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Abstract

We consider the Harnack inequality for harmonic functions with respect to three types of infinite-
dimensional operators. For the infinite-dimensional Laplacian, we show no Harnack inequality is possible.
We also show that the Harnack inequality fails for a large class of Ornstein—Uhlenbeck processes, although
functions that are harmonic with respect to these processes do satisfy an a priori modulus of continuity.
Many of these processes also have a coupling property. The third type of operator considered is the infinite-
dimensional analog of operators in Hormander’s form. In this case a Harnack inequality does hold.
© 2012 Elsevier Inc. All rights reserved.

Keywords: Harnack inequality; Abstract Wiener space; Ornstein—Uhlenbeck operator; Coupling; Infinite-dimensional
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1. Introduction

The Harnack inequality is an important tool in analysis, partial differential equations, and
probability theory. For over half a century there has been intense interest in extending the Har-
nack inequality to more general operators than the Laplacian, with seminal papers by Moser [24]
and Krylov and Safonov [21]. See [20] for a survey of some recent work.

It is a natural question to ask whether the Harnack inequality holds for infinite-dimensional
operators. If L is an infinite-dimensional operator and 4 is a function that is non-negative and
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harmonic in a ball with respect to the operator L and B> is a ball with the same center as B; but
of smaller radius, does there exist a constant ¢ depending on By and B> but not on 4 such that

h(x) < ch(y)

forall x,y € By?

When one considers the infinite-dimensional Laplacian, or alternatively the infinitesimal gen-
erator of infinite-dimensional Brownian motion, there is first the question of what one means by
a ball. In this case there are two different norms present, one for a Banach space and one for a
Hilbert space. We show that no matter what combination of definitions for By and B; that are
used, no Harnack inequality is possible. Our technique is to use estimates for Green functions
for finite-dimensional Brownian motions and then to go from there to the infinite-dimensional
Brownian motion.

For more on the potential theory of infinite-dimensional Brownian motion we refer to the
classic work of L. Gross [19], as well as to [10,11,15,22,25,26]. V. Goodman [16,17] has several
interesting papers on harmonic functions for the infinite-dimensional Laplacian.

We next turn to the infinite-dimensional Ornstein—Uhlenbeck process and its infinitesimal
generator. See [13,22,28] for the construction and properties of these processes. In this case, the
question of the definitions of By and B> is not an issue.

We show that again, no Harnack inequality is possible. We again use estimates for the Green
functions of finite-dimensional approximations, but unlike in the Brownian motion case, here the
estimates are quite delicate.

We also establish two positive results for a large class of infinite-dimensional Ornstein—
Uhlenbeck processes. First we show that functions that are harmonic in a ball are continuous
and satisfy an a priori modulus of continuity.

Secondly, it is commonly thought that there is a close connection between coupling and the
Harnack inequality. See [4] for an example where this connection is explicit. By coupling, we
mean that given B, C B; with the same center but different radii and x, y € By, it is possible
to construct two Ornstein—Uhlenbeck processes X and Y started at x, y, respectively (by no
means independent), such that the two processes meet (or couple) before either process exits Bj.
Even though the Harnack inequality does not hold, we show that for a large class of Ornstein—
Uhlenbeck processes it is possible to establish a coupling result.

Finally we turn to the infinite-dimensional analog of operators in Hérmander’s form. These
are operators of the form

Lf()=) Vi f(o),

j=1

where Vy4; is a smooth vector field. For these operators we are able to establish a Harnack
inequality. To define a ball in this context we use a distance intimately tied to the vector fields
A, ..., A,.In addition, we connect this distance to another distance introduced in [9] for Dirich-
let forms, and later used in connection with parabolic Harnack inequalities in different settings
in [27].

Our technique to prove the Harnack inequality for these operators in Hormander’s form is
to employ methods developed by Bakry, Emery, and Ledoux. For general reviews on their ap-
proach with applications to functional inequalities see [1,23]. We prove a curvature-dimension
inequality, derive a Li—Yau estimate from that, and then prove a parabolic Harnack inequality,
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from which the usual Harnack inequality follows. For this approach on Riemannian manifolds
with Ricci curvature bounded below we refer to [3].

We are not the first to investigate Harnack inequalities for infinite-dimensional operators. In
addition to the papers [9] and [8] mentioned above, they have been investigated by Bendikov
and Saloff-Coste [7], who studied the related potential theory as well. Their context is quite
different from ours, however, as they consider infinite-dimensional spaces which are close to
finite-dimensional spaces, such as infinite products of tori. This allows them to modify some of
the techniques used for finite-dimensional spaces.

We mention three open problems that we think are of interest:

1. Our positive result is for operators that are the infinite-dimensional analog of Hormander’s
form, but we only have a finite number of vector fields. The corresponding processes need not
live in any finite-dimensional Euclidean space, but one would still like to allow the possibility of
there being infinitely many vector fields.

2. Are there any infinite-dimensional processes of the form Laplacian plus drift for which a
Harnack inequality holds?

3. Restricting attention to the infinite-dimensional Ornstein—Uhlenbeck process, can one de-
fine By and B, in terms of some alternate definition of distance such that the Harnack inequality
holds?

The outline of our paper is straightforward. Section 2 considers infinite-dimensional Brown-
ian motion, Section 3 contains our results on infinite Ornstein—Uhlenbeck processes, while our
Harnack inequality for operators of Hormander form appears in Section 4.

We use the letter ¢ with or without subscripts for finite positive constants whose exact value
is unimportant and which may change from place to place.

2. Brownian motion

We first prove a proposition that contains the key idea. Let B™ (x, r) = {y e R": |x —y| < r},
where [x —y| = Q1 i — yi| DV

Proposition 2.1. Let K > 0. For all n sufficiently large, there exists a function h, which is non-
negative and harmonic on its domain B™(0, 1) and points Xy, 2, € B™(0, 1 /2) such that

I (xn)
Proof. Let G, (x, y) = |x — y|>™", a constant multiple of the Newtonian potential density on R”.
Lete; =(1,0,...,0). If we set h,(x) = G,(x, e1), then it is well known that /4, is harmonic in
R™\ {0}.

Let x, =0 and z,, = %el. Both are in B™ (0, 1/2) and

h(zn) _ (3/4)°7"
hy (xy) I

> K

if n is sufficiently large. O

Next we embed the above finite-dimensional example into the framework of infinite-
dimensional Brownian motion.
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Let (W, H, ) be an abstract Wiener space, where W is a separable Banach space, H is a
Hilbert space, and p is a Gaussian measure. For background about abstract Wiener spaces, see
[10] or [22]. We use || - ||z and || - ||w for the norms on H and W, respectively. We denote the
inner product on H by (-, -)g.

The classical example of an abstract Wiener space has W equal to the continuous functions
on [0, 1] that are 0 at 0 and has H equal to the functions in W that are absolutely continuous
and whose derivatives are square integrable. Another example that perhaps better illustrates what
follows is to let H be the set of sequences (x1, x2, ...) such that Zi xi2 < oo and let W be the set
of sequences such that ) Al.zxiz < 00, where {A;} is a fixed sequence with ) _; k? < 00.

