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Abstract
Networked data involve complex information from multifaceted channels, including
topology structures, node content, and/or node labels etc., where structure and content
are often correlated but are not always consistent. A typical scenario is the citation
relationships in scholarly publications where a paper is cited by others not because
they have the same content, but because they share one or multiple subject matters.
To date, while many network embedding methods exist to take the node content into
consideration, they all consider node content as simple flat word/attribute set and
nodes sharing connections are assumed to have dependency with respect to all words
or attributes. In this paper, we argue that considering topic-level semantic interactions
between nodes is crucial to learn discriminative node embedding vectors. In order
to model pairwise topic relevance between linked text nodes, we propose topical
network embedding, where interactions between nodes are built on the shared latent
topics. Accordingly, we propose a unified optimization framework to simultaneously
learn topic and node representations from the network text contents and structures,
respectively.Meanwhile, the structuremodeling takes the learned topic representations
as conditional context under the principle that twonodes can infer eachother contingent
on the shared latent topics. Experiments on three real-world datasets demonstrate
that our approach can learn significantly better network representations, i.e., 4.1%
improvement over the state-of-the-art methods in terms of Micro-F1 on Cora dataset.
(The source code of the proposed method is available through the github link: https://
github.com/codeshareabc/TopicalNE.)

Responsible editor: Po-ling Loh, Evimaria Terzi, Antti Ukkonen, Karsten Borgwardt.

B Yufei Tang
tangy@fau.edu

1 Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, USA

2 School of Computer Science and Engineering, Hunan University of Science and Technology,
Xiangtan, China

3 Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island,
Kingston, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-019-00659-7&domain=pdf
http://orcid.org/0000-0002-6915-4468
https://github.com/codeshareabc/TopicalNE
https://github.com/codeshareabc/TopicalNE


M. Shi et al.

Keywords Network embedding · Network representation · Topic model · Semantic
mining

1 Introduction

Networked data commonly exist in all aspects of social, economic, industrial, and
personal life, such as citation networks (Le and Lauw 2014), social networks (Oro
et al. 2018), and invocation networks of web application programming interfaces
(Dojchinovski andVitvar 2018).Analyzing these networked data can help gain insights
from many perspectives (Verma and Bharadwaj 2017; Wang et al. 2018), such as
social behaviors, community structures, and information diffusion patterns. Recently,
network embedding, also known as network representation learning (Zhang et al.
2018), has been proposed to represent each node as a low-dimensional vector by
preserving rich network structures and side information (Huang et al. 2017), allowing
network analytic tasks such as node classification and link prediction benefit from the
learned continuous feature vectors.

To date, intensive studies have been carried out on learning meaningful and dis-
tinguishing network representations. Early works mainly focus on structure-based
methods, where nodes with similar topological structures are mapped to be close in
the latent space.Representativemethods includeDeepWalk (Perozzi et al. 2014), LINE
(Tang et al. 2015) and Node2vec (Grover and Leskovec 2016) that consider either the
direct neighborhood relationships or the high-order node proximity in a network. In
real world, networks associated with substantial text content are ubiquitous. For exam-
ples, Wikipedia articles connect each other to form a hyperlink network and research
papers quote each other to form a citation network. Numerous research studies have
shown that preserving content information can significantly improve the embedding
performance (Pan et al. 2016; Yang et al. 2015) because nodes sharing similar con-
tent often have a higher chance of sharing a linkage or a connection. However, when
leveraging node content for embedding learning, existing methods typically take node
content as a flat word set or an attribute set and directly incorporate node content set for
representation learning. Such designs have been severely challenged by the following
realities.

– Rich node contentMany networks have rich node content, such as user profiles or
research papers, where each node will have a high dimensional content informa-
tion. This results in significant difficulty in measuring content similarity between
nodes.

– Sparse connections While each node often has rich content, its connections to
others are often sparse.On one hand,most nodes in the network only have a handful
of connections. On the other hand, for any two connected nodes, their connection
is usually summarized as a single edge (possibly with some weight values). As a
result, it is difficult to attribute which aspect of the node content triggers the node
interactions.

– Context representation In a network setting, each node and its connections form
a small neighborhood which is triggered by certain context. To capture and model
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Fig. 1 a Traditional content-assisted network embedding, where the text in each node are treated as a
flat word set and nodes with a link are assumed to have dependency w.r.t. all their node contents. Such a
paradigm results in ambiguity or distortion of the node relationships, because a node may exhibit different
aspects when interacting with different neighborhood nodes. b Presents our proposed approach, where each
node contains multiple topics derived from the textual content, and links between nodes are attributed to
the corresponding shared semantic topics

context information, existing methods often rely on randomwalks to explore node
and its neighbors as a whole. This does not allow explicit representation of the
context of each node, and therefore cannot explain why node pair (A,B) is con-
nected and what are the contextual difference between two connections (A,B)
versus (A,C).

In summary, network node contents are often rich and informative, but knowledge-
fragmented. Simple text information preserving, like most existingmethods do, would
cause the node representation to be semantically ambiguous and less distinguishing.
Indeed, studies (Le and Lauw 2014; Shi et al. 2018b) have shown that text or document
can be represented by a collection of latent topics, representing different knowledge
aspects of the content and further explaining how documents are related/similar for
one or several shared latent topics (Le and Lauw 2014). Analogously, interactions
between nodes in networks might be resulted by different topics included in the node
contents. In other words, interactions between neighborhood nodes can be attributed
to their shared latent topics.

The above observations motivated our research to model semantic relevance
between linked nodes for topical network embedding (TNE). The main difference
between TNE and traditional content-assisted embedding is summarized in Fig. 1,
where each node is described by a collection of latent topics instead of treating text
in the node as a flat word set. Therefore, link relationships between nodes are built on
shared topics that are fine-grained in interpreting and measuring node affinities.

