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Abstract

We consider the Harnack inequality for harmonic functions with respect to three types of infinite-
dimensional operators. For the infinite-dimensional Laplacian, we show no Harnack inequality is possible.
We also show that the Harnack inequality fails for a large class of Ornstein–Uhlenbeck processes, although
functions that are harmonic with respect to these processes do satisfy an a priori modulus of continuity.
Many of these processes also have a coupling property. The third type of operator considered is the infinite-
dimensional analog of operators in Hörmander’s form. In this case a Harnack inequality does hold.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The Harnack inequality is an important tool in analysis, partial differential equations, and
probability theory. For over half a century there has been intense interest in extending the Har-
nack inequality to more general operators than the Laplacian, with seminal papers by Moser [24]
and Krylov and Safonov [21]. See [20] for a survey of some recent work.

It is a natural question to ask whether the Harnack inequality holds for infinite-dimensional
operators. If L is an infinite-dimensional operator and h is a function that is non-negative and
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harmonic in a ball with respect to the operator L and B2 is a ball with the same center as B1 but
of smaller radius, does there exist a constant c depending on B1 and B2 but not on h such that

h(x) � ch(y)

for all x, y ∈ B2?
When one considers the infinite-dimensional Laplacian, or alternatively the infinitesimal gen-

erator of infinite-dimensional Brownian motion, there is first the question of what one means by
a ball. In this case there are two different norms present, one for a Banach space and one for a
Hilbert space. We show that no matter what combination of definitions for B1 and B2 that are
used, no Harnack inequality is possible. Our technique is to use estimates for Green functions
for finite-dimensional Brownian motions and then to go from there to the infinite-dimensional
Brownian motion.

For more on the potential theory of infinite-dimensional Brownian motion we refer to the
classic work of L. Gross [19], as well as to [10,11,15,22,25,26]. V. Goodman [16,17] has several
interesting papers on harmonic functions for the infinite-dimensional Laplacian.

We next turn to the infinite-dimensional Ornstein–Uhlenbeck process and its infinitesimal
generator. See [13,22,28] for the construction and properties of these processes. In this case, the
question of the definitions of B1 and B2 is not an issue.

We show that again, no Harnack inequality is possible. We again use estimates for the Green
functions of finite-dimensional approximations, but unlike in the Brownian motion case, here the
estimates are quite delicate.

We also establish two positive results for a large class of infinite-dimensional Ornstein–
Uhlenbeck processes. First we show that functions that are harmonic in a ball are continuous
and satisfy an a priori modulus of continuity.

Secondly, it is commonly thought that there is a close connection between coupling and the
Harnack inequality. See [4] for an example where this connection is explicit. By coupling, we
mean that given B2 ⊂ B1 with the same center but different radii and x, y ∈ B2, it is possible
to construct two Ornstein–Uhlenbeck processes X and Y started at x, y, respectively (by no
means independent), such that the two processes meet (or couple) before either process exits B1.
Even though the Harnack inequality does not hold, we show that for a large class of Ornstein–
Uhlenbeck processes it is possible to establish a coupling result.

Finally we turn to the infinite-dimensional analog of operators in Hörmander’s form. These
are operators of the form

Lf (x) =
n∑

j=1

∇2
Aj

f (x),

where ∇Aj
is a smooth vector field. For these operators we are able to establish a Harnack

inequality. To define a ball in this context we use a distance intimately tied to the vector fields
A1, . . . ,An. In addition, we connect this distance to another distance introduced in [9] for Dirich-
let forms, and later used in connection with parabolic Harnack inequalities in different settings
in [27].

Our technique to prove the Harnack inequality for these operators in Hörmander’s form is
to employ methods developed by Bakry, Émery, and Ledoux. For general reviews on their ap-
proach with applications to functional inequalities see [1,23]. We prove a curvature-dimension
inequality, derive a Li–Yau estimate from that, and then prove a parabolic Harnack inequality,
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from which the usual Harnack inequality follows. For this approach on Riemannian manifolds
with Ricci curvature bounded below we refer to [3].

We are not the first to investigate Harnack inequalities for infinite-dimensional operators. In
addition to the papers [9] and [8] mentioned above, they have been investigated by Bendikov
and Saloff-Coste [7], who studied the related potential theory as well. Their context is quite
different from ours, however, as they consider infinite-dimensional spaces which are close to
finite-dimensional spaces, such as infinite products of tori. This allows them to modify some of
the techniques used for finite-dimensional spaces.

We mention three open problems that we think are of interest:
1. Our positive result is for operators that are the infinite-dimensional analog of Hörmander’s

form, but we only have a finite number of vector fields. The corresponding processes need not
live in any finite-dimensional Euclidean space, but one would still like to allow the possibility of
there being infinitely many vector fields.

2. Are there any infinite-dimensional processes of the form Laplacian plus drift for which a
Harnack inequality holds?

3. Restricting attention to the infinite-dimensional Ornstein–Uhlenbeck process, can one de-
fine B1 and B2 in terms of some alternate definition of distance such that the Harnack inequality
holds?

The outline of our paper is straightforward. Section 2 considers infinite-dimensional Brown-
ian motion, Section 3 contains our results on infinite Ornstein–Uhlenbeck processes, while our
Harnack inequality for operators of Hörmander form appears in Section 4.

We use the letter c with or without subscripts for finite positive constants whose exact value
is unimportant and which may change from place to place.

2. Brownian motion

We first prove a proposition that contains the key idea. Let B(n)(x, r) = {y ∈ R
n: |x −y| < r},

where |x − y| = (
∑n

i−1 |xi − yi |2)1/2.

Proposition 2.1. Let K > 0. For all n sufficiently large, there exists a function hn which is non-
negative and harmonic on its domain B(n)(0,1) and points xn, zn ∈ B(n)(0,1/2) such that

hn(zn)

hn(xn)
� K.

Proof. Let Gn(x, y) = |x −y|2−n, a constant multiple of the Newtonian potential density on R
n.

Let e1 = (1,0, . . . ,0). If we set hn(x) = Gn(x, e1), then it is well known that hn is harmonic in
R

n \ {0}.
Let xn = 0 and zn = 1

4e1. Both are in B(n)(0,1/2) and

hn(zn)

hn(xn)
= (3/4)2−n

12−n
� K

if n is sufficiently large. �
Next we embed the above finite-dimensional example into the framework of infinite-

dimensional Brownian motion.
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Let (W,H,μ) be an abstract Wiener space, where W is a separable Banach space, H is a
Hilbert space, and μ is a Gaussian measure. For background about abstract Wiener spaces, see
[10] or [22]. We use ‖ · ‖H and ‖ · ‖W for the norms on H and W , respectively. We denote the
inner product on H by 〈· , ·〉H .

The classical example of an abstract Wiener space has W equal to the continuous functions
on [0,1] that are 0 at 0 and has H equal to the functions in W that are absolutely continuous
and whose derivatives are square integrable. Another example that perhaps better illustrates what
follows is to let H be the set of sequences (x1, x2, . . .) such that

∑
i x

2
i < ∞ and let W be the set

of sequences such that
∑

i λ
2
i x

2
i < ∞, where {λi} is a fixed sequence with

∑
i λ

2
i < ∞.

Let H∗ be the set of h ∈ H such that 〈·, h〉H ∈ H ∗ extends to a continuous linear functional
on W. Here H ∗ is the dual space of H , and is, of course, isomorphic to H . (We will continue to
denote the continuous extension of 〈·, h〉H to W by 〈·, h〉H .)

Next suppose that P : H → H is a finite rank orthogonal projection such that PH ⊂ H∗. Let
{ej }nj=1 be an orthonormal basis for PH and �j = 〈·, ej 〉H ∈ W ∗. Then we may extend P to a
unique continuous operator from W → H (still denoted by P) by letting

Pw :=
n∑

j=1

〈w,ej 〉H ej =
n∑

j=1

�j (w)ej for all w ∈ W. (2.1)

For more details on these projections see [14].
Let Proj(W) denote the collection of finite rank projections on W such that PW ⊂ H∗ and

P |H : H → H is an orthogonal projection, i.e. P has the form given in (2.1). As usual a function
f : W → R is a (smooth) cylinder function if it may be written as f = F ◦ P for some P ∈
Proj(W) and some (smooth) function F : R

n → R, where n is the rank of P . For example, let
{en}∞n=1 be an orthonormal basis of H such that en ∈ H∗, and Hn be the span of {e1, . . . , en}
identified with R

n. For each n, define Pn ∈ Proj(W) by

Pn : W → Hn ⊂ H∗ ⊂ H

as in (2.1).
For t � 0 let μt be the rescaled measure μt(A) := μt(A/

√
t ) with μ0 = δ0. Then as was first

noted by Gross in [19, p. 135] there exists a stochastic process Bt , t � 0, with values in W which
is continuous a.s. in t with respect to the norm topology on W , has independent increments, and
for s < t has Bt −Bs distributed as μt−s , with B0 = 0 a.s. Bt is called standard Brownian motion
on (W,μ).

