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Abstract Let G denote an infinite-dimensional Heisenberg-like group, which is
a class of infinite-dimensional step 2 stratified Lie groups. We consider holomorphic
functions on G that are square integrable with respect to a heat kernel measure which is
formally subelliptic, in the sense that all appropriate finite-dimensional projections are
smooth measures. We prove a unitary equivalence between a subclass of these square
integrable holomorphic functions and a certain completion of the universal envelop-
ing algebra of the “Cameron—Martin” Lie subalgebra. The isomorphism defining the
equivalence is given as a composition of restriction and Taylor maps.
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1 Introduction

We study spaces of holomorphic functions on infinite-dimensional Heisenberg-like
groups based on an abstract Wiener space as constructed in [7]. In particular, we
consider holomorphic functions which are square integrable with respect to a subel-
liptic heat kernel measure and prove a unitary equivalence between a subclass of these
functions and a certain completion of the universal enveloping algebra of the Cam-
eron—Martin Lie subalgebra. These results may be viewed as an analogue of the results
in [8] for degenerate heat kernel measures, or as an extension of the finite-dimensional
results in [10] to a special infinite-dimensional case. Perhaps more particularly, it is an
infinite-dimensional extension of [11] in a special case, as the Heisenberg-like groups
considered here are nilpotent. There are considerable differences from both cases in
techniques, as analytically our setting is very different from the elliptic case in [8],
and there are numerous subtle issues when dealing with infinite dimensions versus
the finite-dimensional nilpotent case in [11]. In particular, in the infinite-dimensional
setting, it is necessary to consider two different norms on the Lie algebra, one which
defines the space on which the functions live and one which controls the analysis. This
is directly analogous to the abstract Wiener space construction.

1.1 Background

We give a brief (incomplete) background of the development of the Taylor isomor-
phism to put our results into context. See the papers cited here and their bibliographies
for more complete references. Also, the paper [18] gives a very nice discussion and
extensive history of the theory.
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Subelliptic Taylor isomorphism 381

Let us first recall the classical result. Let f : C — C be a holomorphic function.
Then it is well known that f is everywhere determined by the values of its derivatives
at the origin and in particular

= f®0)
f) = ; Tzk.

Moreover, if du;(z) = p:(z) dz where p;(z) = %e"“z/ " is the standard Gaussian
density on C, then (zk, ZZ)LZ(M,) = (Sk@tkk!, which implies that

Xk
1 B2y = 2 /OO, (L1)

k=0

Thus, one may consider the Taylor expansion as an isometric isomorphism from the
space of square integrable, holomorphic functions onto the sequence space of deriva-
tives at 0 endowed with an appropriate norm.

This isomorphism first appeared in the paper of Fock [12] (actually for C"), but
was not made explicit until the work of Segal [25,26] and Bargmann [2]. Multiple
authors contributed to various extensions of this theory, all of which culminated in the
paper [9]. In this paper, Driver and Gross considered the case of a connected complex
(finite-dimensional) Lie group G with Lie algebra g. Equip g with any inner product,
and suppose that {V;}?_, is an orthonormal basis of g. Consider L = > Viz’ where
V is the left invariant vector on G field associated to V € g. Then L is an elliptic
second order differential operator, and we let {g;};>¢ denote a Brownian motion on
G with generator L. For t > 0, let HL?(G, j1,) denote the space of holomorphic
functions on G which are square integrable with respect to the heat kernel measure
u: = Law(g;) on G. Then it was proved in [9] that the analogous Taylor map in this
setting is an isometric isomorphism from HL?(G, ;) to the space of derivatives at
the identity equipped with a norm inspired by the expression in (1.1).

Recently, in [10], Driver, Gross, and Saloff-Coste have further extended this theory
to the case of subelliptic (or hypoelliptic) heat kernel measures on a connected com-
plex Lie group. That is, suppose in the previous setting that {V,-}f.‘:1 C g is not itself
a full basis of g, but does satisfy the Hormander (or bracket generating) condition

span{V;, [Vi, Vi1 [Vi, [V, Vil .. .} = g.

Then due to the classical result of Hormander [21], it is well known that, for the pro-
cess {g/};>0 generated by L = Zi‘:l ‘71'2’ u: = Law(g;) is a smooth measure for all
t > 0. In [10], it is proved that the Taylor map is an isometric isomorphism, this time
from HL?(G, iu;) onto the space of derivatives at the identity with an appropriately
modified norm.

There have also been several infinite-dimensional settings in which Taylor isomor-
phisms have been shown to hold. In particular, in [8] Driver and the first named author
proved a Taylor isomorphism theorem for nondegenerate heat kernel measure on the
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382 M. Gordina, T. Melcher

same infinite-dimensional Heisenberg-like groups considered in the present paper.
The first named author has proved analogues on the infinite-dimensional complex
Hilbert—Schmidt groups [14,15] and for the group of invertible operators in a factor of
type II1 [16]. Also, in [5], Cecil proved an analogue for path groups over stratified nil-
potent Lie groups. To our knowledge, the present paper represents the first analogous
result for an infinite-dimensional subelliptic setting.

1.2 Statement of results
1.2.1 Heisenberg-like groups and subelliptic heat kernel measures

Let (W, H, u) be a complex abstract Wiener space and let C be a finite-dimensional
complex inner product space. Let g = W x C be an infinite-dimensional Heisenberg-
like Lie algebra, which is constructed as an infinite-dimensional step 2 nilpotent Lie
algebra with Lie bracket satisfying the following condition:

(W, W] = C. (1.2)

Let G denote W x C thought of as a group with operation

1
g1-82=8 +&+ E[gl,gz]-

Then G is a Lie group with Lie algebra g, and G contains the subgroup Gy = H x C
which has Lie algebra gc . See Sect. 2.2 for definitions and details.

Now let { B;};>0 be a Brownian motion on W. The solution to the stochastic differ-
ential equation

dg, = g 0odB, with go = e (1.3)

is a Brownian motion on G, which is given explicitly in Proposition 2.21 and Defini-
tion 2.22. For all ¢+ > 0, let v, = Law(g;) denote the heat kernel measure at time ¢.
If W is finite dimensional, then (1.2) implies that span{(&;, 0), [(§;, 0), (§;,0)]} = g,
where {Si}?lzn]l(w) is some orthonormal basis of W, and thus we would have satisfac-
tion of Hormander’s condition implying that v; is absolutely continuous with respect
to Haar measure on G = W x C and its density is a smooth function on G. If
W 1is infinite-dimensional, then the notion of subellipticity is not so well defined as
there is no canonical reference measure. But we say that v, is formally subelliptic (or
hypoelliptic) in the sense that all appropriate finite-dimensional projections (which
will be discussed subsequently) are subelliptic. Similar “definitions” of subellipticity
in infinite dimensions have been taken in [1,13,23], for example.

Let Proj(W) denote the collection of finite rank continuous linearmaps P : W — H
so that P|y is orthogonal projection. Further, let G p := PW x C which is a subgroup
of Gcy. For each P € Proj(W), G p is a finite-dimensional Lie group and Brownian
motion on G p is defined analogously to how it is defined on G. The finite-dimensional
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Subelliptic Taylor isomorphism 383

heat kernel measures le will play an important role in the sequel. In particular under
the assumption that [PW, PW] = C, Hormander’s theorem implies that dv, (x) =
pF (x) dx, where pF is a smooth density and dx is finite-dimensional Haar measure.

As has been the case in previous infinite-dimensional contexts [5,8,14-16], our
results actually take the form of two unitary isomorphisms: the “skeleton” or “restric-
tion” map and the Taylor map on “square integrable holomorphic functions” on G¢yy.

