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Abstract— Avoiding obstacles poses a significant challenge for
amputees using mechanically-passive transfemoral prosthetic
limbs due to their lack of direct knee control. In contrast,
powered prostheses can potentially improve obstacle avoidance
via their ability to add energy to the system. In past work,
researchers have proposed stumble recovery systems for pow-
ered prosthetic limbs that provide assistance in the event of a
trip. However, these systems only aid recovery after an obstacle
has disrupted the user’s gait and do not proactively help the
amputee avoid obstacles. To address this problem, we designed
an adaptive system that learns online to use kinematic data from
the prosthetic limb to detect the user’s obstacle avoidance intent
in early swing. When the system detects an obstacle, it alters
the planned swing trajectory to help avoid trips. Additionally,
the system uses a regression model to predict the required
knee flexion angle for the trip response. We validated the
system by comparing obstacle avoidance success rates with
and without the obstacle avoidance system. For a non-amputee
subject wearing the prosthesis through an adapter, the trip
avoidance system improved the obstacle negotiation success rate
from 37% to 89%, while an amputee subject improved his
success rate from 35% to 71% when compared to utilizing
minimum jerk trajectories for the knee and ankle joints.

I. INTRODUCTION

Avoiding obstacles on the ground is a necessity for main-

taining safety while performing a variety of locomotion tasks.

This behavior requires anticipation of an obstacle and active

leg control strategies to avoid it [1]. Transfemoral amputees,

however, have a compromised ability to negotiate obstacles,

as shown in Figure 1, as current prosthesis technology relies

on mechanically passive knees that necessitate significant

compensation at the hip in order to replicate able-bodied trip

recovery strategies [2]. Compromised ability to avoid and

recover from trips may contribute to the large number of

falls that leg amputees suffer. For instance, 58% of unilateral

amputees reported a fall within a year [3]. Moreover, the fear

of falling can cause amputees to avoid activity, leading to

further deterioration of their physical condition [4].

An increasing availability of powered prostheses in research

labs provides the opportunity to study active obstacle avoid-

ance strategies in prosthetics, although so far only a limited

number of studies exist on this topic. These studies focus

on detecting and classifying the correct response strategy
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after the amputee has tripped. For example, Lawson et al. [5]

developed a classifier that uses fast Fourier transform and

the root mean square of accelerometer data as features to

classify stumbles and recovery strategies, respectively. Zhang

et al. [6] found that adding EMG signals from the residual

limb to accelerometer data can help reduce false positives

for stumble and strategy detection. Finally, Shirota et al. [7]

identified the optimal sliding window lengths and increments

for feature calculation for trip detection and strategy selection

classifiers. While detecting and classifying trip recovery

strategies after their occurrence is a necessary step towards

obstacle avoidance, it does not provide a proactive prosthesis

control strategy that prevents obstacle encounters in the first

place.

Another major drawback of the previous studies is that

they train and test the classifiers offline. However, a deployed

trip classifier needs to function online and deal with temporal

adaptation of the learner and amputee. The adaptation is

required as the obstacle avoidance behavior triggered by a trip

classifier alters the amputee’s movements and, therefore, the

data used to train the classifier. Consequently, trip classifiers

trained offline may be ineffective due to the mismatch of

training and testing data, a common problem faced in imitation

and reinforcement learning [8].

Here we present the first pilot study that combines online

learning and proactive control of a powered transfemoral

prosthesis to implement obstacle avoidance in amputee

locomotion. The obstacle avoidance system uses early-swing

measurements of the residual limb angle, angular velocity, and

linear acceleration to recognize in-process obstacle avoidance

attempts. To address the online learning aspect of this system,

we adapted a previously proposed algorithm for detecting gait

modes [9]. We also changed the existing swing leg behavior

of the prosthesis to facilitate obstacle avoidance. This change

includes a regression to predict the appropriate degree of

knee and ankle flexion given the user’s previous obstacle

response motions. Finally, we evaluated the system behavior

in trials with both non-amputee and amputee subjects.