The main contribution of the paper, compared to existing work in the filed, is
threefold:
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1. We propose to use topic model to allow node content being summarized as
multi-aspect semantics, and further model node connections though their semantic
interactions. As a result, our method advances the existing research which aligns
node connections at word/attribute level to the alignment at the node semantic
level.

2. We propose a deep learning model to simultaneously learn node and topic rep-
resentations, where the mutually related structure and content can enhance each
other in a unified optimization framework.

3. Our model allows explicit context characterization for individual node. As a result,
it can not only explain why several nodes are connected to form a neighborhood,
but also explain the difference between two connections in a network.

Our experiments and validations show that the topic-aware node relation modeling
can achieve significant performance gain compared to state-of-the-art baselines. In
addition, our method delivers a transparent and interpretable way to explain interac-
tions between nodes in a network.

2 Problem definition and preliminary

This section first formulates the problem of topical network embedding (TNE), fol-
lowed by a brief description of the LDA and DeepWalk models, which are preliminary
materials for the studied topic-aware network representation learning problem. For
easy retrieval, the commonly used symbols are summarized in Table 1.

2.1 Formulation of TNE

Let an information network be represented as G = (V , E,C), where V =
{vi }i=1,...,|V | is a set of unique nodes (|·| denotes the cardinality, number of elements, in
a set); and E = {

ei, j
}
i, j=1,...,|V |and i �= j represents the set of edges inG. For each node

vi , we use cnti to denote its node content, which consists of a sequence of attributes
or words cnti = {

w j
}
j=1,...,|cnti |. For all nodes in G, their content forms the content

corpusC = {cnti }i=1,...,|V |. To capture semantics of node content, we can learn a set of
topics T from the content corpus C, and for each node vi , we consider its content cnti
consisting of a set of k topics (multi-faceted semantics) denoted by Ti = {tn}n=1,...,k .
The proposed TNE aims to represent each node vi with a continuous low-dimensional
vector hvi ∈ R

1×dv , i.e., learning a mapping f : G → {hvi }i=1,...,|V | so that network
structure, content, and topic can be fully preserved, where dv is the dimension of the
learned node vectors. Specifically, in a topic-aware information network, the relation-
ship between two nodes is built on their shared topics. Therefore, an optimal TNE
model could capture such fine-grained and topic-oriented node relations.

2.2 LDA: latent Dirichlet allocation

LDA is a generative probabilistic model of a corpus. The basic idea is that documents
are represented as random mixtures over a set of latent topics (T), where each topic
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Table 1 Summary of key symbols and notations used in the proposed models

Symbols Description

vi ∈ V The i th node (vi ) in the set of network nodes (V )

ei, j ∈ E An edge connecting vi and v j , also a member of the network edge set (E)

cnti The content associated with node vi ∈ V

w j ∈ cnti the j th word/attribute of the node content cnti
C The content corpus of all nodes. C = {cnti }i=1,...,|V |
T The list of all semantic topics learned by LDA

θi The real-value topic distribution for node content cnti
Ti ⊂ T The list of latent topics of node content cnti
z j,q The shared topics between nodes v j and v j+q , q �= 0

k The number of most relevant topics selected for each node content

tn ∈ Ti The nth latent topic of cnti
r The length of the truncated random walk

S A collection of node sequences generated by the random walk

s = {v1, �, vr } A random walk node sequence, s ∈ S

dv The node embedding size (the dimension of the node embedding vector)

dt The topic embedding size (the dimension of the topic embedding vector)

hv j ∈ R
1×dv Vector representation of node v j

htn ∈ R
1×dt Vector representation of topic tn

hwi Vector representation of word wi

d The node sliding window size

h The word sliding window size

α A parameter balancing topology structure and node content

ti ∈ T is characterized by a distribution over words (Blei et al. 2003). LDA assumes
the following generative process for a document doci :

1. Choose θi ∼ Dirichlet(σ ).
2. For each word wi in a given document doci :

(a) Choose a topic ti ∼ Multinomial(θi ).
(b) Choose a word wi from p(wi |ti , β), multinomial probability conditioned on

the topic ti .

where σ and β are hyper-parameters need to be set before the model training. θi
is the topic distribution of document doci and can be learned by the Gibbs sampling
process (Griffiths 2002). After the training of LDAmodel, each document in the corpus
corresponds to a unique topic distribution over all shared topics T = {tn}n=1,...,|T|.

2.3 DeepWalk

DeepWalk (Perozzi et al. 2014) is proposed to represent networkwith low-dimensional
vectors by preserving only the neighborhood structures of nodes. It first conducts a
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truncated random walk over the whole network to generate a set of node sequences
that are analogical to natural language sentences. Then, similar to the way of learn-
ing word representations in a sentence based on the word occurrences (Pennington
et al. 2014), DeepWalk learns node representations based on the SkipGram model
(Mikolov et al. 2013) that keeps the affinity of linked nodes by representing nodes that
are useful to predict their surrounding nodes. More formally, given a node sequence
s = {v1,�, vr }, the goal of DeekWalk is to maximize the following log probability:

L =
r∑

j=1

log p
(
v j−d : v j+d |v j

) =
r∑

j=1

⎡

⎣
∑

−d≤q≤d, q �=0

log p
(
v j+q |v j

)
⎤

⎦ , (1)

where d is the node sliding window size that controls the number of surrounding nodes
need to be predicted by v j . The conditional probability p(v j+q |v j ) is given by:

p
(
v j+q |v j

) =
exp

(
hTv j

hv j+q

)

∑|V |
i=1 exp

(
hTv j

hvi

) , (2)

in which hTv j
and hv j+q are input and output vectors of node v j , respectively. DeepWalk

considers the network structure information only, ignoring the rich text content infor-
mation that usually reveal and explain the most direct reasons (e.g., shared semantics)
of nodes linking each other from human’s understanding.

