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1 Introduction

We study spaces of holomorphic functions on infinite-dimensional Heisenberg-like
groups based on an abstract Wiener space as constructed in [7]. In particular, we
consider holomorphic functions which are square integrable with respect to a subel-
liptic heat kernel measure and prove a unitary equivalence between a subclass of these
functions and a certain completion of the universal enveloping algebra of the Cam-
eron–Martin Lie subalgebra. These results may be viewed as an analogue of the results
in [8] for degenerate heat kernel measures, or as an extension of the finite-dimensional
results in [10] to a special infinite-dimensional case. Perhaps more particularly, it is an
infinite-dimensional extension of [11] in a special case, as the Heisenberg-like groups
considered here are nilpotent. There are considerable differences from both cases in
techniques, as analytically our setting is very different from the elliptic case in [8],
and there are numerous subtle issues when dealing with infinite dimensions versus
the finite-dimensional nilpotent case in [11]. In particular, in the infinite-dimensional
setting, it is necessary to consider two different norms on the Lie algebra, one which
defines the space on which the functions live and one which controls the analysis. This
is directly analogous to the abstract Wiener space construction.

1.1 Background

We give a brief (incomplete) background of the development of the Taylor isomor-
phism to put our results into context. See the papers cited here and their bibliographies
for more complete references. Also, the paper [18] gives a very nice discussion and
extensive history of the theory.
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Subelliptic Taylor isomorphism 381

Let us first recall the classical result. Let f : C → C be a holomorphic function.
Then it is well known that f is everywhere determined by the values of its derivatives
at the origin and in particular

f (z) =
∞∑

k=0

f (k)(0)

k! zk .

Moreover, if dμt (z) = pt (z) dz where pt (z) = 1
π t e−|z|2/t is the standard Gaussian

density on C, then 〈zk, z�〉L2(μt )
= δk�tkk!, which implies that

‖ f ‖2
L2(μt )

=
∞∑

k=0

tk

k! | f (k)(0)|2. (1.1)

Thus, one may consider the Taylor expansion as an isometric isomorphism from the
space of square integrable, holomorphic functions onto the sequence space of deriva-
tives at 0 endowed with an appropriate norm.

This isomorphism first appeared in the paper of Fock [12] (actually for C
n), but

was not made explicit until the work of Segal [25,26] and Bargmann [2]. Multiple
authors contributed to various extensions of this theory, all of which culminated in the
paper [9]. In this paper, Driver and Gross considered the case of a connected complex
(finite-dimensional) Lie group G with Lie algebra g. Equip g with any inner product,
and suppose that {Vi }ni=1 is an orthonormal basis of g. Consider L =∑n

i=1 Ṽ 2
i , where

Ṽ is the left invariant vector on G field associated to V ∈ g. Then L is an elliptic
second order differential operator, and we let {gt }t≥0 denote a Brownian motion on
G with generator L . For t > 0, let HL2(G, μt ) denote the space of holomorphic
functions on G which are square integrable with respect to the heat kernel measure
μt = Law(gt ) on G. Then it was proved in [9] that the analogous Taylor map in this
setting is an isometric isomorphism from HL2(G, μt ) to the space of derivatives at
the identity equipped with a norm inspired by the expression in (1.1).

Recently, in [10], Driver, Gross, and Saloff-Coste have further extended this theory
to the case of subelliptic (or hypoelliptic) heat kernel measures on a connected com-
plex Lie group. That is, suppose in the previous setting that {Vi }ki=1 ⊂ g is not itself
a full basis of g, but does satisfy the Hörmander (or bracket generating) condition

span{Vi , [Vi , Vj ], [Vi , [Vj , Vk]], . . .} = g.

Then due to the classical result of Hörmander [21], it is well known that, for the pro-
cess {gt }t≥0 generated by L = ∑k

i=1 Ṽ 2
i , μt = Law(gt ) is a smooth measure for all

t > 0. In [10], it is proved that the Taylor map is an isometric isomorphism, this time
from HL2(G, μt ) onto the space of derivatives at the identity with an appropriately
modified norm.

There have also been several infinite-dimensional settings in which Taylor isomor-
phisms have been shown to hold. In particular, in [8] Driver and the first named author
proved a Taylor isomorphism theorem for nondegenerate heat kernel measure on the
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382 M. Gordina, T. Melcher

same infinite-dimensional Heisenberg-like groups considered in the present paper.
The first named author has proved analogues on the infinite-dimensional complex
Hilbert–Schmidt groups [14,15] and for the group of invertible operators in a factor of
type II1 [16]. Also, in [5], Cecil proved an analogue for path groups over stratified nil-
potent Lie groups. To our knowledge, the present paper represents the first analogous
result for an infinite-dimensional subelliptic setting.

1.2 Statement of results

1.2.1 Heisenberg-like groups and subelliptic heat kernel measures

Let (W, H, μ) be a complex abstract Wiener space and let C be a finite-dimensional
complex inner product space. Let g = W ×C be an infinite-dimensional Heisenberg-
like Lie algebra, which is constructed as an infinite-dimensional step 2 nilpotent Lie
algebra with Lie bracket satisfying the following condition:

[W,W ] = C. (1.2)

Let G denote W × C thought of as a group with operation

g1 · g2 = g1 + g2 + 1

2
[g1, g2].

Then G is a Lie group with Lie algebra g, and G contains the subgroup GC M = H×C
which has Lie algebra gC M . See Sect. 2.2 for definitions and details.

Now let {Bt }t≥0 be a Brownian motion on W . The solution to the stochastic differ-
ential equation

dgt = gt ◦ d Bt with g0 = e (1.3)

is a Brownian motion on G, which is given explicitly in Proposition 2.21 and Defini-
tion 2.22. For all t > 0, let νt = Law(gt ) denote the heat kernel measure at time t .
If W is finite dimensional, then (1.2) implies that span{(ξi , 0), [(ξi , 0), (ξ j , 0)]} = g,

where {ξi }dim(W )
i=1 is some orthonormal basis of W , and thus we would have satisfac-

tion of Hörmander’s condition implying that νt is absolutely continuous with respect
to Haar measure on G = W × C and its density is a smooth function on G. If
W is infinite-dimensional, then the notion of subellipticity is not so well defined as
there is no canonical reference measure. But we say that νt is formally subelliptic (or
hypoelliptic) in the sense that all appropriate finite-dimensional projections (which
will be discussed subsequently) are subelliptic. Similar “definitions” of subellipticity
in infinite dimensions have been taken in [1,13,23], for example.

Let Proj(W )denote the collection of finite rank continuous linear maps P : W → H
so that P|H is orthogonal projection. Further, let G P := PW ×C which is a subgroup
of GC M . For each P ∈ Proj(W ), G P is a finite-dimensional Lie group and Brownian
motion on G P is defined analogously to how it is defined on G. The finite-dimensional
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Subelliptic Taylor isomorphism 383

heat kernel measures νP
t will play an important role in the sequel. In particular, under

the assumption that [PW, PW ] = C, Hörmander’s theorem implies that dνP
t (x) =

pP
t (x) dx , where pP

t is a smooth density and dx is finite-dimensional Haar measure.
As has been the case in previous infinite-dimensional contexts [5,8,14–16], our

results actually take the form of two unitary isomorphisms: the “skeleton” or “restric-
tion” map and the Taylor map on “square integrable holomorphic functions” on GC M .

1.2.2 The restriction isomorphism theorem

We must first define the Hilbert spaces involved. Let H(G) and H(GC M ) denote the
holomorphic functions on G and GC M respectively. Let P be the space of holomor-
phic cylinder polynomials on G. Then Proposition 2.29 implies that P ⊂ L2(νt ), and
so for t > 0 define H2

t (G) := L2(νt )-closure of P . For f ∈ H(GC M ), let

‖ f ‖H2
t (GC M )

:= sup
P∈Proj(W )

‖ f
∣∣G P ‖L2(νP

t )

and H2
t (GC M ) := { f ∈ H(GC M ) : ‖ f ‖H2

t (GC M )
< ∞}. It is proved in Propo-

sition 2.30 that as usual νt (GC M ) = 0; however, H2
t (GC M ) should still be roughly

thought of as νt -square integrable holomorphic functions on GC M . Having made these
definitions, we can state our first theorem.

Theorem 1.1 For all t > 0, there is a map Rt : H2
t (G)→ H2

t (GC M ) such that Rt is
an isometric isomorphism, Rt p = p|GC M for any p ∈ P , and

|(Rt f )(g)| ≤ ‖ f ‖L2(νt )
edh(e,g)2/2t , for all g ∈ GC M ,

where dh is the horizontal distance on GC M (see Notation 2.14).

The proof of the pointwise bound and that Rt is actually restriction on P are in
Theorem 4.15. The proof of the isometry and surjectivity are in Theorem 4.16.

1.2.3 The Taylor isomorphism theorem

Now let T (gC M ) be the algebraic tensor algebra over gC M , T (gC M )
′ be its algebraic

dual, J = J (gC M ) be the two-sided ideal in T (gC M ) generated by

{h ⊗ k − k ⊗ h − [h, k] : h, k ∈ gC M },
and J 0 = {α ∈ T (gC M )

′ : α(J ) = 0} be the backwards annihilator of J . For t > 0,
define

‖α‖2
t :=

∞∑

k=0

tk

k!
∑

ξ1,...,ξk∈�
|〈α, (ξ1, 0)⊗ · · · ⊗ (ξk, 0)〉|2, (1.4)

where � is an orthonormal basis of H , and let J 0
t := {α ∈ J 0 : ‖α‖t < ∞}. Given

f ∈ H(G), let f̂ (e) denote the element of J 0 defined by 〈 f̂ (e) , 1〉 = f (e) and
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384 M. Gordina, T. Melcher

〈 f̂ (e) , h1 ⊗ · · · ⊗ hk〉 =
(

h̃1 · · · h̃k f
)
(e), for all h1, . . . , hk ∈ gC M

where h̃i is the left invariant vector field on GC M such that h̃i (e) = hi . For f ∈
H2

t (GC M ), let Tt f = f̂ (e).

Theorem 1.2 For all t > 0, the map Tt : H2
t (GC M ) → J 0

t (gC M ) is an isometric
isomorphism.

The isometry in Theorem 1.2 is proved in Proposition 3.13 and the surjectivity is
proved in Theorem 3.19. The combination of Theorems 1.1 and 1.2 implies that the
mapping f �→ (Tt ◦ Rt ) f = R̂t f (e), where

〈
R̂t f (e) , h1 ⊗ · · · ⊗ hk

〉
=

(
h̃1 · · · h̃k Rt f

)
(e), for all h1, . . . , hk ∈ gC M ,

is a unitary equivalence between H2
t (G) and J 0

t .
The organization of the paper is as follows. In Sect. 2, the definitions of infinite-

dimensional Heisenberg-like Lie algebras and groups are revisited. This includes a
brief review of complex abstract Wiener spaces in Sect. 2.1. In Sect. 2.3 we explore
the relationship between linear and left invariant derivatives on G which will later
be useful in several limiting arguments. In Sect. 2.4, we prove that the homogeneous
norm and horizontal distance topologies are equivalent. This fact is necessary to make
use of the finite-dimensional projection groups introduced in Sect. 2.5 as approxima-
tions to G. In Sect. 2.6, we define the subelliptic diffusion {gt }t≥0 and its heat kernel
measure νt and review various properties that will be necessary for the sequel. Most
of these properties follow directly from properties for the nondegenerate heat kernel
measures treated in [7] and [8]. Also, in Sect. 2.7 we review the notion of holomorphic
functions in this infinite-dimensional setting.

Section 3 gives the proof of the Taylor isomorphism theorem, including a proof
in Sect. 3.1 that the semi-norm defined in (1.4) is in fact a norm. The proofs in this
section are mostly standard.

In Sect. 4, the restriction map is constructed and we prove its isometry and surjec-
tivity properties. Here the proofs are complicated by several factors, including the use
of the horizontal distance and the fact that the norm defining J 0

t is not the full Hil-
bert–Schmidt norm as is used in the nondegenerate case. Ultimately, the overall steps
here are analogous to those in the nondegenerate setting, but the proofs are necessarily
adjusted to account for these complications.

1.3 Discussion of open questions

Recall that [8] treated the case of nondegenerate heat kernel measures on the same
infinite-dimensional Heisenberg-like groups considered here. One of the main ingre-
dients used there was the quasi-invariance of the heat kernel measure under shifts
by elements of the Cameron–Martin subgroup. In particular, this allowed the skele-
ton or restriction map from H2

t (G) to H2
t (GC M ) to be defined via quasi-invariance.
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Subelliptic Taylor isomorphism 385

At the time of the writing of the present paper, quasi-invariance results for the su-
belliptic heat kernel measure were unknown. Thus, the construction of the restriction
map given here does not rely on quasi-invariance. This construction is analogous to
that in [5], which treats the case of nondegenerate heat kernel measures on complex
path groups, a case in particular where quasi-invariance results are not known. After
the present paper was accepted, a quasi-invariance result for the subelliptic heat ker-
nel measure in this setting was proved in [3]. Thus, it may now be possible to give a
different proof of our results including the skeleton map defined via quasi-invariance.

One should also comment that the assumption that dim(C) < ∞ is necessary at
several points. For example, it is used in an essential way for the proof that the homo-
geneous norm topology is equivalent to that of the horizontal distance. Some readers
might be concerned that this restriction on the dimension of the center means that
this subelliptic example is in some sense only finitely many steps from being elliptic.
This concern would be justified if the Lie bracket is non-trivial on only a finite-dimen-
sional subspace of W , as then the solution to (1.3) is somehow only a finite-dimensional
subelliptic diffusion coupled with an infinite-dimensional flat Brownian motion. How-
ever, if the Lie bracket is in fact non-trivial on an infinite-dimensional subspace of W ,
then this does introduce several non-trivial complications, for example, in the proof of
equivalence of topologies and more generally in working with the horizontal distance
and “projections” of horizontal paths.