II. METHODS

A. Forward-Backward Classifier

In order to learn to classify trips online with minimal hand-

labeling of data, we rely primarily on the forward-backwards

classifier approach first proposed by Spanias et al. [9] for the

purpose of classifying different modes of gait such as level

ground walking, standing, and stair climbing. In their work,

a forward classifier predicts the next step’s gait mode using

data in a window shortly before the transition. In parallel, a
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Fig. 1. a) Utilizing minimum jerk trajectories during swing does not allow for appropriate adaptation of swing trajectories to enable obstacle avoidance.
b) Our adaptive system learns online to detect the presence of an obstacle from the amputee’s late stance/early swing movements. Once detected, the
controller modifies the trajectories of the knee and ankle to achieve improved obstacle clearance.

backward classifier labels completed steps with their correct

gait mode in hindsight. Because the backwards classifier has

access to features from the completed step, it can achieve

accurate labels with a small amount of hand-annotated data.

Once trained, the backwards classifier can provide labels for

training the forward classifier, obviating the need for further

hand-labeling of steps.

In our work, the forward classifier predicts, shortly after toe-

off, if the upcoming swing will require obstacle avoidance

or not. For this purpose, we use a linear support vector

machine and features of the residual limb motion in the last

210 ms of stance and first 90 ms of the swing phase. Because

user behavior changes over time in response to changes in

prosthesis obstacle avoidance behavior, we retrain the forward

support vector machine every ten steps using labels from the

backward classifier.

The backward classifier is another linear support vector

machine, trained once for each user, which uses features

extracted from the entire swing phase to label a step as

an avoidance attempt after the fact. To train the backwards

classifier we hand label obstacle avoidance attempts and

normal steps for roughly ten obstacles. Figure 2 provides an

overview of this system.

B. Target Knee Angle Regression

A prosthesis user will not always encounter obstacles of

the same height. As the obstacle avoidance response can be

disruptive to the user, it is desirable to give the user control

over the magnitude of the prosthesis response. We seek to

achieve this functionality by using the normalized backward

classifier score as a metric for the difficulty of avoiding an

obstacle. We then implement a simple linear feedback law

that assigns higher target flexion knee angles to obstacle
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Fig. 2. Forward-Backward Classifier Overview. The backwards classifier
uses features from the entire swing to provide training class labels to a
forwards classifier. The forwards classifier uses features from late stance and
early swing in order to predict if an upcoming swing will be an obstacle
avoidance attempt.

avoidance attempts that are more difficult according to this

metric. Figure 3 outlines this feedback mechanism, which

has the form

θ
tgt

n+1
= θ

tgt
n − kdecay(θ

tgt
n − θmin) + kscoreξ̂, (1)

ξ̂ =
ξ − ξ10th percentile

ξ90th percentile − ξ10th percentile

, (2)

where θtgt is the current target angle for a given set of

features, n is the current time step, kdecay is a gain that

prevents continual target angle growth by decaying target

angles towards θmin, and kscore is a gain on the normalized

class score, ξ̂. The system shifts class scores, ξ, so that scores

below the 10th percentile of tripped step scores result in a

reduction of the target knee angle. Furthermore, the system

normalizes the scores by ξ90th percentile − ξ10th percentile so that
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Fig. 3. Knee Angle Regression Feedback. In order to enable volitional
control of the knee and ankle flexion angles to allow users to achieve greater
flexion angles for larger obstacles, we implement a feedback system that uses
the backwards classifier class score to quantify obstacle difficulty. After each
step, the system increases the desired target angle for that step’s forward
features proportionally to the normalized back classifier score. We also decay
the current desired target angle for those features to prevent continual growth
of the target angle. The regression is retrained every ten avoidance attempts.

the gain kscore has a predictable effect across subjects whose

score ranges vary.

The system fits the target knee angles with a linear support

vector regression. Every time the trip avoidance triggers, it

appends an additional target angle, specified by eq. (1), to

a training data set. The system retrains the regression using

this data set every ten trip-avoidance steps.

