
Learning Convolutional Neural Networks From
Ordered Features Of Generic Data

Eric Golinko, Thomas Sonderman, and Xingquan Zhu

Dept. of Computer & Electrical Eng. and Computer Science, Florida Atlantic University

Boca Raton, Florida 33431, USA

{egolinko, tsonderm, xzhu3}@fau.edu

Abstract—Convolutional neural networks (CNN) have be-
come very popular for computer vision, text, and sequence
tasks. CNNs have the advantage of being able to learn local
patterns through convolution filters. However, generic datasets
do not have meaningful local data correlations, because their
features are assumed to be independent of each other. In
this paper, we propose an approach to reorder features of
a generic dataset to create feature correlations for CNN to
learn feature representation, and use learned features as inputs
to help improve traditional machine learning classifiers. Our
experiments on benchmark data exhibit increased performance
and illustrate the benefits of using CNNs for generic datasets.

I. INTRODUCTION

Convolutional neural networks have become mainstream

classification approaches in numerous fields, including com-

puter vision and text mining [8] . In some tasks [4] CNNs

have shown even better performance than human vision. Ad-

ditional vision applications have included using CNNs for

video classification tasks for large multiclass problems [7].

Additionally, in text mining, text embedding methods have

shown substantial results for sentiment identification. A key

characteristic of text problems have been to create a mean-

ingful embedding of words [10] based on the vocabulary

of the underlying data. Once a meaningful embedding is

accomplished, a CNN architecture may be used to create

features based upon the relative relationships that occur in

the word proximity and context.

Though these methods have shown extremely promising

results, there has been little study about applying convolu-

tional methodology to learn features for generic non-image

or non-text data. We seek to examine a novel way to reorder

features such that a CNN representation can be constructed,

and be extended to traditional machine learning algorithms

such as Nearest Neighbor (NN), Random Forest (RF), or

Support Vector Machines (SVM).

Generic datasets do not have have clear temporally or

spatially correlated features. In fact, oftentimes it is assumed

Fig. 1. A conceptual view of 1-d CNN learning. The training
dataset contains n instances and m features. 1-d CNN treats each
instance as an input of m × 1 (m time steps of a single feature)
or 1×m (one time step of m features).

that variables are independent. For data that do not have

order, CNN features do not build meaningful representations

typically. Therefore, we wish to develop a meaningful order-

ing of features for generic data. By creating an ordering of

the features, we can use CNNs to create a new representation

of the data and use subsequent deep learning frameworks

typically reserved for images or text embedding. In our

research we illustrate a technique that can order features of a

generic dataset, such that a meaningful CNN representation

many be used. In order to create this ordering, we utilize

our previous feature embedding approach [5] to aid in

creating this ordering. This technique is similar to principal

component analysis [1] and factor analysis [3] in that we

are able to correlate original features of the data with the

embedded features.

II. CONVOLUTIONAL NEURAL NETWORKS FOR

1-DIMENSIONAL DATA

While CNNs are typically used for two dimensional data,

such as images, recent research has extended CNNs to text

and time series prediction. In these one dimensional data

applications, data occur in a series that has a meaningful

spatial or temporal relationship. In summary, CNNs for

897

2018 17th IEEE International Conference on Machine Learning and Applications

978-1-5386-6805-4/18/$31.00 ©2018 IEEE
DOI 10.1109/ICMLA.2018.00145

Fig. 2. Workflow of the proposed method which finds a meaningful
ordering of original features to train a 1-d CNN and learn new
features for classification.

sequential data have four main components: a) input layer,

b) convolutional layer, c) pooling layer, and d) activation

and classification. This setup may be extended by adding

dense layers, additional convolutional layers, and adjusting

parameters to each layer. We illustrate in Fig. 1 the archi-

tecture of the general model we used.

Similar to the CNN for images, the 1-d convolution takes

a vector that is one dimension. This can be interpreted as

one feature over multiple time steps or as a singe instance

that has many features or channels. To draw comparison

with the image CNN network, the input shape would have

multiple dimensions, e.g. 28× 28× 3, to represent images

with red, green, and blue channels. For one dimensional

data, we could have an input of m × 1 which represent

multiple steps of a sequence or times series. Alternatively,

we can use an input of dimension 1 × m, indicating that

an instance only has one step but has multiple features or

channels. The distinction we make is the size of the kernel

for the 1-d cases. We can apply filters of up to size m
for the case where our input is m × 1, however where we

only have one time stamp, 1×m our kernel size is only 1.

Therefore, we are able to learn the feature or channels in

small increments.

III. PROPOSED METHODOLOGY

In order to use CNNs for one dimension data, we first

must develop a meaningful ordering of generic features that

do not naturally have a temporal ordering or a pre-defined

spatial relationship. In the case of 1-d or temporal CNN, the

convolution window moves along each channel or feature

in an instance in short strides that are defined and initiated

as a parameter in a network setting. For data that does not

have order, CNN features do not naturally build meaningful

representations. Therefore, we reorder features to create

correlations such that we can utilize the deep learning

representation using CNN architectures. Fig. 2 illustrates

work-flow of our proposed methodology.