Another interesting question is to try to generate holomorphic functions similar to
how it was done in [11, Sect. 4]. Even though one of the techniques of that section,
the Fourier–Wigner transform, has been studied in infinite dimensions (for example,
[17]), it is still not clear how this question can be approached for infinite-dimensional
Heisenberg groups.

2 Infinite-dimensional complex Heisenberg-like groups

2.1 Complex abstract Wiener spaces

Let us first briefly recall the definition of a complex abstract Wiener space. We record
here only the basic construction and some standard facts that will be useful for the
sequel. For more details, see for example, Sect. 2 of [8] and its references.

Suppose that W is a complex separable Banach space and BW is the Borel σ -alge-
bra on W . Let WRe denote W thought of as a real Banach space. For λ ∈ C, let
Mλ : W → W be the operation of multiplication by λ.

Definition 2.1 A measure μ on (W,BW ) is called a (mean zero, non-degenerate)
Gaussian measure provided that its characteristic functional is given by

μ̂(u) :=
∫

W

eiu(w)dμ(w) = e−
1
2 q(u,u), for all u ∈ W ∗

Re,
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386 M. Gordina, T. Melcher

where q = qμ : W ∗
Re × W ∗

Re → R is an inner product on W ∗
Re. If in addition, μ is

invariant under multiplication by i , that is, μ ◦ M−1
i = μ, we say that μ is a complex

Gaussian measure on W .

Theorem 2.2 Let μ be a complex Gaussian measure on a complex separable Banach
space W . For 1 ≤ p <∞, let

C p :=
∫

W

‖w‖p
W dμ(w) <∞ (2.1)

For w ∈ W , let

‖w‖H := sup
u∈W ∗\{0}

|u(w)|√
q(u, u)

,

and define the Cameron–Martin subspace H ⊂ W by

H := {h ∈ W : ‖h‖H <∞}.

1. For all 1 ≤ p <∞, C p <∞.
2. H is a dense complex subspace of W .
3. There exists a unique inner product, 〈·, ·〉H , on H such that ‖h‖2

H = 〈h, h〉H for
all h ∈ H. Moreover, with this inner product H is a separable complex Hilbert
space.

4. For any h ∈ H,

‖h‖W ≤ √
C2‖h‖H . (2.2)

Notation 2.3 The triple (W, H, μ) appearing in Theorem 2.2 will be called a complex
abstract Wiener space.

We will also need the following facts about linear maps from W into a complex
Hilbert space K . The proof of the next lemma may be found as part of Lemma 2.6 in [8].

Lemma 2.4 If ϕ : W → K is a linear map, then

∫

W

‖ϕ(w)‖2
K dμ(w) = 2‖ϕ‖2

H∗⊗K .

Now suppose that ρ : W × W → K is a continuous bilinear map so that

‖ρ‖0 := sup{ρ(w,w′)‖K : ‖w‖W = ‖w′‖W = 1} <∞.

The continuity of ρ and Lemma 2.4 give the following proposition which is analogous
to Proposition 3.14 in [7].

Proposition 2.5 The bilinear form ρ : H × H → K is Hilbert–Schmidt; that is, for
any orthonormal basis {ξ j }∞j=1 of H,
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‖ρ‖2
H S :=

∞∑

j,k=1

‖ρ(ξ j , ξk)‖2
K <∞

(where ‖ · ‖2
H S is independent of basis).

Proof By Lemma 2.4,

‖ρ(w, ·)‖2
H∗⊗K = 1

2

∫

W

‖ρ(w,w′)‖2
K dμ(w′)

≤ 1

2
‖ρ‖2

0‖w‖2
W

∫

W

‖w′‖2
W dμ(w′) = 1

2
C2‖ρ‖2

0‖w‖2
W ,

where C2 <∞ is as defined in (2.1). Similarly, viewingw �→ ρ(w, ·) as a continuous
linear map from W to H∗ ⊗ K ,

‖ρ‖2
H S = ‖h �→ ρ(h, ·)‖2

H∗⊗(H∗⊗K ) =
1

2

∫

W

‖ρ(w, ·)‖2
H∗⊗K dμ(w)

≤ 1

4

∫

W

C2‖ρ‖2
0‖w‖2

W dμ(w) = 1

4
C2

2‖ρ‖2
0.

��

2.2 Infinite-dimensional complex Heisenberg-like groups

In this section, we revisit the definition of the infinite-dimensional complex Heisen-
berg-like groups constructed in [8]. Note that since we are interested in subelliptic heat
kernel measures on these groups, there are some necessary modifications to the topol-
ogy. First we set the following notation which will hold for the entirety of this paper.

Notation 2.6 Let (W, H, μ) be a complex abstract Wiener space. Let C be a complex
Hilbert space with inner product 〈·, ·〉C and dim(C) = N <∞. Let ω : W ×W → C
be a continuous skew-symmetric bilinear form on W . We will also trivially assume
that ω is surjective (otherwise, we just restrict to a linear subspace of C).

Definition 2.7 Let g denote W × C when thought of as a Lie algebra with the Lie
bracket given by

[(X1, V1), (X2, V2)] := (0, ω(X1, X2)).

Let G denote W × C when thought of as a group with multiplication given by

g1g2 := g1 + g2 + 1

2
[g1, g2], (2.3)
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388 M. Gordina, T. Melcher

where g1 and g2 are viewed as elements of g. For gi = (wi , ci ), this may be written
equivalently as

(w1, c1) · (w2, c2) =
(
w1 + w2, c1 + c2 + 1

2
ω(w1, w2)

)
. (2.4)

We will call G constructed in this way a Heisenberg-like group.

It is easy to verify that, given this bracket and multiplication, g is indeed a Lie
algebra and G is a group. Note that g−1 = −g and the identity e = (0, 0).

Notation 2.8 Let gC M denote H × C when thought of as a Lie subalgebra of g, and
we will refer to gC M as the Cameron–Martin subalgebra of g. Similarly, let GC M

denote H × C when thought of as a subgroup of G, and we will refer to GC M as the
Cameron–Martin subgroup of G.

We will equip g = G with the homogeneous norm

‖(w, c)‖g :=
√
‖w‖2

W + ‖c‖C,

and analogously on gC M = GC M we define

‖(A, a)‖gC M :=
√
‖A‖2

H + ‖a‖C.

Lemma 2.9 G and GC M are topological groups with respect to the topologies induced
by the homogeneous norms.

Proof This is proved similarly to [7, Lemma 3.3]. Since g−1 = −g, the map g �→ g−1

is continuous in the g and gC M topologies. Also (g1, g2) �→ [g1, g2] and (g1, g2) �→
g1 + g2 are continuous in both the g and gC M topologies. Thus, it follows from Eq.
(2.3) that (g1, g2) �→ g1 · g2 is continuous as well. ��

Before proceeding, let us give the basic motivating examples for the construction
of these infinite-dimensional Heisenberg-like groups.

Example 2.1 (Finite-dimensional complex Heisenberg group) Let W = H = C
n ×

C
n , C = C, and

ω((w1, w2), (z1, z2)) := w1 · z2 − w2 · z1.

Then G = C
2n × C equipped with a group operation as defined in (2.4) is a finite-

dimensional complex Heisenberg group.

Example 2.2 (Heisenberg group of a symplectic vector space) Let (K , 〈·, ·〉) be a com-
plex Hilbert space and Q be a strictly positive trace class operator on K . For h, k ∈ K ,
let 〈h, k〉Q := 〈h, Qk〉 and ‖h‖Q := √〈h, h〉Q , and let (K Q, 〈·, ·〉Q) denote the
Hilbert space completion of (K , ‖ · ‖Q). Further assume that K is equipped with a
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conjugation k �→ k̄ which is isometric and commutes with Q. Let W = K Q × K Q ,
H = K × K , and ω : W × W → C be defined by

ω((w1, w2), (z1, z2)) = 〈w1, z̄2〉Q − 〈w2, z̄1〉Q .

Then G = (K Q × K Q)×C equipped with a group operation as defined in (2.4) is an
infinite-dimensional complex Heisenberg-like group.

2.3 Derivatives on G

For g ∈ G, let Lg : G → G and Rg : G → G denote left and right multiplication by
g, respectively. As G is a vector space, to each g ∈ G we can associate the tangent
space TgG to G at g, which is naturally isomorphic to G.

Notation 2.10 (Linear and group derivatives) For f : G → C, x ∈ G, and h ∈ g, let

f ′(x)h := ∂h f (x) = d

dt

∣∣∣∣
0

f (x + th),

whenever this derivative exists. More generally, for h1, . . . , hn ∈ g, let

f (n)(x)(h1 ⊗ · · · ⊗ hn) := ∂h1 · · · ∂hn f (x).

For v, x ∈ G, let vx ∈ Tx G denote the tangent vector satisfying vx f = f ′(x)v.
If x(t) is any smooth curve in G such that x(0) = x and ẋ(0) = v (for example,
x(t) = x + tv), then

Lg∗vx = d

dt

∣∣∣∣
0
g · x(t).

In particular, for x = e and ve = h ∈ g, let h̃(g) := Lg∗h, so that h̃ is the unique left
invariant vector field on G such that h̃(e) = h. We view h̃ as a first order differential
operator acting on smooth functions by

(h̃ f )(g) = d

dt

∣∣∣∣
0

f (g · σ(t)),

where σ(t) is a smooth curve in G such that σ(0) = e and σ̇ (0) = h (for example,
σ(t) = th).

The following proposition is Proposition 3.7 of [7] and a special case of Proposition
3.16 of [24]. The proof is a simple computation and is included here for the reader’s
convenience.
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390 M. Gordina, T. Melcher

Proposition 2.11 For g, x ∈ G and vx ∈ Tx G,

Lg∗vx = v + 1

2
[g, v],

and this expression does not depend on x. In particular, taking x = e, g = (w, c),
and ve = h = (A, a) ∈ g gives

h̃(g) =
(

A, a + 1

2
ω(w, A)

)
.

Proof Let x(t) = x + tv. Then

Lg∗vx = d

dt

∣∣∣∣
0
g · x(t) = d

dt

∣∣∣∣
0
g + x(t)+ 1

2
[g, x(t)] = v + 1

2
[g, v].

��
In the sequel, it will be useful to have an expression for the left invariant derivatives

of a smooth function on G in terms of its linear derivatives. To do this, we first set the
following notation.

Notation 2.12 For k ∈ N, let

�k := {partitions θ of {1, . . . , k} : for all A ∈ θ, # A ≤ 2}.

If {i, j} ∈ θ ∈ �k , we will always assume without loss of generality that i > j . For
� = 0, . . . , �k/2�, let

�k
� := {θ ∈ �k : #{A ∈ θ : # A = 2} = �}.

Proposition 2.13 For g ∈ G, h ∈ g, and f : G → C a smooth function,

h̃ f (g) = f ′(g)h̃(g). (2.5)

More generally, for k ∈ N and h1, . . . , hk ∈ g,

h̃k · · · h̃1 f (g) =
k∑

j=�k/2�
f ( j)(g)

⎛

⎜⎝
∑

θ∈�k
k− j

(hk, . . . , h1)
⊗θ (g)

⎞

⎟⎠ , (2.6)

where, for θ = {{i1, i2}, . . . , {i2�−1, i2�}, {i2�+1}, . . . , {ik}} ∈ �k
� ,

(hk, . . . , h1)
⊗θ (g) := 1

2�
[hi1 , hi2 ] ⊗ · · · ⊗ [hi2�−1 , hi2� ] ⊗ h̃i2�+1(g)⊗ · · · ⊗ h̃ik (g).
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Proof The first assertion holds by Proposition 2.11 and an application of the chain
rule. Equation (2.6) may be then proved by induction. So assume the formula holds
for k and consider k + 1.

h̃k+1h̃k · · · h̃1 f (g) = d

dt

∣∣∣∣
0
h̃k · · · h̃1 f (g · thk+1)

= d

dt

∣∣∣∣
0

k∑

j=�k/2�
f ( j)(g · thk+1)

∑

θ∈�k
k− j

(hk, . . . , h1)
⊗θ (g · thk+1)

=
k∑

j=�k/2�
f ( j+1)(g)

∑

θ∈�k
k− j

h̃k+1(g)⊗ (hk, . . . , h1)
⊗θ (g)

+
k∑

j=�k/2�
f ( j)(g)

∑

θ∈�k
k− j

d

dt

∣∣∣∣
0
(hk, . . . , h1)

⊗θ (g · thk+1).

For g = (w, c), h = (A, a), and k = (B, b),

d

dt

∣∣∣∣
0
h̃(g · tk) =

(
A, a + 1

2
ω(w + t B, A)

)
=

(
0,

1

2
ω(B, A)

)
= 1

2
[k, h],

which is independent of g. (Note that [̃k, h](g) = [k, h].) Thus, for
θ = {{i1, i2}, . . . , {i2�−1, i2�}, {i2�+1}, . . . , {ik}} ∈ �k

� ,

d

dt

∣∣∣∣
0
(hk , . . . , h1)

⊗θ (g · thk+1)

= d

dt

∣∣∣∣
0

1

2�

{
[hi1 , hi2 ] ⊗ · · · ⊗ [hi2�−1 , hi2� ] ⊗ h̃i2�+1(g · thk+1)⊗ · · · ⊗ h̃ik (g · thk+1)

}

=
k∑

j=2�+1

1

2�+1

(
[hi1 , hi2 ] ⊗ · · · ⊗ [hi2�−1 , hi2� ]

⊗h̃i2k+1(g)⊗ · · · ⊗ h̃ j−1(g)⊗ [hk+1, h j ] ⊗ h̃ j+1(g)⊗ · · · ⊗ h̃ik (g)

)
.

