback system that uses
the backwards classifier class score to quantify obstacle difficulty. After each
step, the system increases the desired target angle for that step’s forward
features proportionally to the normalized back classifier score. We also decay
the current desired target angle for those features to prevent continual growth
of the target angle. The regression is retrained every ten avoidance attempts.

the gain kyore has a predictable effect across subjects whose
score ranges vary.

The system fits the target knee angles with a linear support
vector regression. Every time the trip avoidance triggers, it
appends an additional target angle, specified by eq. (1), to
a training data set. The system retrains the regression using
this data set every ten trip-avoidance steps.

C. Feature Extraction

For the forwards and backwards classifiers, as well as the
target knee angle regression, we use features of the thigh
angle, angular velocity, and linear accelerations in a time
window. Specifically, we use the mean, standard deviation,
minimum value, and maximum value of each signal. For
forward classification and regression the time window begins
210 ms before toe-off and ends 90 ms after toe-off, while for
the backward classification we use a window consisting of
the entire swing phase between toe-off and heel strike.

D. Trajectory Planning

To generate the knee and ankle motions for unperturbed
swing, we follow the method proposed by Lenzi et al. [10]
to generate and follow human-like minimum jerk trajectories
that start at the toe-off state of each joint (angle, angular
velocity, and angular acceleration), go to a target flexion state,
and then extend to desired final angles at the estimated heel
strike time. We estimate the swing period to be 65% of the
stance period.

When the forward classifier triggers an obstacle avoidance
attempt, we switch to bang-bang trajectories for the knee
and ankle joints. These trajectories maximize foot clearance
while respecting joint angle, velocity, and acceleration limits.
The bang-bang trajectories achieve desired flexion angles
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Fig. 4. Bang-bang obstacle avoidance trajectories (yellow) vs normal

minimum jerk trajectories (blue) for the knee and ankle.

as quickly as possible and then extend as late as possible
such that they achieve extension before the predicted heel
strike time. The trajectory planner uses the target knee angle
regression to determine the appropriate peak angle for the
knee trajectory, while the ankle trajectory’s target flexion
angle is a linear function of the knee’s target angle. The knee
trajectory’s peak flexion angle is constrained to lie within 65
and 90 degrees while the peak ankle flexion is constrained
within 5 and 15 degrees. Examples showing the minimum
jerk swing trajectories and obstacle avoidance trajectories
planned for large and small obstacles are given in fig. 4.

III. EXPERIMENTS anp RESULTS
A. Experimental Protocol

We tested the ability of the proposed online learning system
to accurately classify trips and normal swings, help subjects
avoid tripping on obstacles, and modulate knee and ankle
flexion appropriately for obstacles of different heights. To
evaluate these aspects of system performance, we conducted
experiments with a powered knee and ankle prosthesis shown
in fig. 5 (previously described in Thatte et al. [11]).

Two subjects, one non-amputee with prior experience
using this prosthesis, and one inexperienced amputee subject,
performed walking trials with the obstacle avoidance system
enabled. As subjects walked, an experimenter placed objects
on the treadmill belt in front of each subject’s prosthetic
leg, necessitating an obstacle avoidance reaction. To obtain a
baseline performance level for non-reactive prosthetic swing
control, we also performed obstacle avoidance trials with the
minimum jerk swing trajectories designed for undisturbed
swing. Before the online trials, the backwards classifier was
trained for the prosthesis user with 75 steps. The able bodied
subject completed 446 total steps, with 53 box avoidance
steps, while the amputee completed 222 total steps, with 40
box avoidance steps. The amputee subject performed trials
in an ABBA order, where A is minimum jerk control and
B is the reactive control, in order to average out potential
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Fig. 5. Our powered transfemoral prosthesis prototype features series elastic
actuators at both the knee and ankle joints for accurate torque control. We
mount an IMU (3-Space Sensor, Yost Labs) to the thigh in order to measure
hip angle and angular velocity and thigh linear accelerations. Able-bodied
subjects wear the prosthesis via an L-shaped adapter (shown), whereas
amputee subjects can attach the prosthesis to their personal socket via a
standard pyramid adapter.

learning effects. The amputee subject also had an additional
practice session the day prior to the box avoidance trials in
which he acclimated to walking with the powered prosthesis
without obstacles.