A. Feature Order From Embedding

In order to create a meaningful reordering of features,

we must first represent generic data, which often contain

numerical and categorical features, in a way for numer-

ical analysis. Therefore we use our feature embedding

approach [5] to create an embedding that will aid in feature

ordering.

In general the process is as follows 1) one-hot encode a

dataset X as W , 2) create an embedded space Gk from W
such that k embedded features are created, 3) correlate the

top embedded feature with the features of W , 4) let W ′ be

the ordered features of W based on feature correlation with

Gk.

The embedded space Gk is the eigenvector solution Eq. 1

to the represented space of W . The derived equation follows

from three distinct matrices; 1) Q is the class partitioned

row and feature representation developed from W , 2) A is

a weighted adjacency matrix where an edge is represented

by instances having the same class label, and 3) W the

one-hot encoded data of X . From the work generated

in [5] this approach uses class labels along with distance

relationships to form an embedded space. Specifically, the

methodology aims to work with sparse categorical features

that are generated by one-hot encoding.

S = QTQAW (1)

More formally, let wi be the one-hot encoded features

of W . Then with out loss of generality we calculate the

correlations as:

Σi = Cor(wi, G
k) for i ∈ 1 . . .m (2)

the index of one-hot encoded features of W .

Following calculating all of the correlations, we then rank

order all of Σi as:

Σi
rp , where Σi

r1 ≥ · · · ≥ Σj
rm , i �= j (3)

This indicates the feature wi is most correlated with the

most import embedded feature as signified by r1, and wj is

the least correlated noted by its correlation rank of rm.

B. 1-d CNN and Classification

To create CNN features, we use a simple architecture

based on examples from the Keras package [2]. We make a

slight change of how the array of data is being shaped, this

is done by considering each instance to have 1 step in time

and m features. Typically, sequential data will be considered

to have one feature and multiple time steps, therefore our

implementation can be seen as a transposition of typical

sequential implementations. As input the first layer takes

898

a input of 1 time step with m features. Arbitrarily, the

number of output layers is chosen as a parameter f . In

our experiments we set f = 10, 50, 100, 200, 300, 400, 500.

Specifically, since we treat each instance as 1 time step,

the size of the width of the convolutional filter will be 1.

After the convolutional layer, we use a max pooling layer

followed by a softmax layer. The network is trained, then the

softmax layer is popped off, and our subsequent f weights

create the feature representation from W ′ as W . From W
we are able to now apply and classify the data using SVM,

random forest, or 1-nearest neighbor. A visualization of our

architecture is shown in Fig. 2.

IV. EXPERIMENTS

In this section we report results over benchmark data

utilizing baseline machine learning algorithms, including

support vector machine (SVM), 1-nearest neighbor (1-NN),

and random forest (RF), as classifiers. Multiclass accuracy

was used on the test set to measure performance.

A. Benchmark Methods

In the experiments, we implement three benchmark meth-

ods for comparisons. More specifically, for each generic

dataset, we use its original features to train classifiers for

classification, and denote this method by “OrgFeature” (i.e.
Original Features). Meanwhile, for each dataset, we use the

original order of the features and feed the data to the 1-

d CNN to learn new features (in other words, ordering of

the features is taken into the CNN architecture exactly as

the data read-in from the file), and denote this method by

“Org-CNN”. To evaluate the effectiveness of the feature

ordering, we use the proposed approach to order features

(we used the first eigenvector embedding vector in our

experiments) and feed the ordered data to the 1-d CNN to

learn new features, and denote this method by “Ord-CNN”.

By comparing the performance of the three benchmark

methods, we can conclude (1) whether CNN can indeed help

improve classification accuracy for generic datasets, and (2)

whether the proposed feature ordering method can indeed

help create local correlation to improve CNN learning.

B. Experimental Settings

Benchmark data used in the experiment include 28

datasets collected from the UCI data repository [9], and

several other sources [6]. The datasets cover data from

different domains, including text, biomedical, pattern recog-

nition, and many others. The datasets include tasks from

binary labels to up-to 50 class labels, and features vary from

4 to 2,633 dimensions. We intentionally select benchmark

data with diverse characteristics in order to validate the

TABLE I
OVERALL ACCURACY

Method SVM 1-NN RF
OrgFeature 0.76 0.72 0.81
Org-CNN 0.43 0.56 0.46
Ord-CNN 0.85 0.81 0.83

1−NN OrgFeature

0.5

0.6

0.7

0.8

0 100 200 300 400 500

Number of Features

A
cc

ur
ac

y Method

Ord−CNN

Org−CNN

Fig. 3. Average accuracy for 1-NN over number of features and
datasets.

algorithm’s genuine performance of both classifiers and

feature orderings.

For each dataset, we first create its one-hot encode,

and repeat the following experiment ten times for each

feature set of f = 10, 50, 100, 200, 300, 400, 500. 1) Create

a random 80/20 split of the data, 2) order features accord-

ing to “OrgFeature”, “Org-CNN”, and “Ord-CNN”, 3) for

“OrgFeature” train each classifier SVM, 1-NN, and RF on

the same train split, 4) for “Org-CNN”, and “Ord-CNN”

utilize the CNN architecture to create feature order and train

with each respective classifier, 5) For each model, evaluate

the model on the test data, and 6) record the multiclass

accuracy.