Let H, be the set of h € H such that (-, h)y € H* extends to a continuous linear functional
on W. Here H* is the dual space of H, and is, of course, isomorphic to H. (We will continue to
denote the continuous extension of (-, h)g to W by (-, h)p.)

Next suppose that P : H — H is a finite rank orthogonal projection such that PH C H,. Let
{ej}’}.=1 be an orthonormal basis for PH and £; = (-,e;)y € W*. Then we may extend P to a
unique continuous operator from W — H (still denoted by P) by letting

n

n
pw;:Z<w,ej>Hej=sz(w)ej for all w € W. 2.1)
j=1 j=1

For more details on these projections see [14].

Let Proj(W) denote the collection of finite rank projections on W such that PW C H, and
P|p : H— H is an orthogonal projection, i.e. P has the form given in (2.1). As usual a function
f W — R is a (smooth) cylinder function if it may be written as f = F o P for some P €
Proj(W) and some (smooth) function F : R” — R, where n is the rank of P. For example, let
{en},fo:1 be an orthonormal basis of H such that e, € H,, and H, be the span of {ef,...,e,}
identified with R". For each n, define P, € Proj(W) by

P,:W—>H,CH,CH

asin (2.1).

For t > 0 let ; be the rescaled measure i, (A) := s (A/+/t) with o = 8o. Then as was first
noted by Gross in [19, p. 135] there exists a stochastic process By, t > 0, with values in W which
is continuous a.s. in ¢ with respect to the norm topology on W, has independent increments, and
for s <t has B; — By distributed as u;_g, with Bg = 0 a.s. B, is called standard Brownian motion
on (W, ).

Let B(W) be the Borel o-algebra on W. If we set u;(x, A) := u;(x — A), for A € B(W), then
it is well known that {u;} forms a family of Markov transition kernels, and we may thus view
(B, P¥) as a strong Markov process with state space W, where P* is the law of x + B. We do
not need this fact in what follows, but want to point out that B, (¢) := P,B(t) e P,HCH CW
give a natural approximation to B(t) as is pointed out in [14, Proposition 4.6].

We denote the open ball in W of radius r centered at x € W by B(x, r) and its boundary by
S (x). The first exit time of B; from B(0, r) will be denoted by 7,. By [19, Remark 3.3] the exit
time 7, 1s finite a.s.

A set E is open in the fine topology if for each x € E there exists a Borel set E, C E such
that P(og, > 0) =1, where o, is the first exit from E.
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Let f be a locally bounded, Borel measurable, finely continuous, real-valued function f
whose domain is an open set in W. Then f is harmonic if

J) = / Jx+y)m,(dy) (2.2)

S (0)

for any r such that the closure of B(x, r) is contained in the domain of f, where

,(dy) =P(B;, €dy).

Let f be a real-valued function on W. We can consider F'(h) = f(x + h) as a function on H.
If F has the Fréchet derivative at 0, we say that f is H-differentiable. Similarly we can define
the second H -derivative D?, and finally

Af(x):=tr D? f(x)

whenever D? f (x) exists and of trace class.
The following properties can be found in [16, Theorems 1, 2, 3].

Theorem 2.2. Let (W, H, i1) be an abstract Wiener space.

(1) A harmonic function on W is infinitely H -differentiable. The second derivative of a harmonic
function at each point of its domain is a Hilbert—Schmidt operator.

(2) If a harmonic function on W satisfies a uniform Lipschitz condition in a neighborhood of a
point x, then the Laplacian of u exists at x and (Au)(x) = 0.

Remark 2.3. So far the theory of harmonic functions in infinite dimensions may not seem that
different from the finite-dimensional case. There are, however, striking differences. For example,
Goodman [16, Proposition 4] shows there exists a harmonic function that is not continuous with
respect to the topology of W. In view of the previous theorem, however, it is smooth with respect
to the topology of H.

Let (W, H, i) be an abstract Wiener space. Denote by G, (x, z) the function on R" x R”
defined by G, (x,z) = |x — z|*~". Consider P, € Proj(W) as defined by (2.1), and define the
cylinder function g,(w) := G, (P,w, P,z) forany w € W and z = e;.

Proposition 2.4. The function g, is harmonic on W away from the set {w € W: P,w =e} =
{fweW: e (w)=1}

Proof. We need to check that g, is locally bounded, Borel measurable, finely continuous, and
(2.2) holds with f replaced by g, for all » > 0 whenever the closure of B, (x) is contained in the
domain of g,. One can show that g, is locally bounded, Borel measurable, and finely continuous
similarly to [16, p. 455].
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Now we check the last part. Suppose x ¢ {w € W: P,w =ey},

f gn(x + y)m (dy) = / Gno Py(x + y)mr(dy)
Sr(0) Sr(0)
=E"(G, o Py(By,))
=E*(Gp o Py(PyBy,)).
Note that P, B; is a martingale, and 7, is a stopping time, and we would like to use the optional
stopping time theorem. We need to point out here that e; € H, C H and therefore P,e; = e;.

So if we choose r < 1/2|le1||w=, then e; ¢ P, B(0, r). Indeed, if there is a w € B(0, r) such that
P,w =e1, then e;(w) = (w, e;) = 1. But

ler(w)| < lletllw=llwllw < rlleillws < 3

which is a contradiction. Thus G,, is harmonic in P, B(0, r) C P, H = R" and therefore
/ gn(x + )7, (dy) = Gp(Pyx) = gn(x). O
Sr(0)

Our main theorem of this section is now simple.

Theorem 2.5. For each n there exist functions g, that are non-negative and harmonic in the ball
of radius 1 about 0 with respect to the norm of W and points x, 7 in the ball of radius 1/2 about
0 with respect to the norm of H such that

&n(2)
%
gn(x)

as n — oo. In particular, the Harnack inequality fails.

Proof. We let g, be as above and x =0 and z = %el for all n. Our result follows by combining
Propositions 2.1 and 2.4. O

3. Ornstein—Uhlenbeck process

Let H be a separable Hilbert space with inner product (-, -) and corresponding norm | - |.
Define

I £llo := sup| £ (x)].

xeH

Recall (see [13]) that for an arbitrary positive trace class operator Q on H and a € H there
exists a unique measure N, o on B(H) such that

/e”h’x)Na,Q(dx) = ei<a’h>_%<Qh’h>, heH.
H
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We call such N, ¢(dx) a Gaussian measure with mean a and covariance Q. It is easy to check
that

/‘xNa,Q(dx) =a,

H
[ v = aPNootn =Tr0.
H
/(X—a,)’><x—a,Z>Na,Q(dx)=(anZ>7 and

H

dNp.g (dy) = ¢~3107 P@=b)P+(072(=a), 072 (b-a))
dNa’ Q

We consider the Ornstein—Uhlenbeck process in a separable Hilbert space H. The process in
question is a solution to the stochastic differential equation

dZ, =—AZ,dt + Q'?aw,, Zy=x, (3.1

where A is the generator of a strongly continuous semigroup =4’ on H, W is a cylindrical