Let B(W) be the Borel σ -algebra on W . If we set μt(x,A) := μt(x −A), for A ∈ B(W), then
it is well known that {μt } forms a family of Markov transition kernels, and we may thus view
(Bt ,P

x) as a strong Markov process with state space W , where P
x is the law of x + B . We do

not need this fact in what follows, but want to point out that Bn(t) := PnB(t) ∈ PnH ⊂ H ⊂ W

give a natural approximation to B(t) as is pointed out in [14, Proposition 4.6].
We denote the open ball in W of radius r centered at x ∈ W by B(x, r) and its boundary by

Sr(x). The first exit time of Bt from B(0, r) will be denoted by τr . By [19, Remark 3.3] the exit
time τr is finite a.s.

A set E is open in the fine topology if for each x ∈ E there exists a Borel set Ex ⊂ E such
that P(σEx > 0) = 1, where σEx is the first exit from Ex .
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Let f be a locally bounded, Borel measurable, finely continuous, real-valued function f

whose domain is an open set in W . Then f is harmonic if

f (x) =
∫

Sr (0)

f (x + y)πr(dy) (2.2)

for any r such that the closure of B(x, r) is contained in the domain of f , where

πr(dy) = P
0(Bτr ∈ dy).

Let f be a real-valued function on W . We can consider F(h) = f (x + h) as a function on H .
If F has the Fréchet derivative at 0, we say that f is H -differentiable. Similarly we can define
the second H -derivative D2, and finally

�f (x) := trD2f (x)

whenever D2f (x) exists and of trace class.
The following properties can be found in [16, Theorems 1, 2, 3].

Theorem 2.2. Let (W,H,μ) be an abstract Wiener space.

(1) A harmonic function on W is infinitely H -differentiable. The second derivative of a harmonic
function at each point of its domain is a Hilbert–Schmidt operator.

(2) If a harmonic function on W satisfies a uniform Lipschitz condition in a neighborhood of a
point x, then the Laplacian of u exists at x and (�u)(x) = 0.

Remark 2.3. So far the theory of harmonic functions in infinite dimensions may not seem that
different from the finite-dimensional case. There are, however, striking differences. For example,
Goodman [16, Proposition 4] shows there exists a harmonic function that is not continuous with
respect to the topology of W . In view of the previous theorem, however, it is smooth with respect
to the topology of H .

Let (W,H,μ) be an abstract Wiener space. Denote by Gn(x, z) the function on R
n × R

n

defined by Gn(x, z) = |x − z|2−n. Consider Pn ∈ Proj(W) as defined by (2.1), and define the
cylinder function gn(w) := Gn(Pnw,Pnz) for any w ∈ W and z = e1.

Proposition 2.4. The function gn is harmonic on W away from the set {w ∈ W : Pnw = e1} =
{w ∈ W : e1(w) = 1}.

Proof. We need to check that gn is locally bounded, Borel measurable, finely continuous, and
(2.2) holds with f replaced by gn for all r > 0 whenever the closure of Br(x) is contained in the
domain of gn. One can show that gn is locally bounded, Borel measurable, and finely continuous
similarly to [16, p. 455].
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Now we check the last part. Suppose x /∈ {w ∈ W : Pnw = e1},∫
Sr (0)

gn(x + y)πr(dy) =
∫

Sr (0)

Gn ◦ Pn(x + y)πr(dy)

= E
x
(
Gn ◦ Pn(Bτr )

)
= E

x
(
Gn ◦ Pn(PnBτr )

)
.

Note that PnBt is a martingale, and τr is a stopping time, and we would like to use the optional
stopping time theorem. We need to point out here that e1 ∈ H∗ ⊂ H and therefore Pne1 = e1.
So if we choose r < 1/2‖e1‖W ∗ , then e1 /∈ PnB(0, r). Indeed, if there is a w ∈ B(0, r) such that
Pnw = e1, then e1(w) = 〈w,e1〉 = 1. But

∣∣e1(w)
∣∣ � ‖e1‖W ∗‖w‖W < r‖e1‖W ∗ <

1

2

which is a contradiction. Thus Gn is harmonic in PnB(0, r) ⊆ PnH ∼= R
n and therefore∫

Sr (0)

gn(x + y)πr(dy) = Gn(Pnx) = gn(x). �

Our main theorem of this section is now simple.

Theorem 2.5. For each n there exist functions gn that are non-negative and harmonic in the ball
of radius 1 about 0 with respect to the norm of W and points x, z in the ball of radius 1/2 about
0 with respect to the norm of H such that

gn(z)

gn(x)
→ ∞

as n → ∞. In particular, the Harnack inequality fails.

Proof. We let gn be as above and x = 0 and z = 1
4e1 for all n. Our result follows by combining

Propositions 2.1 and 2.4. �
3. Ornstein–Uhlenbeck process

Let H be a separable Hilbert space with inner product 〈· , ·〉 and corresponding norm | · |.
Define

‖f ‖0 := sup
x∈H

∣∣f (x)
∣∣.

Recall (see [13]) that for an arbitrary positive trace class operator Q on H and a ∈ H there
exists a unique measure Na,Q on B(H) such that∫

H

ei〈h,x〉Na,Q(dx) = ei〈a,h〉− 1
2 〈Qh,h〉, h ∈ H.
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We call such Na,Q(dx) a Gaussian measure with mean a and covariance Q. It is easy to check
that ∫

H

xNa,Q(dx) = a,

∫
H

|x − a|2Na,Q(dx) = TrQ,

∫
H

〈x − a, y〉〈x − a, z〉Na,Q(dx) = 〈Qy,z〉, and

dNb,Q

dNa,Q

(dy) = e− 1
2 |Q−1/2(a−b)|2+〈Q−1/2(y−a),Q−1/2(b−a)〉.

We consider the Ornstein–Uhlenbeck process in a separable Hilbert space H . The process in
question is a solution to the stochastic differential equation

dZt = −AZt dt + Q1/2 dWt, Z0 = x, (3.1)

where A is the generator of a strongly continuous semigroup e−At on H , W is a cylindrical
Wiener process on H , and Q : H → H is a positive bounded operator. The solution to (3.1) is
given by

Zx
t = e−Atx +

t∫
0

e−A(t−s)Q1/2 dWs.

The corresponding transition probability is defined as usual by (Ptf )(x) = Ef (Zx
t ), f ∈ Bb(H),

where Bb(H) are the bounded Borel measurable functions on H . It is known that the law of Zt

is a Gaussian measure centered at e−Atx with covariance

Qt =
t∫

0

e−A(t−s)Qe−A∗(t−s) ds,

which we called Ne−tAx,Qt
(dy). Note that for the corresponding parabolic equation in H to be

well-posed we need a basic assumption on Qt to be non-negative and trace-class for all t > 0
[13, p. 99].

We assume the controllability condition

e−At (H) ⊂ Q
1/2
t (H) for all t > 0 (3.2)

holds. As is described in [13, p. 104], under the condition (3.2) the stochastic differential equation
in question has a classical solution. We define

Λt := Q
−1/2
t e−tA, t > 0, (3.3)
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where Q
−1/2
t is the pseudo-inverse of Q

1/2
t . By the closed graph theorem we see that Λt is a

bounded operator in H for all t > 0.
Suppose Q = I , the identity operator, and A is a self-adjoint invertible operator on H , then

Qt =
t∫

0

e−sAe−sA∗
x ds =

t∫
0

e−2sA ds = 1

2
A−1(I − e−2tA

)
, t � 0.

If in addition we assume that A−1 is trace-class, then there is an orthonormal basis {en}∞n=1 of H

and the corresponding eigenvalues an such that

Aen = anen, an > 0, an ↑ ∞,

∞∑
n=1

a−1
n < ∞.

Then Qt is diagonal in the orthonormal basis {en}∞n=1:

Qten = t (e2tan − 1)

2tane2tan
en.