B. Results

Tables I and II show the overall classification accuracies,
sensitivities, and specificities for the forward and back-
wards classifiers for the able-bodied and amputee subjects
respectively. The forward and backwards classifiers for both
subjects achieve high specificity (the number of normal steps
classified correctly) and accuracy (> 95%). The sensitivity,
the percentage of true trips classified correctly, of the
classifiers for both subjects is substantially lower than the
specificity or accuracy. For the forward classifier, we see that
because the model is trained online, the sensitivity improves
from the first half of the trial to the second half, which
explains some of the low overall sensitivity.

TABLE I
CLASSIFIER PERFORMANCE, ABLE-BODIED!

ToraL STEPS: 446, AVOIDANCE ATTEMPTS: 53

Controller \ Classification Accuracy  Sensitivity — Specificity
Forward, 15t Half 96% 73% 99%
Forward, 2" Half 99% 93% 99%
Forward Overall 98% 85% % 99%
Backward 99% 100% 99%
TABLE II
CLASSIFIER PERFORMANCE, AMPUTEE!
TotaL StTEPS: 222, AVOIDANCE ATTEMPTS: 40
Controller \ Classification Accuracy  Sensitivity — Specificity
Forward, 150 Half 95% 80% 98%
Forward, 2nd Half 96% 85% 98%
Forward Overall 95% 83% N 98%
Backward 98% 90% 99%

Importantly, the ability of the forward classifier to correctly
trigger the bang-bang obstacle avoidance trajectories improves
obstacle avoidance success rates as shown in table III. Both
subjects were able to avoid significantly more obstacles with
the obstacle avoidance controller than with the minimum jerk
trajectory controller.

TABLE III

OBSTACLE AVOIDANCE SUCCESS RATES'

Controller ‘ Able-Bodied Amputee
Success Rate  Success Rate

Minimum Jerk ‘ 37% * 35% x

Adaptive Bang-Bang 89% * 71% *

We also compared our online learning approach for obstacle
avoidance to an offline approach similar to that taken by
Lawson et al. [5], Zhang et al. [6], and Shirota et al. [2].
To do this, we trained a classifier offline using the first half
of the amputee subject’s bang-bang control data and tested
it on the second half of the data. Table IV shows that the
classifier trained offline has trouble generalizing to the second
half of the data, as it performs significantly worse than the
online-trained model in terms of accuracy and sensitivity.

TABLE IV

ONLINE AND OFFLINE FORWARD CLASSIFIER PERFORMANCE, AMPUTEE'

Classifier \ Classification Accuracy  Sensitivity — Specificity
Offline 89% 39% ¥ 100%
Online 95% 83% * 98%

Finally, we examined the ability of the knee angle re-
gression to choose a target knee angle that is appropriate
for the object size. The feedback law proposed in eq. (1)
assumes we can use the backwards classifier score as a
metric of obstacle difficulty. For the able-bodied subject, this
assumption seems warranted, as there is a strong relationship
between the obstacle height and the classifier score (fig. 6a,
R? = 0.50). However, for the amputee subject, who was less
experienced with walking with the powered prosthesis, this
relationship is less clear (fig. 6B, R*> = 0.22).

As shown in fig. 6c&d, our system is able to ensure that
high classification score steps, associated with high user effort,
obtain larger target flexion angles. This relationship led to
noisy volitional control of the knee flexion angle for the able-
bodied subject (fig. 6e) as evidenced by the linear relationship
between knee angle and obstacle height (R? = 0.31). However,
for the amputee subject, there is no clear relationship between
the obstacle height and knee flexion angle (fig. 6f, R> = 0.10).

