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Abstract. In this paper, we propose a deep learning based framework for user
interest modeling and click prediction. Our goal is to accurately predict (1) the
probability that a user clicks on an ad, and (2) the probability that a user clicks
a specify type of campaign ad. To achieve the goal, we collect page information
displayed to users as a temporal sequence, and use long-term-short-term memory
(LSTM) network to learn latent features representing user interests. Experiments
and comparisons on real-world data shows that, compared to existing static set
based approaches, considering sequences and temporal variance of user requests
results in an improvement in performance ad click prediction and campaign spe-
cific ad click prediction.

1 Introduction

Computational advertising is mainly concerned about using computational approaches
to deliver/display advertisement (Ad) to audiences (i.e. users) who might be interested
in the Ad, at the right time [1]. The direct goal is to draw users’ attention, and once
the Ads are served/displayed on the users’ device, they might take actions on the Ads
and become potential buying customers. Due to the sheer volumes of online users and
the advertisements, and users have different background and interests, not to mention
their changing habits and interests, finding users interests is often the key to determine
whether a user is interested in an Ad.

In display advertising, because AdExchange often only passes very limited infor-
mation about the user [2], such as user device type, user agent, page domain name and
URL, etc., in order to predict user interests, the industry commonly relies on genera-
tive modeling. Historical data is used to build tree-structured models whose parameters
are used to derive the CTR value of the new impression. Common generative models
include CTR hierarchy trees [3] or hierarchical Bayesian frameworks [4]. One inherent
advantage of the generative model is that the model provides transparent interpretabil-
ity for business to understand which factor(s) contribute the most to the CTR values.
However, due to the limitations of the models, such methods can normally estimate

*This research is sponsored by Bidtellect Inc. and by US National Science Foundation
through Grant No. CNS-1828181.



only a handful of parameters (e.g. using a number of selected factors to split the tree
hierarchy), and are unable to consider many rich information from users, publishers,
and websites for accurate CTR estimation.

Different from generative models, the increasing popularity of machine learning,
particularly deep learning, has driven a set of predictive modeling methods, which treat
user clicks as binary events, and uses supervised learning to train a classifier to predict
the likelihood of an impression being clicked by users [5], including some deep neural
networks based CTR estimation methods [6]. Such methods normally work on tens of
thousands of features, and are often more powerful than generative models.

In this paper, we propose to consider temporal user information to estimate user
clicks and user interests. We generalize these two problems as a binary classification
task (for user click prediction) and a multi-class classification task (for user interest
prediction). More specifically, we collect users’ page visits as a temporal sequence, and
train deep LSTM (long-term short-term memory) networks to make predictions.

2 LSTM Network for User Clicks and Interests Modeling

2.1 Problem Definition

let U be the a set of users {u1,usg,us,...,u,} and R be a set of events. Each event
denoted by rfjj represents the occurrence that an advertisement is displayed to a user u;
in a specific context at time ¢;. In this case, the event is encoded as a real-valued vector
(rf; € R%). The context in display advertising industry is the page visited by the user
which is in turn described by a hierarchy of page category IDs corresponding to various
contextual information with different level of granularity [7, 8].

The set of all pre-defined page categories is denoted by C equals to {ci, ca, ..., ¢|c| }
where |C| is the number of categories. For a page visited by user u; at time-step ¢;,
its page categories can be shown in the form of array like [c1, ca, c3, ...]. For each user
u; € U, we take the history of web pages visited by the user and denote it by r,; =
{riL iz, ..., 7y }. Because of the variety in the number of websites visited by users, we
have ry; € R™*4 where m is the maximum sequence length. Thus, given the historical
records of all users as R = {7y, ,Tu,, ** , 7w, } Wwhere R € R"*™xd d < |C|, our
objective is using historical user activities as the chronological sequence of requests
before an arbitrary time-step t; to predict (1) the probability that a user may interact
with an Ad at ¢; by generating a click response, and (2) predict which campaign Ad the
user might click.