1.2.2 The restriction isomorphism theorem

We must first define the Hilbert spaces involved. Let H(G) and H(Gcy) denote the
holomorphic functions on G and G ¢y, respectively. Let P be the space of holomor-
phic cylinder polynomials on G. Then Proposition 2.29 implies that 7 C L?(v;), and
so for ¢ > 0 define H,Z(G) := L?(v;)-closure of P. For f € H(Gcy), let

I fll2geyy == sup If |Gy ll20p
i (Gem) PeProj(W) o wi)

and 'th(GCM) = {f € H(Gcu) : ”f”HrZ(GCM) < oo}. It is proved in Propo-

sition 2.30 that as usual v;(Gcpy) = 0; however, HZZ(GC ) should still be roughly
thought of as v;-square integrable holomorphic functions on G ¢3s. Having made these
definitions, we can state our first theorem.

Theorem 1.1 Forallt > 0, there is a map R; : HIZ(G) — H,Z(GCM) such that R; is
an isometric isomorphism, Rip = p|G,, for any p € P, and

2
IR Y@ < 1 f 2™, forall g € Gen,

where dj, is the horizontal distance on G ¢y (see Notation 2.14).

The proof of the pointwise bound and that R; is actually restriction on P are in
Theorem 4.15. The proof of the isometry and surjectivity are in Theorem 4.16.

1.2.3 The Taylor isomorphism theorem

Now let T (gcar) be the algebraic tensor algebra over geyr, T (gear)’ be its algebraic
dual, J = J(gcum) be the two-sided ideal in T (gcps) generated by

(h®@k—k®h—1[hkl:h ke€gcu}

and JO = {a € T(gcm) : a(J) = 0} be the backwards annihilator of J. For ¢ > 0,
define

mm.z > e EL0) @ ® (&, 0), (1.4)

where I is an orthonormal basis of H, and let J,0 {a € J: |la|l; < oo}. Given
f € H(G), let f (e) denote the element of J© defined by (f (e),1) = f(e) and
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384 M. Gordina, T. Melcher

(f@.me-@h)=(h-hf) (e, forallhy....h &g

where h; is the left in\iariant vector field on G¢y such that h;(e) = h;. For f €
HHGem) let T f = f (e).

Theorem 1.2 For all t > 0, the map T; : H%(GCM) — J,O(QCM) is an isometric
isomorphism.

The isometry in Theorem 1.2 is proved in Proposition 3.13 and the surjectivity is
proved in Theorem 3.19. The combination of Theorems 1.1 and 1.2 implies that the

mapping f +— (T; o Ry) f =f,7(e), where
(RF @ i@ @)= (ki hRif) (@) forallhi.....h € geu.

is a unitary equivalence between H>(G) and J?.

The organization of the paper is as follows. In Sect. 2, the definitions of infinite-
dimensional Heisenberg-like Lie algebras and groups are revisited. This includes a
brief review of complex abstract Wiener spaces in Sect. 2.1. In Sect. 2.3 we explore
the relationship between linear and left invariant derivatives on G which will later
be useful in several limiting arguments. In Sect. 2.4, we prove that the homogeneous
norm and horizontal distance topologies are equivalent. This fact is necessary to make
use of the finite-dimensional projection groups introduced in Sect. 2.5 as approxima-
tions to G. In Sect. 2.6, we define the subelliptic diffusion {g;};>0 and its heat kernel
measure v; and review various properties that will be necessary for the sequel. Most
of these properties follow directly from properties for the nondegenerate heat kernel
measures treated in [7] and [8]. Also, in Sect. 2.7 we review the notion of holomorphic
functions in this infinite-dimensional setting.

Section 3 gives the proof of the Taylor isomorphism theorem, including a proof
in Sect. 3.1 that the semi-norm defined in (1.4) is in fact a norm. The proofs in this
section are mostly standard.

In Sect. 4, the restriction map is constructed and we prove its isometry and surjec-
tivity properties. Here the proofs are complicated by several factors, including the use
of the horizontal distance and the fact that the norm defining J is not the full Hil-
bert—Schmidt norm as is used in the nondegenerate case. Ultimately, the overall steps
here are analogous to those in the nondegenerate setting, but the proofs are necessarily
adjusted to account for these complications.

1.3 Discussion of open questions

Recall that [8] treated the case of nondegenerate heat kernel measures on the same
infinite-dimensional Heisenberg-like groups considered here. One of the main ingre-
dients used there was the quasi-invariance of the heat kernel measure under shifts
by elements of the Cameron—Martin subgroup. In particular, this allowed the skele-
ton or restriction map from H,2 (G) to H%(GC M) to be defined via quasi-invariance.
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Subelliptic Taylor isomorphism 385

At the time of the writing of the present paper, quasi-invariance results for the su-
belliptic heat kernel measure were unknown. Thus, the construction of the restriction
map given here does not rely on quasi-invariance. This construction is analogous to
that in [5], which treats the case of nondegenerate heat kernel measures on complex
path groups, a case in particular where quasi-invariance results are not known. After
the present paper was accepted, a quasi-invariance result for the subelliptic heat ker-
nel measure in this setting was proved in [3]. Thus, it may now be possible to give a
different proof of our results including the skeleton map defined via quasi-invariance.

One should also comment that the assumption that dim(C) < oo is necessary at
several points. For example, it is used in an essential way for the proof that the homo-
geneous norm topology is equivalent to that of the horizontal distance. Some readers
might be concerned that this restriction on the dimension of the center means that
this subelliptic example is in some sense only finitely many steps from being elliptic.
This concern would be justified if the Lie bracket is non-trivial on only a finite-dimen-
sional subspace of W, as then the solution to (1.3) is somehow only a finite-dimensional
subelliptic diffusion coupled with an infinite-dimensional flat Brownian motion. How-
ever, if the Lie bracket is in fact non-trivial on an infinite-dimensional subspace of W,
then this does introduce several non-trivial complications, for example, in the proof of
equivalence of topologies and more generally in working with the horizontal distance
and “projections” of horizontal paths.

Another interesting question is to try to generate holomorphic functions similar to
how it was done in [11, Sect. 4]. Even though one of the techniques of that section,
the Fourier—Wigner transform, has been studied in infinite dimensions (for example,
[17]), it is still not clear how this question can be approached for infinite-dimensional
Heisenberg groups.

2 Infinite-dimensional complex Heisenberg-like groups
2.1 Complex abstract Wiener spaces

Let us first briefly recall the definition of a complex abstract Wiener space. We record
here only the basic construction and some standard facts that will be useful for the
sequel. For more details, see for example, Sect. 2 of [8] and its references.

Suppose that W is a complex separable Banach space and By is the Borel o -alge-
bra on W. Let Wre denote W thought of as a real Banach space. For A € C, let
M, : W — W be the operation of multiplication by A.

Definition 2.1 A measure p on (W, By) is called a (mean zero, non-degenerate)
Gaussian measure provided that its characteristic functional is given by

. 1
au) = /e”‘(w)d,u(w) =¢ 2900 forallu € Wy,
w
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386 M. Gordina, T. Melcher

where ¢ = g, : Wg, x Wg. — Ris an inner product on Wy . If in addition, u is
invariant under multiplication by i, that is, u o Mfl = [, we say that u is a complex
Gaussian measure on W.

Theorem 2.2 Let u be a complex Gaussian measure on a complex separable Banach
space W. For 1 < p < oo, let

C, :=/||w||pwdu(w) < o0 2.1)
w

Forw e W, let

sup lu(w)|
wew\(0) Vg, u)’

and define the Cameron—Martin subspace H C W by

lwllg =

H:={heW:|h||lg < oo}

Foralll < p < o0, Cp < 0.

H is a dense complex subspace of W.

3. There exists a unique inner product, (-, ), on H such that ||h||3, = (h, h) g for
all h € H. Moreover, with this inner product H is a separable complex Hilbert
space.