3 TNE: topic network embeddingmodel

3.1 Topic conditioned network embedding

As discussed in the Introduction section, since the node content may simultaneously
exhibits multi-aspect semantics, conventional way of considering the content as a
whole without reaching the topic level would confuse the relationships between nodes.
For instance, a review article may discuss a wide range of latent topics and it connects
to many cited articles of differing topics. In this paper, we abstract different aspects
of each node content as a collection of topics trained based on the LDA model, i.e.,
the topic distribution of node vi can be represented as a length |T| real-value vector
θi = {

θ i1, θ
i
2, . . . , θ

i
|T|

}
, with each value θ in,n=1,...,|T| indicating the probability that vi

belongs to the corresponding topic tn,n=1,...,|T|. However, each node could highlight
only several important topics (e.g., with top probability values) aligned with different
aspects of its content. In the setting of this paper, although the global topic list T =
{tn}n=1,...,|T| is shared across all node contents during training of the LDAmodel, each
node content is finally associated with its top-k (k ≤ |T|) most relevant topics, thus
resulting in different nodes may have different topic lists.

Our idea is that the relationship between each pair of nodes is built on their
shared topics to increase the interpretability of node interactions. For example, for
two linked nodes v1 and v2, assume that their topic lists (e.g., k = 3) are represented
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Fig. 2 The proposed TNE framework for node representation learning. For each node v j , the node topic
modeling (right panel) first learns semantic vectors of the top-k topics t1, . . . , tk based on the node content
cnt j (this learning process also applies to every other nodes v j−d , . . . , v j+d , etc.). After that, the network
structure modeling (left panel) is used to learn representation of v j, j=1,...,|V | from the network structure,
where the relationship modeling between each pair of nodes (e.g., v j and v j+q ) is conditioned on the
dynamically aggregated shared topics, i.e., Z j ,q . The node topic modeling and network structure modeling
are optimized in a reciprocally enhanced fashion. (Refer to text for details)

as T1 = {t1, t3, t4} and T2 = {t1, t4, t7}, respectively. Then, the relationship modeling
between v1 and v2 will be conditioned on their shared topics {t1, t4}. Accordingly, we
propose a unified optimization framework for this purpose shown in Fig. 2. It involves
two integrate and reciprocally enhanced learning components to learn topic vector
representations and node vector representations, respectively. First, the model (right
panel in Fig. 2) learns the semantic representation for each of the k most relevant
topics associated with node v j from its node content cnt j (e.g., represented by a col-
lection of attributes or words). Meanwhile, the derived topic vectors are dynamically
aggregated as context (e.g., z j,q ) for node relation modeling and representation (left
panel in Fig. 2) learning from the network topology structure, where only the shared
topics are collected for each pair of nodes. These two related learning processes are
described in detail as follows.

3.1.1 Node topic modeling

Each node content cnt j corresponds to a k-length topic list that is selected according

to its topic distribution θ j = {θ j
1 , θ

j
2 , . . . , θ

j
|T|} learned by LDA, i.e., ranking θ j and

selecting the corresponding top-k relevant topics to form the final topic list T j =
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{tn}n=1,...,k . We can conceive that each topic tn is a semantic abstraction of all words
from the text contents, where different topics highlight different words. In the right
panel of Fig. 2, we adopt a similar way as the paragraph vector model (Le andMikolov
2014) to learn the semantic representation of each topic tn from the content of node v j .
During training, each topic is considered and mapped to a paragraph-level vector and
together with other words in a window to predict the target word. The global learning
objective of the node topic modeling is to maximize the following probability over all
node contents and topics:

L =
k∑

n=1

|V |∑

j=1

|cnt j |∑

i=1

log p (wi |wi−h, . . . , wi+h, tn), (3)

where |V | is the total number of unique nodes in the network. |cnt j | is the total number
of words in the content of node v j , and h is the size of word sliding window set in the
paragraph vector model. It is worth noting that each topic tn,n=1,...,|T| may be shared
bymany nodes (e.g., tn is within their top-k-topic lists) at the same time, thus its vector
representation can be collectively learned and trained across all corresponding node
contents. The prediction task in Eq. (3) is typically done via a multi-class classifier
defined by the softmax:

log p (wi |wi−h, . . . , wi+h, tn) =
exp

(
h̄
T
wi
hwi

)

∑|C|
j=1 exp(h̄

T
wi
hw j )

, (4)

where |C| is the total number ofwords in thewhole corpus. h̄
T
wi

andhwi are respectively
the input and output vectors w.r.t. word wi . h̄wi is computed by concatenating vectors
of topic tn,n=1,...,k and the averaged vectors of all words in the corresponding window
by:

h̄wi = htn ⊕
⎛

⎝ 1

2h

∑

−h≤u≤h,u �=0

hwi+u

⎞

⎠ , (5)

where htn is the vector representation of topic tn and⊕ is the concatenation operation.
After above learning and optimization processes, we can obtain the semantic repre-
sentations of all associated relevant topics tn,n=1,...,k for each node vi,i=1,...,|V |. In the
next, the modeling of node relationships will be conditioned on the shared topics in
the form of semantic vectors.