Wiener process on H, and Q : H — H is a positive bounded operator. The solution to (3.1) is
given by

t
Z¥=e Ay 4 / e A= o2 qw.
0
The corresponding transition probability is defined as usual by (P; f)(x) =Ef(Z}), f € Bp(H),

where B, (H) are the bounded Borel measurable functions on H. It is known that the law of Z;
is a Gaussian measure centered at e =4’ x with covariance

t
0, = /e—A(t—s) Q=4 =9 g
0
which we called N,-:4, ¢, (dy). Note that for the corresponding parabolic equation in H to be
well-posed we need a basic assumption on Q; to be non-negative and trace-class for all + > 0

[13, p. 99].
We assume the controllability condition

e A(H)c 0}*(H) forallt>0 (3.2)

holds. As is described in [13, p. 104], under the condition (3.2) the stochastic differential equation
in question has a classical solution. We define

A= 0 Pe A 1>, (3.3)
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where Q,_I/ 2 is the pseudo-inverse of Q,1 /2, By the closed graph theorem we see that A; is a
bounded operator in H for all ¢ > 0.
Suppose Q = I, the identity operator, and A is a self-adjoint invertible operator on H, then

t t

" 1
0= fe_SAe_SA xds =/e_ZSA ds = EA_l(I —e_ZtA), t

0 0

WV

0.

If in addition we assume that A~ is trace-class, then there is an orthonormal basis {en}o2 of H
and the corresponding eigenvalues a, such that

0
Ae, = ape,, a, >0, a, 1 o0, E an_1<oo.
n=1

Then Q; is diagonal in the orthonormal basis {e, }°° ;:

1(e* —1)
Qren = 2ta,e?tan
Then Q; is trace class with
x 2ta x -1
t(etn —1) 1 TrA
TrQ; = ——— < = < 0.
O Z 2ta, el Z 2a, B
n—= n=1
Now we see that
2tay
Avey =

YN
and so |A;x| < |x|/+/t. This proves the following proposition.

Proposition 3.1. Assume that Q = I and A~ is trace-class. Then the operator Q; is a trace-
class operator on H and || A;|| < 1/4/1.

Using the properties of Gaussian measures, we see that the Ornstein—Uhlenbeck semigroup
can be described by the following Mehler formula

(P, f)(x) = / f(z+e"4x)No, g, (d2). (3.4)
H
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3.1. Modulus of continuity for harmonic functions
We establish an a priori modulus of continuity for harmonic functions.

Lemma 3.2. Suppose (3.2) is satisfied. If f is a bounded Borel measurable function on H and
t > 0, there exists a constant c(t) not depending on f such that

[P f(x) = Pif| <cllfllolx =yl, x,y€H. (3.5)

Moreover, for any u € H,

1/2

Dy P f(x) < (P f2(x)) "Il Agu

Proof. Consider Ny ¢, (dz), a centered Gaussian measure with covariance Q;. By the Cameron—
Martin theorem the transition probability

PF(dz) = Ny-iay g, (d2)

has a density with respect to Ny, o, (dz) given by

_ Neay o,(dz) Y-
Ji(x,z2) = No.o, (d2) _exp<(A,x, o, z) — 2|A,x| ) (3.6)
Thus
(P, f)(x) = / Jy(x.2) £ (2)No.o, (d2). (3.7)
H

Now we can use (3.7) to estimate the derivative D, P; f for any u € H, by

DuPyf(x) = f (A, 072 (2 — A1) £(2) Iy (x, 2)No, g, (d2)
H

= /(A,u, 0, ') f(z+ e Mx)No. g, (d2)

H

12
< (P,fz(x))l/2</|(/ltu, 0, '?2) No.o, (dz))
H

= (P f2()) 21 A%

Note that A; is bounded, therefore for bounded measurable functions f we see that P; f is
uniformly Lipschitz, and therefore strong Feller. O

Assumption 3.3. We now suppose Q = I and that A is diagonal in an orthonormal basis {e,,}>> |
of H with eigenvalues a, being a sequence of positive numbers. Moreover, we assume that
an/n?P — oo for some p > 3.
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Note that under this assumption A~! is trace-class for p > 3, and therefore by Proposition 3.1
the operator Q; is trace-class as well. We need the following lemma.

Lemma 3.4. Suppose X; is an Ornstein—Uhlenbeck process with Q and A satisfying Assump-
tion 3.3. Let r > q > 0 and € > 0. Then there exists to such that

IP’x(sup | Xs] >r) <&, x€B(0,q).

s<lo

Proof. We first consider the nth component of X. Taking the stopping time t identically equal
to tp, the main theorem of [18, Theorem 2.5] tells us that

c/log(1 + aut
Esup‘Xﬂé g( nO).
s<to A/ An

Then by Chebyshev’s inequality,

(3.8)

) < cy/log(1 + a,ty)

P(sup‘Xﬂ}dﬂ iy
n n

s<ty

for any positive real number d,,.

Choose § > O small sothat (p—1)/2 > 146. Taked, = C(r — q)n_l/z_‘s, where C is chosen
so that C2 2,3021 n~ 1720 = 1. Then P(sups<t0 |X?| > dy) is summable in n, and if we choose ng
large enough,

e}

> P(sup|Xy|>dy) <e/2,

n=n s<Uo

By taking 7y smaller if necessary, we then have

o0
ZIP( sup|X?‘ 2dn> < e.

n=1 S0
Suppose |x| < g and we start the process at x. By symmetry, we may assume each coordinate
of x is non-negative. Since

| Xs| < |1 Xs — x4 [x],

we observe that in order for the process to exit the ball B(0, r) before time #;, for some coordinate
n we must have | X7 | increasing by at least d,,. The probability of this happening is largest when
x, = 0. But the probability that for some n we have | XY | increasing by at least d,, in time 7 is
bounded by ¢. O
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Theorem 3.5. Suppose X; is an Ornstein—Uhlenbeck process with Q and A satisfying Assump-
tion 3.3. If h is a bounded harmonic function in the ball B(0, 1), there is a constant ¢ such that

|[h(x) = h(y)| <cllhllolx = yl,  x,y € B(,1/2). (3.9)

Proof. Let ¢ > 0 and let 7 be the exit time from B(0, 1). By Lemma 3.4 we can choose #j such
that

P'(r <19) <&, x € B(0,1/2).
If A 1s harmonic in B(0, 1) and x, y € B(0, 1/2),
h(x) =E*h(X:) =E*[h(Xo); T < 10] + E*[A(X0); T > 10].
The first term is bounded by ||4]|pe. By the Markov property the second term is equal to
E¥[E*0h(Xo); T > 1] = E¥[A(Xy); T > 19),

which differs from P; s (x) by at most ||i|oe. We have a similar estimate for 4 (y). Therefore by
Lemma 3.2,

|7(x) = h(y)| < |Piyh(x) = Ph(y)| +4lkllos < c(to)|x — ylllkllo + 4l /llos-
This proves the uniform modulus of continuity. O

Remark 3.6. We remark that the constant ¢ in the statement of Theorem 3.5 depends on r.
Moreover, there does not exist a constant ¢ independent of zo such that (3.9) holds for x, y €
B(zo,r/2) when h is harmonic in B(zg, r). It is not hard to see that this is the case even for the
two-dimensional Ornstein—Uhlenbeck process.