4. Foranyh € H,

N =

Iallw < vV Callhla- 2.2)

Notation 2.3 The triple (W, H, i) appearing in Theorem 2.2 will be called a complex
abstract Wiener space.

We will also need the following facts about linear maps from W into a complex
Hilbert space K . The proof of the next lemma may be found as part of Lemma 2.6 in [8].

Lemma 2.4 If¢p : W — K is a linear map, then

/ lp@) Ik die(w) = 20l g -
w

Now suppose that p : W x W — K is a continuous bilinear map so that
liollo := sup{p(w, w)lik : lwlw = w'llw = 1} < cc.

The continuity of p and Lemma 2.4 give the following proposition which is analogous
to Proposition 3.14 in [7].

Proposition 2.5 The bilinear form p : H x H — K is Hilbert—Schmidt; that is, for
any orthonormal basis {S/}?o:1 of H,
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Subelliptic Taylor isomorphism 387

lelizrs = D oG &)l% < oo

Jjk=1

(where || - ||%1 g is independent of basis).

Proof By Lemma 2.4,

1
lo(w, Migx = 5 / llo(w, w1k du(w)
w

IA

1 1
Enpn%uwn%yf w3, dp(w'y = ECzllplléllwll%V,
w

where Cp < oo is as defined in (2.1). Similarly, viewing w — p(w, -) as a continuous
linear map from W to H* ® K,

1
lollzzs = Wh = o0, Mipeu-ak) = 5 / oW, Mgk du(w)
w

IA

1 1
Z/C2||/0||(2)||w||%v dp(w) = 3C3ll3
w

2.2 Infinite-dimensional complex Heisenberg-like groups

In this section, we revisit the definition of the infinite-dimensional complex Heisen-
berg-like groups constructed in [8]. Note that since we are interested in subelliptic heat
kernel measures on these groups, there are some necessary modifications to the topol-
ogy. First we set the following notation which will hold for the entirety of this paper.

Notation 2.6 Let (W, H, it) be a complex abstract Wiener space. Let C be a complex
Hilbert space with inner product (-, -)c and dim(C) = N < oco.Letw : Wx W — C
be a continuous skew-symmetric bilinear form on W. We will also trivially assume
that w is surjective (otherwise, we just restrict to a linear subspace of C).

Definition 2.7 Let g denote W x C when thought of as a Lie algebra with the Lie
bracket given by

[(X1, V1), (X2, V2)] := (0, 0 (X1, X2)).

Let G denote W x C when thought of as a group with multiplication given by

1
8182 = g1 +gz+§[g1,g2], (2.3)
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388 M. Gordina, T. Melcher

where g1 and g» are viewed as elements of g. For g; = (wj, ¢;), this may be written
equivalently as

1
(wr, c1) - (w2, c2) = (w1 +wy, c1 + ¢+ Ew(wh wz)) . 24

We will call G constructed in this way a Heisenberg-like group.

It is easy to verify that, given this bracket and multiplication, g is indeed a Lie
algebra and G is a group. Note that g~! = —g and the identity e = (0, 0).

Notation 2.8 Let gcjs denote H x C when thought of as a Lie subalgebra of g, and
we will refer to gcys as the Cameron—Martin subalgebra of g. Similarly, let Gcy
denote H x C when thought of as a subgroup of G, and we will refer to G¢ s as the
Cameron—Martin subgroup of G.

We will equip g = G with the homogeneous norm

l(w, )llg :=+/llwll3y + lcllc,

and analogously on gcy = Gy we define

(A, @)llgey =/ IIAlIF + lalic-

Lemma 2.9 G and G ¢y are topological groups with respect to the topologies induced
by the homogeneous norms.

Proof This is proved similarly to [7, Lemma 3.3]. Since g ™! = —g, themap g — g~

is continuous in the g and gc s topologies. Also (g1, g2) — [g1, g2] and (g1, g2) —
g1 + g» are continuous in both the g and gcjs topologies. Thus, it follows from Eq.
(2.3) that (g1, g2) > g1 - g2 is continuous as well. O

1

Before proceeding, let us give the basic motivating examples for the construction
of these infinite-dimensional Heisenberg-like groups.

Example 2.1 (Finite-dimensional complex Heisenberg group) Let W = H = C" x
C"C=C, and

o(wy, w2), (21,22)) == wy - 22 — w2 - 2.

Then G = C*" x C equipped with a group operation as defined in (2.4) is a finite-
dimensional complex Heisenberg group.

Example 2.2 (Heisenberg group of a symplectic vector space) Let (K, (-, -)) be acom-
plex Hilbert space and Q be a strictly positive trace class operator on K. For i,k € K,

let (h,k)p := (h, Qk) and ||h|lg = \/(h,h)g, and let (K¢, (-, -)o) denote the
Hilbert space completion of (K, || - ||¢). Further assume that K is equipped with a
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Subelliptic Taylor isomorphism 389

conjugation k — k which is isometric and commutes with Q. Let W = K o x Ko,
H=K x K,andw: W x W — C be defined by

o((wr, w2), (21, 22)) = (w1, 22)0 — (w2, Z1) Q-

Then G = (K¢ x Ko) x C equipped with a group operation as defined in (2.4) is an
infinite-dimensional complex Heisenberg-like group.

2.3 Derivatives on G
Forg € G,let Ly : G — G and R, : G — G denote left and right multiplication by
g, respectively. As G is a vector space, to each g € G we can associate the tangent

space TG to G at g, which is naturally isomorphic to G.

Notation 2.10 (Linear and group derivatives)For f : G — C,x € G,and h € g, let
, d
S =0 f(x) = a7 fx+1h),
Lo
whenever this derivative exists. More generally, for iy, ..., h, € g, let

FO@) i ® - @ hy) == dpy -+ I, £ (X).

For v, x € G, let vy € TG denote the tangent vector satisfying v, f = f'(x)v.
If x(¢) is any smooth curve in G such that x(0) = x and x(0) = v (for example,
x(t) = x + tv), then

Lgsvy = g-x(1).
0

dt

In particular, forx = eand v, = h € g, let fz(g) := Lgyh, so that h is the unique left
invariant vector field on G such that fz(e) = h. We view # as a first order differential
operator acting on smooth functions by

~ d
(hf)(g) = — 0f(g -0 (1),

where o (¢) is a smooth curve in G such that 6 (0) = e and ¢(0) = & (for example,
o(t) =th).

The following proposition is Proposition 3.7 of [ 7] and a special case of Proposition

3.16 of [24]. The proof is a simple computation and is included here for the reader’s
convenience.
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390 M. Gordina, T. Melcher

Proposition 2.11 For g, x € G and vy € TG,

1
Lesvy =v+ z[g, vl,

and this expression does not depend on x. In particular, taking x = e, g = (w, ¢),
and v, = h = (A, a) € g gives

h(g) = (A,a + %a)(w, A)) .

Proof Let x(t) = x + tv. Then

< (t)—i‘ (0 l[ ] = l[ ]
Og-x _dt0g+x +2g,x _v+2g,v.

Losv, =
gxYx dl

m}

In the sequel, it will be useful to have an expression for the left invariant derivatives
of a smooth function on G in terms of its linear derivatives. To do this, we first set the
following notation.

Notation 2.12 For k € N, let
AR = {partitions 6 of {1, ...,k}: forall A € 0,#A <2}.

If (i, j} € 0 € A, we will always assume without loss of generality that i > j. For
£=0,...,k/2],let

A=(oent #HAaco #A=2)=1).