Then Qt is trace class with

TrQt =
∞∑

n=1

t (e2tan − 1)

2tane2tan
�

∞∑
n=1

1

2an

= TrA−1

2
< ∞.

Now we see that

Λten =
√

2tan

t1/2
√

e2tan − 1
en,

and so |Λtx| � |x|/√t . This proves the following proposition.

Proposition 3.1. Assume that Q = I and A−1 is trace-class. Then the operator Qt is a trace-
class operator on H and ‖Λt‖ � 1/

√
t .

Using the properties of Gaussian measures, we see that the Ornstein–Uhlenbeck semigroup
can be described by the following Mehler formula

(Ptf )(x) =
∫
H

f
(
z + e−tAx

)
N0,Qt (dz). (3.4)
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3.1. Modulus of continuity for harmonic functions

We establish an a priori modulus of continuity for harmonic functions.

Lemma 3.2. Suppose (3.2) is satisfied. If f is a bounded Borel measurable function on H and
t > 0, there exists a constant c(t) not depending on f such that∣∣Ptf (x) − Ptf (y)

∣∣ � c‖f ‖0|x − y|, x, y ∈ H. (3.5)

Moreover, for any u ∈ H ,

DuPtf (x) �
(
Ptf

2(x)
)1/2‖Λtu‖2.

Proof. Consider N0,Qt (dz), a centered Gaussian measure with covariance Qt . By the Cameron–
Martin theorem the transition probability

P x
t (dz) = Ne−tAx,Qt

(dz)

has a density with respect to N0,Qt (dz) given by

Jt (x, z) := Ne−tAx,Qt
(dz)

N0,Qt (dz)
= exp

(〈
Λtx,Q

−1/2
t z

〉 − 1

2
|Λtx|2

)
. (3.6)

Thus

(Ptf )(x) =
∫
H

Jt (x, z)f (z)N0,Qt (dz). (3.7)

Now we can use (3.7) to estimate the derivative DuPtf for any u ∈ H, by

DuPtf (x) =
∫
H

〈
Λtu,Q

−1/2
t

(
z − e−Atx

)〉
f (z)Jt (x, z)N0,Qt (dz)

=
∫
H

〈
Λtu,Q

−1/2
t z

〉
f

(
z + e−Atx

)
N0,Qt (dz)

�
(
Ptf

2(x)
)1/2

(∫
H

∣∣〈Λtu,Q
−1/2
t z

〉∣∣2
N0,Qt (dz)

)1/2

= (
Ptf

2(x)
)1/2‖Λtu‖2.

Note that Λt is bounded, therefore for bounded measurable functions f we see that Ptf is
uniformly Lipschitz, and therefore strong Feller. �
Assumption 3.3. We now suppose Q = I and that A is diagonal in an orthonormal basis {en}∞n=1
of H with eigenvalues an being a sequence of positive numbers. Moreover, we assume that
an/np → ∞ for some p > 3.
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Note that under this assumption A−1 is trace-class for p > 3, and therefore by Proposition 3.1
the operator Qt is trace-class as well. We need the following lemma.

Lemma 3.4. Suppose Xt is an Ornstein–Uhlenbeck process with Q and A satisfying Assump-
tion 3.3. Let r > q > 0 and ε > 0. Then there exists t0 such that

P
x
(

sup
s�t0

|Xs | > r
)

� ε, x ∈ B(0, q).

Proof. We first consider the nth component of Xs . Taking the stopping time τ identically equal
to t0, the main theorem of [18, Theorem 2.5] tells us that

E sup
s�t0

∣∣Xn
s

∣∣ � c
√

log(1 + ant0)√
an

.

Then by Chebyshev’s inequality,

P

(
sup
s�t0

∣∣Xn
s

∣∣ � dn

)
� c

√
log(1 + ant0)

dn
√

an

(3.8)

for any positive real number dn.
Choose δ > 0 small so that (p−1)/2 > 1+δ. Take dn = C(r −q)n−1/2−δ , where C is chosen

so that C2 ∑∞
n=1 n−1−2δ = 1. Then P(sups�t0

|Xn
s | � dn) is summable in n, and if we choose n0

large enough,

∞∑
n=n0

P

(
sup
s�t0

∣∣Xn
s

∣∣ � dn

)
< ε/2.

By taking t0 smaller if necessary, we then have

∞∑
n=1

P

(
sup
s�t0

∣∣Xn
s

∣∣ � dn

)
< ε.

Suppose |x| � q and we start the process at x. By symmetry, we may assume each coordinate
of x is non-negative. Since

|Xs | � |Xs − x| + |x|,

we observe that in order for the process to exit the ball B(0, r) before time t0, for some coordinate
n we must have |Xn

s | increasing by at least dn. The probability of this happening is largest when
xn = 0. But the probability that for some n we have |Xn

s | increasing by at least dn in time t0 is
bounded by ε. �
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Theorem 3.5. Suppose Xt is an Ornstein–Uhlenbeck process with Q and A satisfying Assump-
tion 3.3. If h is a bounded harmonic function in the ball B(0,1), there is a constant c such that∣∣h(x) − h(y)

∣∣ � c‖h‖0|x − y|, x, y ∈ B(0,1/2). (3.9)

Proof. Let ε > 0 and let τ be the exit time from B(0,1). By Lemma 3.4 we can choose t0 such
that

P
x(τ < t0) < ε, x ∈ B(0,1/2).

If h is harmonic in B(0,1) and x, y ∈ B(0,1/2),

h(x) = E
xh(Xτ ) = E

x
[
h(Xτ ); τ < t0

] + E
x
[
h(Xτ ); τ � t0

]
.

The first term is bounded by ‖h‖0ε. By the Markov property the second term is equal to

E
x
[
E

Xt0 h(Xτ ); τ � t0
] = E

x
[
h(Xt0); τ � t0

]
,

which differs from Pt0h(x) by at most ‖h‖0ε. We have a similar estimate for h(y). Therefore by
Lemma 3.2,∣∣h(x) − h(y)

∣∣ �
∣∣Pt0h(x) − Pt0h(y)

∣∣ + 4‖h‖0ε � c(t0)|x − y|‖h‖0 + 4‖h‖0ε.

This proves the uniform modulus of continuity. �
Remark 3.6. We remark that the constant c in the statement of Theorem 3.5 depends on r .
Moreover, there does not exist a constant c independent of z0 such that (3.9) holds for x, y ∈
B(z0, r/2) when h is harmonic in B(z0, r). It is not hard to see that this is the case even for the
two-dimensional Ornstein–Uhlenbeck process.

3.2. Counterexample to the Harnack inequality

As we have seen, the transition probabilities for the Ornstein–Uhlenbeck process Zt are

P x
t (dz) := Ne−tAx,Qt

(dz).

Suppose now that Q = I and A satisfy Assumption 3.3 with p = 1, but also that an is an increas-
ing sequence with A−1 being a trace-class operator on H . As examples of such an, we can take
an = np for p > 1.

Denote by Pn the orthogonal projection on Hn := Span{e1, . . . , en}. Then

P
Pnx
t (dPnz) := pn(t,Pnx,Pnz) dz,

where

pn(t,Pnx,Pnz) =
n∏

j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
−2aj (zj − e−aj t xj )

2

2(1 − e−2aj t )

)
.
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We would like to consider the Green function hn with pole at zn = 4en for Zt killed when Z1
t

exceeds 6 in absolute value. We use a killed process to insure transience. We will show that

hn(xn)

hn(0)
→ ∞

as n → ∞, where xn = en. The key is to estimate the Green function

hn(x, z) :=
∞∫

0

p̃n(t,Pnx,Pnz) dt,

where p̃n is the density for the killed process. We will prove an upper estimate on hn(0, zn) and
a lower estimate on hn(xn, zn).

First we need the following lemma.

Lemma 3.7. Let a > 0 and let Yt be a one-dimensional Ornstein–Uhlenbeck process that solves
the stochastic differential equation

dYt = dBt − aYt dt,

where Bt is a one-dimensional Brownian motion and a > 0. Let Ỹ be Y killed on first exiting
[−6,6], let q(t, x, y) be the transition densities for Y , and let q̃(t, x, y) be the transition densities
for Ỹ .

(1) There exist constants c and β such that

q̃(t,0,0) � ce−βt , t � 1.

(2) We have

q̃(t,0,0)

q(t,0,0)
→ 1

as t → 0.