Rearranging terms and indices gives the desired formula. ��

Let us write out (2.6) for the first few n. The expression for n = 1 is already given
in Eq. (2.5). For n = 2 and n = 3, we have

h̃2h̃1 f (g) = f ′′(g)
(

h̃2(g)⊗ h̃1(g)
)
+ 1

2
f ′(g)[h2, h1] (2.7)
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392 M. Gordina, T. Melcher

h̃3h̃2h̃1 f (g) = f ′′′(g)
(

h̃3(g)⊗ h̃2(g)⊗ h̃1(g)
)

+1

2
f ′′(g)

(
[h3, h2] ⊗ h̃1(g)

+[h3, h1] ⊗ h̃2(g)+ [h2, h1] ⊗ h̃3(g)
)
. (2.8)

In particular, (2.7) implies that, for h, k ∈ g,

(
h̃k̃ − k̃h̃

)
f = [̃h, k] f. (2.9)

2.4 Distances on GC M

We define here the sub-Riemannian distance on GC M and show that the topology
induced by this metric is equivalent to the topology induced by the homogeneous
norm ‖ · ‖gC M . Note that in finite dimensions this result is standard and is usually
proved via compactness arguments (see for example, Chap. 5 of [4]). Of course, these
arguments are invalid in infinite dimensions and so we resort to more direct meth-
ods of proof. Note that the results in this subsection rely directly on the fact that
N = dim(C) <∞.

Notation 2.14 (Riemannian and horizontal distances)

1. Let C1
C M denote the set of C1-paths σ : [0, 1] → GC M .

2. For x = (A, a) ∈ GC M , let

|x |2gC M
:= ‖A‖2

H + ‖a‖2
C.

The length of a C1-path σ : [a, b] → GC M is defined as

�(σ ) :=
b∫

a

|Lσ−1(s)∗σ̇ (s)|gC M ds.

3. The Riemannian distance between x, y ∈ GC M is defined by

dC M (x, y) := inf{�(σ ) : σ ∈ C1
C M such that σ(0) = x and σ(1) = y}.

4. A C1-path σ : [a, b] → GC M is horizontal if Lσ(t)−1∗σ̇ (t) ∈ H × {0} for a.e. t .

Let C1,h
C M denote the set of horizontal paths σ : [0, 1] → GC M .

5. The horizontal distance between x, y ∈ GC M is defined by

dh(x, y) := inf{�(σ ) : σ ∈ C1,h
C M such that σ(0) = x and σ(1) = y}.
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Remark 2.15 Note that if σ(t) = (A(t), a(t)) ∈ C1,h
C M , then

Lσ(t)−1∗σ̇ (t) =
(

Ȧ(t), ȧ(t)− 1

2
ω(A(t), Ȧ(t))

)
∈ H × {0}

implies that σ must satisfy

a(t) = a(0)+ 1

2

t∫

0

ω(A(s), Ȧ(s)) ds,

and the length of σ is given by

�(σ ) =
1∫

0

|Lσ−1(s)∗σ̇ (s)|gC M ds =
1∫

0

‖ Ȧ(s)‖H ds.

Proposition 3.10 of [7] gives the following comparison of the | · |gC M and Riemann-
ian metrics.

Proposition 2.16 There exists δ = δ(ω) > 0 such that, for all x, y ∈ GC M ,

dC M (x, y) ≤
(

1+ 1

4δ
|x |gC M ∧ |y|gC M

)
|y − x |gC M ,

and, in particular, dC M (e, x) ≤ |x |gC M for any x ∈ GC M . Also, there exists k =
k(ω) <∞ such that, if x, y ∈ GC M satisfy dC M (x, y) ≤ δ, then

|y − x |gC M ≤ k(1+ |x |gC M ∧ |y|gC M )dC M (x, y).

Proposition 2.16 implies, for example, that the topology induced by |·|gC M is equiv-
alent to that induced by the Riemannian distance. For the subelliptic case, these are of
course not the relevant topologies. However, this result may be used to prove that the
homogenous norm on gC M and the horizontal distance are comparable at the identity.
The following proposition is Theorem C.2 of [7]. We record the proof here for the
reader’s convenience and to emphasize the dependence of the upper bound constant
K2 on N = dim(C).

Proposition 2.17 If {ω(A, B) : A, B ∈ H} = C, then there exist finite constants
K1 = K1(ω) and K2 = K2(N , ω) such that, for all (A, a) ∈ gC M ,

K1‖(A, a)‖gC M ≤ dh(e, (A, a)) ≤ K2‖(A, a)‖gC M .

Proof For any left-invariant metric d on GC M (for example dC M or dh), we have

d(e, xy) ≤ d(e, x)+ d(x, xy) = d(e, x)+ d(e, y), (2.10)
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394 M. Gordina, T. Melcher

for all x, y ∈ GC M . Given any horizontal path σ = (w, c) joining e to (A, a), we
have from Remark 2.15 that

�(σ ) =
1∫

0

‖ẇ(s)‖H ds ≥ ‖A‖H .

Taking the infimum over all horizontal paths connecting e to (A, a), it then follows that

dh(e, (A, a)) ≥ ‖A‖H .

Since the path σ(t) = (t A, 0) is horizontal and

‖A‖H = �(σ ) ≥ dh(e, (A, 0)) ≥ ‖A‖H ,

it follows that

dh(e, (A, 0)) = ‖A‖H for all A ∈ H. (2.11)

Given A, B ∈ H , let γ (t) = A cos 2π t + B sin 2π t for 0 ≤ t ≤ 1, and consider
the path

σ(t) =
⎛

⎝γ (t)− A,
1

2

t∫

0

ω(γ (s)− A, γ̇ (s)) ds

⎞

⎠ .

Note that σ is a horizontal curve with L
σ(t)−1∗ σ̇ (t) = (γ̇ (t), 0), σ(0) = e, and

σ(1) =
⎛

⎝0,
1

2

1∫

0

ω(γ (s), γ̇ (s)) ds

⎞

⎠ =
⎛

⎝0, π

1∫

0

ω(A, B) ds

⎞

⎠ = (0, πω(A, B)).

Thus, we may conclude that

dh(e, (0, πω(A, B))) ≤ �(σ ) = 2π

1∫

0

‖ − A sin 2πs + B cos 2πs‖H ds

≤ 2π(‖A‖H + ‖B‖H ). (2.12)

Now choose {A�, B�}N
�=1 ⊂ H such that {πω(A�, B�)}N

�=1 is a basis for C. Let
{ε�}N

�=1 be the corresponding dual basis. Hence, for any a ∈ C, we have

dh(e, (0, a))=dh

(
e,

N∏

�=1

(0, ε�(a)πω(A�, B�))

)
≤

N∑

�=1

dh(e, (0, ε
�(a)πω(A�, B�)))
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=
N∑

�=1

dh

(
e,

(
0, πω

(
sgn(ε�(a))

√
|ε�(a)|A�,

√
|ε�(a)|B�

)))

≤ 2π
N∑

�=1

(∥∥∥∥
√
|ε�(a)|A�

∥∥∥∥
H
+

∥∥∥∥
√
|ε�(a)|B�

∥∥∥∥
H

)
,

wherein we have used (2.10) for the first inequality and (2.12) for the second inequality.
Then Hölder’s inequality implies that

dh(e, (0, a)) ≤ 4π
N∑

�=1

√
|ε�(a)| ≤ 4πC

√‖a‖C, (2.13)

for a finite constant C = C(N , ω). Combining Eqs. (2.10), (2.11), and (2.13) gives,

dh(e, (A, a)) = dh(e, (A, 0)(0, a))

≤ dh(e, (A, 0))+ dh(e, (0, a))

≤ ‖A‖H + C(N , ω)
√‖a‖C ≤

√
2 (1 ∧ C(N , ω)) ‖(A, a)‖gC M ,

which completes the proof of the upper bound.
To prove the lower bound, consider first the dilations defined by

ϕλ(w, c) := (λw, λ2c), for λ > 0 and (w, c) ∈ gC M = GC M .

One easily verifies that ϕλ is both a Lie algebra homomorphism on gC M and a group
homomorphism on GC M . Using the homomorphism property, it follows that, for any
C1-path σ ,

Lϕλ(σ (t))−1∗
d

dt
ϕλ(σ (t)) = ϕλ(Lσ(t)−1∗σ̇ (t)).

Consequently, if σ is a horizontal curve, then ϕλ ◦ σ is again horizontal and
�(ϕλ ◦ σ) = λ�(σ ). Thus, we may conclude that

dh(ϕλ(x), ϕλ(y)) = λdh(x, y), (2.14)

for all x, y ∈ GC M .
Now, by the first part of Proposition 2.16, dC M (e, x) ≤ |x |gC M , for all x ∈ GC M .

Combining this with the second part of the same proposition implies that there exist
δ > 0 and k < ∞ such that, if |x |gC M ≤ δ, then |x |gC M ≤ kdC M (x, y). So, for
arbitrary x = (A, a) ∈ GC M , choose λ = λ(x) > 0 so that

δ2 = |ϕλ(x)|2gC M
= λ2‖A‖2

H + λ4‖a‖2
C;
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that is, take

λ2 =
√
‖A‖4

H + 4‖a‖2
Cδ

2 − ‖A‖2
H

2‖a‖2
C

.

Equation (2.14) and Proposition 2.16 then imply that

λkdh(e, x) = kdh(e, ϕλ(x)) ≥ kdC M (e, ϕλ(x)) ≥ |ϕλ(x)|gC M = δ

Thus,

dh(e, x)2 ≥ δ2

k2λ2 =
δ2

k2

2‖a‖2
C√

‖A‖4
H + 4δ2‖a‖2

C − ‖A‖2
H

= 2δ2‖a‖2
C

k2‖A‖2
H

1
√

1+ 4δ2‖a‖2
C

‖A‖4
H
− 1

. (2.15)

Since
√

1+ x − 1 ≤ min(x/2,
√

x), we have

1√
1+ x − 1

≥ max

(
2

x
,

1√
x

)
≥ 1

x
+ 1

2
√

x
.

Using this estimate with x = 4δ2‖a‖2
C‖A‖−4

H in Eq. (2.15) shows that

dh(e, x)2 ≥ 2δ2‖a‖2
C

k2‖A‖2
H

(
‖A‖4

H

4δ2‖a‖2
C

+ ‖A‖2
H

4δ‖a‖C

)
= 1

2k2 (‖A‖2
H + δ‖a‖C),

which implies the lower bound. ��
Since GC M is stratified, it turns out that comparability of the metrics at e is sufficient

to imply the equivalence of their respective topologies.

Proposition 2.18 The topologies generated by dh and ‖ · ‖gC M are equivalent.

Proof Fix x = (A, a) ∈ GC M . First note that, by Proposition 2.17 and the left invari-
ance of the horizontal distance, there exists K1 = K1(ω) < ∞ such that, for any
y = (B, b) ∈ GC M ,

√

‖B − A‖2
H +

∥∥∥∥b − a − 1

2
ω(A, B)

∥∥∥∥
C

= ‖x−1 y‖gC M ≤ K1dh(e, x−1 y) = K1dh(x, y).
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So if dh(x, y) < δ for some δ > 0, then

‖B − A‖H ≤ K1dh(x, y) < K1δ,

and

‖b − a‖C ≤
∥∥∥∥b − a − 1

2
ω(A, B)

∥∥∥∥
C
+ 1

2
‖ω(A, B)‖C

≤ K 2
1 dh(x, y)2 + 1

2
‖ω(A, B − A)‖C

< K 2
1 δ

2 + 1

2
‖ω‖op‖A‖H‖B − A‖H < K 2

1 δ
2 + 1

2
‖ω‖op‖A‖H δ,

where

‖ω‖op := sup{‖ω(h, k)‖C : ‖h‖H = ‖k‖H = 1} <∞,

by the continuity of ω and (2.2). Thus, given any R ∈ (0, 1), one may clearly choose
c = c(x, ω) sufficiently large (for example, c = 2(

√
2K1 + 1

2‖ω‖op‖A‖)) so that
dh(x, y) < δ = R2/c implies that

‖y − x‖gC M =
√
‖B − A‖2

H + ‖b − a‖C

<

√
K 2

1 δ
2 + K 2

1 δ
2 + 1

2
‖ω‖op‖A‖H δ

=
√

2K 2
1

R4

c2 + 1

2
‖ω‖op‖A‖H

R2

c
<
√

R2 = R.

Similarly, the left invariance of dh and Proposition 2.17 imply that there exists
K2 = K2(N , ω) <∞ such that

dh(x, y) ≤ K2‖x−1 y‖gC M = K2

√

‖B − A‖2
H +

∥∥∥∥b − a − 1

2
ω(A, B)

∥∥∥∥
C
.

So if we suppose that ‖y − x‖gC M =
√
‖B − A‖2

H + ‖b − a‖C < δ′, then

dh(x, y) ≤ K2

√
‖B − A‖2

H + ‖b − a‖C + 1

2
‖ω(A, B − A)‖C

≤ K2

(
‖y − x‖gC M +

√
1

2
‖ω‖op‖A‖H‖B − A‖H

)

≤ K2

(
δ′ +

√
1

2
‖ω‖op‖A‖H δ′

)
.
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Again, given any R ∈ (0, 1), one may find c′ = c′(x, N , ω) such that ‖y − x‖gC M <

δ′ = R2/c′ implies that dh(x, y) < R. ��

2.5 Finite-dimensional projection groups

The finite-dimensional projections of G defined in this section will be important in
the sequel. Note that the construction of these projections is quite natural in the sense
that they come from the usual projections of the abstract Wiener space; however, the
projections defined here are not group homomorphisms, which is a complicating factor
in some of the following proofs.