Proposition 2.13 For g € G, h € g, and f : G — C a smooth function,

hf(g) = f'(@h(g). 25)
More generally, fork e Nand hy, ..., h; € g,
k .
hi-hif@= > P20 D tu....hd® @ |, (2.6)
J=lk/2] bent_,
where, for 0 = {{i1, iz}, ..., {ize—1. e}, {izes1}s - .. {ik}} € A%,

1 - -
(hkv ceey h1)®9(8) = 27[]11'] s hiz] Q- ® [hl'y,]s hize] ®hi25+1(g) Q- ® hlk(g)
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Proof The first assertion holds by Proposition 2.11 and an application of the chain
rule. Equation (2.6) may be then proved by induction. So assume the formula holds
for k and consider k + 1.

. . d| - .
higthg---h1f(g) = E‘ hi---hy f(g - thgy1)
0

k
d .
=7 Z g - thisr) z (hies ... h1)®% (g - thiyy)
0 j=rk/21 beAl_;

k
= > 90 D (@) ® (i, b (g)

j=Tk/21 bent_

k
. d
+ 2 e 2 E‘O(hk,...,h1>®9(g-thk+1).

= k
Jj=Ik/2] BeA]_;

Forg = (w,c),h = (A, a),and k = (B, b),

d| - 1 1 1
o Oh(g th) = (A,a + 50w+ 1B, A)) - (0, S@(B. A)) = [k A,

——

which is independent of g. (Note that [k, h](g) = [k, h].) Thus, for
0 = {{i1, ia}, ..., {ize—1, e}, {ines1}s - - o, {i}} € A,

d
(hies . h)® (g - thigr)
0

dt
d 1 - -
=7 27([l’liphig]@"'®[hizg,phizg]®hi25+1(8'[hk+l)®‘“®]’lik(8'thk+l)]
0
koo
= Z W([hiphiz]@"'®[hizg,|7hizg]
J=20+1

@hin (@) ® - ®hj_1(8) ® [hxt1,hj1®hjt1(8) ® - ® fzik(g)).

Rearranging terms and indices gives the desired formula. O

Let us write out (2.6) for the first few n. The expression for n = 1 is already given
in Eq. (2.5). For n = 2 and n = 3, we have

~ - ~ ~ 1
hahi () = 1@ (@) ®h1(9) + 3£/ @] @D
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hhahi £(8) = £"'(9) (a(e) ® o) @ i (s))
1 -
+51"() (th3. h21 ® i (g)

k3, il @ () + hz, 1 @ fia(9)) 28)

In particular, (2.7) implies that, for i, k € g,

(ﬁ/% - /25) f=hklf 2.9)

2.4 Distances on G ¢y

We define here the sub-Riemannian distance on G¢js and show that the topology
induced by this metric is equivalent to the topology induced by the homogeneous
norm || - |lgc,,- Note that in finite dimensions this result is standard and is usually
proved via compactness arguments (see for example, Chap. 5 of [4]). Of course, these
arguments are invalid in infinite dimensions and so we resort to more direct meth-
ods of proof. Note that the results in this subsection rely directly on the fact that
N = dim(C) < oo.

Notation 2.14 (Riemannian and horizontal distances)

1. Let C(le denote the set of Cl—paths o:[0,11 - Gcu.

2. Forx =(A,a) € Gey, let

2 . 2 2
2, = A1 + llal%.

The length of a Cl-path o :[a,b] — Gcyy is defined as

b
(o) = / ILy1(5)6 () geyy s
a

3. The Riemannian distance between x, y € G¢yy is defined by
dey(x,y) :=inf{l(o) :0 € CéM such that 0 (0) = x and o (1) = y}.
4. AC'-patho : [a,b] — G is horizontal if Ly ;)-1,6(t) € H x {0} for a.c. 1.
Let Cé;’,, denote the set of horizontal paths o : [0, 1] = Gcpy.

5. The horizontal distance between x, y € Gy is defined by

dp(x, y) := inf{€(0) : 0 € CJl; such that o'(0) = x and o (1) = y}.

@ Springer



Subelliptic Taylor isomorphism 393

Remark 2.15 Note that if o (1) = (A(t), a(t)) € Clpy, then

. 1 .
L1400 (1) = (A(t),éz(t) - Ew(A(t), A(t))) € H x {0}

implies that o must satisfy

t

a(t) = a(0) + %/w(A(s), A(s)) ds,

0

and the length of o is given by

1 1
£(o) =/|L{,_|(5)*d(s)|gCM ds=/||A(s)||H ds.
0 0

Proposition 3.10 of [7] gives the following comparison of the |- |g.,, and Riemann-
ian metrics.

Proposition 2.16 There exists § = §(w) > 0 such that, forall x,y € Gcy,

1
dCM(-xv )’) = (1 + %|x|gc1\4 N |y|gCM) |y _-x|g(;Ma

and, in particular, dcy (e, x) < |x|gc,, for any x € Geum. Also, there exists k =
k(w) < oo such that, if x, y € Gcy satisfy dey (x, y) < 6, then

|y _x|ch S k(l + |x|ch A |Y|ch)dCM(xa y)

Proposition 2.16 implies, for example, that the topology induced by |- |g.,, is equiv-
alent to that induced by the Riemannian distance. For the subelliptic case, these are of
course not the relevant topologies. However, this result may be used to prove that the
homogenous norm on gcys and the horizontal distance are comparable at the identity.
The following proposition is Theorem C.2 of [7]. We record the proof here for the
reader’s convenience and to emphasize the dependence of the upper bound constant
K> on N = dim(C).

Proposition 2.17 If {w(A, B) : A, B € H} = C, then there exist finite constants
K1 = K1(w) and K, = K2(N, w) such that, for all (A, a) € gcu,

Kill(A, d)llgey =< dnle, (A,a)) < K2ll(A, a)llgey -
Proof For any left-invariant metric d on G ¢y (for example dcys or dp,), we have

d(e,xy) <d(e,x)+d(x,xy)=d(e,x)+d(e,y), (2.10)
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for all x, y € G¢y. Given any horizontal path 0 = (w, ¢) joining e to (A, a), we
have from Remark 2.15 that

1
t(o) = / W)z ds = (Al
0

Taking the infimum over all horizontal paths connecting e to (A, a), it then follows that
dp(e, (A, a)) = ||AllH-
Since the path o (t) = (A, 0) is horizontal and
Al = £(o) = dnle, (A,0)) = [|Alln,
it follows that
dp(e, (A,0)) = |Allg forall A e H. (2.11)

Given A, B € H,let y(t) = Acos2nt + Bsin2xt for 0 <t < 1, and consider
the path

t

1
o) = [ y() - A, E/ww(s) ~ AP () ds
0

Note that o is a horizontal curve with Lg(t)—lé'(t) = (y(),0),0(0) = e, and
1 1

o(l)y=10, %/a)(y(s),))(s))ds = O,n/a)(A,B)ds = (0, tw(A, B)).

0 0

Thus, we may conclude that

1
dp(e, (0, tw(A, B))) < {l(o) = 271/ | — Asin2ms + Bcos2ms| gy ds
0

<2n(|Allz + IIBllH)- (2.12)
Now choose {Ag, Bg}é\’:l C H such that {rw(Ag, B/g)}f;’:1 is a basis for C. Let
{ee}évzl be the corresponding dual basis. Hence, for any a € C, we have
N N
di(e, (0,a)) =dj (e, [ & @rw(A,, Be)))deh (e, (0, " (@) (A, Be)))

(=1 =1
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N
=>4 (e, (0, 7o (sgn(s‘(a))/ L@l Ag |s@<a)|Be)))

=1
N

<2 Z(HW% )|Ae +H\/I8£(a)|Be )
=1 H

wherein we have used (2.10) for the first inequality and (2.12) for the second inequality.
Then Holder’s inequality implies that

N
di(e, (0,a)) < 4x D \/Iet(@)]| < 4xC/llallc, (2.13)
=1

for a finite constant C = C (N, w). Combining Egs. (2.10), (2.11), and (2.13) gives,

dp(e, (A, a)) = dy(e, (A,0)(0,a))
<dj(e, (A, 0)) +dp(e, (0, a))
< |Allg + C(N, w)/llallc < V2(1 A C(N, w)) (A, @) llgey

which completes the proof of the upper bound.
To prove the lower bound, consider first the dilations defined by

@.(w, ¢) = (w, A%¢), fori > 0and (w,c) € gey = Geu.