Proof. The transition densities of Ỹ with respect to the measure e−x2/2 dx are symmetric and by
Mercer’s theorem can be written in the form

∞∑
i=1

e−βi tϕi(x)ϕi(y)

with 0 < β1 � β2 � β3 � · · · . Here the βi are the eigenvalues and the ϕi are the corresponding
eigenfunctions for the Sturm–Liouville problem{

Lf (x) = 1

2
f ′′(x) − af ′(x) = −βf (x),

f (−6) = f (6) = 0.

See [6, Chapter IV, Section 5] for details. (1) is now immediate.
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Let U be the first exit of Y from [−6,6]. Using the strong Markov property at U , we have the
well-known formula

q(t,0,0) = q̃(t,0,0) +
t∫

0

E
0[q(t − s, Ys,0);U ∈ ds

]
.

Using symmetry, this leads to

q(t,0,0) = q̃(t,0,0) +
t∫

0

q(t − s,6,0)P0(U ∈ ds). (3.10)

Now by the explicit formula for q(r, x, y), we see that q(t − s,6,0) is bounded in s and t and
so the second term on the right-hand side of (3.10) is bounded by a constant times P

0(U � t),
which tends to 0 as t → 0. On the other hand, q(t,0,0) ∼ (2πt)−1/2 → ∞ as t → 0. (2) now
follows by dividing both sides of (3.10) by q(t,0,0). �

We now proceed to an upper estimate for the Green function.

Proposition 3.8. There are constants K > 0 and c > 0 such that

hn(0, z) � Kcna
n/2
n e−16an .

Proof. First for x = 0 and z = 4en we have

pn(t,Pn0 ,Pnz) =
n∏

j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
− 16an

1 − e−2ant

)
.

Step 1. Let t be in the interval 0 < t � 1
2an

< 1. Then

n∏
j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

�
(

1

tπ

)n/2

,

where we used the fact that an is an increasing sequence. For any t we have

16an

1 − e−2ant
� 8

t
;

therefore for 0 < t < 1
2an

,

pn(t,0,4en) � e−8/t

(
1

tπ

)n/2

.
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The right-hand side has its maximum at 16
n

which is larger than 1
2an

for all large enough n

by our assumptions on Q and A. Thus we can estimate the right-hand side by its value at the
endpoint 1

2an
:

pn(t,0,4en) � e−16an

(
2an

π

)n/2

, 0 < t � 1

2an

.

Step 2. Let t be in the interval 1
2an

< t � 1. Denote by n0 the index for which 1
2an0+1

< t � 1
2an0

.

As before

n∏
j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
− 16an

1 − e−2ant

)

�
(

1

tπ

)n0/2 n∏
j=n0+1

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
− 16an

1 − e−2ant

)

� e−16an

(
1

tπ

)n0/2 n∏
j=n0+1

(
1

2π

2aj

1 − e−2aj t

)1/2

.

There is constant c independent of n such that

1

2π

2aj

1 − e−2aj t
� caj � can, j = n0 + 1, . . . , n.

Since 1/t < 2an, there is a constant c such that

n∏
j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
− 16an

1 − e−2ant

)
� cna

n/2
n e−16an .

Step 3. For t > 1 the transition density of the killed process can be estimated by

n∏
j=2

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
− 16an

1 − e−2ant

)
e−βt

for some β > 0, using Lemma 3.7(1). Similarly to Step 2,

p̃(t,0,4en) � cn−1
1 a

(n−1)/2
n e−16ane−βt

for some constant c1. Thus we have that there is a constant c > 0 such that

p̃(t,0,4en) �
{

cna
n/2
n e−16an, 0 < t < 1,

cna
n/2
n e−16ane−βt , 1 < t.

Integrating over t from 0 to ∞ yields the result. �
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We now obtain the lower bound for the Green function.

Proposition 3.9. Let x = en. There are constants M > 0, c > 0 and ε > 0 such that

hn(x, z) � Mcne−16ana
n/2
n

eεan

an

.

Proof. For x = en and z = 4en we have

pn(t,Pnx,Pnz) =
n∏

j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

exp

(
−an(4 − e−ant )2

(1 − e−2ant )

)
.

Observe that

n∏
j=1

(
1

2π

2aj

1 − e−2aj t

)1/2

�
(

1

2πt

)n/2

.

Consider t in the interval [1/an,2/an]. When n is large, 2/an � 1. Set v = e−ant , so that v ∈
[1/e2,1/e] when t ∈ [1/an,2/an]. Note that

16 − (4 − v)2

1 − v2
> 0

for v ∈ [0,8/17] ⊃ [1/e2,1/e], so there is a constant ε > 0 such that

16 − (4 − v)2

1 − v2
> ε, v ∈ [

1/e2,1/e
]
.

Thus

exp

(
−an(4 − e−ant )2

(1 − e−2ant )

)
� e−16an+εan .

We now apply Lemma 3.7(2) and obtain

hn(x, z) �
2/an∫

1/an

p̃n(t,Pnx,Pnz) dt

� e−16an+εancn
2

2/an∫
1/an

t−n/2 dt

= e−16an+εancn
3a

n/2−1
n

(
1 − 2− n

2 +1

n
2 − 1

)
.
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Thus we have

hn(x, z) � Mcne−16ana
n/2
n

eεan

an

. �
Theorem 3.10. Let K > 0. There exist functions hn harmonic and non-negative on B(0,4) and
points xn in B(0,2) such that

hn(xn)

hn(0)
� K

for all n sufficiently large. Thus the Harnack inequality does not hold for the Ornstein–Uhlenbeck
process.

Proof. The embedding of the finite-dimensional functions hn into the Hilbert space framework
is done similarly to the proof of Theorem 2.5, but is simpler here as there is no Banach space
W to worry about. We leave the details to the reader. The theorem then follows by combining
Propositions 3.8 and 3.9. �
3.3. Coupling

It is commonly thought that coupling and the Harnack inequality have close connections.
Therefore it is interesting that there are infinite-dimensional Ornstein–Uhlenbeck processes that
couple even though they do not satisfy a Harnack inequality.

We now consider the infinite-dimensional Ornstein–Uhlenbeck defined as in the previous sub-
section, but with an = np and p = 6. We have the following theorem. Given a process X, let
τX(r) = inf{t : |Xt | � r}.

Theorem 3.11. Let x0, y0 ∈ B(0,1). We can construct two infinite-dimensional Ornstein–
Uhlenbeck processes Xt and Yt such that X0 = x0 a.s., Y0 = y0 a.s., and if P

x0,y0 is the joint
law of the pair (X,Y ), then

P
x0,y0

(
TC < τX(2) ∧ τY (2)

)
> 0,

where TC = inf{t : Xt = Yt }.

Proof. Let WX
j (t),WY

j (t), j = 1,2, . . . , all be independent one-dimensional Brownian motions.
Let

dX
j
t = dWX

j (t) − ajX
j
t dt, X

j

0 = x
j

0 ,

and the same for Y
j
t , where we replace dWX

j by dWY
j and x0 by y0. Let T

j
C = inf{t : Xj(t) =

Y j (t)}. We define

Y
j
(t) =

{
Y j (t), t < T

j
C ;

Xj(t), t � T
j
C .
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Let P
x be the law of X when starting at x and similarly for P

y . Define P
xj

to be the law of
Xj(t) started at xj and so on. Use Lemma 3.4 to choose t0 small such that

sup
x,y∈B(0,1)

P
x,y

(
τX(5/4) ∧ τY (5/4) � t0

)
� 1/4.

Our first step is to show

∞∑
j=1

P
xj ,yj (

T
j
C > t0

)
< ∞. (3.11)

The law of X
j

t0/2 under P
xj

is that of a normal random variable with mean e−aj t0/2xj and

variance (1 − e−aj t0/2)/2aj . If AX
j is the event where Xj(t0/2) is not in [−a

−1/4
j , a

−1/4
j ], then

standard estimates using the Gaussian density show that
∑

j P
xj (AX

j ) is summable. The same
holds if we replace X by Y .

Suppose |x′
j |, |y′

j | � a
−1/4
j . Let

Zj (t) = (
x′
j − y′

j

) + (
WX

j (t) − WY
j (t)

) − aj

t∫
0

Zj (s) ds. (3.12)

Now Zj is again a one-dimensional Ornstein–Uhlenbeck process, but with the Brownian motion
replaced by

√
2 times a Brownian motion. Using (3.12) the probability that Zt does not hit 0

before time t0/2 is less than or equal to the probability that
√

2 times a Brownian motion does
not hit 0 before time t0/2. This latter probability is less than or equal to

c
∣∣x′

j − y′
j

∣∣/√t0/2 � 2ca
−1/4
j /

√
t0/2,

which is summable in j .
Let Bj be the event (T

j
C > t0/2). We can therefore conclude that if |x′

j |, |y′
j | � a

−1/4
j , then

P
x′
j ,y′

j (Bj ) is summable in j .