3.1.2 Network structure modeling

Similar to DeepWalk in modeling the network structure, we perform a truncated ran-
dom walk over the whole network to capture the structural relations between nodes,
with eachwalk rooting at a starting node and each step randomly jumping to one neigh-
borhood node without bias. This process will generate a collection of fixed-length
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node sequences S with the node neighborhood relationships well captured. How-
ever, different from conventional methods such as DeepWalk (Perozzi et al. 2014)
and TriDNR (Pan et al. 2016) that either directly encode the structure-based node
relationships (e.g., nodes with neighborhood relations have similar embeddings) or
coarsely consider content-enhanced node relation modeling (e.g., nodes with neigh-
borhood relations and shared contents have similar embeddings), we propose a more
interpretable way by introducing topics to explain the relationships between nodes
within each random-walk node sequence. In other words, two neighborhood nodes
are mapped to similar representations conditioned on their shared topics. With shared
topics as conditional context, the network structure modeling aims to maximize the
following log-likelihood:

L =
r∑

j=1

∑

−d≤q≤d,q �=0

log p
(
v j+q |v j

) + log p
(
v j+q |z j,q

)
, (6)

where z j,q is the aggregation of all shared topics between nodes v j and v j+q repre-
sented by:

z j,q = {tn| tn ∈ T j , tn ∈ T j+q}, (7)

where T j and T j+q are topic lists associated with node v j and v j+q , respectively. We
can observe from Eq. (6), compared to Eq. (1) used in DeepWalk, the relationship
modeling between nodes v j and v j+q is conditioned on their shared topics z j,q . If no
shared topics (e.g., z j,q is empty) exist between v j and v j+q , our model can still work.
In such case, the left panel in Fig. 2 will degrade to the basic DeepWalk model and
accordingly the optimization target changes from Eqs. (1) to (6).

The above two aspects of node topic modeling and network structure modeling
are not learned independently but in a collective and reciprocally enhanced manner.
To combine Eqs. (3) and (6), the collective training procedure of the TNE model is
summarized in Algorithm 1, where our model finally seeks to optimize the following
integrate probability:

L =
k∑

n=1

|V |∑

j=1

|cnt j |∑

i=1

α log p (wi |wi−h, . . . , wi+h, tn)

+
|V |∑

j=1

∑

s∈S

∑

−d≤q≤d,q �=0

(1 − α) log p
(
v j+q |v j

) +α log p
(
v j+q |z j,q

)
, (8)

where α is the weight parameter to balance the learning of network structure, text con-
tent and topic information, i.e., with lower value of α, the optimization will emphasize
more on the network structure information than the content/attribute information in
the node representation learning process. In Eq. (8), log p

(
v j+q |z j,q

)
is computed by:

log p
(
v j+q |z j,q

) =
exp

(
h̄
T
z j,qhv j+q

)

∑M
i=1 exp

(
h̄
T
z j,qhvi

) , (9)
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in which h̄z j,q is the averaged vectors of all shared topics in z j,q :

h̄z j,q = 1

|z j,q |
z j,q∑

tn

htn . (10)

3.1.3 Network representation

After above unified learning process, we finally represent each node in the network
by two ways: (1) using the output vector of node v j directly, i.e.,, the hv j optimized
by Eq. (8); or (2) concatenating the vector of node v j with the averaged vector of all
its latent topics in T j by:

hv j = hv j ⊕
⎛

⎝ 1

T j

T j∑

tn

htn

⎞

⎠ . (11)

Compared with the first way of representing nodes, the second representation way
of concatenating node and topic vectors emphasizes more on the combined similarities
of network structures and topic-represented contents between nodes.

Algorithm 1 Training TNE
Input: The given information network G = (V , E,C)
Input: The total number of topics |T| trained for corpusC and the number of relevant topics

k selected for each node
Output: The node representations {hv j } j=1,...,|V |

1: procedure RepresentationLearning
2: Train topic distributions {θi }i=1,...,|V | over all shared topics T = {tn}n=1,...,|T| based

on LDA from node contents C
3: for each node v j ∈ V do

4: Rank its topic distribution θ j =
{
θ
j
1 , θ

j
2 , . . . , θ

j
|T|

}
by descent order

5: T j ← select top k relevant topics from T according to θ j
6: for each topic tn ∈ T j do
7: Learn its topic embedding htn from node content cnt j by Eq. (3)
8: end for
9: end for
10: for each node v j ∈ V do
11: Learn its node embedding hv j by Eq. (6)
12: end for
13: Optimize Eqs. (3) and (6) by Eq. (8) with mini-batch training
14: end procedure

3.2 Optimization and parameter estimation

The optimization aims to maximize the collective probability in Eq. (8) over all
observed node contents C and node sequences S. In this paper, we adopt the noise
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contrastive estimation (NCE) (Gutmann and Hyvärinen 2010) to optimize and esti-
mate the model parameters. NCE transforms the language model estimation problem
to the problem of estimating the parameters of a probabilistic binary classifier that
uses the same parameters to distinguish samples of the empirical distribution from
samples generated by the noise distribution.

To optimize log p
(
v j+q |v j

)
in Eq. (8), for each node v j ∈ V together with the

targetingnodev j+q (e.g., seen as a positive sample)within a node sequence s ∈ S,NCE
first generates f noisy/negative sample nodes

{
ṽ j i

}
i=1,..., f from a noise distribution

Q, with the class label y = 1 for positive samples and y = 0 for negative samples.
Then, the goal is to optimize the sample distribution with a model parameterized by
θ1, where the conditional class distributions are defined as P(v j+q |y = 1, v j ) =
Pθ1(v j+q |v j ) and P(v j+q |y = 0, v j ) = Pn(v j+q), respectively. Accordingly, the
posterior probabilities of class y associated to the positive and negative samples can
be estimated by:

P(y = 1|v j+q , v j ) = Pθ1(v j+1|v j )

Pθ1(v j+q |v j ) + f Pn(v j+q)
, (12)

P(y = 0|v j+q , v j ) = f Pn(v j+q)

Pθ1(v j+q |v j ) + f Pn(v j+q)
. (13)

Finally, the unified classification objective of node structure modeling over all nodes
in V is defined by maximizing the log-likelihood of positive examples belonging to
class y = 1 and noisy samples belonging to y = 0:

Jθ1 =
|V |∑

j=1

⎡

⎣log
Pθ1(v j+q |v j )

Pθ1(v j+q |v j ) + f Pn(v j+q)
+

f∑

i=1

log
f Pn(ṽi )

Pθ1(ṽi |v j ) + f Pn(ṽi )

⎤

⎦ .