One easily verifies that ¢, is both a Lie algebra homomorphism on g¢ s and a group
homomorphism on G ¢js. Using the homomorphism property, it follows that, for any
c! -path o,

d .
Ly, )15 3,920 0) = 0 (L)1, ().

Consequently, if o is a horizontal curve, then ¢; o ¢ is again horizontal and
£(p) o 0) = AL(0). Thus, we may conclude that

dp(9r(x), 93.(y)) = Adp(x, y), (2.14)

forallx,y € Gey.

Now, by the first part of Proposition 2.16, dcy (e, x) < |x|gc,,, forallx € Gey.
Combining this with the second part of the same proposition implies that there exist
d > 0 and k < oo such that, if |x|g.,, < 6, then |x|g.,, =< kdcm(x,y). So, for
arbitrary x = (A, a) € G¢cy, choose L = A(x) > 0 so that

= 903, = M NAly + 1 lallg:
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that is, take

2 VALY, +41a1282 - 1413,
2ljallg

Equation (2.14) and Proposition 2.16 then imply that

Akdy (e, x) = kdp(e, p5.(x)) = kdcy (e, o (x)) = |05 (X)|gcy = 6

Thus,
82 82 2|a|?
dy(e. )2 > o= lallc
JIAIY +482alZ — 1A1%
282||a||? 1
=2 ”“”20 (2.15)
kEIAlE [ 4 Pl _
Al
Since +/T +x — 1 < min(x/2, \/x), we have
1 - (2 1 ) - 1 . 1
——— 2>max|—, — | > —+—.
Ji+x—-17 xJx x o 2Yx
Using this estimate with x = 482||a||% ||A||;I4 in Eq. (2.15) shows that
28%||allg (AN} IA]7 1
de,x2> C H H Y — — (A% + 8| ,
nie, x)” = 2iai, \ajal T 2slalic 2kz(ll I +éllallc)
which implies the lower bound. O

Since G ¢ is stratified, it turns out that comparability of the metrics at e is sufficient
to imply the equivalence of their respective topologies.

Proposition 2.18 The topologies generated by dj, and || - || g.,, are equivalent.
Proof Fix x = (A, a) € G¢y. First note that, by Proposition 2.17 and the left invari-

ance of the horizontal distance, there exists K1 = Ki(w) < oo such that, for any
y=(B.,D) € Gecum,

1
\/||B — Al + Hb—a — 5w(A, B)

C
= Ix""Yllgey < Kidn(e,x™'y) = Kidp(x, y).
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Soifdy(x,y) < é for some § > 0, then

B —Allg = Kidp(x,y) < K18,

and
1 1
1o —alc = b—a—zw(A,B) +5|Iw(A,B)IIc
C
2 2, 1
< Kidp(x,y)" + Ellw(A, B —A)llc
200 1 200 1
< Kid" + Euwnop”A”H”B —Allg < K{é" + §||w||0p||A||H87
where

lwllop == sup{llw(h, K)lc : Ihlle = lklln =1} < oo,

by the continuity of @ and (2.2). Thus, given any R € (0, 1), one may clearly choose
¢ = c(x, w) sufficiently large (for example, ¢ = 2(V2K; + %||a)||(,p||A||)) so that
dy(x,y) <8 = R?/c implies that

1y = *llgew = /1B — A + b —allc

1
< /1@52 + K352 + Slolopl Alls

R* 1 R2
= [2K2= + <llollpllAlu— < VR2 = R.
6‘2 2 I

Similarly, the left invariance of dj, and Proposition 2.17 imply that there exists
Ky = K>(N, w) < o0 such that

- 1
di(x,y) < Kallx ™' yllgey = Kz\/IIB — Al + Hb —a—yw(A, B)
c

So if we suppose that ||y — x|l g, = \/||B — A||%{ + |6 —allc < &, then

1
dp(x,y) < Kz\/IIB — Ally; +1Ib —allc + Ellw(A, B —Alc

1
< Kz(lly — Xllgcy +\/§”w”0p”A”H”B - A”H)

1
=K (8/ +4/ §||w||0p||A||H8/)~
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Again, given any R € (0, 1), one may find ¢ = ¢/(x, N, w) such that ||y — x||g.,, <
8" = R?/c’ implies that dj, (x, y) < R. O

2.5 Finite-dimensional projection groups

The finite-dimensional projections of G defined in this section will be important in
the sequel. Note that the construction of these projections is quite natural in the sense
that they come from the usual projections of the abstract Wiener space; however, the
projections defined here are not group homomorphisms, which is a complicating factor
in some of the following proofs.

As usual, let (W, H, i) denote a complex abstract Wiener space. Leti : H — W
be the inclusion map, and i* : W* — H* be its transpose so that i*¢ := £ o i for all
£ € W*. Also, let

H,:={hecH:(,h)y € Range(i*) Cc H*}.

That is, forh € H, h € H, if and only if (-, h) gy € H™ extends to a continuous linear
functional on W, which we will continue to denote by (-, &) . Because H is a dense
subspace of W, i* is injective and thus has a dense range. Since H > h + (-, h)y €
H* is a linear isometric isomorphism, it follows that H, 2 h + (-, h)y € W*isa
linear isomorphism also, and so H, is a dense subspace of H.

Supposethat P : H — H is afinite rank orthogonal projection such that PH C H.,.
Let {£; }’}1:1 be an orthonormal basis for P H. Then we may extend P to a (unique)
continuous operator from W — H (still denoted by P) by letting

m

Pw := Z(w,f;‘j)HEj (2.16)

j=1
forallw e W.

Notation 2.19 Let Proj(W) denote the collection of finite rank projections on W such
that

1. PW C H,,
P|g : H — H is an orthogonal projection (that is, P has the form given in Eq.
(2.16)), and

3. PW is sufficiently large to satisfy Hormander’s condition (that is, {w(A, B) :
A, Be PW}=0C).

For each P € Proj(W), we may define Gp := PW x C C H, x C and a corre-
sponding projection rp : G — Gp

wp(w, x) ;= (Pw, x).

We will also let gp = Lie(Gp) = PW x C.
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For any {P,,};’lo | C Proj(W) such that P,|g 1 Iy, we may choose a sequence of

complex orthonormal bases I';, for each P, H so that I';, 1 I' a complex orthonormal
basis for H. Thus, for the sequel, we will often consider a sequence of projections
with respect to a fixed orthonormal basis.

Notation 2.20 Let {§; ‘]?°=1 C Hy be a fixed orthonormal basis of H. We will let P,
denote the corresponding projections onto P, W, that is,

n

Pyw = Z(w» §i) HE;.
j=1
Let G, = Gp,, gn = Lie(G,), and m, = mp, : G — G,. So {m,};2, is an increas-
ing sequence of projections so that 7, |G, 1 IlGe, . In the sequel, it will also be
convenient to let I' = {nj}f/’.o L = {E;, O)}j“;1 denote a basis of H x {0}.

(It is clear that, in order for P, € Proj(W), it will be necessary to have a minimal n
so that span{w(§;,&;) : i, j = 1,...,n} = C. However, since these projections will
be primarily used for large n as approximations to G, we will ignore this issue in the
sequel and always assume we have a large enough projection.)