IV. DISCUSSION

We developed an online learning system to help users
of powered transfemoral prostheses avoid obstacles. Our
system uses information from an inertial measurement unit
during the late stance to early swing period to classify
the upcoming swing as either normal or a trip avoidance

% = p <005 «x = p < 0.0l, »x* = p < 0.001,
Chi-squared test
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Fig. 6. Obstacle height vs backwards classifier score for (a) the able-bodied and (b) amputee subjects. The system uses the backwards classifier score as a
metric for obstacle avoidance difficulty. This score is used in a feedback loop that forms the training set for the flexion target angle regression (c-d). With
this feedback system, the able bodied user (e) is able to achieve a degree of volitional control over flexion angle as evidenced by the linear relationship
between knee flexion angle and obstacle height (R2 = 0.31). However, the amputee (f) was not able to achieve meaningful control over the flexion of the
prosthesis (R? = 0.10), possibly due to the decreased experience level of this subject.

attempt. Unlike previous work on obstacle negotiation for
transfemoral prostheses [5—7], our system learns online on an
actual transfemoral prostheses. We compared the classification
performance of our online system with a hypothetical offline
system using online trials to provide testing and training data
for offline analysis. This comparison showed that the online
learning system provided an improvement in sensitivity and
accuracy to obstacle avoidance attempts. Both an experienced,
able-bodied subject and an inexperienced, amputee subject
were able to improve their obstacle avoidance success rates
significantly. However, only the experienced, able-bodied
subject was able to achieve some level of volitional control
of the prosthesis flexion as a function of obstacle height.
There are several reasons why the amputee subject may
not have been able to achieve volitional control of prosthesis
flexion. First, the amputee had far less experience using
the prosthesis than the able-bodied subject. Consequently,
even though both subjects were informed that trying harder
to lift the leg over bigger obstacles would likely lead to
greater flexion once the prosthesis learns, it is likely that only
the first subject was able to incorporate and implement this
information. The amputee may have concentrated on more
rudimentary aspects of gait, as evidenced by his use of the
handrails to walk, whereas the able-bodied subject did not
need to use the hand rails. Moreover, the amputee’s socket

may have provided less control over the prosthesis than did
the intact subject’s able-bodied adapter (shown in fig. 5).
Finally, we noted that the relationship between joint flexion
and obstacle height tended to oscillate over the course of our
trials. This may imply that the gains we used for the target
knee angle regression (eq. (1)) were too high.

Before settling on the specifics of the obstacle avoidance
system presented here, we also tested other options for its
components. For example, we also evaluated incorporating
EMG signals from the non-prosthetic limb in our obstacle
avoidance classifier. Previous research showing that able-
bodied subjects utilize stance leg musculature to help raise
the hip during obstacle avoidance motivated this choice of
EMG placement [1]. However, as was found by Spanias
et al. [9], using EMG data along with mechanical data in the
forwards-backwards online learning algorithm did not seem
to improve classification accuracy, which is already high.
This lack of improvement may also result from a significant
delay in our wireless EMG sensors (Delsys Trigno). It is
possible that a low-latency wired EMG sensor would be able
to improve classification performance or the performance of
the target angle regression.

We also tried using imitation learning techniques to model
able-bodied strategies for stepping over obstacles. Specifically,
we employed maximum margin inverse optimal control [12]



to learn, offline, cost functions for the knee that explained
obstacle avoidance trajectories. However, when used online,
the generated trajectories tended to diverge and produce
unexpected results because the initial toe-off state of the
prosthesis did not match those in the able-bodied data set.
For the obstacle avoidance classifier, we correct this sort
of offline-online mismatch via the backwards classifier that
provides labels to train the forwards classifier online. It is less
clear how to update trajectories in hindsight as we never see
the obstacle. For this reason, we used bang-bang trajectories
during obstacle avoidance, which maximize the time the joints
remain flexed.

In the future, we plan to overcome this issue by incorpo-
rating a laser distance sensor into the prosthesis. This sensor
should allow precise measurement of the ground and obstacle
shape during the initial part of swing as the hip moves forward.
We plan to then use this information to explicitly plan knee
and ankle trajectories that will avoid the obstacle and the
floor until the appropriate touch down time.

There are several other limitations of the current study we
should address in future work as well. First, we only tested
the algorithm with two subjects. More subjects of varying
skill levels are necessary to determine how applicable the
system is to a broader population. Additionally, a likely reason
why the forward classifier’s sensitivity was relatively low,
was that there were many more normal steps than obstacle
avoidance attempts in the training data set. This may cause
the SVM loss function’s minimum to focus more heavily on
classifying normal steps correctly. Deploying this system on
a commercial prosthesis, for which trips are more rare, would
exacerbate this issue. Therefore, future development should
investigate how to train a classifier given heavily unbalanced
class frequencies.
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