As usual, let (W, H, μ) denote a complex abstract Wiener space. Let i : H → W
be the inclusion map, and i∗ : W ∗ → H∗ be its transpose so that i∗� := � ◦ i for all
� ∈ W ∗. Also, let

H∗ := {h ∈ H : 〈·, h〉H ∈ Range(i∗) ⊂ H∗}.

That is, for h ∈ H , h ∈ H∗ if and only if 〈·, h〉H ∈ H∗ extends to a continuous linear
functional on W , which we will continue to denote by 〈·, h〉H . Because H is a dense
subspace of W , i∗ is injective and thus has a dense range. Since H � h �→ 〈·, h〉H ∈
H∗ is a linear isometric isomorphism, it follows that H∗ � h �→ 〈·, h〉H ∈ W ∗ is a
linear isomorphism also, and so H∗ is a dense subspace of H .

Suppose that P : H → H is a finite rank orthogonal projection such that P H ⊂ H∗.
Let {ξ j }mj=1 be an orthonormal basis for P H . Then we may extend P to a (unique)
continuous operator from W → H (still denoted by P) by letting

Pw :=
m∑

j=1

〈w, ξ j 〉H ξ j (2.16)

for all w ∈ W .

Notation 2.19 Let Proj(W ) denote the collection of finite rank projections on W such
that

1. PW ⊂ H∗,
2. P|H : H → H is an orthogonal projection (that is, P has the form given in Eq.

(2.16)), and
3. PW is sufficiently large to satisfy Hörmander’s condition (that is, {ω(A, B) :

A, B ∈ PW } = C).

For each P ∈ Proj(W ), we may define G P := PW × C ⊂ H∗ × C and a corre-
sponding projection πP : G → G P

πP (w, x) := (Pw, x).

We will also let gP = Lie(G P ) = PW × C.
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For any {Pn}∞n=1 ⊂ Proj(W ) such that Pn|H ↑ IH , we may choose a sequence of
complex orthonormal bases �n for each Pn H so that �n ↑ � a complex orthonormal
basis for H . Thus, for the sequel, we will often consider a sequence of projections
with respect to a fixed orthonormal basis.

Notation 2.20 Let {ξ j }∞j=1 ⊂ H∗ be a fixed orthonormal basis of H . We will let Pn

denote the corresponding projections onto PnW , that is,

Pnw =
n∑

j=1

〈w, ξ j 〉H ξ j .

Let Gn = G Pn , gn = Lie(Gn), and πn = πPn : G → Gn . So {πn}∞n=1 is an increas-
ing sequence of projections so that πn|GC M ↑ I |GC M . In the sequel, it will also be
convenient to let � = {η j }∞j=1 = {(ξ j , 0)}∞j=1 denote a basis of H × {0}.

(It is clear that, in order for Pn ∈ Proj(W ), it will be necessary to have a minimal n
so that span{ω(ξi , ξ j ) : i, j = 1, . . . , n} = C. However, since these projections will
be primarily used for large n as approximations to G, we will ignore this issue in the
sequel and always assume we have a large enough projection.)

2.6 Brownian motion on G

Here we define a “subelliptic” Brownian motion {gt }t≥0 on G and collect various of
its properties that are necessary for the sequel. The primary references for this section
are [7,8].

Let {Bt }t≥0 be a Brownian motion on W with variance determined by

E [〈Bs, h〉H 〈Bt , k〉H ] = 〈h, k〉H min(s, t),

for all s, t ≥ 0 and h, k ∈ H∗. The following is Proposition 4.1 of [7] and this result
implicitly relies on the fact that Proposition 2.5 implies that the bilinear form ω is a
Hilbert–Schmidt.

Proposition 2.21 For P ∈ Proj(W ), let M P
t be the continuous L2-martingale on C

defined by

M P
t =

t∫

0

ω(P Bs, d P Bs).

In particular, if {Pn}∞n=1 ⊂ Proj(W ) is an increasing sequence of projections as in

Notation 2.20 and Mn
t := M Pn

t , then there exists an L2-martingale {Mt }t≥0 in C such
that, for all p ∈ [1,∞) and t > 0,

lim
n→∞E

[
sup
τ≤t

‖Mn
τ − Mτ‖p

C

]
= 0,

and Mt is independent of the sequence of projections.
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400 M. Gordina, T. Melcher

As Mt is independent of the defining sequence of projections, we will denote the
limiting process by

Mt =
t∫

0

ω(Bs, d Bs).

Definition 2.22 The continuous G-valued process given by

gt =
(

Bt ,
1

2
Mt

)
=

⎛

⎝Bt ,
1

2

t∫

0

ω(Bs, d Bs)

⎞

⎠ .

is a Brownian motion on G. For t > 0, let νt = Law(gt ) denote the heat kernel
measure at time t on G.

Definition 2.23 A function f : G → C is a cylinder function if it may be written as
f = F ◦ πP , for some P ∈ Proj(W ) and F : G P → C. We say that f is a smooth
(holomorphic) cylinder function if F is smooth (holomorphic).

Proposition 2.24 If f : G → C is a smooth cylinder function, let

L f :=
∞∑

j=1

[
η̃2

j + ĩη
2
j

]
f,

where {η j }∞j=1 is a basis for H × {0} as in Notation 2.20. Then L f is well defined,

that is, the above sum is convergent and independent of basis. Moreover, 1
4 L is the

generator for {gt }t≥0, so that

f (gt )− 1

4

t∫

0

L f (gs) ds

is a local martingale for any smooth cylinder function f .

Proposition 2.21 along with the fact that, for all p ∈ [1,∞) and t > 0,

lim
n→∞E

[
sup
τ≤t

‖Bτ − Pn Bτ‖p
W

]
= 0

(see for example Proposition 4.6 of [7]) makes the following proposition clear.

Proposition 2.25 For P ∈ Proj(W ), let gP
t be the continuous process on G P defined

by

gP
t =

⎛

⎝P Bt ,
1

2

t∫

0

ω(P Bs, d P Bs)

⎞

⎠ .
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Then gP
t is a Brownian motion on G P . In particular, let {Pn}∞n=1 ⊂ Proj(W )be increas-

ing projections as in Notation 2.20 and gn
t := gPn

t . Then, for all p ∈ [1,∞) and t > 0,

lim
n→∞E

[
sup
τ≤t

‖gn
τ − gτ‖p

g

]
= 0.

Notation 2.26 For all P ∈ Proj (W ) and t > 0, let νP
t := Law(gP

t ), and for all n ∈ N

let νn
t := Law(gn

t ) = Law(gPn
t ).

For all projections satisfying Hörmander’s condition, the Brownian motions on G P

are true subelliptic diffusions in the sense that their laws are absolutely continuous
with respect to the finite-dimensional reference measure and their transition kernels
are smooth.

Lemma 2.27 For all P ∈ Proj(W ) and t > 0, we have νP
t (dx) = pP

t (e, x)dx, where
dx is the Riemannian volume measure (equal to Haar measure) and pP

t (x, y) is the
heat kernel on G P .

Proof An application of Proposition 2.24 with G replaced by G P implies that νP
t =

Law(gP
t ) is a weak solution to the heat equation on G P with generator

L P f :=
m∑

j=1

[
(̃ξ j , 0)

2 + ˜(iξ j , 0)
2
]

f

for smooth functions f : G P → C, where {ξ j }mj=1 is a complex orthonormal basis
of P H . The result now follows from the fact that [PW, PW ] = C, as this implies{
(ξ j , 0), (iξ j , 0)

}m
j=1 satisfies Hörmander’s condition, and thus L P is a hypoelliptic

operator [21]. ��
The next proposition is a version of Fernique’s theorem for the subelliptic heat

kernel measures and follows directly from the proof in the elliptic case (see Theorem
4.16 of [7]). In particular, this kind of exponential integrability result is required to
have a nontrivial class of holomorphic square integrable functions.

Proposition 2.28 (Subelliptic Fernique’s theorem) There exists δ > 0 such that, for
all ε ∈ (0, δ) and t > 0,

sup
P∈Proj(W )

∫

G P

eε‖g‖2
g/t dνP

t (g) = sup
P∈Proj(W )

E

[
eε‖gP

t ‖2
g/t

]
<∞

and

∫

G

eε‖g‖2
g/t dνt (g) = E

[
eε‖gt‖2

g/t
]
<∞.
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402 M. Gordina, T. Melcher

The next proposition follows from Propositions 2.25 and 2.28 and the proof of
Proposition 4.12 in [8].

Proposition 2.29 Let δ > 0 be as in Proposition 2.28, and suppose that f : G → C

is a continuous function such that, for some ε ∈ (0, δ) and p ∈ [1,∞),

| f (g)| ≤ Ceε‖g‖2
g/pt ,

for all g ∈ G. Then f ∈ L p(νt ), and, for all h ∈ G,

lim
n→∞E| f (hgn

t )− f (hgt )|p = 0 (2.17)

and

lim
n→∞E| f (gn

t h)− f (gt h)|p = 0. (2.18)

Finally, we include the following proposition, which states that, as the name sug-
gests, the Cameron–Martin subgroup is a subspace of heat kernel measure 0. The proof
is identical to Proposition 4.6 of [8].

Proposition 2.30 For all t > 0, νt (GC M ) = 0.

Proof Let μt denote Wiener measure on W with variance t . Then for a bounded
measurable function f : G = W × C → C such that f (w, x) = f (w),

∫

G

f (w) dνt (w, x) = E[ f (Bt )] =
∫

W

f (w) dμt (w).

Let π : W × C → W be the projection π(w, x) = w. Then π∗νt = μt , and thus

νt (GC M ) = νt (π
−1(H)) = π∗νt (H) = μt (H) = 0.

��

2.7 Holomorphic functions on G and GC M

We recall here the basic facts for holomorphic functions on infinite-dimensional spaces
required for the sequel. For complete proofs of any of these results, see Sect. 5 of [8].

2.7.1 Holomorphic functions on Banach spaces

The material in this subsection is based on the theory in [20]. Let X and Y be two
complex Banach spaces, and for a ∈ X and δ > 0 let

BX (a, δ) := {x ∈ X : ‖x − a‖X < δ}
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be the open ball in X with center a and radius δ. The following is Definition 3.17.2
of Hille and Phillips [20].

Definition 2.31 Let D be an open subset of X . A function f : D → Y is said to be
holomorphic or analytic if the following two conditions hold.

1. f is locally bounded, namely, for all a ∈ D there exists ra > 0 such that

Ma := sup {‖ f (x)‖Y : x ∈ BX (a, ra)} <∞.

2. The function f is complex Gâteaux differentiable on D, that is, for each a ∈ D
and h ∈ X , the function λ �→ f (a + λh) is complex differentiable at λ = 0 ∈ C.

Remark 2.32 Holomorphic and analytic will be considered to be synonymous for the
purposes of this paper. We will use “holomorphic”.

The next proposition gathers together a number of basic properties of holomorphic
functions which may be found in [20], see also [19]. One of the key ingredients to all
of these results is Hartog’s theorem, see [20, Theorem 3.15.1].

Proposition 2.33 If f : D → Y is holomorphic, then there exists a function f ′ :
D → Hom (X,Y ), the space of bounded complex linear operators from X to Y ,
satisfying the following:

1. If a ∈ D, x ∈ BX (a, ra/2), and h ∈ BX (0, ra/2), then

‖ f (x + h)− f (x)− f ′(x)h‖Y ≤ 4Ma

ra(ra − 2‖h‖X )
‖h‖2

X .

In particular, f is continuous and Frechét differentiable on D.
2. The function f ′ : D → Hom (X,Y ) is holomorphic.

By applying Proposition 2.33 repeatedly, it follows that any holomorphic function
f : D → Y is Frechét differentiable to all orders and each of the Frechét differentials
is again a holomorphic function on D.

2.7.2 Holomorphic functions on G and GC M

Now we describe results for holomorphic functions on G and GC M . For the next prop-
osition, take G0 = G and g0 = g or G0 = GC M and g0 = gC M . Note that as usual we
treat group elements as Lie algebra elements when we write the group multiplication
below. This linearization explains why the proof is identical to [8], and why we omit it.

Proposition 2.34 For each g ∈ G0, the left translation map Lg : G0 → G0 is ho-
lomorphic in the ‖ · ‖g0 -topology. Moreover, a function f : G0 → C defined in a
neighborhood of g ∈ G0 is Gâteaux (Frechét) differentiable at g if and only if f ◦ Lg

is Gâteaux (Frechét) differentiable at e. If f is Frechét differentiable at g, then

( f ◦ Lg)
′(e)h = f ′(g)

(
h + 1

2
[g, h]

)
.
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404 M. Gordina, T. Melcher

Thus, a function f : G0 → C is holomorphic if and only if f is locally bounded
and h �→ f (g · eh) = f (g · h) is Gâteaux (Frechét) differentiable at 0 for all g ∈ G0.
If f is holomorphic and h ∈ g0, then

(h̃ f )(g) = d

dλ

∣∣∣∣
0

f (g · eλh) = f ′(g)
(

h + 1

2
[g, h]

)

is holomorphic as well.

A simple induction argument using Proposition 2.34 allows us to conclude that
h̃1 . . . h̃n f ∈ H (G0) for all f ∈ H (G0) and h1, . . . , hn ∈ g0.

Notation 2.35 The space of globally defined holomorphic functions on a group U
will be denoted by H(U ).