2.2 LSTM for User Modeling

Recurrent Neural Networks(RNN) is an extension of feed forward networks and has
been successfully applied in various sequence data analysis and temporal sequence
modeling [9]. While traditional RNN networks are unable to learn all term dependencies
in sequences because of vanishing or exploding gradient problem [10], long short-term
memory(LSTM) networks were introduced which uses special multiple-gate structured
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Fig. 1: LSTM cell and network architecture. (a) shows the detailed view of an LSTM cell, (b)
shows a single layer LSTM network with respect to the input, represented in a 3rd-order tensor
[sample, feature, time-step], and (c) shows the unfolded structure of the single layer LSTM net-
work in (b). In our research, we stack three LSTM layers to form a deep LSTM network (detailed
in the experimental settings).

cell to replace hidden layer nodes. Using LSTM cells in these networks has been shown
as an efficient way to overcome these problems [10].

Two significant challenges in online display advertising to model user response and
user interest using deep learning approaches like LSTM networks are that the collection
of online user behavior data are (1) in multi-variant categorical form because each page
may belong to one or multiple categories, and (2) user sequences of historical data may
have different lengths because users’ responses and actions vary over time. They result
in multi-length sequences, where data points of each time-step may also include variant
features. More specifically, in our model, the historical data collected for user modeling
contains page category IDs of the pages that a user visited during a short period of
time. For a user at a particular time-step, we have an array of category IDs of the page
visited by the user discussed in Problem Definition section. Such IDs are represented as
[c1, ca, - - -] which are in different lengths. Table 1 shows the sample of input sequential
data used for user modeling.

One-Hot-Encoding with Thresholding To handle multi-length page categories as the
features to describe each visited page, we use one-hot-encoding to represent them as
sparse binary features. For each user, we have a sequence of visited pages attributed by
a couple of page category IDs that correspond to their content. Therefore, each time-step
can be shown as binary vector with length equals to the maximum number of categorical
variables where 1 indicating the presence of each possible value from the original data.
For example, in Table 1, at time-step ¢; the visited page of user us is described by
an array of page category IDs as features can be shown as [0,1,1,0,0,0, ...,0]. The
dimension of vectors for time-step is determined by the number of unique page category
IDs in the dataset that in our example it equals to |C| = 18.

Concatenating these vectors generates a matrix with high dimensionality. There-
fore, for features like page category IDs with high cardinality, using one-hot-encoding
usually leads to extra computational costs. In the past, much research has been done to



work with such sparse binary features [11, 12]. To address this problem and in order to
reduce the dimension of these vectors, we used an alternative to encode more frequent
page category IDs based on a threshold based approach. In this case, page category IDs
are sorted based on the number of their occurrences. Those with repetitions more than
the user-defined threshold will be kept for the next parts.

Table 1: Schema of the data representation. We represent each audience(user) and his/her ac-
tions as multi-dimensional temporal sequence. Each row in the table denotes an audience, and
t1,t2, - - ,tn denotes temporal order of the sequence (if >, then ¢; happens after t;). c1,c2, - -,
¢m denotes the IAB tier-2 page category of the webpage visited by the users. (click) denotes an
Ad click event from the audience. Not all sequences results in click events.

Temporal order of audience response

User || t1 to ts ta .
uy rfll1 = [c1, c2, c3] 2 = [c1, €3] rtusl = [c1, ca, 5, cq] (click) B -
u2 r;lz = [e2, ¢s5] r% = [c4] (click) | - -

us rf}g = [c10, ¢7, €3, C20] rfb23 = [e1, ¢3, c15] r333 = [c6, C12, C22, Caa, C1, C3] | -

wa || rdy = [es, e1a, es0] r2 = le2, ool 13 = [e11, e1q, c21] A = [ca, e7, e11] (dlick)

Bucketing and Padding The variable length of sequences, like samples in Table 1, is
another technical challenge. To handle sequences of any length and capture short and
long dependencies in input data, padding with constant value (e.g. inserting zeros) is
a straightforward strategy to make input dimensions fixed. However, applying this ap-
proach to train LSTM with wide range of sequence lengths is not only computationally
expensive it also adds extra zero values resulting in bias in outcomes and changes in-
put data distribution. Therefore, we propose to combine padding and bucketing to best
utilize temporal information in sequences without inserting too many padding symbols.