C. Feature Extraction

For the forwards and backwards classifiers, as well as the

target knee angle regression, we use features of the thigh

angle, angular velocity, and linear accelerations in a time

window. Specifically, we use the mean, standard deviation,

minimum value, and maximum value of each signal. For

forward classification and regression the time window begins

210 ms before toe-off and ends 90 ms after toe-off, while for

the backward classification we use a window consisting of

the entire swing phase between toe-off and heel strike.

D. Trajectory Planning

To generate the knee and ankle motions for unperturbed

swing, we follow the method proposed by Lenzi et al. [10]

to generate and follow human-like minimum jerk trajectories

that start at the toe-off state of each joint (angle, angular

velocity, and angular acceleration), go to a target flexion state,

and then extend to desired final angles at the estimated heel

strike time. We estimate the swing period to be 65% of the

stance period.

When the forward classifier triggers an obstacle avoidance

attempt, we switch to bang-bang trajectories for the knee

and ankle joints. These trajectories maximize foot clearance

while respecting joint angle, velocity, and acceleration limits.

The bang-bang trajectories achieve desired flexion angles
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Fig. 4. Bang-bang obstacle avoidance trajectories (yellow) vs normal
minimum jerk trajectories (blue) for the knee and ankle.

as quickly as possible and then extend as late as possible

such that they achieve extension before the predicted heel

strike time. The trajectory planner uses the target knee angle

regression to determine the appropriate peak angle for the

knee trajectory, while the ankle trajectory’s target flexion

angle is a linear function of the knee’s target angle. The knee

trajectory’s peak flexion angle is constrained to lie within 65

and 90 degrees while the peak ankle flexion is constrained

within 5 and 15 degrees. Examples showing the minimum

jerk swing trajectories and obstacle avoidance trajectories

planned for large and small obstacles are given in fig. 4.

III. EXPERIMENTS ��� RESULTS

A. Experimental Protocol

We tested the ability of the proposed online learning system

to accurately classify trips and normal swings, help subjects

avoid tripping on obstacles, and modulate knee and ankle

flexion appropriately for obstacles of different heights. To

evaluate these aspects of system performance, we conducted

experiments with a powered knee and ankle prosthesis shown

in fig. 5 (previously described in Thatte et al. [11]).

Two subjects, one non-amputee with prior experience

using this prosthesis, and one inexperienced amputee subject,

performed walking trials with the obstacle avoidance system

enabled. As subjects walked, an experimenter placed objects

on the treadmill belt in front of each subject’s prosthetic

leg, necessitating an obstacle avoidance reaction. To obtain a

baseline performance level for non-reactive prosthetic swing

control, we also performed obstacle avoidance trials with the

minimum jerk swing trajectories designed for undisturbed

swing. Before the online trials, the backwards classifier was

trained for the prosthesis user with 75 steps. The able bodied

subject completed 446 total steps, with 53 box avoidance

steps, while the amputee completed 222 total steps, with 40

box avoidance steps. The amputee subject performed trials

in an ABBA order, where A is minimum jerk control and

B is the reactive control, in order to average out potential
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Fig. 5. Our powered transfemoral prosthesis prototype features series elastic
actuators at both the knee and ankle joints for accurate torque control. We
mount an IMU (3-Space Sensor, Yost Labs) to the thigh in order to measure
hip angle and angular velocity and thigh linear accelerations. Able-bodied
subjects wear the prosthesis via an L-shaped adapter (shown), whereas
amputee subjects can attach the prosthesis to their personal socket via a
standard pyramid adapter.

learning effects. The amputee subject also had an additional

practice session the day prior to the box avoidance trials in

which he acclimated to walking with the powered prosthesis

without obstacles.

B. Results

Tables I and II show the overall classification accuracies,

sensitivities, and specificities for the forward and back-

wards classifiers for the able-bodied and amputee subjects

respectively. The forward and backwards classifiers for both

subjects achieve high specificity (the number of normal steps

classified correctly) and accuracy (> 95%). The sensitivity,

the percentage of true trips classified correctly, of the

classifiers for both subjects is substantially lower than the

specificity or accuracy. For the forward classifier, we see that

because the model is trained online, the sensitivity improves

from the first half of the trial to the second half, which

explains some of the low overall sensitivity.