3.2. Counterexample to the Harnack inequality

As we have seen, the transition probabilities for the Ornstein—Uhlenbeck process Z; are

P (dz) = N4y o,(d2).

Suppose now that Q = [ and A satisfy Assumption 3.3 with p = 1, but also that a, is an increas-
ing sequence with A~! being a trace-class operator on H. As examples of such a,, we can take
a, =n? for p > 1.

Denote by P, the orthogonal projection on H,, := Span{ey, ..., e,}. Then

P/ (dPyz) := pa(t, Pax, Py2)dz,

where

n

1 2a; 172 2a '(Z' _ e—a(,'tx ,)2
Pn(f,PnX,Pnz):H( _f) exp(_ j ; )

E 1 — e—Zajt 2(1 — e—Zajt)

j=1
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We would like to consider the Green function £, with pole at z,, = 4e, for Z; killed when Zt1
exceeds 6 in absolute value. We use a killed process to insure transience. We will show that

hn(xn)
hy (0)

— OO

as n — oo, where x,, = ¢,. The key is to estimate the Green function

o0

hn(x,2) ::/ﬁn(t, Pyx, P,z)dt,
0

where p, is the density for the killed process. We will prove an upper estimate on 4, (0, z,) and
a lower estimate on A, (x,,, Z,).
First we need the following lemma.

Lemma 3.7. Let a > 0 and let Y; be a one-dimensional Ornstein—Uhlenbeck process that solves
the stochastic differential equation

dYt :dBt —ClYt dt,

where By is a one-dimensional Brownian motion and a > 0. Let Y be Y killed on first exiting
[—6,6], letq(t, x, y) be the transition densities for Y, and let q(t, x, y) be the transition densities
forY.

(1) There exist constants ¢ and B such that
G(1,0,0)<ce P, r>1.

(2) We have

q(t,0,0)
—
q(t,0,0)

ast— 0.

. . S . 2 .
Proof. The transition densities of ¥ with respect to the measure ¢ ¥ /2 dx are symmetric and by
Mercer’s theorem can be written in the form

o0

> e Pl (x)gi(y)

i=1

with 0 < 81 < B2 < B3 < ---. Here the B; are the eigenvalues and the ¢; are the corresponding
eigenfunctions for the Sturm-Liouville problem

1
Lf(x)= Ef”(x) —af'(x)=—Bf(x),
f(=6) = f(6)=0.

See [6, Chapter IV, Section 5] for details. (1) is now immediate.
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Let U be the first exit of ¥ from [—6, 6]. Using the strong Markov property at U, we have the
well-known formula

t
q(t,0,0)=4(t,0,0) +/E0[q(z‘ —5,Y,0); U eds].
0

Using symmetry, this leads to

t
q(t,0,0) =Gz, 0, O)—i—/q(t —5,6,0P°(U eds). (3.10)
0

Now by the explicit formula for ¢ (r, x, y), we see that g(r — s, 6,0) is bounded in s and ¢ and
so the second term on the right-hand side of (3.10) is bounded by a constant times PY(U < 1),
which tends to 0 as ¢t — 0. On the other hand, ¢(¢, 0,0) ~ Qrt) 1% = oo as t — 0. (2) now
follows by dividing both sides of (3.10) by ¢(#,0,0). O

We now proceed to an upper estimate for the Green function.

Proposition 3.8. There are constants K > 0 and ¢ > 0 such that

h,(0,2) < Kc”a:,’/ze_m“".
Proof. First for x =0 and z = 4¢, we have
n 1/2
pn(t, PnO,PnZ):l_[l<Em) CXp(—m)'
J:
Step 1. Let t be in the interval 0 < ¢ < ﬁ < 1. Then
n 1/2 2
(=24 )" < (LY
LI\ 27 | — 7245t S\ ’
j=1
where we used the fact that g, is an increasing sequence. For any ¢t we have

b

16a, _ 8
- 2 —
1 —e2at =

1

therefore for 0 <7 < 5 -,
An

pn(t,0,4ey,) <€_8/t(_> .
tm
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The right-hand side has its maximum at 1 which is larger than 2 for all large enough n

by our assumptions on Q and A. Thus we can estimate the right- -hand side by its value at the

N
endpoint 3

pn(t,0,4en) <6_16an (ﬂ) ) O<t<

b a,

1

Step 2. Let t be in the interval 3 <1< 1. Denote by ng the index for which <t <

Zano 1 261,,0 :
As before
ﬁ 1 2q ‘/2e 16a,
— e X —
) 27 1 — e—Zajt p 1— e—Zanl
J:
- 1 \"0/? ﬁ 1 2a; 172 16a,
< | — S exp| ———
tw it 21 1 — e 24t P 1 — e—2ant

N

2 n 1/2
e~ 16an 1 ! 1_[ 124 /.
tm ) 21 1 — e 24t
J=no+1

There is constant ¢ independent of »n such that

1 26!]' .
Eﬁéca]<can, j=no+1,...,n

Since 1/t < 2a,, there is a constant ¢ such that

n 1/2

H 1 2a; 16a, n_n/2 —l6a,
(271 1— e—2a1f> eXp(_l — e—z""t) seae

Jj=1

Step 3. For t > 1 the transition density of the killed process can be estimated by

" 1 2a; 172 164, _pt
1_[ g 1 — e—Zajt CXpl — 1 — e—Zant ¢
j=2

for some B > 0, using Lemma 3.7(1). Similarly to Step 2,

p(t O 46) n 1 (n 1)/2 —16an ,32‘
n

for some constant ¢. Thus we have that there is a constant ¢ > 0 such that

c”a,'f/2 —16a, O0<rt<l,

p(t,0,4de,) <
Pl 2 {c a"/2 —16an =Pt | ¢,

Integrating over ¢ from O to oo yields the result. O
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‘We now obtain the lower bound for the Green function.

Proposition 3.9. Let x = e;,. There are constants M > 0, ¢ > 0 and ¢ > 0 such that

ea

_ 2e”

h,(x,z) > Mc"e l6"”aZ/ —_—
an

Proof. For x = ¢, and z = 4¢,, we have

n 1/2 —apt\2
1 ZClJ an(4‘_e " )
pn(t, Pyx, Py2) = H(E m) exp(— (1 —e2anty )

Observe that

2 1 — e 24t “\ 27t ’

J=1

Consider ¢ in the interval [1/a,,2/a,]. When n is large, 2/a, < 1. Set v = e ', so that v €
[1/e?,1/e] when ¢ € [1/ay, 2/a,]. Note that

(4—v)?

16 —
1 — 2

>0

forv e [0,8/17] D [1/62, 1/e], so there is a constant € > 0 such that

Thus

an(4 — e—ant)2 —16a,+¢ay
exp(— (1 — o—2ant) Ze .