To combine bucketing and padding, we construct several buckets in training sam-
ples, where sequences in each bucket have the same lengths corresponding to the range
of sequence length in the dataset. Each sample is assigned to one bucket corresponding
to its length. In this case, padding of samples mitigates to inside of buckets being used
just for assigned sequences as much as necessary to fit into the bucket. The most impor-
tant item in the sequence of request page categories is the last item that corresponds to
the possible user click response, we use pre-padding approach. It means that each short
sample inside buckets with the length lower than bucket size is pre-padded to become a
sample with length equal to the maximum length in that bucket.

Following the idea, we designed an ensemble learning method for multi-class clas-
sification task. Rather than using the original splitting to generate buckets as the repre-
sentative subset of samples in input space, we just use the sequence length of buckets
to indicate one representation of samples through truncating time-steps. It means that
for each representation, all samples in input data are trimmed to the selected sequence
length by removing some time-steps from the beginning of sequences. Then in order
to obtain classification, we build one LSTM model for each representation. The final



result of classification is generated by applying majority voting as the result merger of
all models.
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Fig. 2: The proposed User click prediction (a) and user interest prediction (b) frameworks. Given
user request and response historical data, user click prediction aims to train stacked LSTM clas-
sifiers to predict whether a new user is going to click an Ad or not, i.e. a binary classification
task; and user interest prediction will predict Ad campaign a new user is going to click, i.e. a
multi-class classification task.

2.3 LSTM Based User Click Prediction Framework

Figure 2(a) briefly describes the structure of our proposed method for user click predic-
tion problem as a binary classification. It includes the stacked LSTM model consisting
of three LSTM layers followed by one fully connected layer with sigmoid activation to
combine the output of hidden neurons in previous layers to predict click instances. In
this case, the loss function is defined as the weighted binary cross entropy which aims to
maximize the probability of correct prediction. The weight introduced in this function
allows a trade-off between recall and precision in both classes to mitigate the negative
effect of the class imbalance problem in our task:

L=1/N x Z(yi X —log(p(zi)) X w+ (1 —y;) X —log(1 — p(=:))) )

J

where N is the number of samples in training set. y; € [0, 1] is target label and p(z;) €
[0, 1] is the network output, which represents the likelihood that how likely the sample
x; has a click response at the end. w is the coefficient which determine the cost of
positive error relative to the misclassification error of negative ones.



2.4 LSTM Based User Interest Prediction Framework

Figure 2(b) outlines the model for for user interest prediction. It is defined as multi-class
classification to classify the number of clicks in 10 different advertising campaigns.
The number of buckets are defined uniformly over the range of sequence length in the
dataset. Then, for each bucket, one representation of data is generated by trimming all
longer samples and pre-padding shorter samples to the selected sequence length. Then
prediction is made by following the ensemble learning approach. In this Figure, LSTM
block follows the structure mentioned in Fig. 2(a) except the last layer having softmax
activation function. In this case, the objective function is similar to equation (1) when
w=1. It is actually an unweighted categorical cross entropy loss function in which p(z;)
is the output of the network after softmax layer.

3 Experiments

3.1 Benchmark Data

We pulled out data from our industry partner’s bidding engine, and prepared two datasets
to validate user click and user interest prediction.

Post-View Click Dataset: This dataset is mainly used for validating binary user click
prediction. We pulled 5.6 million users’ request records from 1 day log events. These
anonymous records include a chronological sequence of various request categories
which represent user browsing interactions. In this case, there are two types of positive
and negative responses from users where success occurs, if a post-view click takes place
at end of a chain of visited impressions. Because of rarity of positive responses (click)
in digital advertising, this dataset suffered from severe class imbalance problem. Thus,
to deal with this issue, we use random down-sampling to get 10:90 positive:negative
post sampling class distribution on the dataset.

Multi-Campaign Click Dataset: This dataset includes historical records with positive
response in post-view click dataset. The positive response in this case is defined as user
clicks on different type of campaigns (we used 10 types of campaigns). This dataset is
mainly used for validating multi-class user interest prediction.

One issue we encountered in these datasets is that the sequence lengths are severely
skewed where a large proportion of sequences are very short in length even less than 3
time-steps. Our bucketing and padding combined approach, introduced in Section 3.2,
is specially designed to handle this challenge.