Now use the Markov property at time t0/2 on the event (A
j
X)c ∩ (A

j
Y )c to obtain

P
xj ,yj

(
T

j
C > t0,

(
A

j
X

)c ∩ (
A

j
Y

)c)
= E

xj ,yj
[
P

Xj (t0/2),Yj (t0/2)
(
T

j
C > t0/2

); (Aj
X

)c ∩ (
A

j
Y

)c]
�

(
sup

|x′
j |,|y′

j |�a
−1/4
j

P
x′
j ,y′

j
(
T

j
C > t0/2

))
P

xj ,yj
((

A
j
X

)c ∩ (
A

j
Y

)c)
.

Therefore

P
xj ,yj

(
T

j
C > t0,

(
A

j
X

)c ∩ (
A

j
Y

)c)
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is summable in j . Since we already know that P
xj ,yj (A

j
X) and P

xj ,yj (A
j
Y ) are summable in j ,

we conclude that (3.11) holds.
Now choose j0 such that

∞∑
j=j0+1

P
xj ,yj (

T
j
C � t0

)
< 1/4.

Choose ε such that (1 + ε)j0 � 5/4. We will show that there exists a constant c1 such that for
each j � j0 we have

P
xj ,yj (

T
j
C < τX(1 + ε) ∧ τY (1 + ε)

)
� c1. (3.13)

We know that with probability at least 1/2, for each j > j0 each pair (Xj (t), Y j (t)) couples
before (X,Y ) exits B(0,5/4). Once we have (3.13), we know that with probability at least c1,
the pair (Xj (t), Y j (t)) couples before exiting [−1 − ε,1 + ε] for j � j0. Hence, using indepen-
dence, with probability at least c

j0
1 we have that for all j � j0, each pair (Xj (t), Y j (t)) couples

before either Xj(t) or Y j (t) exits the interval [−1 − ε,1 + ε]. Using the independence again,
we have coupling with probability at least c

j0
1 /2 of X and Y before either exits the ball of radius√

2(5/4) < 2.
To show (3.13), on the interval [−1 − ε,1 + ε], the drift term of the Ornstein–Uhlenbeck pro-

cess is bounded, so by using the Girsanov theorem, it suffices to show with positive probability
WX

j hits WY
j before either exits [−1 − ε,1 + ε]. The pair (WX

j (t),WY
j (t)) is a two-dimensional

Brownian motion started inside the square [−1,1]2 and we want to show that it hits the diagonal
{y = x} before exiting the square [−1 − ε,1 + ε]2 with positive probability. This follows from
the support theorem for Brownian motion. See, e.g., [5, Theorem I.6.6]. �
4. Operators in Hörmander form

We let Cb(H) denote the set of bounded continuous functions on H with the supremum norm
and Cn

b (H) the space of n times continuously Fréchet differentiable functions with all derivatives

up to order n being bounded. C0,1
b (H) will be the space of all Lipschitz continuous functions with

‖f ‖0,1 := sup
x

∣∣f (x)
∣∣ + sup

x �=y

|f (x) − f (y)|
|x − y| .

Finally, C
1,1
b (H) will be the space of Fréchet differentiable functions f with continuous and

bounded derivatives such that Df is Lipschitz continuous; we use the norm

‖f ‖1,1 = ‖f ‖0,1 + sup
x �=y

|Df (x) − Df (y)|H ∗

|x − y| .

Suppose H is a separable Hilbert space, and {en}∞n=1 is an orthonormal basis in H . We set

(∂jf )(x) := (Dej
f )(x).
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4.1. Stochastic differential equation

Let m � 1 and suppose A1, . . . ,Am are bounded maps from H to H . Let A := (A1, . . .Am).
We assume that

ak
i (x) := 〈

Ak(x), ei

〉
> 0 for any x ∈ H, (4.1)

and that we have ai ∈ C
1,1
b (H) with

∥∥Ak
∥∥2

1,1 :=
∞∑
i=1

∥∥ak
i

∥∥2
1,1 < ∞. (4.2)

For any f ∈ C1
b(H) we define

(∇Akf )(x) :=
∞∑
i=1

ak
i (x)(∂if )(x),

(∇Af )(x) := (
(∇A1f )(x), . . . , (∇Amf )(x)

)
.

Note that

∣∣(∇Akf )(x)
∣∣2 �

( ∞∑
i=1

∣∣ak
i (x)

∣∣2

)( ∞∑
i=1

∣∣(∂if )(x)
∣∣2

)

�
∥∥Ak

∥∥2
1,1

∣∣(Df )(x)
∣∣2

,

so ∇Akf and ∇Af are well defined for f ∈ C1
b(H).

Fix a probability space (Ω,F,P) with a filtration Ft , t � 0, satisfying the usual conditions,
that is, F0 contains all null sets in F , and Ft = Ft+ = ⋂

s>t Fs for all t ∈ [0, T ]. Suppose
Wt = (W 1

t , . . . ,Wm
t ) is a Wiener process on Hm with covariance operator Q = (Q1, . . . ,Qm).

We assume that each Qk,k = 1, . . . ,m is a non-negative trace-class operator on H such that

Qkei = λk
i ei, with λk

i > 0 and
∞∑
i=1

λk
i = 2, k = 1, . . . ,m.

We consider a stochastic differential equation such that the infinitesimal generator of the so-
lution is L = ∑m

k=1(∇Ak )2.
Define B(x) := (B1(x), . . . ,Bm(x)), x ∈ H as a linear operator from H to Hm by〈

Bk(x)h, ei

〉 := ak
i (x), for any h ∈ H, k = 1, . . . ,m,

and F : H → Hm by

〈
Fk(x), ei

〉 := ∞∑
j=1

ak
j (x)∂j a

k
i (x), k = 1, . . . ,m.
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We can also re-write B and F as

B(x)(h1, . . . , hm) = A(x), for any (h1, . . . , hm) ∈ Hm,

F(x) =
( ∞∑

i=1

∇A1a
1
i (x)ei, . . . ,

∞∑
i=1

∇Amam
i (x)ei

)
.

Theorem 4.1.

(1) Suppose X0 is an Hm-valued random variable. Then the stochastic differential equation

Xt = X0 +
t∫

0

B(Xs) dWT
s +

t∫
0

F(Xs) ds,

has a unique solution (up to a.s. equivalence) among the processes satisfying

P

( T∫
0

|Xt |2Hm dt < ∞
)

= 1.

(2) If in addition X0 ∈ L2(Ω,F0,P), then there is a constant CT > 0 such that

E|Xt |2 � CT E|X0|2.

(3) Suppose f ∈ C2
b(H). Then v(t, x) := E(f (Xx

t )) = Ptf (x) is in C
1,2
b (H) and is the unique

solution to the following parabolic equation

∂tv(t, x) = Lv, t > 0, x ∈ Hm,

v(0, x) = f (x),

where L is the operator

(Lf )(x) :=
m∑

k=1

(∇Ak∇Akf )(x)

=
m∑

k=1

∞∑
j=1

ak
j (x)∂j

( ∞∑
i=1

ak
i (x)∂if (x)

)

=
m∑

k=1

∞∑
i,j=1

ak
i a

k
j ∂

2
ij f (x) +

m∑
k=1

∞∑
i,j=1

ak
j (x)∂j a

k
i (x)∂if (x), x ∈ H.

Proof. For simplicity of notation we take m = 1, and write A1 for A with corresponding func-
tions aj . The proof for the general case is very similar.
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In this case B(x), x ∈ H , is a linear operator on H defined by〈
B(x)h, ei

〉 := ai(x), for any h ∈ H,

and F : H → H by

〈
F(x), ei

〉 := ∞∑
j=1

aj (x)∂j ai(x),

or equivalently B(x)ej = A(x), F(x) = ∑∞
i,j aj (x)∂j ai(x)ei .

According to [12, Theorem 7.4], for this stochastic differential equation to have a unique mild
solution it is enough to check that

(a) B(x)(·) is a measurable map from H to the space L0
2 of Hilbert–Schmidt operators from

Q1/2H to H ;
(b) ‖B(x) − B(y)‖L0

2
� C|x − y|, x, y ∈ H ;

(c) ‖B(x)‖2
L0

2
� K(1 + |x|2), x ∈ H ;

(d) F is Lipschitz continuous on H and |F(x)| � L(1 + |x|2), x ∈ H .