(14)
Analogically, the optimization of log p (wi |wi−h, . . . , wi+h, tn) and log p

(
v j+q |z j,q

)

in Eq. (8) takes the similar forms as Eq. (14) and are parameterized by θ2 and θ3, respec-
tively. Therefore, the federal NCE loss function for optimizing Eq. (8) is represented
by:

J = (1 − α)Jθ1 + α Jθ2 + α Jθ3 , (15)

where all parameters can be jointly learned based on the stochastic gradient descent
algorithm (Bottou 2010). For example, the gradient of Eq. (14) w.r.t. θ1 on the positive
sample node v j+q together with the generated f negative sample nodes is calculated
by:

∂

∂θ1
Jθ1,v j+q = f Pn(v j+q)

Pθ1(v j+q |v j ) + f Pn(v j+q)

∂

∂θ1
Pθ1(v j+q |v j )

−
f∑

i=1

[log Pθ1(ṽi |v j )

Pθ1(ṽi |v j ) + kPn(ṽi )

∂

∂θ1
Pθ1(ṽ j |v j )]. (16)
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Note that Eq. (16) involves a sum over f noise samples instead of a sum over the
entire |V | nodes, thus making the model training time linear in the number of noise
samples and independent of the network size.

3.3 Methodology discussion

Somemethods exist to simultaneously embed network structures and textual contents,
including probabilistic topic model-based techniques such as relational topic model
(RTM) (Chang and Blei 2009) and its extension PLANE (Le and Lauw 2014), and
neural network-based techniques such as TriDNR (Pan et al. 2016). In this section, we
briefly compare and summarize the differences between the proposed TNE approach
and the existing methods.

3.3.1 TNE versus RTM

RTM is a generative probabilistic topic model based on LDA and mainly used for
embedding documents and their links between them. In the RTM, each document is
first generated from topics as in LDA. The links between documents are then modeled
as binary variables, one for each pair of documents. These are distributed according
to a distribution that depends on the topics used to generate each of the constituent
documents. Therefore, the content of the documents are statistically connected to the
link structure between them. However, RTMonlymodels the immediate links between
nodes, which overlooks the valuable information of high-order node relations (e.g.,
nodes can reach each other through their neighbors) (Tang et al. 2015). In addition,
RTM treats each document as a set of semantically equivalent features which are then
used to measure the affinities with different linked documents. In comparison, TNE
is able to capture the high-order node relations based on the random walk process
and models each node content as a set of semantically different topics, where a node
interacts with different neighbors for different shared topics.

3.3.2 TNE versus PLANE

PLANE is a probabilistic topic model built on RTM. PLANE not only learns a topic
distribution for each document but also learns a low-rank representation expressed
as coordinates on a D-dimensional space. However, similar to RTM, PLANE only
preserves the direct document links and assumes that each link is built on the integrate
similarity of document contents.

3.3.3 TNE versus TriDNR

Similar to TNE, TriDNR first adopts random walk to capture the node relationships
over the whole network. Then, it learns node representations from both network struc-
tures and node contents based on a coupled neural network model. It enforces nodes
with neighborhood relations and similar contents to also have close representations.
However, the relationship between each pair of nodes is assumed to have dependency
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Table 2 Dataset characteristics

Items Cora Wiki Citeseer

# Nodes 2708 2405 3312

# Edges 5214 17,981 4732

# Unique words 14,694 4973 3703

# Average words per node 90 647 32

# Categories 7 17 6

with the whole content. Such a paradigm fails to differentiate the discrepancy when
a node interacts with different neighbors. While TNE introduces topics to represent
various aspects demonstrated by each node content, where nodes connect each others
for different factors (e.g., the shared topics).

4 Experiments

This section compares the proposed approach for node representation learning against
various strong baselines over three real-world datasets. First, similar to the literature
(Pan et al. 2016; Perozzi et al. 2014), we evaluate the performance of all methods
by conducting supervised node classification task based on the learned node repre-
sentations. We then visualize the node representations in a 2-dimensional space to
gain a straightforward performance comparison of the proposed approach with other
state-of-the-art methods.

4.1 Datasets

We evaluate our approach by performing multi-class classification task on data col-
lected from three real-word networks described by either rich content (e.g., Wiki
and Cora) or sparse content (e.g., Citeseer). Their characteristics are summarized in
Table 2.

Cora is a citation network dataset that contains 2708 machine learning papers
from 7 research categories. Each paper corresponds to a category label. There are
5214 citation relations between these papers. Each paper is described by its abstract.
There are 14,694 unique words in the vocabulary, and the average number of words
for each node is 90.

Wiki dataset contains 2405Web pages from 17 categories. Each web page belongs
to a category. There are 17,981 hyperlinks between these Web pages. Each paper is
described by a long text with an average number of words of 647. There are 4973
unique words in the vocabulary.

Citeseer dataset contains 3312 literature from 6 categories, and 4732 links between
them. Each publication is described by a text with an average number of words of 32.
There are 3703 unique words in the vocabulary.
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4.2 Baselines

We choose baseline methods from three categories: (1) methods only preserving the
network structure; (2) methods preserving both the structure and static text content;
and (3) methods simultaneously considering the network structure, content, and latent
topics.
Structure only

– DeepWalk (Perozzi et al. 2014) preserves only the neighborhood relations between
nodes by the truncated random walk, and uses SkipGram model to learn the node
embeddings.

– LINE (Tang et al. 2015) is a structure preserving embedding method, which can
preserve both first-order and second-order node proximity of a large-scale network.