Finally, we also record the following result, which is completely analogous to Prop-
osition 5.7 and Corollary 5.8 of [8].

Proposition 2.36 If f ∈ H(G) and h ∈ g, then ĩh f = i h̃ f , ĩh f̄ = −i h̃ f̄ ,

(
ĩ h

2 + h̃2
)

f = 0, and
(

ĩ h
2 + h̃2

)
| f |2 = 4|h̃ f |2.

Thus, for L as in Proposition 2.24 and f : G → C a holomorphic cylinder function,
L f = 0 and

L| f |2 =
∞∑

j=1

∣∣η̃ j f
∣∣2

for any {η j }∞j=1 a basis of H × {0} as in Notation 2.20.

3 The Taylor isomorphism

Before we define the Taylor map, we must first define the relevant Hilbert spaces.
First of these is the noncommutative Fock space, which plays the role of the derivative
space of holomorphic functions.

3.1 Noncommutative Fock space

We set the now standard notation for the noncommutative Fock space, making the
appropriate changes in the definition of the norm to accomodate the subelliptic setting.

Notation 3.1 Let V be a complex vector space. We will denote the algebraic dual to
V by V ′. For k ∈ N, let V⊗k denote the k-fold algebraic tensor product of V with
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Subelliptic Taylor isomorphism 405

itself. For any tensors a, b, we write a ∧ b for a ⊗ b − b ⊗ a. Let T (V ) denote the
algebraic tensor algebra over V , so that a ∈ T (V ) is a finite sum

a =
n∑

k=0

ak, ak ∈ V⊗k,

where V⊗0 = C. For α ∈ T (V )′ and k ∈ {0} ∪ N, let αk := α|V⊗k ∈ (
V⊗k

)′
, so that

α =
∞∑

k=0

αk, αk ∈ (V⊗k)′.

When V is a Lie algebra, let J (V ) be the two-sided ideal in T (V ) generated by
{a∧b−[a, b] : a, b ∈ V } and let J 0(V ) be the backward annihilator of J (V ), that is,

J 0(V ) = {α ∈ T (V )′ : 〈α, J (V )〉 = 0}.
In particular, we will be concerned with the vector spaces gC M and gP = PW ×C.

We will let J 0(gC M ) = J 0. Now we will define norms on J 0 and J 0(gP ).
In order to put a norm on J 0, let {ξ j }∞j=1 ⊂ H∗ be a fixed complex orthonormal

basis of H and {η j }∞j=1 = {(ξ j , 0)}∞j=1 be a complex basis of H × {0} as in Nota-

tion 2.20. For k ∈ {0} ∪ N, we define a non-negative sesqui-linear form on (g⊗k
C M )

′
by

(α, β)k :=
∞∑

j1,..., jk=1

〈α, η j1 ⊗ · · · ⊗ η jk 〉〈β, η j1 ⊗ · · · ⊗ η jk 〉, for all α, β ∈ (g⊗k
C M )

′.

For α ∈ (g⊗k
C M )

′, we will write

‖α‖2
k := (α, α)k =

∞∑

j1,..., jk=1

|〈α, η j1 ⊗ · · · ⊗ η jk 〉|2.

The following lemma is clear from the definition of ‖ · ‖k .

Lemma 3.2 Let α ∈ (g⊗k
C M )

′ for some k ∈ N. Then ‖α‖k > 0 if and only if there exist
some ξ1, . . . , ξk ∈ H such that 〈α, (ξ1, 0)⊗ · · · ⊗ (ξk, 0)〉 �= 0.

For any projection P ∈ Proj(W ), we define an analogous norm for the finite-dimen-
sional Lie algebras gP = PW × C. Let {ξ j }nj=1 be a complex orthonormal basis for
P H , and let {η j }nj=1 = {(ξ j , 0)}nj=1. Define the non-negative sesqui-linear form

(α, β)P :=
n∑

j=1

〈α, η j 〉〈β, η j 〉 for all α, β ∈ g′P .

This induces a form on (g⊗k
P )′ determined by

(α1 ⊗ · · · ⊗ αk, β1 ⊗ · · · ⊗ βk)P,k :=
k∏

�=1

(α�, β�)P for all α j , β j ∈ g′P
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406 M. Gordina, T. Melcher

For α ∈ (g⊗k
P )′, we will write

‖α‖2
P,k := (α, α)P,k =

n∑

j1,..., jk=1

|〈α, η j1 ⊗ · · · ⊗ η jk 〉|2.

One may easily verify that ‖ · ‖k and ‖ · ‖P,k are independent of the choice of ortho-
normal basis.

Definition 3.3 (Noncommutative Fock spaces) For t > 0 and α =∑∞
k=1 αk ∈ J 0, let

‖α‖2
t :=

∞∑

k=0

tk

k! ‖αk‖2
k,

and

J 0
t := {α ∈ J 0 : ‖α‖t <∞}.

Similarly, for t > 0, P ∈ Proj(W ), and α ∈ J 0(gP ), let

‖α‖2
P,t :=

∞∑

k=0

tk

k! ‖αk‖2
P,k,

and

J 0
P,t := {α ∈ J 0(gP ) : ‖α‖P,t <∞}.

For {Pn}∞n=1 an increasing sequence of projections in Proj(W ), let ‖ · ‖n,k := ‖ · ‖Pn ,k ,
‖α‖n,t := ‖α‖Pn ,t , J 0

n,t := J 0
Pn ,t

.

The functions ‖ ·‖t and ‖ ·‖P,t are clearly semi-norms on J 0
t and J 0

P,t , respectively.
It is proved in Theorem 2.7 of [10] that, for any t > 0 and P ∈ Proj(W ) , the semi-
norm ‖ · ‖P,t is a norm on J 0

P,t (using the fact that [PW, PW ] = C). In fact, J 0
P,t is a

Hilbert space when equipped with the inner product

〈α, β〉P,t :=
∞∑

k=0

tk

k! (αk, βk)P,k for all α, β ∈ J 0
P,t .

To compare our notation with that used in [10], for each P ∈ Proj(W ), let

K P :=
⎧
⎨

⎩α ∈ g′P : (α, α)P =
n∑

j=1

|〈α, η j 〉|2 = 0

⎫
⎬

⎭ .

Then clearly

K 0
P := {a ∈ gP : 〈α, a〉 = 0 for all α ∈ K P } = P H × {0}.
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If the Lie algebra generated by P H is all of gP , then (·, ·)P satisfies Hörmander’s
condition as defined in Definition 2.6 of [10].

Here we follow the proof in [10] to show that, since Hörmander’s condition
[H, H ] = C holds, ‖ · ‖t is a norm on J 0

t . (Indeed, it is shown in [10] that, at
least in the finite-dimensional case, ‖ · ‖t is a norm on J 0

t if and only if Hörmander
condition holds.) First, we need the following lemma.

Lemma 3.4 There exists an algebra homomorphism� : T (gC M )→ T (H) such that
T (gC M ) = T (H)⊕ Nul(�), where Nul(�) ⊂ J (gC M ).

Proof Let {ξ j }∞j=1 be an orthonormal basis of H . Since [H, H ] = C, we may also

choose {A�, B�}N
�=1 ⊂ H such that {ω(A�, B�)}N

�=1 is a basis of C with dual basis
{ε�}N

�=1. Define ψ : gC M → H ⊕ H⊗2 for

(A, a) =
∞∑

j=1

〈A, ξ j 〉H (ξ j , 0)+
N∑

�=1

ε�(a)(0, ω(A�, B�)) ∈ gC M

by

ψ(A, a) :=
∞∑

j=1

〈A, ξ j 〉H (ξ j , 0)+
N∑

�=1

ε�(a)(A� ∧ B�, 0),

where again u ∧ v = u ⊗ v − v ⊗ u for any u, v ∈ H . Then ψ is a linear operator
such that ψ(A, 0) = (A, 0) for any A ∈ H , and, as

(A ∧ B, 0)− (0, ω(A, B)) = (A, 0) ∧ (B, 0)− (0, ω(A, B)) ∈ J (gC M ),

for any A, B ∈ H , we have ψh − h ∈ J (gC M ) for all h ∈ gC M . One may also show
that ψ is bounded as an operator into T (H): for any x = (A, a) ∈ GC M such that
‖x‖2

gC M
= ‖A‖2

H + ‖a‖C ≤ 1,

‖ψ(A, a)‖2
H⊕H⊗2 = ‖A‖2

H +
∞∑

j,k=1

∣∣∣∣∣

〈
N∑

�=1

ε�(a)A� ∧ B�, ξ j ⊗ ξk

〉∣∣∣∣∣

2

≤ ‖A‖2
H +

∞∑

j,k=1

(
N∑

�=1

ε�(a)2
N∑

�=1

|〈A� ∧ B�, ξ j ⊗ ξk〉|2
)

≤ ‖A‖2
H + C‖a‖2

C ≤ C ′(‖A‖2
H + ‖a‖C),

where C ′ = C ′(N , ω) < ∞, and the final inequality follows from the fact that
‖A‖2

H + ‖a‖C ≤ 1 implies that ‖A‖2
H + ‖a‖2

C ≤ ‖A‖2
H + ‖a‖C.

By the universal property of the tensor algebra, there is a unique extension of ψ
to an algebra homomorphism � : T (gC M )→ T (H), such that �1T (gC M ) = 1T (H).
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Since for h1, . . . , hn ∈ gC M

�(h1 ⊗ · · · ⊗ hn) = ψh1 ⊗ · · · ⊗ ψhn ∈ (h1 + J (gC M ))⊗ · · · ⊗ (hn + J (gC M ))

and J (gC M ) is an ideal, it follows that �(h1 ⊗ · · · ⊗ hn) − h1 ⊗ · · · ⊗ hn ∈
J (gC M ). ��

This lemma immediately gives the following.

Theorem 3.5 Let t > 0. The semi-norm ‖ · ‖t on J 0
t is a norm.

Proof Suppose that α =∑∞
k=0 αk ∈ J 0 is such that

0 = ‖α‖2
t =

∞∑

k=0

tk

k!
∞∑

i1,...,ik=1

|〈αk, ηi1 ⊗ · · · ⊗ ηik 〉|2.

Thus, α|T (H) = 0 and, for � as in Lemma 3.4, α = α ◦� = α|T (H) ◦� = 0. ��
Corollary 3.6 The space J 0

t is a Hilbert space equipped with the inner product

〈α, β〉t :=
∞∑

k=0

tk

k! (αk, βk)k .

3.2 The Taylor map

The other relevant space for the Taylor map should be thought of as the νt -square inte-
grable holomorphic functions on GC M . For t > 0, f : GC M → C, and P ∈ Proj(W ),
let

‖ f ‖2
L2(νP

t )
:= ‖ f |G P‖2

L2(νP
t )
= E| f (gP

t )|2,

where {gP
t }t≥0 ⊂ G P ⊂ GC M is a Brownian motion on G P as in Proposition 2.25.

Definition 3.7 For t > 0 and f ∈ H(GC M ), let

‖ f ‖H2
t (GC M )

:= sup
P∈Proj(W )

‖ f ‖L2(νP
t )
,

and define

H2
t (GC M ) := { f ∈ H(GC M ) : ‖ f ‖H2

t (GC M )
<∞}.

We set one more piece of notation before defining the Taylor map.

Notation 3.8 Given f ∈ H(GC M ), g ∈ GC M , k ∈ {0} ∪ N, let f̂k(g) := (Dk f )(g)
denote the unique element of (g⊗k

C M )
′ given by
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(D0 f )(g) = f (g)

〈(Dk f )(g), h1 ⊗ · · · ⊗ hk〉 =
(

h̃1 · · · h̃k f
)
(g)

for all h1, . . . , hk ∈ gC M . Let f̂ (g) be the element of T (gC M )
′ determined by

〈 f̂ (g), β〉 = 〈 f̂k(g), β〉, for all β ∈ g⊗k
C M .

Remark 3.9 As a consequence of Eq. (2.9), f̂ (g) ∈ J 0 for all f ∈ H(GC M ) and
g ∈ GC M .

Definition 3.10 For each t > 0, the Taylor map is the linear mapTt : H2
t (GC M )→ J 0

t

defined by Tt f = f̂ (e).

3.3 Proof of isometry

We will prove that the Taylor map is an isometry by limiting arguments for the finite-
dimensional projections. Let us first recall the finite-dimensional theory.

Notation 3.11 For any P ∈ Proj(W ), we set derivative notation for f ∈ H(G P )

similarly to how it was done in Notation 3.8. That is, for g ∈ G P and k ∈ {0} ∪N, let
f̂k(g) := (Dk

P f )(g) denote the element of (g⊗k
P )′ given by

〈(Dk
P f )(g), h1 ⊗ · · · ⊗ hk〉 =

(
h̃1 · · · h̃k f

)
(g),

for all h1, . . . , hk ∈ gP , and let f̂ (g) be the element of T (gP )
′ determined by

〈 f̂ (g), β〉 = 〈 f̂k(g), β〉, f orall β ∈ g⊗k
P .

Also, let HL2(νP
t ) = H(G P )∩ L2(G P , ν

P
t ). If {Pn}∞n=1 is an increasing sequence

in Proj(W ), let HL2(νn
t ) = HL2(ν

Pn
t ). The finite-dimensional Taylor map is the linear

map f �→ f̂ (e) from HL2(νP
t ) to J 0

P,t , where the latter is as defined in Definition 3.3

For each P ∈ Proj(W ), G P is a finite-dimensional connected, simply connected
complex Lie group. If [PW, PW ] = C, then (·, ·)P is a non-negative Hermitian form
on g′P satisfying Hörmander’s condition. Thus, we have the following theorem.