Let {ej }∞j=1 be an orthonormal basis of H . Then {λ1/2
j ej }∞j=1 is an orthonormal basis of

Q1/2H . First observe that since A is bounded we have

∥∥B(x)
∥∥2

L0
2
=

∞∑
i,j=1

∣∣〈B(x)λ
1/2
j ej , ei

〉∣∣2
,

∣∣A(x)
∣∣2

∞∑
j=1

λj = 2
∣∣A(x)

∣∣2 � C,

and similarly ∥∥B(x) − B(y)
∥∥

L0
2
� ‖A‖1,1|x − y|.

The last estimate implies ∥∥B(x)
∥∥

L0
2
� max

{
C,

∣∣B(0)
∣∣}(1 + |x|)

which proves (a) and (c). We also have

∣∣F(x) − F(y)
∣∣2 =

∞∑
i=1

〈
F(x) − F(y), ei

〉2
=

∞∑
i=1

( ∞∑
j=1

aj (x)∂j ai(x) − aj (y)∂j ai(y)

)2
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� 2
∞∑
i=1

( ∞∑
j=1

(
aj (x) − aj (y)

)
∂j ai(x)

)2

+ 2
∞∑
i=1

( ∞∑
j=1

aj (y)
(
∂j ai(x) − ∂j ai(y)

))2

� 2

( ∞∑
j=1

(
aj (x) − aj (y)

)2

)( ∞∑
i,j=1

(
∂j ai(x)

)2

)

+ 2

( ∞∑
j=1

(
aj (y)

)2

)( ∞∑
i,j=1

(
∂j ai(x) − ∂j ai(y)

)2

)
.

Now we can use our assumptions on A to see that

∞∑
j=1

(
aj (x) − aj (y)

)2 �
∞∑

j=1

‖ai‖2
1,1|x − y|2 = ‖A‖2

1,1|x − y|2,

∞∑
j=1

∣∣aj (y)
∣∣2 � ‖A‖2

1,1,

∞∑
i,j=1

∣∣∂j ai(x)
∣∣2 =

∞∑
i=1

∣∣Dai(x)
∣∣2 � ‖A‖2

1,1, and

∞∑
i,j=1

(
∂j ai(x) − ∂j ai(y)

)2 =
∞∑
i=1

∣∣Dai(x) − Dai(y)
∣∣2

�
∞∑
i=1

‖ai‖2
1,1|x − y|2 � ‖A‖2

1,1|x − y|2,

which gives Lipschitz continuity for F . Finally the estimate for |F(x)| follows from the Lipschitz
continuity of F together with boundedness of A in a similar fashion to what we did for B .

Assertion (2) follows directly from [12, Theorem 9.1]. Assertion (3) follows from [12, Theo-
rem 9.16] which says that Ptf is the solution to the parabolic type equation with operator

Lv = 1

2
trvxx

(
B(x)Q1/2,B(x)Q1/2) + 〈

vx,F (x)
〉

= 1

2

∞∑
n=1

vxx

(
B(x)Q1/2en,B(x)Q1/2en

) +
〈
vx,

∞∑
i,j

aj (x)∂j ai(x)ei

〉

= 1

2

∞∑
n=1

λnvxx

( ∞∑
i=1

ai(x)ei,

∞∑
j=1

aj (x)ej

)
+

∞∑
i,j

aj (x)∂j ai(x)〈vx, ei〉
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=
∞∑

i,j=1

ai(x)aj (x)vxx(ei, ej ) +
∞∑
i,j

aj (x)∂j ai(x)〈vx, ei〉

=
∞∑

i,j=1

ai(x)aj (x)∂2
ij v +

∞∑
i,j

aj (x)∂j ai(x)∂iv. �

Remark 4.2. Denote

Lkf := ∇2
Akf =

∞∑
i,j=1

ak
i (x)ak

j (x)∂2
ij f +

∞∑
i,j

ak
j (x)∂j a

k
i (x)∂if,

where k = 1, . . . ,m. Suppose f ∈ C2
b(H). Then

∣∣(Lkf
)
(x)

∣∣2 �
∞∑

i,j=1

∣∣ak
i a

k
j (x)

∣∣2
∞∑

i,j=1

∣∣∂2
ij f (x)

∣∣2

+
∞∑

j=1

∣∣ak
j (x)

∣∣2
∞∑

j=1

∣∣∣∣∣
∞∑
i=1

∂j a
k
i (x)∂if (x)

∣∣∣∣∣
2

�
∥∥Ak

∥∥4
1,1‖f ‖2

2 + ∥∥Ak
∥∥2

1,1

∞∑
i,j=1

∣∣∂j a
k
i (x)

∣∣2
∞∑
i=1

∣∣∂if (x)
∣∣2

� 2
∥∥Ak

∥∥4
1,1‖f ‖2

2,

and therefore Lk is well defined on C2
b(H), and so is L = ∑m

k=1 Lk .

4.2. Curvature-dimension inequality

We can write

L =
m∑

k=1

Lk =
m∑

k=1

∇2
Ak .

For any f,g ∈ C2
b(H) we define

Γ (f,g) := 1

2

(
L(fg) − f L(g) − gL(f )

)
, (4.3)

Γ2(f ) := 1

2
L

(
Γ (f,f )

) − Γ (f,Lf ). (4.4)

Theorem 4.3. For any f,g ∈ C2
b(H),

Γ (f,g) =
m∑

k=1

(∇Akf )(∇Akg), (4.5)



Author's personal copy

3730 R.F. Bass, M. Gordina / Journal of Functional Analysis 263 (2012) 3707–3740

Γ2(f ) =
m∑

k,l=1

Γ (k)(∇Alf ), (4.6)

where

Γ (k)(f ) := (∇Akf )2.

Proof. Note that for functions f,g ∈ C2
b(H),

Lk(fg) = f Lk(g) + gLk(f ) + 2

(∑
i

ak
i ∂if

)(∑
j

ak
j ∂j g

)
= f Lk(g) + gLk(f ) + 2(∇Akf )(∇Akg), (4.7)

and therefore

L(fg) = f L(g) + gL(f ) + 2
m∑

k=1

(∇Akf )(∇Akg). (4.8)

Hence

Γ (f,g) = 1

2

(
L(fg) − f L(g) − gL(f )

) =
m∑

k=1

(∇Akf )(∇Akg),

and in particular Γ (f ) := Γ (f,f ) = ∑m
k=1(∇Akf )2. Before we find Γ2(f ) we need the follow-

ing calculation:

[Lk, ∂i] := (Lk∂i − ∂iLk)f

=
∑
jm

(
ak
j ∂j am

)
∂2
imf +

∑
jm

ak
j a

k
m∂3

ijmf

− ∂i

(∑
jm

ak
j ∂j a

k
m∂mf +

∑
jm

ak
j a

k
m∂2

jmf

)
= −

∑
jm

(
∂ia

k
j ∂j a

k
m + ak

j ∂
2
ij a

k
m

)
∂mf − 2

∑
jm

(
ak
m∂ia

k
j

)
∂2
jmf. (4.9)

Use (4.9) to see that

∑
i

al
i

([Lk, ∂i]f
) = −

∑
m

(∑
ij

(
al
i∂ia

l
j ∂j a

l
m + al

ia
l
j ∂

2
ij a

l
m

))
∂mf

− 2
∑
ijm

(
al
ia

l
m∂ia

l
j

)
∂2
jmf

= −
∑
m

(
Lka

l
m

)
∂mf − 2

∑
ijm

(
al
ia

l
m∂ia

l
j

)
∂2
jmf
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= −
∑
m

(
Lka

l
m

)
∂mf − 2

∑
j

(∑
i

al
i ∂ia

l
j

)(∑
m

al
m∂2

mjf

)
= −

∑
m

(
Lka

l
m

)
∂mf − 2

∑
j

(∇Al al
j

)
(∇Al ∂jf ). (4.10)

Now we can deal with Γ2(f ). We use (4.8) in the first line.

1

2
L

(
Γ (f )

) = 1

2

m∑
k=1

Lk

(
Γ (f )

) = 1

2

m∑
k=1

Lk

(
m∑

l=1

(∇Alf )2

)

=
m∑

k,l=1

(
(∇Alf )(Lk∇Alf ) + Γ (k)(∇Alf )

)
.