2.6 Brownian motion on G

Here we define a “subelliptic” Brownian motion {g;};>0 on G and collect various of
its properties that are necessary for the sequel. The primary references for this section
are [7,8].

Let {B;};>0 be a Brownian motion on W with variance determined by

E[(Bs, h)ri (B, k)] = (h, k) g min(s, 1),

forall s,# > 0 and h, k € H,. The following is Proposition 4.1 of [7] and this result
implicitly relies on the fact that Proposition 2.5 implies that the bilinear form w is a
Hilbert—Schmidt.

Proposition 2.21 For P € Proj(W), let MF be the continuous L%-martingale on C
defined by

t
mF :/w(PBS,dPBS).
0

In particular, if {P,};°, C Proj(W) is an increasing sequence of projections as in

Notation 2.20 and M]' := M,P", then there exists an L2-martingale {M;}>0 in C such
that, for all p € [1,00) andt > 0,

lim E [sup M — M, ||g} =0,
n—o0o <t

and M; is independent of the sequence of projections.
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As M; is independent of the defining sequence of projections, we will denote the
limiting process by

t

M, =/w(Bs»st)'
0

Definition 2.22 The continuous G-valued process given by

t
1 1
8t = (Bz, EMI) = | By, E/w(BS’dBS)
0

is a Brownian motion on G. For t > 0, let v, = Law(g;) denote the heat kernel
measure at time t on G.

Definition 2.23 A function f : G — C is a cylinder function if it may be written as
f = Fomnp, for some P € Proj(W) and F : Gp — C. We say that f is a smooth
(holomorphic) cylinder function if F is smooth (holomorphic).

Proposition 2.24 If f : G — C is a smooth cylinder function, let

> 73+ 3] 1.
j=1

where {nj};?o | Is a basis for H x {0} as in Notation 2.20. Then Lf is well defined,

that is, the above sum is convergent and independent of basis. Moreover, %L is the
generator for {g;};>0, so that

t

1
reo - [ Lr@ds
0
is a local martingale for any smooth cylinder function f.
Proposition 2.21 along with the fact that, for all p € [1, co) and t > 0,

lim E |:sup |B; — P,,B,||ﬁ,:| =0
n—>0oo

<t

(see for example Proposition 4.6 of [7]) makes the following proposition clear.
Proposition 2.25 For P € Proj(W), let g,P be the continuous process on G p defined
by
1
P 1
& = | PB;, 3 w(P By, dP By)
0
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Then gtP is a Brownian motion on G p. In particular, let { P, }zo:l C Proj(W) beincreas-
ing projections as in Notation 2.20 and g}' = glP". Then, forall p € [1, 00) andt > 0,

lim E [sup lg? — grns} —0.
n—o0 <t

Notation 2.26 Forall P € Proj (W)and? > 0,letv} := Law(g/), and foralln € N
let v} := Law(g}') = Law(gtp”).

For all projections satisfying Hormander’s condition, the Brownian motions on G p
are true subelliptic diffusions in the sense that their laws are absolutely continuous
with respect to the finite-dimensional reference measure and their transition kernels
are smooth.

Lemma 2.27 Forall P € Proj(W) andt > 0, we have vtP (dx) = ptP (e, x)dx, where
dx is the Riemannian volume measure (equal to Haar measure) and p,P (x,y) is the
heat kernel on G p.

Proof An application of Proposition 2.24 with G replaced by G p implies that v} =
Law(g,P ) is a weak solution to the heat equation on G p with generator

n ——2 — 2
LPf:=>" [(g,,O) + (i€, 0) }f
j=1

for smooth functions f : Gp — C, where {& j}’}’: | is a complex orthonormal basis
of PH. The result now follows from the fact that [PW, PW] = C, as this implies
{&).,0), (&, 0)}';’=1 satisfies Hormander’s condition, and thus L” is a hypoelliptic
operator [21]. O

The next proposition is a version of Fernique’s theorem for the subelliptic heat
kernel measures and follows directly from the proof in the elliptic case (see Theorem
4.16 of [7]). In particular, this kind of exponential integrability result is required to
have a nontrivial class of holomorphic square integrable functions.

Proposition 2.28 (Subelliptic Fernique’s theorem) There exists § > O such that, for
alle € (0,8) andt > 0,

sup /e‘gug”é/’dvtP(g) = sup E[egngfp”é/’] < o0
PeProj(W)G P eProj(W)
P

and

/esugng/zdw(g) _E [eeng,n;/z] < 0.
G
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The next proposition follows from Propositions 2.25 and 2.28 and the proof of
Proposition 4.12 in [8].

Proposition 2.29 Let § > 0 be as in Proposition 2.28, and suppose that f : G — C
is a continuous function such that, for some ¢ € (0, §) and p € [1, 00),

|£(9)] = celelarr,

forall g € G. Then f € LP(vy), and, forall h € G,

Jlim E|f(hg!) — f(hg)|” =0 2.17)
and
Jim E|f(g'h) — f(g:h)|" = 0. (2.18)

Finally, we include the following proposition, which states that, as the name sug-
gests, the Cameron—Martin subgroup is a subspace of heat kernel measure 0. The proof
is identical to Proposition 4.6 of [8].

Proposition 2.30 Forallt > 0, v;(Gcy) = 0.

Proof Let u, denote Wiener measure on W with variance ¢. Then for a bounded
measurable function f : G = W x C — C such that f(w, x) = f(w),

/ F(w) dvy(w, x) = ELf (B)] = / F(w) dpe(w).
G w

Letz : W x C — W be the projection w(w, x) = w. Then mw,v; = i, and thus

v (Gem) = vt (H)) = mv (H) = iy (H) = 0.

2.7 Holomorphic functions on G and G¢

We recall here the basic facts for holomorphic functions on infinite-dimensional spaces
required for the sequel. For complete proofs of any of these results, see Sect. 5 of [8].

2.7.1 Holomorphic functions on Banach spaces

The material in this subsection is based on the theory in [20]. Let X and Y be two
complex Banach spaces, and fora € X and § > 0 let

Bx(a,8) ={xeX:|x—aly <}
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be the open ball in X with center a and radius §. The following is Definition 3.17.2
of Hille and Phillips [20].

Definition 2.31 Let D be an open subset of X. A function f : D — Y is said to be
holomorphic or analytic if the following two conditions hold.

1. f is locally bounded, namely, for all @ € D there exists r, > 0 such that
Mg = sup{[|lf(X)lly : x € Bx(a,r4)} < 0.

2. The function f is complex Gateaux differentiable on D, that is, for each a € D
and h € X, the function A — f(a + Ah) is complex differentiable at A = 0 € C.

Remark 2.32 Holomorphic and analytic will be considered to be synonymous for the
purposes of this paper. We will use “holomorphic”.

The next proposition gathers together a number of basic properties of holomorphic
functions which may be found in [20], see also [19]. One of the key ingredients to all
of these results is Hartog’s theorem, see [20, Theorem 3.15.1].

Proposition 2.33 If f : D — Y is holomorphic, then there exists a function f' :
D — Hom (X,Y), the space of bounded complex linear operators from X to Y,
satisfying the following:

1. IfaeD,xe€ Bx(a,ry/2),andh € Bx (0,ry/2), then

/ 4 a 2
If(x+h)— f(x)— f@Ohlly < m”hnx-

In particular, f is continuous and Frechét differentiable on D.
2. The function ' : D — Hom (X, Y) is holomorphic.

By applying Proposition 2.33 repeatedly, it follows that any holomorphic function
f : D — Y is Frechét differentiable to all orders and each of the Frechét differentials
is again a holomorphic function on D.

2.7.2 Holomorphic functions on G and G ¢y

Now we describe results for holomorphic functions on G and G ¢, . For the next prop-
osition, take Go = G and g9 = gor Go = G ¢y and go = gy - Note that as usual we
treat group elements as Lie algebra elements when we write the group multiplication
below. This linearization explains why the proof is identical to [8], and why we omit it.