– Node2vec (Grover and Leskovec 2016) adopts a more flexible neighborhood sam-
pling process than DeepWalk, i.e., biased random walk, to better capture the local
structure (the second-order node proximity) and the global structure (the high-
order node proximity).

Both structure and content:

– TriDNR (Pan et al. 2016) is a state-of-the-art method that exploits network struc-
ture, node content and label information for node representation learning.

Structure, content, and latent topics:

– RTM (ChangandBlei 2009) is the relational topicmodel that captures both text and
network structure to learn the topic distribution representation of each document.

– PLANE (Le and Lauw 2014) extends the relational topic model and performs
the topic-based embedding of document networks by incorporating text, links and
latent topics in a unified model.

– TNE is our approach that introduces topics to supervise the interactions between
nodes. It finally represents nodes without concatenating the topic vectors.

– TNEc is a variant of TNE. The only difference is that we represent nodes by
concatenating the node and topic vectors, which is defined in Eq. (11).

With above comparative baselines, we mainly explore answers to the following
two questions as well as their possible reasons. First, can textual contents help to
enhance the relationship modeling between nodes, especially when the network node
connectivity is sparse. Second, for methods (e.g., TriDNR) that simply model and
preserve contents as a set of plain words or attributes, whether introducing latent
topics to uncover multi-aspect semantics of each node content can further increase the
interpretability of node interactions and improve the network representation learning
performance.

4.3 Experiment settings

We perform the node classification task to evaluate the performance (Jian et al. 2018).
For all baselines, we build a SVM classifier with linear kernel (Abraham et al. 2014)
based on the Scikit-learn tool (sklearn.svm.SVC) on the training data and then predict
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labels for all nodes from the test data, where the ratio (p%) of training data ranges
from 10 to 70%. Similar to the literature (Pan et al. 2016; Perozzi et al. 2014), we
adopt Macro-F1 and Micro-F1 as metrics, which are defined as follows:

Micro-F1 =
∑

L

i=1 2TP
i

∑
L

i=1

(
2TPi + FPi + FNi

) , (17)

Macro-F1 = 1

|L|
∑L

i=1

2TPi
(
2TPi + FPi + FNi

) , (18)

where L is the set of label categories (e.g., Cora dataset has 7 label categories, so
|L| = 7). TPi , FNi and FPi denote the number of true positives, false negatives and
false positives w.r.t. the i th label category, respectively.

For all baselines w.r.t. two metrics, each experiment is repeated 20 times with ran-
domly sampled training data, where the average performance and standard deviation
are finally reported. In the experiment, 70% of all network nodes are labeled for train-
ing use (e.g., 80% for training the classifier and 20% for parameter selection) and
the remaining are for evaluation (e.g., predict a label for each test node based on the
trained classifier and then compare the predictionwith its actual label). There aremany
hyperparameters involved in the proposed model. For the LDA model, following pre-
vious experience (Shi et al. 2018a), we set the prior hyper parameters σ , β and the
iteration time based on Gibbs sampling as 0.1, 0.05 and 2000, respectively. To balance
the model performance and the training efficiency, we set the total number of topics
|T| trained by LDA as 20, the number of most relevant topics k for every node content
as 2, the balance parameter α as 0.2, the node dimension size dv as 100, the topic
dimension size dt as 100, and the training data ratio p as 70%. In addition, similar
to the comparative method (Pan et al. 2016), settings of the rest parameters such as
node window size d, word window size h, learning rate are kept the same for all the
baselines and they are set as 2, 2 and 0.05, respectively.

4.4 Node classification performance

The node classification results of different algorithms on Cora, Wiki, Citeseer datasets
are presented inTables 3, 4 and5, respectively. From these tables,wehave the following
three significant observations:

– The results on both Cora andWiki datasets show that methods only preserving the
network structure (e.g., DeepWalk and LINE) are generally inferior to content-
assisted methods (TriDNR, TNE and TNEc). Moreover, it is interesting to note
that the content-preserving methods would improve more especially when the net-
work structure is relatively sparse, i.e., the node connectivity of Cora dataset (e.g.,
average 1.93 connections per node) is sparser than that of Wiki dataset (e.g., aver-
age 7.48 connections per node), but the average Macro-F1 of TriDNR improved
28.5% over the combined average Macro-F1 of DeepWalk, LINE and Node2vec
on Cora dataset, compared with that improved 12.7% on Wiki dataset. There are
twomajor reasons behind. The first is that the networked data are generally sparse,
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methods mining only the network structures cannot uncover the holistic relation-
ships between nodes, i.e., many nodes actually have the same labeling information
although they do not connect each other in the network. In addition, the rich con-
tents leveraged by other methods are helpful to reveal and predict the absent or
implicit relations between nodes, i.e., shared content features would strengthen
the closeness between two nodes that is originally not well captured by the static
network structure. Nevertheless, we can observe that RTM and PLANE with con-
tent information preserved take no advantages compared with the structure-based
methods such as Node2vec. This is because RTM and PLANE consider only the
immediate neighborhood relationships (e.g., one-hop relations), failing to model
relationships between nodes whom can reach each other through their neighbors
over the whole the network. Above phenomenons demonstrate that both network
structure and text content are of important in learning quality network representa-
tions.