We now apply Lemma 3.7(2) and obtain

2/ay
hn(X,Z)>/ﬁn(t7an’PnZ)dt
1/an
2/a,
€—1am+fancg‘/°t—n/2dt
1/an

Sy
— 21 1—-272
—0 16an+sancga’71l/ <n7>
5—1

WV
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Thus we have

ea
. 2e n

hy,(x,z) > Mc"e 16""613/ _ O
ay

Theorem 3.10. Let K > 0. There exist functions h, harmonic and non-negative on B(0,4) and
points x, in B(0,2) such that

hn(xn)
hy (0)

> K

for all n sufficiently large. Thus the Harnack inequality does not hold for the Ornstein—Uhlenbeck
process.

Proof. The embedding of the finite-dimensional functions /4, into the Hilbert space framework
is done similarly to the proof of Theorem 2.5, but is simpler here as there is no Banach space
W to worry about. We leave the details to the reader. The theorem then follows by combining
Propositions 3.8 and 3.9. O

3.3. Coupling

It is commonly thought that coupling and the Harnack inequality have close connections.
Therefore it is interesting that there are infinite-dimensional Ornstein—Uhlenbeck processes that
couple even though they do not satisfy a Harnack inequality.

We now consider the infinite-dimensional Ornstein—Uhlenbeck defined as in the previous sub-
section, but with a, = n” and p = 6. We have the following theorem. Given a process X, let
tx(r) =inf{zt: | X;| > r}.

Theorem 3.11. Let xg, yo € B(0,1). We can construct two infinite-dimensional Ornstein—
Uhlenbeck processes X; and Y; such that Xo = xo a.s., Yo = yo a.s., and if P*0-)0 is the joint
law of the pair (X, Y), then

PO (Te < tx(2) ATy (2)) > 0,
where Tc = inf{t: X; =Y;}.

Proof. Let WJX ), W}/ (), j =1,2, ..., all be independent one-dimensional Brownian motions.
Let

dX] =dWX(t) —a;X] dt, X} =x],.

and the same for Y,j, where we replace deX by dW]Y and xo by yo. Let T/ = inf{r: X/(t) =
Y/ (t)}. We define

Yi@), t< TCj;

r'o=1" .
Xi(t), t>T..
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Let P* be the law of X when starting at x and similarly for PY. Define P* {0 be the law of
X/ (t) started at x’/ and so on. Use Lemma 3.4 to choose 7y small such that

sup Px’y(tX(S/4) Aty(5/4) < to) < 1/4.
x,yeB(0,1)

Our first step is to show

o0
> PYY(TE > 1) < oo (3.11)
j=1

The law of X tJO P under IP’xj is that of a normal random variable with mean e~%/0/2xJ and

variance (1 — e_“f"‘)/z)/2aj. If A;.( is the event where X/ (fp/2) is not in [—a]._1/4, aj_l/4], then

standard estimates using the Gaussian density show that ) j P (Ai.( ) i1s summable. The same
holds if we replace X by Y.
Suppose |x;.|, |y;.| < aj_l/4. Let

t
Z/ ()= (x =)+ (W@ —w/ 1) —ajfzj(s)ds. (3.12)
0

Now Z/ is again a one-dimensional Ornstein—Uhlenbeck process, but with the Brownian motion
replaced by +/2 times a Brownian motion. Using (3.12) the probability that Z, does not hit 0
before time 19/2 is less than or equal to the probability that +/2 times a Brownian motion does
not hit 0 before time #y/2. This latter probability is less than or equal to

clx; = Yil/Wi/2 < 2ea; " Vo2,

which is summable in ;.

Let B; be the event (TCj > ty/2). We can therefore conclude that if |x}|, | y;.l < aj_l/ 4, then

P*i*Y] (B,) is summable in j.
Now use the Markov property at time #y/2 on the event (Ag()c N (A{/)C to obtain
Ly j J\¢ Jj\¢
P (T > 10, (Ax)" N (Ay)")
= %7 Yi [PXi (to/z),Yj(to/z)(Té' > 10/2); (A;'()C N (A{V)C]

(s P 10/2)) P ((44) 0 (4)).

/ / —1/4
Ile,lyjléaj

Therefore

PO (74 > i (44 1 (A1)
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is summable in j. Since we already know that [P*/-Yi (Ag() and PY-Yi (A{,) are summable in j,
we conclude that (3.11) holds.
Now choose jj such that

0 PYY(TE = 10) < 1/4.
j=jot1

Choose ¢ such that (1 + ¢)/0 < 5/4. We will show that there exists a constant ¢ such that for
each j < jo we have

P (T < tx(1+6) Aty(1+6)) > c1. (3.13)

We know that with probability at least 1/2, for each j > jy each pair (X/(¢), Y/ (t)) couples
before (X, Y) exits B(0,5/4). Once we have (3.13), we know that with probability at least cq,
the pair (X7 (t), Y/ (¢)) couples before exiting [—1 — &, 1 + ¢] for j < jo. Hence, using indepen-
dence, with probability at least c{o we have that for all j < jo, each pair (X/(¢), Y/ (¢)) couples
before either X/ (¢) or Y/ (¢) exits the interval [—1 — &, 1 + ¢]. Using the independence again,
we have coupling with probability at least c{o /2 of X and Y before either exits the ball of radius
V2(5/4) < 2.

To show (3.13), on the interval [—1 — ¢, 1 4 ¢], the drift term of the Ornstein—Uhlenbeck pro-
cess 1s bounded, so by using the Girsanov theorem, it suffices to show with positive probability
W]X hits W]Y before either exits [—1 — &, 1 + ¢]. The pair (WJX (1), W]Y (1)) 1s a two-dimensional

Brownian motion started inside the square [—1, 1]> and we want to show that it hits the diagonal
{y = x} before exiting the square [—1 — &, 1 4+ £]> with positive probability. This follows from
the support theorem for Brownian motion. See, e.g., [5, Theorem 1.6.6]. O

4. Operators in Hormander form

We let C (H) denote the set of bounded continuous functions on H with the supremum norm
and C} (H) the space of n times continuously Fréchet differentiable functions with all derivatives

up to order n being bounded. Cl?’ ! (H) will be the space of all Lipschitz continuous functions with

1 llo.1 = Sup|f(x)| + sup M

XFEy lx =yl

Finally, C;’l(H ) will be the space of Fréchet differentiable functions f with continuous and
bounded derivatives such that Df is Lipschitz continuous; we use the norm

D — D *
1l = 1 fllos + sup (210 = DI Olae
x#y lx — vl

Suppose H is a separable Hilbert space, and {e, };> , is an orthonormal basis in H. We set

(0 )(x) := (De; f)(x).
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4.1. Stochastic differential equation

Let m > 1 and suppose Al ..., A™ are bounded maps from H to H. Let A := (Al, LA™,
‘We assume that

af(x):=(A¥(x),e;)> 0 foranyx e H, 4.1)

and that we have a; € C;’I(H) with
2 - 2
”Ak Hl,l = Z“azk ”1,1 < 0. (4.2)
i=1

For any f € Cg (H) we define

o0

(Vae )G 1= > a (0) (@ ) (),

i=1

(Vaf)(x) = ((Va1 )X, .., (Vam ().