Theorem 3.12 Suppose that P ∈ Proj(W ) such that [PW, PW ] = C. Then the
finite-dimensional Taylor map f �→ f̂ (e) is a unitary map from HL2(νP

t ) onto J 0
P,t .

Moreover, for any t > 0, f ∈ HL2(νP
t ), and g ∈ G P ,

| f (g)| ≤ ‖ f̂ (e)‖P,t e
d2

h (e,g)/2t (3.1)

where dh is the horizontal distance on G P (defined analogously on G P to the hori-
zontal distance on GC M as in Notation 2.14).
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410 M. Gordina, T. Melcher

The isometry and surjectivity follow from the finite-dimensional Taylor isomor-
phism proved in Theorem 6.1 of [10], and the estimate in (3.1) is a consequence of
Corollary 5.15 of that same reference. The paper [11] gives an alternate proof of the
surjectivity, as each G P is a nilpotent Lie group. In Sect. 3.4, we will apply the meth-
ods used in [11] to show that the Taylor map is surjective in this infinite-dimensional
setting as well. Here we use the finite-dimensional isometries to show that Tt is an
isometry for all t > 0 as follows.

Proposition 3.13 Let f ∈ H(GC M ) and t > 0. Then

‖ f̂ (e)‖t = ‖ f ‖H2
t (GC M )

.

Proof By the finite-dimensional Taylor isomorphism theorem, for all P ∈ Proj(W ),

‖ f̂ (e)‖J 0
P,t
= ‖ f ‖L2(νP

t )
.

Thus, by definition of ‖ · ‖H2
t (GC M )

,

‖ f ‖H2
t (GC M )

= sup
P∈Proj(W )

‖ f ‖L2(νP
t )
= sup

P∈Proj(W )

‖ f̂ (e)‖J 0
P,t
.

So showing that

sup
P∈Proj(W )

‖ f̂ (e)‖J 0
P,t
= ‖ f̂ (e)‖t

completes the proof.
Let P ∈ Proj(W ) with {ξ j }∞j=1 an orthonormal basis of H , such that {ξ j }nj=1 is an

orthonormal basis of P H . Let η j = (ξ j , 0). Then

‖ f̂ (e)‖J 0
t (gP )

=
∞∑

k=0

tk

k!
n∑

j1,..., jk=1

|〈 f̂ (e), η j1 ⊗ · · · ⊗ η jk 〉|2

≤
∞∑

k=0

tk

k!
∞∑

j1,..., jk=1

|〈 f̂ (e), η j1 ⊗ · · · ⊗ η jk 〉|2 = ‖ f̂ (e)‖t ,

and so supP∈Proj(W ) ‖ f̂ (e)‖J 0
t (gP )

≤ ‖ f̂ (e)‖t . On the other hand, if {Pn}∞n=1 ⊂
Proj(W ) is an increasing sequence of projections, then

sup
P∈Proj(W )

‖ f̂ (e)‖J 0
t (gP )

≥ lim
n→∞‖ f̂ (e)‖n,t

= lim
n→∞

∞∑

k=0

tk

k!
n∑

j1,..., jk=1

|〈 f̂ (e), η j1 ⊗ · · · ⊗ η jk 〉|2

=
∞∑

k=0

tk

k!
∞∑

j1,..., jk=1

|〈 f̂ (e), η j1 ⊗ · · · ⊗ η jk 〉|2 = ‖ f̂ (e)‖t .

��
The following corollary follows from Propositions 3.13 and 2.29.
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Subelliptic Taylor isomorphism 411

Corollary 3.14 Let δ > 0 be as in Proposition 2.28, and suppose that f : G → C is
a continuous function such that f |GC M ∈ H(GC M ) and, for some ε ∈ (0, δ),

| f (g)| ≤ Ceε‖g‖2
g/2t

for all g ∈ G. Then f |GC M ∈ H2
t (GC M ) and f̂ |GC M

(e) ∈ J 0
t .

In particular, Corollary 3.14 implies that, for all t > 0, PC M ⊂ H2
t (GC M ) and, for

any p ∈ P , p̂|GC M
(e) ∈ J 0

t . Thus, H2
t (GC M ) and J 0

t are non-trivial spaces.

Corollary 3.15 The Taylor map Tt : H2
t (GC M )→ J 0

t is injective, and ‖ · ‖H2
t (GC M )

is a norm on H2
t (GC M ) induced by the inner product

〈u, v〉H2
t (GC M )

:= 〈û(e), v̂(e)〉t , for all u, v ∈ H2
t (GC M ).

Proof If f̂ (e) = 0, then Proposition 3.13 implies that ‖ f ‖H2
t (GC M )

= 0 and thus
f |G P = 0 for all P ∈ Proj(W ). As f is continuous and ∪P∈Proj(W )G P is dense in
GC M by Proposition 2.18, it follows that f ≡ 0. Thus, Tt is injective.

Since ‖ · ‖t is a Hilbert norm, Proposition 3.13 then also implies that ‖ · ‖H2
t (GC M )

is the norm on H2
t (GC M ) given by the above inner product. ��

3.4 A density theorem and proof of surjectivity

We will now apply the methods used in [11] to show that the Taylor map is surjective. In
fact, the infinite-dimensional proof is directly analogous to the finite-dimensional proof
presented there, and no special considerations need to be made for the infinite-dimen-
sional case. Similar arguments were used in [5] and [8]. Still, we collect the proofs here
for completeness and to stress the dimension independence of the arguments. Addi-
tionally, Corollary 3.20 will be critical in the proof of surjectivity of the restriction map
in Sect. 4, and this proof will require some adaptation for the subelliptic construction.

Definition 3.16 A tensor α = ∑∞
k=0 αk ∈ T (gC M )

′ is said to have finite rank if
αk = 0 for all but finitely many k ∈ N.

The next lemma is essentially a special case of [10, Lemma 3.5]. See also [5,
Theorem 41] and [8, Lemma 7.3].

Lemma 3.17 The finite rank tensors in J 0
t are dense in J 0

t .

Proof First note that gC M = H × C is a graded Lie algebra with [H, H ] = C,
[H,C] = 0, and [C,C] = 0. Thus, for θ ∈ R, we may define the dilations ϕθ :
gC M → gC M by

ϕθ (A, a) := (eiθ A, e2iθa), for all (A, a) ∈ gC M ,
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and it is straightforward to verify that ϕθ is an automorphism of gC M . Let �θ :
T (gC M )→ T (gC M ) be the automorphism of the tensor algebra over gC M induced by
ϕθ , that is,

�θ :=
k times︷ ︸︸ ︷

ϕθ ⊗ · · · ⊗ ϕθ on g⊗k
C M .

Then

�θ(ξ ∧ ξ ′ − [ξ, ξ ′]) = (ϕθ ξ) ∧ (ϕθ ξ ′)− ϕθ [ξ, ξ ′] = (ϕθ ξ) ∧ (ϕθ ξ ′)− [ϕθξ, ϕθ ξ ′].

From this it follows that�θ(J ) ⊂ J and therefore if α ∈ J 0, then α◦�θ ∈ J 0. Letting
{ξ j }∞j=1 be an orthonormal basis of H and � = {(ξ j , 0)}∞j=1, we have ϕθη = eiθη for
all η ∈ �. Therefore,

|〈α ◦�θ, η1 ⊗ · · · ⊗ ηk〉|2 = |〈α, ϕθη1 ⊗ · · · ⊗ ϕθηk〉|2 = |〈α, η1 ⊗ · · · ⊗ ηk〉|2,

and hence

‖α ◦�θ‖2
t =

∞∑

k=0

tk

k!
∑

η1,...,ηk∈�
|〈α ◦�θ, η1 ⊗ · · · ⊗ ηk〉|2

=
∞∑

k=0

tk

k!
∑

η1,...,ηk∈�
|〈α, η1 ⊗ · · · ⊗ ηk〉|2 = ‖α‖2

t .

So the map J 0
t � α �→ α ◦�θ ∈ J 0

t is unitary. Moreover, since

|〈α, ϕθη1 ⊗ · · · ⊗ ϕθηk〉 − 〈α, η1 ⊗ · · · ⊗ ηk〉|2
≤ 2|〈α, η1 ⊗ · · · ⊗ ηk〉|2,

the dominated convergence theorem implies that

lim
θ→0

‖α ◦�θ − α‖2
t

=
∞∑

k=0

tk

k!
∑

η1,...,ηk∈�
lim
θ→0

|〈α, ϕθη1 ⊗ · · · ⊗ ϕθηk〉 − 〈α, η1 ⊗ · · · ⊗ ηk〉|2

= 0, (3.2)

and α �→ α ◦�θ is continuous. (Notice that�θ ◦�α = �θ+α , so it suffices to check
continuity at θ = 0.)

Now, for any n ∈ N, let

Fn(θ) = 1

2πn

n−1∑

j=0

j∑

�=− j

ei�θ = 1

2πn

sin2( jθ/2)

sin2(θ/2)
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denote Fejer’s kernel [27, p. 143]. Then one may show the following:
∫ π
−π Fn(θ)dθ = 1

for all n ∈ N;

lim
n→∞

π∫

−π
Fn(θ)u(θ)dθ = u(0),

for all continuous functions u : [−π, π ] → C; and
π∫

−π
Fn(θ)e

imθ dθ = 0

whenever m > n. Given α ∈ J 0
t , we let

α(n) :=
π∫

−π
α ◦�θ Fn(θ) dθ.

If β = h1 ⊗ · · · ⊗ hm ∈ g⊗m
C M , then there exist β� ∈ g⊗m

C M such that

�θβ =
2m∑

�=m

ei�θβ�.

So, if m > n,

〈α(n), β〉 =
π∫

−π
〈α,�θβ〉 Fn(θ) dθ =

2m∑

�=m

〈α, β�〉
π∫

−π
ei�θ Fn(θ) dθ = 0,

from which it follows that α(n)m ≡ 0 for all m > n. Thus α(n) is a finite rank tensor
for all n ∈ N, and (3.2) implies that

lim sup
n→∞

‖α − α(n)‖2
t = lim sup

n→∞

∥∥∥∥∥∥

π∫

−π
[α − α ◦�θ ]Fn(θ) dθ

∥∥∥∥∥∥
t

≤ lim sup
n→∞

π∫

−π
‖α − α ◦�θ‖t Fn(θ) dθ = 0.

��

The surjectivity of the Taylor map may now be proved by finding a preimage in
H2

t (GC M ) under Tt for any finite rank tensor in J 0
t . The following lemma is a special

case of Proposition 5.1 in [6] and motivates our construction of the inverse of the
Taylor map. This version of the result may also be found in Lemma 6.9 of [8].

Lemma 3.18 For every f ∈ H(GC M ) and g ∈ GC M ,

f (g) =
∞∑

k=0

1

k! 〈 f̂k(e), g⊗k〉,

where by convention g⊗0 = 1 ∈ C and the above sum is absolutely convergent.
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414 M. Gordina, T. Melcher

Proof The function u(z) := f (zg) is a holomorphic function of z ∈ C. Therefore,

f (g) = u(1) =
∞∑

k=0

1

k!u
(k)(0),

and the sum is absolutely convergent. In fact, for all r > 0, there exists C(r) < ∞
such that 1

k! |u(k)(0)| ≤ C(r)r−k for all k ∈ N. Finally, note that

u(k)(0) = dk

dtk

∣∣∣∣
t=0

u(t) = dk

dtk

∣∣∣∣
t=0

f (tg)

= dk

dtk

∣∣∣∣
t=0

f (etg) = (g̃k f )(e) = 〈 f̂k(e), g⊗k〉.

��

The following proof of the surjectivity of the Taylor map is directly analogous to
the proof of Lemma 3.6 in [11].

Theorem 3.19 The Taylor map Tt : H2
t (GC M )→ J 0

t is surjective.

Proof Consider first α a finite rank tensor in J 0
t . By Lemma 3.18, if f = T −1

t α exists,
then it must be given by

fα(g) :=
∞∑

k=0

1

k! 〈αk, g⊗k〉,

for all g ∈ GC M . This is a finite sum since α is of finite rank, and thus fα is a finite
sum of continuous complex multilinear forms in g ∈ GC M . Thus, fα is holomorphic,
and, in particular, for any h ∈ gC M ,

〈 f̂α(e), h⊗k〉 = dk

dtk

∣∣∣∣
t=0

fα(th) = dk

dtk

∣∣∣∣
t=0

∞∑

n=0

1

n! 〈αn, (th)
⊗n〉 = 〈αk, h⊗k〉.

So f̂α(e) = α on span{h⊗k : h ∈ gC M , k ∈ {0} ∪N} = {symmetric R-tensors} =: S.
By the Poincaré-Birkhoff-Witt theorem (see [28, Lemma 3.3.3] or [22, Corollary E]),
T (gC M ) = S ⊕ J , and, since f̂α(e)− α annihilates J , this implies that f̂α(e) = α on
T (gC M ).

Thus, for every finite rank tensor α ∈ J 0
t , the function fα is holomorphic and

f̂α(e) = α, and so Proposition 3.13 implies that fα ∈ H2
t (GC M ). Hence, the image

of f �→ f̂ (e) is dense in J 0
t , which suffices to prove surjectivity. ��

The following is an immediate consequence of Lemma 3.17 and Theorem 3.19.
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Corollary 3.20 The vector space,

H2
t,fin(GC M ) :=

{
f ∈ H2

t (GC M ) : f̂ (e) ∈ J 0
t is finite rank

}

is a dense subspace of H2
t (GC M ).

4 The restriction map

In this section, we construct the “skeleton” or “restriction” map between a class of
square integrable holomorphic functions on G and H2

t (GC M ), and we prove that this
map is an isometric isomorphism. Before proceeding, we must first define the appro-
priate class of holomorphic functions on G we wish to deal with.