– In this paper, both TriDNR and the proposed TNE models use random walk to
preserve network structures and meanwhile leverage contents to enhance the node
relationships modeling. However, when compared with TriDNR, our proposed
TNEmodel is competitive on Cora andWiki datasets, i.e., after p is set larger than
50%, TNE performs generally better than TriDNR. The reason is that TriDNR
incorporates the node content as a set of flat words for network structure relation-
ships inference, which assumes each network connection has dependency with
the whole contents of the two corresponding end nodes. Such a content modeling
fashion fails to differentiate various purposes of a node while interacting with dif-
ferent neighborhood nodes. In comparison, TNE assumes that node relationships
are built on the shared topics, which is more interpretable and also respects the
fact that a node could show different aspects of the content when interacting with
other nodes. Despite of above observations, results in Table 5 on Citeseer dataset
show that TriDNR performs better than TNE in most cases. The reason is probably
that the average content for each Citeseer network node (e.g., average 32 words
per node) is much shorter than those of Cora and Wiki networks (e.g., average
90 and 647 words per node, respectively). This phenomenon demonstrates that
long texts generally manifest mixed semantics and topics can be introduced to
characterize them for more accurate node relations modeling. While short texts
tend to reveal simple semantics, where the TriDNR model could be efficient for
such type of environment setting. However, by concatenating the node and topic
vectors as the final network representation, TNEc has achieved the best perfor-
mance over all three tested datasets, with the average Micro-F1 performance on
Cora dataset 58.7% over DeepWalk, 42.8% over LINE, 64.7% over Node2vec,
98.9% over PLANE, 79.9% over RTM, and 4.1% over TriDNR.

– In the category of topic-based baselines, our models outperform both RTM and
PLANE.The reason lies in the differentmechanisms of leveraging the latent topics.
RTMand PLANEmodel the text content as a set of topics and force the structurally
linked nodes (e.g., documents) to follow similar topic distributions as a whole
(e.g., all nodes have the same list of topics). Such a paradigm actually boils down
to highlight the overall content similarity as do in TriDNR. In comparison, our
methods consider topics as hidden information to explain the node relations in a
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Fig. 3 Parameter influence study results

more fine-grained manner, i.e., each node has its own significant unique list of
topics that correspond to multi-aspect content semantics. The experimental results
have verified the reasonability of considering the topic-level similarity between
nodes, especially for long text-described networks.

4.5 Parameter sensitivity study

Parameters that may significantly influence the classification performance are studied,
including the number of relevant topics (k) demonstrated by each node content, the
total number of topics (|T|) learned from the whole content corpus based on the LDA,
the sliding window sizes d and h, the balance parameter α, and the embedding sizes
dv and dt for nodes and topics, respectively.

Figure 3a shows the influence of parameter k. A larger k value means that the
node content exhibits more different semantics and each shared topic tends to reveal a
specialized semantic relevance between two neighborhood nodes.We can observe that
the Cora dataset obtains the best performance when each node has two latent topics.
The number of topics (|T|) trained in LDA reveals how many aspects of different
semantics could be involved in the whole content corpus. The larger value of |T|
means the semantic revealed by each single topic is more sparse and specialized, and
meanwhile each node content is allowed to demonstrate more aspects of semantics.
Figure 3b shows the impact of |T| and the best setting is 20 on the Cora dataset. The
balance parameter α is used to control the weights of content, topic and structure
information, where Fig. 3c shows that the performance fluctuates slightly with α,
and the best setting for α is 0.2. We vary the number of node dimensions (dv) and
topic dimensions (dt ), and their effects are shown in Fig. 3d. Changes of these two
parameters both have influence on the proposed approaches TNE and TNEc, whereas
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Fig. 4 Visualization of low-dimensional vectors on the Cora dataset

the dimension of node vector has a larger impact on the results, showing an increasing
trend for lager value of dv . The influences of node window size d used while modeling
node relations are shown in Fig. 3e. It experiences a significant improvement (e.g.,
more than 6% for TNEc) with d changing from 1 to 2, and thenmaintains at a high level
with slight fluctuations. The best setting for d is 5 among all tested values. Similarly,
Fig. 3f shows that the results are moderately affected with the change of word window
size h, where the best settings for TNE and TNEc are 5 and 4, respectively.

4.6 Network visualization

We map node representations learned by different algorithms on Cora dataset onto a
2-dimensional space based on the t-SNE tool. There are 7 categories in total, and the
more clear and far away they can be separated from each other generally means the
better quality of the learned node representations (Maaten and Hinton 2008).

We can observe from Fig. 4a, b that DeepWalk and PLANE generate relatively
poor visualization results (e.g., nodes from different categories overlap largely with
each other), which means that the low-dimensional feature vectors learned by these
two models are least distinguishing compared with other methods. From Fig. 4c, d
we can see that TNEc performs significantly better than TriDNR, i.e., the resulting
clusters of TNEc are more compact and clear in most cases. The results demonstrate
that topic-level semantic relevance is more likely to be the reason of nodes clustering
together (e.g., belonging to the same category) compared with the overall similarity
of the node content.
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4.7 Examples of topical network embedding

To demonstrate the impact of topics in node relations modeling, we showcase the
similarities of two pairs of neighborhood nodes 〈v1, v2〉 and 〈v2, v3〉 by their Euclidean
distances in the learned embedding space, i.e., the smaller distance generallymeans the
better affinity characterization between a pair of nodes linking each other. In Table 6,
each node is associated with three topics (k = 3) and for each topic two relevant
word features are chosen from the corresponding node content (e.g., in the content
of node v1, words evolve and population are assigned with topic t0). We can observe
from Table 7 that: (1) Content-preserved models (e.g., TriDNR and TNE) can achieve
more enhanced neighborhood affinities than the structure-based DeepWalk model; (2)
TNE and TNEc have better constrains from the content perspective on node structures
modeling than the TriDNR model.