The second term in Γ2(f ) is

Γ (f,Lf ) =
m∑

l=1

(∇Alf )(∇AlLf ) =
m∑

k,l=1

(∇Alf )(∇AlLkf ).

Thus

Γ2(f ) =
m∑

k,l=1

(∇Alf )
([Lk,∇Al ]f ) +

m∑
k,l=1

Γk(∇Alf ).

By (4.7) we have

[Lk,∇Al ]f = Lk

( ∞∑
j=1

al
j ∂j f

)
−

∞∑
j=1

al
j ∂jLkf

=
∞∑

j=1

Lk

(
al
j

)
∂jf +

∞∑
j=1

al
jLk∂jf + 2

∞∑
j=1

(∇Aka
l
j

)
(∇Ak∂jf )

−
∞∑

j=1

al
j ∂jLkf

=
∞∑

j=1

Lk

(
al
j

)
∂jf +

∞∑
j=1

al
j [Lk, ∂j ]f + 2

∞∑
j=1

(∇Aka
l
j

)
(∇Ak∂jf ).

We can use (4.10) to see that [Lk,∇Al ]f = 0 for k, l = 1, . . . ,m. Thus (4.6) holds. �
Corollary 4.4. L satisfies the curvature-dimension inequality CD(0,m)

Γ2(f ) � 1

m
(Lf )2. (4.11)

Moreover, for m = 1 we have Γ2(f ) = (Lf )2.
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Proof. Note that by the Cauchy–Schwarz inequality

m∑
k,l=1

Γk(∇Alf ) =
m∑

k,l=1

(∇Ak∇Alf )2 � 1

m

(
m∑

k=1

∇2
Akf

)2

= 1

m
(Lf )2.

Therefore

Γ2(f ) �
m∑

k,l=1

(∇Alf )
([Lk,∇Al ]f ) + 1

m
(Lf )2. �

We need chain rules for the operators Γ and Γ2.

Proposition 4.5. Let Ψ be a C∞ function on R and suppose f is in the domain of L. Then

LΨ (f ) = Ψ ′(f )Lf + Ψ ′′(f )Γ (f,f ), (4.12)

Γ
(
Ψ (f ), g

) = Ψ ′(f )Γ (f,g), (4.13)

Γ2
(
Ψ (f )

) = (
Ψ ′′(f )

)2(
Γ (f )

)2 + (
Ψ ′(f )

)2
Γ2(f )

+ Ψ ′(f )Ψ ′′(f )Γ
(
f,Γ (f )

)
. (4.14)

Proof. Suppose Ψ ∈ C∞(R). Recall that we can write L as Lf = ∑m
k=1 Lk = ∑m

k=1 ∇2
Akf,

where ∇Akf := ∑∞
i=1 ak

i ∂if. It is clear that

∇Ak

(
Ψ (f )

) = Ψ ′(f )∇Akf. (4.15)

Then

∇Ak∇Ak

(
Ψ (f )

) = ∇Ak

(
Ψ ′(f )

)∇Akf + Ψ ′(f )∇Ak (∇Akf )

= Ψ ′′(f )(∇Akf )2 + Ψ ′(f )∇Ak (∇Akf )

= Ψ ′(f )Lkf + Ψ ′′(f )Γk(f ),

which implies (4.12) by Theorem 4.3.
Now we can easily show (4.13). Indeed, using (4.15) we have

Γk

(
Ψ (f ), g

) = (∇AkΨ (f )
)
(∇Akg)

= Ψ ′(f )(∇Akf )(∇Akg) = Ψ ′(f )Γk(f, g).

In particular, (4.13) implies

Γ
(
Ψ (f )

) = (
Ψ ′(f )

)2
Γ (f ).
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Now we would like to prove (4.14). First, using (4.13) twice we see that

Γ
(
Ψ (f )

) = (
Ψ ′(f )

)2
Γ (f ). (4.16)

By (4.8) and (4.12)

1

2
LΓ

(
Ψ (f )

) = 1

2
Γ (f )L

((
Ψ ′(f )

)2) + 1

2

(
Ψ ′(f )

)2
LΓ (f ) + Γ

((
Ψ ′(f )

)2
,Γ (f )

)
= Ψ ′(f )Ψ ′′(f )(Lf )Γ (f ) + ((

Ψ ′′(f )
)2 + Ψ ′(f )Ψ ′′′(f )

)(
Γ (f )

)2

+ 1

2

(
Ψ ′(f )

)2
LΓ (f ) + 2Ψ ′(f )Ψ ′′(f )Γ

(
f,Γ (f )

)
.

Now use (4.8) and (4.14) repeatedly to obtain

Γ
(
Ψ (f ),LΨ (f )

) = Γ
(
Ψ (f ),Ψ ′(f )Lf

) + Γ
(
Ψ (f ),Ψ ′′(f )Γ (f )

)
= (

Ψ ′(f )
)2

Γ (f,Lf ) + Ψ ′(f )Ψ ′′(f )(Lf )Γ (f )

+ Ψ ′(f )Ψ ′′(f )Γ
(
f,Γ (f )

) + Ψ ′(f )Ψ ′′′(f )
(
Γ (f )

)2
.

Note that we also used the fact that

Γ (f,gh) = gΓ (f,h) + hΓ (f,h).

Combining these two calculations gives (4.14). �
Corollary 4.6. By (4.14) with Ψ (x) = logx, x > 0, and g > 0 we see that

Γ2(logg) = (Γ (g))2

g4
− Γ (g,Γ (g))

g3
+ Γ2(g)

g2
. (4.17)

4.3. Li–Yau estimate

The following is the Li–Yau estimate in our context. In this proof we follow an argument
in [2], which they used to prove a finite-dimensional logarithmic Sobolev inequality for heat
kernel measures.

Theorem 4.7.

L(logPtf ) > − 1

2t
. (4.18)

Proof. By (4.13) with Ψ (x) = logx, x > 0, f > 0, and 0 � s � t ,

Γ (Pt−sf ) := Γ (Pt−sf,Pt−sf ) = (Pt−sf )2Γ (logPt−sf ).
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Define for f > 0,

ϕ(s) := Ps

(
Pt−sf Γ (logPt−sf )

) = Ps

(
Γ (Pt−sf )

Pt−sf

)
.

Then with g := Pt−sf and ∂sg = −Lg we see that by (4.12) and (4.13),

ϕ′(s) = ∂s

(
Ps

(
Γ (g)

g

))
= Ps

(
L

(
Γ (g)

g

)
− 2Γ (g,Lg)

g
+ Γ (g)Lg

g2

)
= Ps

(
LΓ (g)g + Γ (g)L

(
1

g

)
+ 2Γ

(
Γ (g),

1

g

)
− 2Γ (g,Lg)

g
+ Γ (g)Lg

g2

)
= Ps

(
Γ (g)

(
2Γ (g)

g3
− Lg

g2

)
− 2Γ (Γ (g), g)

g2
+ LΓ (g) − 2Γ (g,Lg)

g
+ Γ (g)Lg

g2

)
= 2Ps

(
(Γ (g))2

g3
− Γ (g,Γ (g))

g2
+ Γ2(g)

g

)
= 2Ps

(
gΓ2(logg)

)
by (4.17). We use the curvature-dimension inequality (4.11) to obtain

ϕ′(s) � 2

m
Ps

(
g(L logg)2). (4.19)

In particular, this means that ϕ is non-decreasing, and therefore

ϕ(0) = Ptf Γ (logPtf ) � Pt

(
f Γ (logf )

) = ϕ(t).

Using the chain rule (4.13) we get

Ptf Γ (logPtf ) = Γ (Ptf )

Ptf
� Pt

(
Γ (f )

f

)
= Pt

(
f Γ (logf )

)
.

This inequality together with (4.12) gives

Ptf L(logPtf ) = LPtf − Γ (Ptf )

Ptf
� LPtf − Pt

(
Γ (f )

f

)
= Pt

(
f L(logf )

)
.

Thus

Ptf L(logPtf ) � Pt

(
f L(logf )

)
. (4.20)

We need more information about ϕ to complete the proof. Our expression for ϕ′ can be rewritten
using the chain rule (4.12) as

ϕ′(s) = Ps

(
g(L logg)2) = Ps

(
1

g

(
Lg − Γ (g)

g

)2)
.
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Note that since g > 0 we have

Ps

(
Lg − Γ (g)

g

)
= Ps

(√
g

(
1√
g

(
Lg − Γ (g)

g

)))

� (Psg)1/2
(

Ps

(
1

g

(
Lg − Γ (g)

g

)2))1/2

,

so

Ps

(
1

g

(
Lg − Γ (g)

g

)2)
�

(Ps(Lg − Γ (g)
g

))2

Psg
.