3.2 Experimental Settings and Performance Metrics

We implemented 7 methods for comparisons. All models were implemented through
Tensorflow and CUDA to take advantage of using GPU and trained by Adam optimiza-
tion as a variant of gradient descent. The remaining models are built using Scikit-learn
library in Python. For data preprocessing, we convert input sequential data to binary
vector by one-hot-encoding and get rid of less frequent categorical campaign IDs. we
use a threshold to keep those categories with more 1,000 occurrence in our dataset.
To control overfitting problem in neural networks early stopping mechanism is used to



stop after 10 subsequent epochs if there is no progress on the validation set. Dropout
rate was set at 0.4 for neural networks. For the rest of methods L2 regularization is used
in training process. All experiments are evaluated based on 5-fold cross validation.

We use the Area Under Receiver Operating Characteristics Curve (AUC) as the
major evaluation metric because it shows the model accuracy of ranking positive cases
versus negative ones. We also employ accuracy, F-measure, precision, and recall as
additional performance metrics.

3.3 Performance Comparison

User Click Prediction Results As a binary classification task, the performance of pro-
posed method is compared with SVM, Random Forest, Logistic Regression in addition
a variant of convolutional neural network (CNN) [13]. Since input data has an extremely
imbalanced class distribution with around 5,646,569 no-click user sequences (negative
samples) versus 31,144 click user sequences (positive samples), we use random under-
sampling and ensemble learning to build the model in Fig. 2(b).

In our proposed method, three dimensional input data(R™*™*?) are passed into
the network where m and d are 70 and 153 corresponding to more frequent sequence
lengths and the most frequent number of page category IDs. For remaining methods, the
initial 3d input data is projected to the plane of R"*¢ by adding up values in sequence
length dimension. Then, each model is trained by minimizing weighted binary cross
entropy shown in Eq. (1). By default, we use cost ratio as 5 for positive samples because
of the effectiveness seen in our experiments. Table 2 reports the result of prediction
using different methods. As our proposed method pays more attention to history of
requested pages before click, having higher performance in our proposed method shows
the importance of this feature in click prediction.

Table 2: User click prediction results (binary classification task)

Method Precision Recall Fj-measure AUC Accuracy
NaiveBayes 0.2638 0.2827  0.2729  0.6004 0.8583
Random Forest 0.3001 0.2758  0.2875  0.6045 0.8713
Logistic Regression  0.3353  0.2995  0.3164  0.6189 0.8782
Linear SVM 0.3534  0.2682  0.3050  0.6086 0.8850

SVM 0.3815 0.0333  0.0613  0.5138 0.9039
CNN 0.3492 0.4323 03862 0.6742 0.8707
LST™M 03111 0.5196  0.3892  0.7001 0.8466

User Interest Prediction Results For multi-class user interests prediction task, we
compare proposed approach with NaiveBayes, Random Forest (with 100 tree estima-
tors), Logistic Regression and two version of SVM with linear and RBF kernels. The
input data are click samples used in previous task for click response prediction. Con-
sidering the AUC performance, the overall results in Table 3 illustrate that the proposed
method in this classification task outperforms the others. It shows the effective of LSTM
networks in detecting the correlation of sequential data and click response.
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Table 3: User interest prediction results (multi-class classification task)

Method Precision Recall F-measure AUC Accuracy
NaiveBayes 0.2486 0.2940 0.2713  0.6708 0.4016
Random Forest 0.3640 0.3401  0.3697  0.7404 0.3697
Logistic Regression 0.3911 0.2425 03240 0.7124 0.2233
Linear SVM 0.3858 0.2680  0.3369  0.7113 0.2415
SVM 0.1037 0.0654  0.0691  0.4593 0.0691
LSTM 03942 02628  0.3312  0.6994 0.2239

LSTM_Bucketing_Padding 0.4076 0.3401  0.3835  0.7599 0.3835

Conclusion

In this paper, we proposed a new framework for click response and user interest pre-
diction using LSTM based deep learning. By combing padding and bucketing to learn
binary user click prediction and multi-class user interest prediction, our method allows
sequences to have variable lengths and variable number of dimensions and can maxi-
mally leverage temporal information in user sequences for learning. Experiments and
comparisons on real-world data collected from industry partner show that our method is
able to encode useful latent temporal information to predict user response and interests.
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