C. Results

Table I reports the overall accuracy for all the learner

and feature order combinations. From the table we can see

that the ordering “Ord-CNN” is better than the reference

“OrgFeature” as well as “Org-CNN”, in addition, “Ord-

CNN”, performs better overall for all the datasets among

the three learners.

Illustrating the performance over all the datasets we can

visualize the performance of 1-NN among the “Org-CNN”

and “OrgFeature”, and the “Ord-CNN” ordered features,

represented in Fig. 3. In this experiment as well for the other

two learners, this same trend was shown. The embedding

“Ord-CNN” features consistently perform “Org-CNN” and

“OrgFeature”. It is clear from Fig. 3 that when the number

of features reaches 100, the average accuracy begins to level

out.

899

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Baseline methods

O
rd

er
ed

 u
si

ng
 1

00
 C

N
N

 fe
at

ur
es

Significance
Ord−CNN
OrgFeature
Tie

Learner
1−NN
RF
SVM

Fig. 4. Head to head t-test comparisons between “Ord-CNN” and
“OrgFeature” on all datasets. Each dot denotes a classifier. Dots
are color and shaped-coded. Shape denotes different learners and
color denotes t-test significance.

TABLE II
OVERALL ACCURACY OF METHOD AND NUMBER OF FEATURE

COMBINATIONS FOR RANDOM FOREST (BASELINE 0.811)

Method\Feature 10 50 100 200 400
Org-CNN 0.45 0.46 0.46 0.46 0.46
Ord-CNN 0.79 0.82 0.83 0.84 0.84

In Fig. 4, we compare accuracy of classifiers trained from

“Ord-CNN” (using 100 features) vs. “OrgFeature” across

all datasets. Each dot in Fig. 4 denotes the accuracy of a

classifier on a dataset, and a value above y = x line indicates

that “Ord-CNN” outperforms “OrgFeature”.

As an example of performance over the feature sets,

we highlight the Random Forest “OrgFeature” versus the

average accuracies over all datasets and the respective

learner and feature ordering. The results in Table II show

that the accuracy of “Ord-CNN” orderings consistently

outperform “Org-CNN” orderings. Meanwhile, the accuracy

of “Ord-CNN” orderings is also better than “OrgFeature”

baselines, except when the number of features was ten,

the accuracy was slightly less than “OrgFeature” (which is

0.811). Additionally, the t-tests with respect to each learner

and each dataset in Table III shows that for both 1-NN

and SVM the performance increased significantly, however

for Random Forest, the t-test showed that the “OrgFeature”

performed better on a dataset by dataset level.

TABLE III
t-TEST FOR LEARNERS AND DATASETS. ORD-CNN METHOD WITH 100

CNN FEATURES VERSUS BASELINE(ORGFEATURE)

1-NN RF SVM
Ord-CNN 13 5 11
OrgFeature 6 13 7
Tie 9 10 10

Overall, our experiments showed that feature orders play

an important role for CNNs to learn new features. From this

ordering, the “Ord-CNN” embedding results showed perfor-

mance improvements over “OrgFeature” baseline methods.

The only exception being that on a dataset by dataset t-test

comparison for Random Forest, the baseline “OrgFeature”

performed better. However, we also observed a general trend

for all data, method, and learner instances that the ordered

methods predominately always had accuracy in greater

magnitude overall the experiments and number of features.

Therefore, without significant parameter tuning, the feature

order methodology has shown substantially improved results

in implementation.

V. CONCLUSION

In this study, we explore creating CNN features from

generic datasets. To do this we first transform the data to

one-hot encoded features, from this we are able to generate

an embedded space, such that we can rank order the correla-

tions of the one-hot features to the most important embedded

features. The correlations then form a natural order of these

features which we use in creating a representation using

a 1-d CNN architecture and traditional machine learning

classifiers. The results show that ordering of features for

CNN learning resulted in increased performance.

ACKNOWLEDGMENTS

This work is sponsored by the US National Science

Foundation (NSF) through grant CNS-1828181.

REFERENCES

[1] Rasmus Bro and Age K Smilde. Principal component analysis.
Analytical Methods, 6(9):2812–2831, 2014.

[2] Francois Chollet. Deep learning with Python. Manning Publications,
2018.

[3] Anna B Costello and Jason W Osborne. Best practices in exploratory
factor analysis: Four recommendations for getting the most from your
analysis. Practical assessment, research & evaluation, 10(7):1–9,
2005.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 248–255. IEEE, 2009.

[5] Eric Golinko and Xingquan Zhu. Generalized feature embedding
for supervised, unsupervised, and online learning tasks. Information
Systems Frontiers, pages 1–18, 2018.

[6] Kaggle. https://www.kaggle.com, 2017.
[7] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,

Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification
with convolutional neural networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 1725–
1732, 2014.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[9] M. Lichman. UCI machine learning repository, 2013.
[10] Xin Rong. word2vec parameter learning explained. arXiv preprint

arXiv:1411.2738, 2014.

900