Proposition 2.34 For each g € Gy, the left translation map Ly : Go — Gy is ho-
lomorphic in the || - ||g,-topology. Moreover, a function f : Gy — C defined in a
neighborhood of g € Gy is Gateaux (Frechét) differentiable at g if and only if f o Ly
is Gateaux (Frechét) differentiable at e. If f is Frechét differentiable at g, then

1
(fo Ly (@h=f(g) (h +5le h]) .
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Thus, a function f : Gy — C is holomorphic if and only if f is locally bounded
and h — f(g-e") = f(g-h) is Gateaux (Frechét) differentiable at O for all g € G,.
If f is holomorphic and h € g, then

(h )()—i (g-eM = ’()(h ! h)
fg—dl\ofg'e = f(g +2[g,]

is holomorphic as well.

_ A simple induction argument using Proposition 2.34 allows us to conclude that
hlhnf € H(G()) fOI’allf (S] H(Go) and hy, ..., h, € do-

Notation 2.35 The space of globally defined holomorphic functions on a group U
will be denoted by H(U).

Finally, we also record the following result, which is completely analogous to Prop-
osition 5.7 and Corollary 5.8 of [8].

Proposition 2.36 If f € H(G) and h € g, then ihf = ihf, ihf = —ihf,
(.“'2 ~9
i’ +h )f=0, and
~2 ~ ~
(lh + hz) |£12 = 417 f12.

Thus, for L as in Proposition 2.24 and [ : G — C a holomorphic cylinder function,
Lf =0 and

LifP?=>" i f|?
j=1

o0

for any {n; = a basis of H x {0} as in Notation 2.20.

3 The Taylor isomorphism

Before we define the Taylor map, we must first define the relevant Hilbert spaces.
First of these is the noncommutative Fock space, which plays the role of the derivative
space of holomorphic functions.

3.1 Noncommutative Fock space

We set the now standard notation for the noncommutative Fock space, making the
appropriate changes in the definition of the norm to accomodate the subelliptic setting.

Notation 3.1 Let V be a complex vector space. We will denote the algebraic dual to
V by V'. For k € N, let V® denote the k-fold algebraic tensor product of V with
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Subelliptic Taylor isomorphism 405

itself. For any tensors a, b, we write a A b fora @ b — b ® a. Let T(V) denote the
algebraic tensor algebra over V, so thata € T (V) is a finite sum

n
a = Zak, ay € V®k,
k=0

where V® = C. Fora € T(V) and k € {0} UN, let o := o]k € (V®k)/, so that

o0
o= Zak, o € (VK.
k=0

When V is a Lie algebra, let J(V) be the two-sided ideal in 7(V) generated by
{anb—Ta,b]:a,be V}andlet JO(V) be the backward annihilator of J(V), that is,

JOV)y={a e T(V) : (a, J(V)) =0}.

In particular, we will be concerned with the vector spaces gcy andgp = PW x C.
We will let JO(gCM) = JO. Now we will define norms on J° and Jo(gp).

In order to put a norm on J?, let {£ j};?ozl C H, be a fixed complex orthonormal
basis of H and {; =1 = {(§, 0)};?‘3:1 be a complex basis of H x {0} as in Nota-
tion 2.20. For k € {0} U N, we define a non-negative sesqui-linear form on (g?lg,l)’
by

[e¢)
@Br= D, {wn;® - @ny)B.n; @ ®nj), foralle,p e (g,
T k=1

For o € (g?/;,,)/, we will write

o0

lollf == (o = D Henj @ @n;)

The following lemma is clear from the definition of || - ||x.

Lemma 3.2 Leta € (g?ﬁl)’for some k € N. Then ||| > 0 if and only if there exist
some &1, ...,& € H such that (o, (51,0) ® - - - ® (&, 0)) # 0.

For any projection P € Proj(W), we define an analogous norm for the finite-dimen-
sional Lie algebras gp = PW x C. Let {§; ’;:1 be a complex orthonormal basis for
PH,andlet {n; };?:1 = {(§, O)};?:l. Define the non-negative sesqui-linear form

n

(@, B)p = D (o, n;) (B, n;) forall , B € gh.

j=1
This induces a form on (g%k)’ determined by

k

(@1 ® - Qar, fi @@ Bk = | [(ar, B)p forall aj, Bj € gp
(=1

@ Springer



406 M. Gordina, T. Melcher

Fora € (g%k)/, we will write

n

lelby = (@ a)pe= D Heuny ® - @nj)l
Jlsees Jk=1

One may easily verify that || - || and || - || p.x are independent of the choice of ortho-
normal basis.

Definition 3.3 (Noncommutative Fock spaces) Fort > Oanda = > 72 o € JO, let

ok

t
2. r 2
llell; := E I lleek Il
k=0
and

IO :={a e |la|, < oo}

Similarly, for ¢t > 0, P € Proj(W), and @ € JO(gp), let

ok

t
2 2
el = > ool ks
k=0 "
and
JO =1{ae J%gp):
Py = gp) : llallp; < oo}.
For { P,};2| an increasing sequence of projections in Proj(W), let || - [nx := I - || p, k>
lelln,: == lleell p,,zs Jr(l),t = Jg,,,l'

The functions || - ||; and || - || p,; are clearly semi-norms on Jto and J?,’ ;» respectively.
It is proved in Theorem 2.7 of [10] that, for any + > 0 and P € Proj(W) , the semi-
norm || - || p,; is @ norm on J?,J (using the fact that [PW, PW] = C). In fact, J?,J isa
Hilbert space when equipped with the inner product

0k

t
(@, B)p. =D e Bop s foralla, f e Jp,.
k=0 "

To compare our notation with that used in [10], for each P € Proj(W), let

n
Kp:={aegp:(@a)p=) [an))=0
j=1

Then clearly

K% :={aegp:(aa)=0foralla € Kp} = PH x {0}.
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If the Lie algebra generated by P H is all of gp, then (-, -) p satisfies Hormander’s
condition as defined in Definition 2.6 of [10].

Here we follow the proof in [10] to show that, since Hormander’s condition
[H, Hl = C holds, | - ||; is a norm on JIO. (Indeed, it is shown in [10] that, at
least in the finite-dimensional case, || - ||; is a norm on JTO if and only if Hérmander
condition holds.) First, we need the following lemma.

Lemma 3.4 There exists an algebra homomorphism\V : T (gcy) — T (H) such that
T(gcm) = T(H) & Nul(V), where Nul(W) C J(gcm).

roof Let {§;}°2, be an orthonormal basis of H. Since [H, = C, we may also
P L ];’O_Ib h 1 basis of H. Si [H,H] =C y al

choose {Ay, Bg}é\lzl C H such that {w(Ay, Bg)}évzl is a basis of C with dual basis
{e"})_,. Define ¥ : gcyy — H & H®? for

9] N
(A,a) =D (A £ (&, 0)+ D &' (@)(0, 0(Ar, B)) € gem
j=1 (=1
by
9] N
V(A a) = > (A £ u(E.0)+ D e (a)(Ar A By, 0),
j=1 (=1

where againu Av =u ® v — v @ u for any u, v € H. Then ¥ is a linear operator
such that (A, 0) = (A, 0) forany A € H, and, as

(AAB,0)—(0,w(A, B)) = (A,0) A (B,0) — (0, w(A, B)) € J(gcm),

forany A, B € H, we have +h — h € J(gcy) for all h € gcpr. One may also show
that v is bounded as an operator into 7 (H): for any x = (A, a) € G¢y such that

2 2
xlge, = 1A + llallc < 1,

0 2

I (A, DIl pe2 = 1A +
jk=1

00 N N
< lAlm+ > (Zs@(aPZ [(Ae A Be, & ®sk>|2)

jk=1 \t=1 =1
< A3 + Cllallz < C' (A% + llallc),

N
<Zaf(a>Ae A B §j ®sk>

=1

where C' = C'(N,w) < oo, and the final inequality follows from the fact that
IAI7; + llallc < 1 implies that [|AlI7, + lalle < Al + llalic.