Note that

(Ve N[ < <Z|af<x)|2) (Z\(aifxx)\z)
i=1 i=1

<) A4} | H @,

so V4« f and V4 f are well defined for f € Cg (H).

Fix a probability space (£2, F, P) with a filtration F;, t > 0, satisfying the usual conditions,
that is, Fo contains all null sets in F, and F; = F;4 = (),., F; for all r € [0, T]. Suppose
W, =W/, ..., W) is a Wiener process on H™ with covariance operator Q = o, ..., oM.
We assume that each Qk, k=1, ..., mis a non-negative trace-class operator on H such that

(0]
Ofei=2fe;, withaf >0 and Y AF=2 k=1.....m.

i=1

We consider a stochastic differential equation such that the infinitesimal generator of the so-
lution is L = Y7 (V 46)?.
Define B(x) := (B'(x), ..., B™(x)), x € H as a linear operator from H to H" by

(B¥(x)h,e;):=af(x), foranyheH, k=1,...,m,

and F: H— H™ by

(F().ei) =Y ab)ojal(x), k=1.....m.
j=1



3726 R.F. Bass, M. Gordina / Journal of Functional Analysis 263 (2012) 3707-3740

We can also re-write B and F as

B()(h1, ... hw) = A(x), forany (hi,..., hm) e H",

F(x) = <Z VA1al-1(x)e,~, s ZVAmal'-"(x)ei)
i=1

i=1
Theorem 4.1.

(1) Suppose Xq is an H™-valued random variable. Then the stochastic differential equation

t t
X,=X0+/B(Xs)dWsT—|—/F(Xs)ds,
0 0

has a unique solution (up to a.s. equivalence) among the processes satisfying

T
IP’(/ X, |5m dt < oo) =1.
0

(2) Ifin addition X € L*(2, Fo, P), then there is a constant Cy > 0 such that
E|X,|* < CrE|Xol.

(3) Suppose f € CH(H). Then v(t, x) :=E(f(X})) = P f(x) is in C,’*(H) and is the unique
solution to the following parabolic equation

ov(t,x)=Lv, t>0 xeH",

v(0,x) = f(x),
where L is the operator
(LA)(x) =) (Ve Vae f)(x)

k=1

=YY ai(x)o; <Za§‘(x>a,-f(x)>
k=1 j=1 i=1

=YY afdsl f+ ) D di(0)djaf (03 f(x), xeH.
k=1i,j=1 k=1i,j=1

Proof. For simplicity of notation we take m = 1, and write A! for A with corresponding func-
tions a. The proof for the general case is very similar.
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In this case B(x), x € H, is a linear operator on H defined by

(B(x)h, e,') :=aj(x), foranyhe H,
and F: H — H by

o

<F(x), e,-) = Zaj (x)dja;(x),

j=1

or equivalently B(x)ej = A(x), F(x) =) i aj(x)djai(x)e;.
According to [12, Theorem 7.4], for this stochastic differential equation to have a unique mild
solution it is enough to check that

(a) B(x)(:) is a measurable map from H to the space Lg of Hilbert—Schmidt operators from
Q'2H to H;

(b) I1B(x) =Bl < Clx =yl x,y € H;

© IB@IIFy <K+ 1x2), x € H;

(d) Fis Llpschltz continuous on H and |F(x)| < L(1+ |x|?), x € H.

Let {e j} | be an orthonormal basis of H. Then {Al/ e J}"o ; 1s an orthonormal basis of
Q'/2H. First observe that since A is bounded we have

o0

[B)[ig= D [[BGR ;. ei)

i,j=1

2

9

\A(x)}zzxj =2|Aw)|?

j=1

and similarly
[BG) = B g <Al = y1.
The last estimate implies

HB(x)HLg <max{C, |BO)|}(1+ |x])

which proves (a) and (c). We also have

|F(x) = FO)|? F(x)—F(y), e

2
o) 2
Z(Za,(x)a ai(x) —a;(y)o; al(y)>
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o0 o0 2
< 2Z(Z(aj(x) - a,-(y>)a,-ai<x))
i=1

00 2
Z(Za](y) 3 jai(x) — 8~a,-(y)))

<2(Z(61](X)_aj()7) )( 8 ai(x))2>
i,j= l

j=1
2(2 a;(y)) )(Z 8ja;(x) — a-ai<y>)2).
j=1 =1

Now we can use our assumptions on A to see that

Mg

0
(a0 —a;()° <Y Nail? b — yP =141 1x — yI%,
1 j=1

~.
I

la; | < IAI3

WK

~.
I
—_

o0

8;a:0|> =Y |Da; ()| <1141}, and
1 i=l1

_,Mg

J

(8jai(x) — djai ()’ ZlDal (x) = Da; (y)|”

1 i=1

N:M8

)]

0

2 2 2 2

<Y llail? e =y < NAIR 1 — I
i=1

which gives Lipschitz continuity for F'. Finally the estimate for | F'(x)| follows from the Lipschitz
continuity of F' together with boundedness of A in a similar fashion to what we did for B.

Assertion (2) follows directly from [12, Theorem 9.1]. Assertion (3) follows from [12, Theo-
rem 9.16] which says that P; f is the solution to the parabolic type equation with operator

Lv =~ true (B(x) Q"% B(x)0'?) + (vy, F(x))

N | =

12 Vi (B(x)Q'2en, B(x)Q'2ey) + <vx,2a,-<x)a,~ai<x>e,~>

i,j

[\.)

= %2_: Uxx(Zal(x)ela Zaj(x)e]> + ZGJ(X)G a;(x)(vy, e;)

i=1 j=1
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= Z a; (X)aj (X)vex(eir €)) + Za, ()djai (x) (v, €;)

i,J

Z (x)aj(x)a v—l—Za](x)a a; (x)o;v. O

i,J
Remark 4.2. Denote

LYf:=Vif= ) af(x)ad (x)32f+zak(x)a ak (x)d; f,

i,j=1 iJ

where k =1, ..., m. Suppose f € Cg(H). Then

(L f)o) < Zla (x>\Z|a Fol

i,j=1 i,j=1
+Z\a @) Z Za ak (x)o; f(x)
j=1li=1
k|4 2 k2 k 2 2
< A4 A3+ AR Z\aja,- )| Z\aifu)\

i,j=1 i=1
4
<2[ AMT 1715,
and therefore L¥ is well defined on C,f(H), and sois L = ZZ;I Ly.