Since ϕ(s) = Ps(
Γ (g)

g
), the last estimate becomes

ϕ′(s) � 2
(PsLg − ϕ(s))2

Psg
.

Now use the definition of g and the fact that L and Ps commute to see that Psg = Ptf , so we
have that for 0 � s � t ,

ϕ′(s) � 2
(LPtf − ϕ(s))2

Ptf
= 2

(ϕ(s) − LPtf )2

Ptf
.

Thus for all s such that ϕ′(s) > 0 we have

−∂s

(
1

ϕ(s) − LPtf

)
� 2

Ptf
> 0.

By (4.19) we know that ϕ′(s) � 0, and by integrating this estimate from 0 to t , we obtain

1

ϕ(0) − LPtf
− 1

ϕ(t) − LPtf
� 2t

Ptf
.

That is,

ϕ(t) − ϕ(0)

(ϕ(0) − LPtf )(ϕ(t) − LPtf )
� 2t

Ptf
> 0.

Since ϕ is non-decreasing, the numerator on the left is non-negative. Since the right-hand side
of the estimate is positive, no matter what the sign of the denominator on the left, the following
estimate holds:

ϕ(t) − ϕ(0) � 2t

Ptf

(
ϕ(0) − LPtf

)(
ϕ(t) − LPtf

)
.

Similarly to the proof of (4.20)
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ϕ(0) − LPtf = Γ (Ptf )

Ptf
− LPtf = −Ptf L(logPtf ),

ϕ(t) − LPtf = Pt

(
Γ (f )

f

)
− LPtf = −Pt

(
f L(logf )

)
.

Finally we have

Ptf L(logPtf ) � Pt

(
f L(logf )

)(
1 + 2tL(logPtf )

)
. (4.21)

Now we are ready to prove (4.18). We only need to check (4.18) when L(logPtf ) < 0. In this
case, by (4.20)

Pt

(
f L(logf )

)
< 0,

and therefore (4.21) implies

1 + 2tL(logPtf ) > 0. �
Corollary 4.8. For f > 0,

−∂t (logPtf ) <
1

2t
− Γ (logPtf ).

Proof. By (4.12) and (4.16),

L(logPtf ) = LPtf

Ptf
− Γ (Ptf )

(Ptf )2

= ∂tPtf

Ptf
− Γ (logPtf )

= ∂t (logPtf ) − Γ (logPtf ) > − 1

2t
. �

4.4. Distances

For the purposes of the next subsection we need to introduce several distances related to the
gradient ∇A. A natural distance as described in [1] is:

d(x, y) := sup
{f : Γ (f )�1}

(
f (y) − f (x)

)
, x, y ∈ H.

We will need another distance which is better suited for the proof of the parabolic Harnack
inequality, and it will turn out that this distance is equal to the one we have just defined. First we
note that for any x ∈ H there is a smooth path γA : [0,∞) → Hm (possibly defined only on a
finite subinterval [0, T ] of R+) such that

γ̇A(t) = A
(
γA(t)

)
, γA(0) = x. (4.22)
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This is equivalent to solving a system of ordinary differential equations, which gives γA implic-
itly as the solution to

xj +
∫

dγj

aj (γ )
= t.

Using the assumption that aj > 0, we can determine γA as a function of t .
An admissible component of x is defined as

VA(x) := {
γA(s), where s ∈ [0, T ], γ̇A(s) = A

(
γA(s)

)
, γA(0) = x

}
as described by (4.22).

Example 4.9. Suppose aj (x) = cj . Then γ is a straight line, and so VA is a straight line through
x in the direction of (c1, c2, . . .). In particular, if H = R

2, and a1(x) = 1 and a2(x) = 0, then VA

is a horizontal line through x.

Definition 4.10. Let x ∈ H , and define

darc(x, y) :=
{

Ty, y ∈ VA(x);
+∞, y /∈ VA(x),

where the path γA is described by (4.22) with γA(Ty) = y.

Remark 4.11. Note that our assumptions on A are essential for the definition of the distance
function darc as we use the ordinary differential equations (4.22) to find γA.

Theorem 4.12. For any x, y ∈ H ,

d(x, y) = darc(x, y).

Proof. Fix x ∈ H . We will consider the case when darc(x, y) = ∞ or d(x, y) = ∞ later, so for
now we assume that both distances are finite.

Let γ be any path connecting x and y with γ (s) = y. Note that since darc(x, y) < ∞, we have
y ∈ VA(x). Then

d(x, y) = sup
{f : Γ (f )�1}

(
f (y) − f (x)

) = sup
{f : Γ (f )�1}

s∫
0

〈∇f |γ (t), γ̇ (t)
〉
dt. (4.23)

Choosing fA such that ∇fA = A

|A|2 , then

Γ (fA) = |∇AfA|2 = 〈∇fA,A〉2 = 1,

and therefore for the function fA,
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d(x, y) � fA(y) − fA(x) =
Ty∫

0

〈∇fA, γ̇A(t)
〉
dt =

Ty∫
0

1dt = Ty = darc(x, y).

Again, by (4.23),

d(x, y) = sup
{f : Γ (f )�1}

Ty∫
0

〈∇f |γA(t), γ̇A(t)
〉
dt

= sup
{f : Γ (f )�1}

Ty∫
0

〈∇f |γA(t), γA

(
γ (t)

)〉
dt

= sup
{f : Γ (f )�1}

Ty∫
0

∇Af |γA(t) dt �
Ty∫

0

1dt = darc(x, y). (4.24)

Finally we want to show that both distances are infinite for the same y. Define a function

fN(z) :=
{

0, z ∈ VA(x);
N, z /∈ VA(x)

for some N . Note that Γ (fN) = 0. Suppose darc(x, y) = ∞, so fN(y) = N . Then

d(x, y) � fN(y) − fN(x) = N.

By taking N → ∞ we see that d(x, y) = +∞.
Next suppose that d(x, y) = ∞. Then there are functions fN with Γ (fN) � 1 such that

fN(y) − fN(x) → +∞ as N → ∞. Similarly to (4.24) (if we assume that darc(x, y) < ∞ to
find γA) we see that

+∞ = lim
N→∞fN(y) − fN(x) � Ty = darc(x, y),

and therefore darc(x, y) = +∞. �
4.5. The parabolic Harnack inequality

Theorem 4.13. Suppose u is a positive solution to the heat equation

∂tu = Lu, u(0, ·) = f.

Then for any 0 � t1 < t2 � 1 and x, y in the same admissible component, say, VA(x), we have

logu(t1, x) − logu(t2, y) � T 2
x

4(t2 − t1)
+ 1

2
log

t2

t1
,

where Tx is defined in Definition 4.10.
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Proof. The proof is standard. Let u(t, x) := Ptf (x) for a positive function f ∈ C2
b(H). Then by

Theorem 4.1, u is the solution to the heat equation

∂tg = Lg, g(0, ·) = f.

Denote g(t, x) := logu(t, x). Let t2 > t1 � 0, x, y ∈ H . Since y ∈ VA(x), we can find a
smooth path γA : [0, Ty] → Hm such that γ (0) = y, γ (Tx) = x, and γ̇ (t) = A(γ (t)). De-
fine σ : [0, Tx] → [t1, t2] × Hm by σ(s) := (t2 − t2−t1

Tx
s, γ (s)). Note that σ(0) = (t2, y) and

σ(Tx) = (t1, x). Then

g(t1, x) − g(t2, y) = g
(
σ(0)

) − g
(
σ(Tx)

)
=

Tx∫
0

d

ds
g
(
σ(s)

)
ds

=
Tx∫

0

(
〈∇g, γ̇A〉 −

(
t2 − t1

Tx

)
∂tg

(
σ(s)

))
ds

�
Tx∫

0

∇Af |γA(s) ds −
Tx∫

0

t2 − t1

Tx

Γ (g) + 1

2

Tx∫
0

(t2 − t1)

Txt2 − (t2 − t1)s
ds

by Corollary 4.8. Note that Γ (g) = |∇Ag|2, so

∇Af − t2 − t1

Tx

Γ (g) � Tx

4(t2 − t1)
,

where we used the elementary estimate ax − bx2 � a2/4b for b > 0 with x = ∇Ag. Finally, we
have

g(t1, x) − g(t2, y) � T 2
x

4(t2 − t1)
+ 1

2
log

t2

t1
. �
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