TABLE I
C��������� P����������, A���-B�����1

T���� S����: 446, A�������� A�������: 53

Controller Classification Accuracy Sensitivity Specificity

Forward, 1st Half 96%

?

73%

?
?

99%

Forward, 2nd Half 99% 93% 99%
Forward Overall 98% 85%

?
?

99%
Backward 99% 100% 99%

TABLE II
C��������� P����������, A������

1

T���� S����: 222, A�������� A�������: 40

Controller Classification Accuracy Sensitivity Specificity

Forward, 1st Half 95% 80% 98%

Forward, 2nd Half 96% 85% 98%
Forward Overall 95% 83%

?

98%
Backward 98% 90% 99%

Importantly, the ability of the forward classifier to correctly

trigger the bang-bang obstacle avoidance trajectories improves

obstacle avoidance success rates as shown in table III. Both

subjects were able to avoid significantly more obstacles with

the obstacle avoidance controller than with the minimum jerk

trajectory controller.

TABLE III

O������� A�������� S������ R����
1

Controller
Able-Bodied Amputee
Success Rate Success Rate

Minimum Jerk 37%

?
?
? 35%

?
?
?

Adaptive Bang-Bang 89% 71%

We also compared our online learning approach for obstacle

avoidance to an offline approach similar to that taken by

Lawson et al. [5], Zhang et al. [6], and Shirota et al. [2].

To do this, we trained a classifier offline using the first half

of the amputee subject’s bang-bang control data and tested

it on the second half of the data. Table IV shows that the

classifier trained offline has trouble generalizing to the second

half of the data, as it performs significantly worse than the

online-trained model in terms of accuracy and sensitivity.

TABLE IV

O����� ��� O������ F������ C��������� P����������, A������
1

Classifier Classification Accuracy Sensitivity Specificity

Offline 89%

?

39%

?
?
? 100%

Online 95% 83% 98%

Finally, we examined the ability of the knee angle re-

gression to choose a target knee angle that is appropriate

for the object size. The feedback law proposed in eq. (1)

assumes we can use the backwards classifier score as a

metric of obstacle difficulty. For the able-bodied subject, this

assumption seems warranted, as there is a strong relationship

between the obstacle height and the classifier score (fig. 6a,

R
2
= 0.50). However, for the amputee subject, who was less

experienced with walking with the powered prosthesis, this

relationship is less clear (fig. 6B, R
2
= 0.22).

As shown in fig. 6c&d, our system is able to ensure that

high classification score steps, associated with high user effort,

obtain larger target flexion angles. This relationship led to

noisy volitional control of the knee flexion angle for the able-

bodied subject (fig. 6e) as evidenced by the linear relationship

between knee angle and obstacle height (R2
= 0.31). However,

for the amputee subject, there is no clear relationship between

the obstacle height and knee flexion angle (fig. 6f, R
2
= 0.10).

IV. DISCUSSION

We developed an online learning system to help users

of powered transfemoral prostheses avoid obstacles. Our

system uses information from an inertial measurement unit

during the late stance to early swing period to classify

the upcoming swing as either normal or a trip avoidance

1? =⇒ p < 0.05, ?? =⇒ p < 0.01, ??? =⇒ p < 0.001,
Chi-squared test
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Fig. 6. Obstacle height vs backwards classifier score for (a) the able-bodied and (b) amputee subjects. The system uses the backwards classifier score as a
metric for obstacle avoidance difficulty. This score is used in a feedback loop that forms the training set for the flexion target angle regression (c-d). With
this feedback system, the able bodied user (e) is able to achieve a degree of volitional control over flexion angle as evidenced by the linear relationship
between knee flexion angle and obstacle height (R2