4.2. Curvature-dimension inequality

We can write
=Y Li=)Y Vi
k=1 k=1

Forany f, g € Cg(H) we define

1

I'(f,8) = E(L(fg) — fL(g) — gL(f)),
1
I (f) = (F(f ) =T Lf).
Theorem 4.3. For any f, g € Cl%(H),

T(f,9) =) (Vae/)(Ve8),

k=1

(4.3)

(4.4)

4.5)
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m
D)= IOy, (4.6)
k=1
where
rO) = (Va )
Proof. Note that for functions f, g € Cl%(H ),

Li(fg) = fLi(g) + gLi(f) + 2(2 a; d; f) (Za’jajg)

i J

= L) + L)+ 2T (Vi) @7)
and therefore
LU0 = FLG6) + 8L +2 3 (T NV i) @8)
k=1
Hence
FU8) = (L0 = 116 = 6L0P) = YT DT e,
k=1

and in particular I'(f) :=I'(f, f) = 221:1 (V 4k f)2. Before we find I5(f) we need the follow-
ing calculation:

[Lk, 0i]:=(Lx0; — 0;Ly) f
= (d50jam)3;, f + ) abayd), f

jm
— 0 (Zaka Qyy, Oy f—i—Za]]‘a,];anm )
= —Z dia%0jay, + 5o} ’,; )omf —2) (aydiat)o3,, f. (4.9)
Use (4.9) to see that
Zaf([Lk,a,-]f):_Z<Z(a dia’0;al, + alahd]; fn))amf
i moNij
—2Z(afa£18ia§)8?mf
ijm

:—ZLka Om f — ZZaa 8a f

ijm
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—- St f_z;(lzagaia;)(zam )

== (Leay)dmf —2) (Varah)(Vaid; f). (4.10)
m J
Now we can deal with I5(f). We use (4.8) in the first line.
1 m
(F(f) S 2 L) = ZLk(Z(VAm )
k=1 k=1

= Y (VLT )+ IO ).

k,[=1
The second term in I5(f) is

m m

T LH =) (VaDVaLf) =Y (Va ) (VaLif).

=1 k,I=1

Thus
D) =Y Va ) ([Le Valf) + D Te(Va f).
k=1 k=1
By (4.7) we have
[Lk,vA,]szk(Za§. ) > d oL f
=1 j=1
=Y Li(ah)a; f+ ) aLid; f—l—ZZ V 4edh) (V 40; )
j=1 Jj=1 j=1
=) dio;Lif

J
=3 Li(a}) 8f+Za [Lk,a]f+22 V akd:) (V40 ).

j=1 j=1 j=1

We can use (4.10) to see that [Li, V]f =0fork,l=1,...,m. Thus (4.6) holds. O

Corollary 4.4. L satisfies the curvature-dimension inequality CD(0, m)

1
D(f) = %(Lf)z. (4.11)

Moreover, for m =1 we have I'>(f) = (Lf)z.
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Proof. Note that by the Cauchy—Schwarz inequality
LV f)= ViV f)F = — % = —(Lf)~
k; (Va1 f) k;( AV f) m(k; Akf> —(L/)

Therefore

- 1
D)2 ) (Vah(lle Valf) + — (L O

k,I=1

We need chain rules for the operators I" and I.

Proposition 4.5. Let W be a C*° function on R and suppose f is in the domain of L. Then

LY (f) =¥ ())Lf +¥"(N)T(f. ), (4.12)
r(w(f).g)=w"(HIf.g. 4.13)

D)) =" (N (TN + (W' () I
W (N NOT(L.T). (4.14)

Proof. Suppose ¥ € C®(R). Recall that we can write L as Lf = > Ly = Y 14 Vik 1
where V¢ f 1= 02, af‘ai /- It is clear that

V(P () =" (f)V i f. (4.15)
Then
VarVac (T () = Vae (' (O)Var [+ (Vg (Vge )

=" (Ve >+ (Ve (Vi )
=V'(Lrf+¥"(HTk(f),

which implies (4.12) by Theorem 4.3.
Now we can easily show (4.13). Indeed, using (4.15) we have

T (P (), 8) = (Var¥ () (Varg)
=V (Ve IV pr8) =¥ (T (. &)

In particular, (4.13) implies

r(w () =)’ r.



R.F. Bass, M. Gordina / Journal of Functional Analysis 263 (2012) 3707-3740 3733

Now we would like to prove (4.14). First, using (4.13) twice we see that

rwn)=')’ru. (4.16)

By (4.8) and (4.12)

LI () = 3 POL(W (D)) + 5 (' DVLEGD + T (D) T ()
— W (O DLOTS + (D) + 8 (") ()
F W DVLIG) + 20 (W DO T)).
Now use (4.8) and (4.14) repeatedly to obtain
P LU () = F(# (W (L) + T ()8 ()

= (W' (N)’T(f. L) + ¥ (O (HLHT(f)
+W (O T (L.T) +¥' (HE" (N

Note that we also used the fact that

I'(f,gh) =gI'(f,h) + hI'(f, h).
Combining these two calculations gives (4.14). O

Corollary 4.6. By (4.14) with ¥ (x) =logx, x > 0, and g > 0 we see that

2
(F(ﬁ)) _ I'(g. I'(g) n Fz(g). (4.17)

I>(logg) = . e

4.3. Li—Yau estimate

The following is the Li—Yau estimate in our context. In this proof we follow an argument
in [2], which they used to prove a finite-dimensional logarithmic Sobolev inequality for heat
kernel measures.

Theorem 4.7.

1
L(og P f) > 5 (4.18)

Proof. By (4.13) with ¥ (x) =logx,x >0, f >0,and 0 < s < ¢,

C(Prsf) =T (Pr—sf, Pr—s ) = (Pr—s f)*T'(log Pi_ f).
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Define for f > 0,

I'(P_g
0(5) = Py(Pres f T (10g Pr_y f)) = P, (M)

P f

Then with g := P;_; f and d;,¢ = —Lg we see that by (4.12) and (4.13),

(p’(s) = 0Oy (Ps(&))
8

PX<L<F(8)) _ 2. Le) | F(g;Lg)
3 3 8

P; (LF(g)g - F(g)L(é) +2r (F(g), é) — 2”2’ Le) + F(§3L8>

2r L 2I(I'(g), LI(g)—2I (g, Lg) TI'(g)L
:PS<F(g)<#__§)_ ( (2g) 9 L@ -2l Lg) (gg g)
2
=2Ps((F(g)) Il D

by (4.17). We use the curvature-dimension inequality (4.11) to obtain

/ 2 2
@ (s) = ZPs(g(Llogg) ). (4.19)
In particular, this means that ¢ is non-decreasing, and therefore

9(0)= P, fT (log P, f) < Pi(f I (log f)) = p(1).

Using the chain rule (4.13) we get

I'(Pf) I"'(f)
P,ff <Pt< ff )=P,(f1“(logf)).

This inequality together with (4.12) gives

P fI(og P f) =

I'(P f)

t

I"(f)

P fL(og P f)=LP f — >LPtf_Pz<T) =Pt(fL(10gf))-

Thus

P, fL(log P, f) > Pi(fL(log f)). (4.20)

We need more information about ¢ to complete the proof. Our expression for ¢’ can be rewritten
using the chain rule (4.12) as

1 Ia 2
(/’/(S)=Ps(g(Llogg)z):PS(g(Lg_%) )
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Note that since g > 0 we have

(o) - 22)
o (ol 12))"

2 P, (L _ I'(®)\y2
Ps(l(Lg—F(g)) )2( (Lg — =) |
g g Psg

SO

Since ¢(s) = PS(%), the last estimate becomes

(PsLg — ¢(s))*
Psg '

@'(s) =2

Now use the definition of g and the fact that L and P; commute to see that Psg = P; f, so we
have that for 0 <s <1,

(LPf =) _, (@) = LPif)?