Recall from Definition 2.23 that a function f : G → C is a cylinder function if
f = F ◦ πP for some P ∈ Proj(W ) and F : G P → C. We say that f is a holo-
morphic cylinder polynomial if F is a holomorphic polynomial on G P . The space of
holomorphic cylinder polynomials will be denoted by P . Propositions 2.28 and 2.29
imply that P ⊂ L p(νt ) for all p ∈ [1,∞), so we may make the following definition.

Definition 4.1 For t > 0, let H2
t (G) denote the L2(νt )-closure of P .

Remark 4.2 Let A denote the class of holomorphic cylinder functions on G. As
remarked in [8], it is natural to expect that H2

t (G) coincides with the closure of
A ∩ L2(νt ) in L2(νt ), however, this is currently not known even in much simpler
settings. But in a sense H2

t (G) is the appropriate space to consider, as the polynomials
should constitute a dense subset of the square integrable holomorphic functions, when
one can make sense of polynomials.

In Sect. 4.1, we show that the restriction of holomorphic cylinder polynomials
to GC M constitutes a dense subspace of H2

t (GC M ), and with this result in hand, in
Sect. 4.2 we construct the restriction map as a linear map on H2

t (G).

4.1 Another density theorem

Techniques similar to those used in this section were used in [8], as well as in Cecil
[5] to prove an analogous result for path groups over stratified Lie groups.

Theorem 4.3 For all t > 0,

PC M := {p|GC M : p ∈ P}
is a dense subspace of H2

t (GC M ).

This result is analogous to Theorem 7.1 of [8], and as done in that paper, Theo-
rem 4.3 will be proved by showing that PC M is dense in yet another dense subspace
of H2

t (GC M ). In particular, Corollary 3.20 implies that it suffices to show that any
element of H2

t,fin(GC M )may be approximated by elements of PC M . However, the fact
that in our case J 0

t is defined not using the full Hilbert–Schmidt norm complicates
some limiting arguments that appear in [8].
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Again we recall Notation 2.20: let {ξ j }∞j=1 ⊂ H∗ be a complex orthonormal basis
of H and let {η j }∞j=1 = {(ξ j , 0)}∞j=1. Define Pn ∈ Proj(W ) by

Pnw =
n∑

j=1

〈w, ξ j 〉H ξ j for all w ∈ W,

and πn : G → Gn = PnW × C defined by πn(w, c) = (Pnw, c).
We will show that for all f ∈ Ht,fin(GC M ), f ◦ πn ∈ P and f ◦ πn|GC M → f in

H2
t (GC M ). The proof of this statement is complicated by the fact that, for general ω

and P ∈ Proj(W ), πP : G → G P ⊂ GC M is not a group homomorphism. In fact, for
g = (w, c) and g′ = (w′, c′),

πP (gg′)− πP g · πP g′ = �P (w,w
′)

where

�P (w,w
′) := 1

2
(0, ω(w,w′)− ω(Pw, Pw′))

= 1

2

([g, g′] − [πP g, πP g′]) . (4.1)

So unless ω is “supported” on the range of P , πP is not a group homomorphism. Note
that the case where ω is supported on a finite-dimensional space is exactly the trivial
case where L is “finitely many steps from being elliptic,” and the proof of several of
the other results included here would be greatly simplified.

The proof of the following proposition is similar to Proposition 2.13 and is left to
the reader.

Proposition 4.4 For any P ∈ Proj(W ), g = (w, c) ∈ G, hi = (Ai , ai ) ∈ g, and
f : G → C a smooth function,

h̃n · · · h̃1( f ◦ πP )(g) =
n∑

k=�n/2�
f (k)(πP g)

∑

θ∈�n
n−k

(hn, . . . , h1)
⊗θ
P (g), (4.2)

where, for θ = {{i1, i2}, . . . , {i2k−1, i2k}, {i2k+1}, . . . , {in}} ∈ �n
k a partition of

{1, . . . , n} as defined in Notation 2.12,

(hn, . . . , h1)
⊗θ
P (g) := [hi1, hi2 ] ⊗ · · · ⊗ [hi2k−1 , hi2k ] ⊗ h P

i2k+1
(g)⊗ · · · ⊗ h P

in
(g),

with

h P (g) :=
(

P A, a + 1

2
ω(w, A)

)
.

Again as we did for Proposition 2.13, let us write out (4.2) for the first few n:

h̃1( f ◦ π)(g) = f ′(πg)h P
1 (g)
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h̃2h̃1( f ◦ π)(g) = f ′′(πg)
(

h P
2 (g)⊗ h P

1 (g)
)
+ f ′(πg)[h2, h1]

h̃3h̃2h̃1( f ◦ π)(g) = f ′′′(πg)
(

h P
3 (g)⊗ h P

2 (g)⊗ h P
1 (g)

)

+1

2
f ′′(πg)

(
[h3, h2] ⊗ h P

1 (g)

+[h3, h1] ⊗ h P
2 (g)+ [h2, h1] ⊗ h P

3 (g)
)

In particular, when g = e and hi = (Ai , 0), we have h P
i (e) = (P Ai , 0) = πhi , and

the above formulae become

h̃1( f ◦ π)(e) = f ′(e)πh1 (4.3)

h̃2h̃1( f ◦ π)(e) = f ′′(e)(πh2 ⊗ πh1)+ f ′(e)1

2
[h2, h1] (4.4)

h̃3h̃2h̃1( f ◦ π)(e) = f ′′′(e)(πh3 ⊗ πh2 ⊗ πh1)

+1

2
f ′′(e)

([h3, h2] ⊗ πh1+πh2 ⊗ [h3, h1]+πh3 ⊗ [h2, h1]
)
.

(4.5)

Now using Propositions 2.13 and 4.4 we may prove the following.

Proposition 4.5 Fix k ∈ N and suppose that f ∈ H(GC M ) satisfies ‖ f̂k(e)‖k <∞.
Then

lim
n→∞

∥∥∥ f̂k(e)−
(

f̂ ◦ πn

)

k
(e)

∥∥∥
k
= 0.

Proof We will write out the first few cases for small k before proving the conver-
gence for arbitrary k. Consider first k = 1. Then Propositions 2.13 and 4.4, [more
particularly, Eqs. (2.5) and (4.3)] imply that

‖ f̂1(e)− ( f̂ ◦ π)1(e)‖2
1 =

∞∑

j=1

∣∣η̃ j f (e)− η̃ j ( f ◦ π)(e)∣∣2

=
∞∑

j=1

∣∣ f ′(e)η j − f ′(e)πη j
∣∣2 =

∞∑

j=n+1

∣∣ f ′(e)η j
∣∣2 → 0

as n →∞, since by hypothesis

‖ f̂1(e)‖2
1 =

∞∑

j=1

∣∣η̃ j f (e)
∣∣2 =

∞∑

j=1

∣∣ f ′(e)η j
∣∣2 <∞.

Now, for k = 2, Eqs. (2.7) and (4.4) give

‖ f̂2(e)− ( f̂ ◦ π)2(e)‖2
2 =

∞∑

j1, j2=1

∣∣η̃ j2 η̃ j1 f (e)− η̃ j2 η̃ j1( f ◦ π)(e)∣∣2

=
∞∑

j1, j2=1

∣∣∣∣

{
f ′′(e)(η j1 ⊗ η j2)+

1

2
f ′(e)[η j1, η j2 ]

}
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−
{

f ′′(e)(πη j1 ⊗ πη j2)+
1

2
f ′(e)[η j1, η j2 ]

} ∣∣∣∣
2

=
∞∑

j1, j2=1

∣∣ f ′′(e)(η j1 ⊗ η j2 − πη j1 ⊗ πη j2)
∣∣2

≤
∞∑

j1=1

∞∑

j2=n+1

∣∣∣∣ f ′′(e)(η j1 ⊗ η j2)+
1

2
f ′(e)[η j1 , η j2 ]

∣∣∣∣
2

+
∞∑

j1=n+1

∞∑

j2=1

∣∣∣∣ f ′′(e)(η j1 ⊗ η j2)+
1

2
f ′(e)[η j1, η j2 ]

∣∣∣∣
2

+1

2

∞∑

j1=1

∞∑

j2=n+1

| f ′(e)[η j1, η j2 ]|2 +
1

2

∞∑

j1=n+1

∞∑

j2=1

| f ′(e)[η j1, η j2 ]|2 → 0,

as n →∞, since

‖ f̂2(e)‖2
2 =

∞∑

j1, j2=1

∣∣∣∣ f ′′(e)(η j1 ⊗ η j2)+
1

2
f ′(e)[η j1, η j2 ]

∣∣∣∣
2

<∞,

by hypothesis, and

∞∑

j1, j2=1

| f ′(e)[η j1, η j2 ]|2 ≤ | f ′(e)|2
∞∑

j1, j2=1

‖ω(ξ j1, ξ j2)‖2
C = | f ′(e)|2‖ω‖2

H S <∞,

by Proposition 2.33 which states that f ′(e) is a bounded operator on GC M and Prop-
osition 2.5 which implies that ω is Hilbert–Schmidt.

For k = 3, Eqs. (2.8) and (4.5) give

‖ f̂3(e)− ( f̂ ◦ π)3(e)‖2
2 =

∞∑

j1, j2, j3=1

∣∣η̃ j3 η̃ j2 η̃ j1 f (e)− η̃ j3 η̃ j2 η̃ j1( f ◦ π)(e)∣∣2

=
∞∑

j1, j2, j3=1

∣∣∣∣ f ′′′(e)(η j3 ⊗ η j2 ⊗ η j1 − πη j3 ⊗ πη j2 ⊗ πη j1)

+1

2
f ′′(e)([η j3, η j2 ] ⊗ η j1 + [η j3, η j1 ] ⊗ η j2 + [η j2 , η j1 ] ⊗ η j3

−[η j3, η j2 ] ⊗ πη j1 − [η j3, η j1 ] ⊗ πη j2 − [η j2 , η j1 ] ⊗ πη j3)

∣∣∣∣
2

≤
3∑

�=1

∞∑

j�=n+1

∞∑

ji = 1
i �= �

∣∣∣∣ f ′′′(e)(η j3 ⊗ η j2 ⊗ η j1)

+1

2
f ′′(e)([η j3, η j2 ] ⊗ η j1 + [η j3, η j1 ] ⊗ η j2 + [η j2 , η j1 ] ⊗ η j3)

∣∣∣∣
2

→ 0
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as n →∞, since

‖ f̂3(e)‖2
2 =

∞∑

j1, j2, j3=1

∣∣∣∣ f ′′′(e)(η j3 ⊗ η j2 ⊗ η j1)

+1

2
f ′′(e)([η j3, η j2 ] ⊗ η j1 + [η j3, η j1 ] ⊗ η j2 + [η j2 , η j1 ] ⊗ η j3)

∣∣∣∣
2

<∞,

again by hypothesis.
More generally, using Eqs. (2.6) and (4.2) with g = e and η j = (ξ j , 0) for k odd

shows that

‖ f̂k(e)− ( f̂ ◦ π)k(e)‖2
k ≤

k∑

�=1

∞∑

j�=n+1

∞∑

ji = 1
i �= �

∣∣∣〈 f̂k(e), η jk ⊗ · · · ⊗ η j1〉
∣∣∣
2 → 0

as n →∞. Similarly, for k even,

‖ f̂k(e)− ( f̂ ◦ π)k(e)‖2
k ≤

k∑

�=1

∞∑

j�=n+1

∞∑

ji = 1
i �= �

{ ∣∣∣〈 f̂k(e), η jk ⊗ · · · ⊗ η j1〉
∣∣∣
2

+1

2

∑

θ∈�k
k/2

∣∣∣ f (k/2)(e)(η jk , . . . , η j1)
⊗θ

∣∣∣
2
}
→ 0,

as n →∞, since for θ = {{i1, i2}, . . . , {ik−1, ik}} ∈ �k
k/2, we have

(η jk , . . . , η j1)
⊗θ = [η ji1

, η ji2
] ⊗ · · · ⊗ [η jik−1

, η jik
],

which implies that

∞∑

j1,..., jk=1

∣∣∣ f (k/2)(e)(η jk , . . . , η j1)
⊗θ

∣∣∣
2

≤
∣∣∣ f (k/2)(e)

∣∣∣
2 ∞∑

j1,..., jk=1

‖[η ji1
, η ji2

]‖2
C · · · ‖[η jik−1

, η jik
]‖2

C

=
∣∣∣ f (k/2)(e)

∣∣∣
2 ‖ω‖n

H S <∞,
again by Propositions 2.33 and 2.5. ��

The following proposition completes the proof of Theorem 4.3.

Proposition 4.6 If f ∈ H2
t,fin(GC M ) as defined in Corollary 3.20, then f ◦ πn ∈ P

for all n ∈ N and f ◦ πn|GC M → f in H2
t (GC M ).

Proof Suppose m ∈ N is chosen so that f̂k(e) = 0 if k > m. Comparing Eqs. (2.6)
and (4.2), one may determine that, for h1, . . . , hk ∈ gC M ,
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420 M. Gordina, T. Melcher

〈(
f̂ ◦ πn

)
(e), hk ⊗ · · · ⊗ h1

〉
=

〈
f̂ (e), κn

k (hk, . . . , h1)
〉
, (4.6)

where κn
k is defined as follows: for hi = (Ai , ai ),

κn
k (hk, . . . , h1) :=

k∑

j=�k/2�

∑

θ∈�k
k− j

�⊗θPn
(hk, . . . , h1),

where, for θ = {{i1, i2}, . . . , {i2�−1, i2�}, {i2�+1}, . . . , {ik}} ∈ �k
� ,

�⊗θPn
(hk, . . . , h1) :=�Pn (Ai1 , Ai2)⊗ · · · ⊗ �Pn (Ai2�−1 , Ai2� )⊗πhi2�+1 ⊗ · · · ⊗ πhik ,

and �P (Ai , A j ) = 1
2 ([hi , h j ] − [πhi , πh j ]) as in Eq. (4.1). Alternatively, one may

consult Sect. 7.2 of [8] for a direct derivation of κn
k and Eq. (4.6) (in this reference,

our κn
k (hk, . . . , h1) is just κk(e)).