= 0.31). However, the amputee (f) was not able to achieve meaningful control over the flexion of the
prosthesis (R2

= 0.10), possibly due to the decreased experience level of this subject.

attempt. Unlike previous work on obstacle negotiation for

transfemoral prostheses [5–7], our system learns online on an

actual transfemoral prostheses. We compared the classification

performance of our online system with a hypothetical offline

system using online trials to provide testing and training data

for offline analysis. This comparison showed that the online

learning system provided an improvement in sensitivity and

accuracy to obstacle avoidance attempts. Both an experienced,

able-bodied subject and an inexperienced, amputee subject

were able to improve their obstacle avoidance success rates

significantly. However, only the experienced, able-bodied

subject was able to achieve some level of volitional control

of the prosthesis flexion as a function of obstacle height.

There are several reasons why the amputee subject may

not have been able to achieve volitional control of prosthesis

flexion. First, the amputee had far less experience using

the prosthesis than the able-bodied subject. Consequently,

even though both subjects were informed that trying harder

to lift the leg over bigger obstacles would likely lead to

greater flexion once the prosthesis learns, it is likely that only

the first subject was able to incorporate and implement this

information. The amputee may have concentrated on more

rudimentary aspects of gait, as evidenced by his use of the

handrails to walk, whereas the able-bodied subject did not

need to use the hand rails. Moreover, the amputee’s socket

may have provided less control over the prosthesis than did

the intact subject’s able-bodied adapter (shown in fig. 5).

Finally, we noted that the relationship between joint flexion

and obstacle height tended to oscillate over the course of our

trials. This may imply that the gains we used for the target

knee angle regression (eq. (1)) were too high.

Before settling on the specifics of the obstacle avoidance

system presented here, we also tested other options for its

components. For example, we also evaluated incorporating

EMG signals from the non-prosthetic limb in our obstacle

avoidance classifier. Previous research showing that able-

bodied subjects utilize stance leg musculature to help raise

the hip during obstacle avoidance motivated this choice of

EMG placement [1]. However, as was found by Spanias

et al. [9], using EMG data along with mechanical data in the

forwards-backwards online learning algorithm did not seem

to improve classification accuracy, which is already high.

This lack of improvement may also result from a significant

delay in our wireless EMG sensors (Delsys Trigno). It is

possible that a low-latency wired EMG sensor would be able

to improve classification performance or the performance of

the target angle regression.

We also tried using imitation learning techniques to model

able-bodied strategies for stepping over obstacles. Specifically,

we employed maximum margin inverse optimal control [12]



to learn, offline, cost functions for the knee that explained

obstacle avoidance trajectories. However, when used online,

the generated trajectories tended to diverge and produce

unexpected results because the initial toe-off state of the

prosthesis did not match those in the able-bodied data set.

For the obstacle avoidance classifier, we correct this sort

of offline-online mismatch via the backwards classifier that

provides labels to train the forwards classifier online. It is less

clear how to update trajectories in hindsight as we never see

the obstacle. For this reason, we used bang-bang trajectories

during obstacle avoidance, which maximize the time the joints

remain flexed.

In the future, we plan to overcome this issue by incorpo-

rating a laser distance sensor into the prosthesis. This sensor

should allow precise measurement of the ground and obstacle

shape during the initial part of swing as the hip moves forward.

We plan to then use this information to explicitly plan knee

and ankle trajectories that will avoid the obstacle and the

floor until the appropriate touch down time.

There are several other limitations of the current study we

should address in future work as well. First, we only tested

the algorithm with two subjects. More subjects of varying

skill levels are necessary to determine how applicable the

system is to a broader population. Additionally, a likely reason

why the forward classifier’s sensitivity was relatively low,

was that there were many more normal steps than obstacle

avoidance attempts in the training data set. This may cause

the SVM loss function’s minimum to focus more heavily on

classifying normal steps correctly. Deploying this system on

a commercial prosthesis, for which trips are more rare, would

exacerbate this issue. Therefore, future development should

investigate how to train a classifier given heavily unbalanced

class frequencies.
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