/ )
v ) Pif P f

Thus for all s such that ¢’(s) > 0 we have

_%<___1___)>_3_>Q
o(s)—LP f P f

By (4.19) we know that ¢’(s) > 0, and by integrating this estimate from 0 to ¢, we obtain

1 B 1 >2t
e(O)—LPf @t)—LPf  Pf

That is,

0() — ¢ (0) _ o

> > 0.
(@) —LP f)@)—LPf) P f

Since ¢ is non-decreasing, the numerator on the left is non-negative. Since the right-hand side
of the estimate is positive, no matter what the sign of the denominator on the left, the following
estimate holds:

2t

—0(0) >
@(t) —¢(0) G

(p(0) — LP, f)(@(t) — LP: f).

Similarly to the proof of (4.20)
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wwy—Lﬂf=1Y?f)—Lﬂf=—ﬂfngﬂfx
o(t)—LP f=P, (%f)) — LP f=—P/(fL(og f)).
Finally we have
P fL(log P, f) > Pi(fL(og f))(1+2¢L(log P; f)). (4.21)

Now we are ready to prove (4.18). We only need to check (4.18) when L(log P; f) < 0. In this
case, by (4.20)

P,(fL(log f)) <0,
and therefore (4.21) implies
1+4+2tL(og P f) > 0. O
Corollary 4.8. For f > 0,
—0;(log P, f) < 2% — I'(log P; f).

Proof. By (4.12) and (4.16),

LP.f I'(P.f)

L(og P, f) =

Pf (PSP
AP
=~ Tog B, )
1
=3 (log P f) — Flog Pif) > —5-. O

2t

4.4. Distances

For the purposes of the next subsection we need to introduce several distances related to the
gradient V4. A natural distance as described in [1] is:

dix,y):= sup (f()—f(x), x,yeH.
{(f: r(H<L

We will need another distance which is better suited for the proof of the parabolic Harnack
inequality, and it will turn out that this distance is equal to the one we have just defined. First we
note that for any x € H there is a smooth path y4 : [0, 00) — H™ (possibly defined only on a
finite subinterval [0, T'] of R ) such that

va() = A(ya(n)), ya(0) =x. (4.22)
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This is equivalent to solving a system of ordinary differential equations, which gives y4 implic-
itly as the solution to

Using the assumption that a; > 0, we can determine y4 as a function of ¢.
An admissible component of x is defined as

Va(x) :={ya(s), where s € [0, T1, ¥a(s) = A(ya(s)), ya(0) =x}
as described by (4.22).

Example 4.9. Suppose a;(x) = c;. Then y is a straight line, and so V4 is a straight line through
x in the direction of (cy, ¢2, ...). In particular, if H = R2, and a;(x) = 1 and a»(x) =0, then V4
is a horizontal line through x.

Definition 4.10. Let x € H, and define

Ty, y € Va(x);

d , V) i=
arc (X, ¥) {-I—OO, y & Va(x),
where the path y4 is described by (4.22) with y4 (7)) = y.

Remark 4.11. Note that our assumptions on A are essential for the definition of the distance
function dyr as we use the ordinary differential equations (4.22) to find y4.

Theorem 4.12. For any x,y € H,

d(x,y) =darc(x,y).

Proof. Fix x € H. We will consider the case when dy..(x, y) = 0o or d(x, y) = oo later, so for
now we assume that both distances are finite.

Let y be any path connecting x and y with y (s) = y. Note that since dy..(x, y) < 0o, we have
y € Va(x). Then

N

dix,y)= sup (f)—f(x))= sup f(VfIy(z),)?(t)Mt- (4.23)
(F: MO (: rH<n

Choosing f4 such that V f4 = ﬁ, then

T (fa) =|Vafal> = (Vfa, A =1,

and therefore for the function fj4,
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T_V Ty
d(x,y) > fa(y) — falx) = /(WA, ya(t))dt = f Ldt =Ty = duge(x. y).
0 0
Again, by (4.23),
Ty
d(x,y)= sup /(VflyA(t), ya(t))dt
{f: r(HLL
0
Ty
. / (V Flyao va(y ) dr
{f: r(HLL
0
Ty Ty
= s [ ashaodi< [ 1dr=dusen). (4.24)
{f: r(HLL 0 0

Finally we want to show that both distances are infinite for the same y. Define a function

0, zeVix);

fn (@) ::{N, ¢ Va()

for some N. Note that I'( fy) = 0. Suppose darc(x, y) =00, so fy(y) = N. Then

dx,y) = fn(Qy)— fn(x)=N.

By taking N — oo we see that d(x, y) = +o0.

Next suppose that d(x, y) = co. Then there are functions fn with I'(fy) < 1 such that
IN(Y) — fn(x) = +oo as N — oo. Similarly to (4.24) (if we assume that dyc(x, y) < 00 to
find y4) we see that

+00 = ngnoo ING) = fa(x) < Ty =dac(x,y),
and therefore dy.(x,y) =+00. O
4.5. The parabolic Harnack inequality
Theorem 4.13. Suppose u is a positive solution to the heat equation
o:u=Lu, u,-)=f.
Then for any 0 < t; <t, < 1 and x, y in the same admissible component, say, V4 (x), we have
T? 1

[§)
1 t,x)—1 f,y) < —— + —log =,
ogu(ty, x) — logu(t, y) -1 2 0g ”

where Ty is defined in Definition 4.10.
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Proof. The proof is standard. Let u(z, x) := P; f (x) for a positive function f € Cl%(H ). Then by
Theorem 4.1, u is the solution to the heat equation

og=Lg, g0,)=F.

Denote g(t,x) :=logu(t,x). Let 1, >t >0, x,y € H. Since y € V4(x), we can find a
smooth path y4 : [0, Ty] — H™ such that y(0) =y, y(Tx) = x, and y(t) = A(y(¢)). De-
fine o : [0, T ] — [t1, 2] x H™ by o(s) := (12 — QT;“s, v (s)). Note that o (0) = (t2, y) and
o(T¢) = (t1, x). Then :

—_

g(t1,x) — g2, y) = g(c(0)) — g(o(Tv))

T
:/%g(a(s))ds
0
T,
-/ <<Vg, Va) - (”T ’ )atg(ﬁs))) ds
0 X
T, Ty T,

fh—1 1 (o —11)
S/VAfIyA(s)dS—/ F(g)-l-—/ ds

Tty — (1 — 11)s
0 0 0

by Corollary 4.8. Note that I"(g) = |Vag|?, so

h—1 T,
> g < —=—,
Tx 4(t2_t1)

Vaf —

where we used the elementary estimate ax — bx? < a®/4b for b > 0 with x = V4 g. Finally, we
have

(o)< 5 1 lig? g
,X) — s SV N — 108 —.
g g,y At — 1) > gm
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