By definition, κn
k (hk, . . . , h1) ∈ ⊕k

j=�k/2� g
⊗ j
C M and so (4.6) implies that〈

( f̂ ◦ πn)(e), hk ⊗ · · · ⊗ h1

〉
= 0 when k ≥ 2m + 2. Therefore, f ◦ πn restricted to

Gn = Pn H ×C is a holomorphic polynomial, and, since f ◦ πn = ( f ◦ πn)|Gn ◦ πn ,
it follows that f ◦ πn ∈ P .

Moreover,

lim
n→∞

∥∥∥ f̂ (e)−
(

f̂ ◦ πn

)
(e)

∥∥∥
2

t
= lim

n→∞

2m+2∑

k=0

tk

k!
∥∥∥ f̂k(e)−

(
f̂ ◦ πn

)

k
(e)

∥∥∥
2

k
= 0,

since Proposition 4.5 implies that limn→∞
∥∥∥ f̂k(e)−

(
f̂ ◦ πn

)

k
(e)

∥∥∥
k
= 0 for each k.

Thus, by Proposition 3.13,

lim
n→∞‖ f − f ◦ πn‖H2

t (GC M )
= lim

n→∞
∥∥∥ f̂ (e)−

(
f̂ ◦ πn

)
(e)

∥∥∥
t
= 0.

��

4.2 Construction and proof of restriction isomorphism

Before we construct the restriction map, we require some preliminary estimates. Again,
we let {η j }∞j=1 = {(ξ j , 0)}∞j=1 ⊂ H∗ × {0}, {Pn}∞n=1 ⊂ Proj(W ), and πn : G → Gn

be as in Notation 2.20. Also, for f : G → C or f : GC M → C, let

‖ f ‖2
L2(νn

t )
:= ‖ f |Gn‖2

L2(νn
t )
= E| f (gn

t )|2,

where {gn
t }t≥0 ⊂ Gn ⊂ GC M ⊂ G is a Brownian motion on Gn as in Proposition 2.25.

First we show that these norms are increasing in n (for sufficiently large n).
A similar result was proved in [14, Lemma 4.1].
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Lemma 4.7 Suppose f : G → C is a continuous function such that f |Gn ∈ H(Gn)

for all n ∈ N. Then ‖ f ‖L2(νn
t )
≤ ‖ f ‖L2(νn+1

t )
for all large enough n ∈ N.

Proof For each n ∈ N, let Dn = Dk
Pn

where Dk
Pn

is as defined in Notation 3.11. By
the Taylor isomorphism for subelliptic heat kernels on finite dimension Lie groups
stated in Theorem 3.12,

‖ f ‖L2(νn
t )
= ‖ f̂ (e)‖n,t ,

where we recall that

‖ f̂ (e)‖2
n,t =

∞∑

k=0

tk

k! ‖(D
k
n f (e)‖2

n,k,

for all n sufficiently large that [PnW, Pn W ] = C. Observing that, for each such n ∈ N

and k ∈ {0} ∪ N,

‖(Dk
n f )(e)‖2

n,k =
n∑

j1,..., jk=1

|〈(Dk
n f )(e), η j1 ⊗ · · · ⊗ η jk 〉|2

=
n∑

j1,..., jk=1

|η̃ j1 · · · η̃ jk f (e)|2 ≤
n+1∑

j1,..., jk=1

|η̃ j1 · · · η̃ jk f (e)|2

=
n+1∑

j1,..., jk=1

|〈(Dk
n+1 f )(e), η j1 ⊗ · · · ⊗ η jk 〉|2 = ‖(Dk

n+1 f )(e)‖2
n+1,k,

completes the proof. ��
Lemma 4.8 For any continuous function f : G → C such that f |GC M ∈ H(GC M ),

‖ f ‖L2(νt )
≤ ‖ f |GC M ‖H2

t (GC M )
.

Proof First, note that, if {Pn}∞n=1 ⊂ Proj(W ) such that Pn|H ↑ IH , then Proposi-
tion 2.25 implies that (passing to a subsequence if necessary) gn

t → gt almost surely.
Thus,

‖ f ‖L2(νt )
≤ sup

n
‖ f ‖L2(νn

t )
≤ ‖ f |GC M ‖H2

t (GC M )
,

where the first inequality holds by Fatou’s lemma and the second by the definition of
‖ · ‖H2

t (GC M )
. ��

Remark 4.9 Of course this lemma holds for any p ∈ [1,∞), for Hp
t (G) defined

analogously to H2
t (G) in Definition 4.1.
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Corollary 4.10 Let δ > 0 be as in Proposition 2.28, and suppose that f : G → C is
a continuous function such that, for some ε ∈ (0, δ),

| f (g)| ≤ Ceε‖g‖2
g/2t ,

for all g ∈ G. Then

‖ f ‖L2(νn
t )
↑ ‖ f ‖L2(νt )

.

(In particular, this implies that ‖ f ‖L2(νP
t )
≤ ‖ f ‖L2(νt )

for any P ∈ Proj(W).) Also, if
f |GC M ∈ H(GC M ), then

‖ f ‖L2(νt )
= ‖ f |GC M ‖H2

t (GC M )
. (4.7)

Proof First, Lemma 4.7 implies that {‖ f ‖L2(νn
t )
}∞n=1 is an increasing sequence. Propo-

sition 2.29 implies that f ∈ L2(νt ), and taking h = e in Eq. (2.17) or Eq. (2.18) shows
that the sequence must be increasing to ‖ f ‖L2(νt )

. This combined with Lemma 4.8
gives (4.7). ��

Lemma 4.11 Suppose f : G → C is a continuous function such that f |Gn ∈
HL2(νn

t ) for all n ∈ N. Then, for all g ∈ GC M ,

| f (g)| ≤ ‖ f ‖L2(νt )
edh(e,g)2/2t .

Proof Let g = (w, c) ∈ Gm , and consider an arbitrary horizontal path σ : [0, 1] →
GC M such that σ(0) = e and σ(1) = g. Recall that, by Remark 2.15, σ must have
the form

σ(t) =
⎛

⎝A(t),
1

2

t∫

0

ω(A(s), Ȧ(s)) ds

⎞

⎠ .

For n ≥ m, consider the “projected” horizontal paths σn : [0, 1] → Gn given by

σn(t) = (An(t), an(t)) :=
⎛

⎝Pn A(t),
1

2

t∫

0

ω(Pn A(s), Pn Ȧ(s)) ds

⎞

⎠ .

Note that An(1) = Pn A(1) = Pnw = w, and let

εn := c − an(1) = c − 1

2

1∫

0

ω(Pn A(s), Pn Ȧ(s)) ds ∈ C.
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Then, for dn the horizontal distance in Gn ,

dn(e, g) = dn(e, (w, c)) = dn(e, (w, an(1)+ εn)) = dn(e, (w, an(1)) · (0, εn))

≤ dn(e, (w, an(1)))+ dn(e, (0, εn))

≤ �(σn)+ C
√‖εn‖C, (4.8)

where the first inequality holds by (2.10) and the second inequality holds by (2.13),
with constant C = C(N , ω). Note that (2.13) technically gives only a bound for dh on
GC M ; however, it is clear from the proof of this bound that one may find a constant C
so that (2.13) holds for all sufficiently large n with the constant C not depending on n.

Now consider a continuous function f : G → C such that f |Gn ∈ HL2(νn
t ) for all

n ∈ N. For n ≥ m , g ∈ Gm ⊂ Gn . Then, for n sufficiently large that [PnW, Pn W ] =
C, Theorem 3.12 (in particular (3.1)), Corollary 4.10, and (4.8) imply that

| f (g)| ≤ ‖ f ‖L2(νn
t )

edn(e,g)2/2t ≤ ‖ f ‖L2(νt )
e(�(σn)+C

√‖εn‖C)
2/2t . (4.9)

One may then show via dominated convergence that

lim
n→∞ �(σn) = lim

n→∞

1∫

0

‖Pn Ȧ(s)‖ ds =
1∫

0

‖ Ȧ(s)‖ ds = �(σ ),

and that

lim
n→∞‖εn‖C = lim

n→∞

∥∥∥∥∥∥
1

2

1∫

0

ω(A(s), Ȧ(s))− ω(Pn A(s), Pn Ȧ(s)) ds

∥∥∥∥∥∥
C

= 0.

Thus, passing to the limit in (4.9) as n →∞ gives

| f (g)| ≤ ‖ f ‖L2(νt )
e�(σ )

2/2t ,

and taking the infimum over all horizontal paths σ such that σ(0) = e and σ(1) = g
completes the proof for all g ∈ ∪P G P . Since both sides of the inequality are contin-
uous in g ∈ GC M and ∪P G P is dense in GC M by Proposition 2.18, this is sufficient
to prove the bound for all g ∈ GC M . ��
Notation 4.12 For g ∈ GC M , define the linear map Rg : P → C by

Rg f := f (g).

Proposition 4.13 For all g ∈ GC M , Rg can be extended uniquely to a continuous
linear functional on all of H2

t (G) satisfying

|Rg f | ≤ ‖ f ‖L2(νt )
edh(e,g)2/2t . (4.10)
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Proof Lemma 4.11 implies that (4.10) holds for f ∈ P and g ∈ GC M . Thus,
‖Rg‖op ≤ edh(e,g)2/2t as an operator on P ⊂ L2(νt ), and Rg is continuous and
defined on a dense subset of H2

t (G). Thus, there exists a unique extension of Rg to
H2

t (G) (still denoted by Rg) so that (4.10) is satisfied for all f ∈ H2
t (G). To define

Rg for an arbitrary f ∈ H2
t (G), let { f j }∞j=1 ⊂ P such that f j → f in L2(νt ) and

define Rg f := lim j→∞ Rg f j . ��
Remark 4.14 The estimate in (4.10) implies that, if f j → f in L2(νt ), then, for any
g ∈ GC M , Rg f j → Rg f and the convergence is locally uniform.

Theorem 4.15 There exists a linear map R : H2
t (G)→ H(GC M ) with the following

properties:

1. For any f ∈ P , R f = f |GC M .

2. For g ∈ GC M , |(R f )(g)| ≤ ‖ f ‖L2(νt )
ed2

h (e,g)/2t .

Proof Given f ∈ H2
t (G), we define R f by (R f )(g) := Rg f for all g ∈ GC M . Items

(1) and (2) are satisfied by definition of Rg and Proposition 4.13.
To see that R f ∈ H(GC M ), first consider f ∈ P . Then f = F ◦ πP for some

P ∈ Proj(W ) and polynomial F ∈ H(G P ). By Proposition 2.34, h �→ f (g · eh) is
Frechét differentiable at h = 0 and this derivative is continuous with respect to g.

For general f ∈ H2
t (G), fix g ∈ GC M and choose { f j }∞j=1 ⊂ P such that f j → f

in L2(νt ). Then

|(R f j )(g)− (R f )(g)| = |Rg( f j − f )| ≤ ‖ f j − f ‖L2(νt )
ed2

h (e,g)/2t ,

and so R f is the pointwise limit of R f j = f j |GC M ∈ H(GC M ) with the limit being
uniform over any bounded subset of g’s contained in GC M . By Theorem 3.18.1 of
[20], this is sufficient to imply that R f ∈ H(GC M ). ��
Theorem 4.16 The map R : H2

t (G)→ H2
t (GC M ) is unitary.

Proof Given f ∈ P , Corollary 4.10 implies that ‖R f ‖H2
t (GC M )

= ‖ f ‖L2(νt )
. There-

fore, R|P extends to an isometry, still denoted by R, from H2
t (G) to H2

t (GC M ) such
that R(P) = PC M . Since R is isometric and PC M is dense in H2

t (GC M ) by Theo-
rem 4.3, it follows that R is surjective. ��
Corollary 4.17 Suppose f : G → C is a continuous function such that f |GC M ∈
H2

t (GC M ). Then f ∈ H2
t (G) and ‖ f ‖L2(νt )

= ‖ f |GC M ‖H2
t (GC M )

.

Proof By Theorem 4.16, there exists u ∈ H2
t (G) such that Ru = f |GC M . Let pn ∈ P

be chosen so that pn → u in L2(νt ). Then pn|GC M = Rpn → Ru = f |GC M in
H2

t (GC M ), and, by Lemma 4.8,

‖ f − pn‖L2(νt )
≤ ‖( f − pn)|GC M ‖H2

t (GC M )
.

Thus, pn → f in L2(νt ), and since pn → u in L2(νt ) also, it must be that f = u ∈
H2

t (G). ��
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Corollary 4.17 along with Corollary 4.10 immediately give the following. In par-
ticular, this result states that, under the assumptions of Corollary 4.10, f ∈ H2

t (G).

Corollary 4.18 Let δ > 0 be as in Proposition 2.28, and suppose that f : G → C is
a continuous function such that f |GC M ∈ H(GC M ) and, for some ε ∈ (0, δ),

| f (g)| ≤ Ceε‖g‖2
g/2t ,

for all g ∈ G. Then f ∈ H2
t (G) and ‖ f ‖L2(νt )

= ‖ f |GC M ‖H2
t (GC M )

.
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