DeepWalk only considers the structure-based node relations, which is hard to dif-
ferentiate various neighborhood node relationships subtly, i.e., the affinity between
v1 and v2 is determined by an edge that has no difference with others in the struc-
ture. While TriDNR considers the text content-enhanced node relations modeling, it
assumes that the similarity of 〈v1, v2〉 (or 〈v2, v3〉) is built on the similarity of their
whole content features (e.g., cnt1 and cnt2 are similar as a whole). However, node
contents may contain many irrelevant or noisy features (from Table 6 we observe the
neighborhood nodes v2 and v3 havemany semantic-irrelevant words), whichmay con-
fuse or even distort the original node relations reflected by the edges. In comparison, in
our proposed models the relations of 〈v1, v2〉 and 〈v2, v3〉 are built on their respective
shared topics {t0, t2} and {t13}, where each topic can be seen as an abstraction of simi-
lar words to identify the similar parts between different node contents. Therefore, it is
more accurate and reasonable to incorporate topics to characterize the shared content
features between nodes than to simply model the content as a set of flat word features
and measure node affinities as a whole.

5 Related work

Graph mining is a popular topic (Kimura et al. 2010), where Network embedding is an
emerging research area. The learned node representations can significantly facilitate

Table 6 Three example nodes with their topics, relevant words, and neighbors from the Cora dataset, where
two relevant words are demonstrated for each respective topic

Nodes Top-3 topics Top-6 relevant word features Neighbors

v1 t0; t2; t15 Evolve, population; classification,
feature; disease, diagnostic

v2

v2 t0; t2; t13 Selection adaption; tree, feature;
network, topology

v1, v3

v3 t8; t4; t13 Reinforcement, learning; search,
heuristic; neural, network

v2
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Table 7 Calculated Euclidean distances between nodes by different models

Distances DeepWalk TriDNR Our models

〈v1, v2〉 1.04 0.58 0.55 (TNE); 0.45 (TNEc)

〈v2, v3〉 1.15 0.65 0.56 (TNE); 0.52 (TNEc)

The smaller the distance value, the better the affinity characterization between a pair of nodes linking each
other

various downstream tasks, such as item recommendation (Cai et al. 2018a), link pre-
diction (Cai et al. 2018b) and node classification (Jian et al. 2018). A large spectrum
of research and their applications have been studied so far. We summarize existing
works mainly in two branches: structure-preserving and attribute-preserving methods.

5.1 Structure-preservingmethods

Mine only the network structure such as neighborhood relation and community infor-
mation. It is based on the intuitive assumption that nodes appear with similar network
structures also have similar semantic representations. DeepWalk (Perozzi et al. 2014)
first performs a truncated random walk process over the whole network to capture
the node structures. Then, it adopts the SkipGram model (Mikolov et al. 2013) for
node relations modeling. However, Node2vec (Grover and Leskovec 2016) argues
that DeepWalk is not flexible enough to capture the diversity of connectivity patterns
in a network. To address this issue, Node2vec designs a second order random walk
strategy to sample the neighborhood nodes, which can embed nodes with the same
network community closely. Similarly, LINE (Tang et al. 2015) is proposed to simul-
taneously preserve the first (e.g., direct neighbors) and second order (e.g., relations by
shared neighbors) proximity. The high-level community similarity is also widely con-
sidered in the past. For instance, MNMF (Wang et al. 2017) is a non-negative matrix
factorization-based model to preserve both the microscopic neighborhood structure
and the macroscopic community structure.

5.2 Attribute-preservingmethods

Preserve both the network structure and the auxiliary attribute information such as
labels and textual contents. It based on the assumption that the content information help
to interpret the affinities between nodes alignedwith that revealed by the network struc-
tures. MMDW (Tu et al. 2016) and GENE (Chen et al. 2016) are proposed to encode
the labeling information of nodes, which assume that label and cross-label information
is important for high-quality network embedding. LANE (Huang et al. 2017) is fur-
ther proposed tomodel the affinities and correlations between node attributes, network
structure and labels. Recent studies show that rich texts of nodes are very helpful to
enhance and predict the node relationships, especially when the networked data are
sparse. For example, the relational topic model (RTM) (Le and Lauw 2014) is utilized
to model both the network content and link relationships. TADW (Yang et al. 2015)
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absorbs from the rich texts for enhancing the structure-based representation learning
based on an equivalent matrix factorization method as the DeepWalk. TriDNR (Pan
et al. 2016) is proposed to integrate the node structure, content and labels. It enforces
the node representations to be learned from simultaneously the network structure and
text content under the shared model parameters.

Although different methods are developed to integrate node content, nearly all of
them take the text content as static auxiliary information, and simply model them as
a simple flat word/attribute set. This paradigm is not reasonable when the content of
a node actually reveal multiple aspects of semantics, with each aspect illustrated by a
part of word features. To address this problem, we introduce the concept of topics to
represent node content in our work, which allows the text content of a specific node
to describe rich semantics.

6 Conclusion and future work

In this paper, we studied topical network embedding for content-rich networks. Dif-
ferent from existing content-assisted embedding methods that incorporate content as
simple flat attribute/word set, we introduced topics to manifest different aspects of
node content, allowing each node to exhibit different semantics when interacting with
other nodes. The proposed method, topical network embedding (TNE), incorporates
content to perform topic-conditioned node structure/relationship modeling. A unified
optimization framework is proposed to learn network node and topic representation,
by simultaneously leveraging node structure, content and latent topics. Experiments
and validations showed that by enabling topic-aware node relations modeling, TNE
achieves significant performance gain compared to state-of-the-art baselines, espe-
cially for long text-described networks. On the other hand, as we have discussed in the
experimental results, the short text associated with some networks tend to demonstrate
simplified semantics and the various topics intentionally introduced for complicated
semantic characterization could produce undesirable embedding results.

Future work can emphasize on the following two aspects: (1) for networks with
sparse or noisy content, LDA might be ineffective to capture topics. Alternatively,
we recommend to use advanced topic models such as RTM (Le and Lauw 2014) to
fully utilize the document link relationships for more accurate topics eliciting; and
(2) for networks with multi-labels (e.g. an image with multiple labels), we recom-
mend to assign weights to different topics and perform weighted topic-aware network
embedding.
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