By the universal property of the tensor algebra, there is a unique extension of
to an algebra homomorphism W : T'(gcy) — T (H), such that W17 (4., = l7m).
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Since for hy, ..., h, € gcy
Vhi @ - Qhy) =vh1 ®---QVh, € (h1 +J(gcm)) ® -+ Q (hy + J(gcm))

and J(gcuy) is an ideal, it follows that W(h1 @ --- @ hy) — h1 ® --- Q@ h, €
J(gcm). a

This lemma immediately gives the following.

Theorem 3.5 Lett > 0. The semi-norm || - ||; on Jto is a norm.
Proof Suppose that @ = > 22y € J is such that

© kX

O=llalf =2 05 2 How iy @ @)l

k=0 " ip,...ig=1
Thus, a|7yy = 0and, for ¥ asinLemma 3.4, 0 =a oW =a|rp)o ¥ =0. O
Corollary 3.6 The space J,O is a Hilbert space equipped with the inner product

o0

k
(@ Bl = D @ B

k=0
3.2 The Taylor map
The other relevant space for the Taylor map should be thought of as the v;-square inte-

grable holomorphic functions on G¢yy. Fort > 0, f : Gey — C,and P € Proj(W),
let

2 2 Py 2
1 By = 1fl6al a0 p) = EIF (8112,

where {g,P }i=0 C Gp C Gcuy is a Brownian motion on G p as in Proposition 2.25.

Definition 3.7 Fort > O and f € H(Gcpy), let

I/ 12 = sup N fllp20py
i (Gem) PeProj(W) )

and define
H; (Gem) = A{f € H(Gem) : 1 f gy < 00

We set one more piece of notation before defining the Taylor map.

Notation 3.8 Given f € H(Gcum), g € Gem, k € {0} UN, let fr(g) :== (D¥ £)(g)
denote the unique element of (g?ﬁ/,)/ given by
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(Df)(g) = f(2)
(D 1)@ i @+ @hi) = (B hif) (o)

forall hy, ..., hy € gcm. Let f(g) be the element of T (gcys)” determined by

(f(@), B) = (/). B), forall Begl).

Remark 3.9 As a consequence of Eq. (2.9), f(g) e JY forall f e H(Gcy) and
g € GCM»

Definition 3.10 Foreacht > 0, the Taylor map is the linear map 7; : H,z(GCM) — J,0
defined by 7; f = f(e).

3.3 Proof of isometry

We will prove that the Taylor map is an isometry by limiting arguments for the finite-
dimensional projections. Let us first recall the finite-dimensional theory.

Notation 3.11 For any P € Proj(W), we set derivative notation for f € H(Gp)
similarly to how it was done in Notation 3.8. That is, for g € Gp and k € {0} UN, let
fr(g) = (D’;, f)(g) denote the element of (g%k)’ given by

(D5 (@) @+ @) = (R hif) (9),

forall hy, ..., hi € gp, and let f(g) be the element of T (gp)’ determined by

(f(2). B) = (fi(g). B). forall B € g".

Also, let HL>(v}) = H(Gp) N L*(G p, v]). If {P,}°°, is an increasing sequence

in Proj(W), let HL? CAES HL? (v,P” ). The finite-dimensional Taylor map is the linear
map f — f (e) from HLz(v,P ) to Jg’ ;» Where the latter is as defined in Definition 3.3

For each P € Proj(W), Gp is a finite-dimensional connected, simply connected
complex Lie group. If [PW, PW] = C, then (-, -) p is a non-negative Hermitian form
on g, satisfying Hérmander’s condition. Thus, we have the following theorem.

Theorem 3.12 Suppose that P € Proj(W) such that [PW, PW] = C. Then the
finite-dimensional Taylor map f +— f(e) is a unitary map from HLz(v,P ) onto ngt.
Moreover, foranyt > 0, f € HLz(vtP), and g € Gp,

£ < 1 (@)l preti@/2 3.1

where dy, is the horizontal distance on G p (defined analogously on G p to the hori-
zontal distance on G ¢y as in Notation 2.14).
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The isometry and surjectivity follow from the finite-dimensional Taylor isomor-
phism proved in Theorem 6.1 of [10], and the estimate in (3.1) is a consequence of
Corollary 5.15 of that same reference. The paper [11] gives an alternate proof of the
surjectivity, as each G p is a nilpotent Lie group. In Sect. 3.4, we will apply the meth-
ods used in [11] to show that the Taylor map is surjective in this infinite-dimensional
setting as well. Here we use the finite-dimensional isometries to show that 7; is an
isometry for all # > 0 as follows.

Proposition 3.13 Ler f € H(Gcy) andt > 0. Then

LA @1 = 1l Ger:
Proof By the finite-dimensional Taylor isomorphism theorem, for all P € Proj(W),

1f @Iy, = 171200

Thus, by definition of || - ||H,2(GCM)’

| £l = sup Nfll2pry = sup  If @l -
Hi Gem) peprojw) - E YT peproiow) Th.

So showing that

sup || f(@)ll g, = lIf @l

PeProj(W)

completes the proof.
Let P € Proj(W) with {éj}‘><J | an orthonormal basis of H, such that {Sj}” | isan
orthonormal basis of PH. Let nj = (&;,0). Then

1F @1l 100, = Zk, Z (f@.nj @ @n;)l?

Jiseess

Z > @y @ o0l =@l

and SO Sup pproj(w) ||f(e)||Jo(gP) < ||f(e)||, On the other hand, if {P,}7,
Proj(W) is an increasing sequence of projections, then

sup | £ (@l jo(g,y = Tim £ (@)llns

P eProj(W)
ik n
_ . - r . ... : 2
=Jlim > > K@ @ @)l
k=0 """ j1.,....jk=1
tk

=> 5 2 @@l =17Ol

The following corollary follows from Propositions 3.13 and 2.29.
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Corollary 3.14 Let § > 0 be as in Proposition 2.28, and suppose that f : G — Cis
a continuous function such that fl., € H(Gcm) and, for some ¢ € (0, §),

£ ()] < Ceflella/2
forall g € G. Then flG¢,, € HX(Geum) and flg,,, (e) € JP.

In particulgr, Corollary 3.14 implies that, for all t > 0, Pcpy C HZZ(GCM) and, for
any p € P, p|GCM (e) € J,O. Thus, th(GCM) and Jlo are non-trivial spaces.

Corollary 3.15 The Taylor map 7; : H%(GCM) — Jt0 is injective, and || - ||H,2(GCM)
is a norm on 'H,z(GC M) induced by the inner product

(u, U>H,2(GCM) = (u(e), v(e))s, forall u,ve HIZ(GCM).

Proof 1If f(e) = 0, then Proposition 3.13 implies that ”f”H?(GCM) = 0 and thus
flgp = 0 forall P € Proj(W). As f is continuous and Upcproj(w)G p is dense in
G cm by Proposition 2.18, it follows that f = 0. Thus, 7; is injective.

Since | - ||; is a Hilbert norm, Proposition 3.13 then also implies that || - ”H% (Gen)

is the norm on H%(Gc M) given by the above inner product. O

3.4 A density theorem and proof of surjectivity

We will now apply the methods used in [11] to show that the Taylor map is surjective. In
fact, the infinite-dimensional proof is directly analogous to the finite-dimensional proof
presented there, and no special considerations need to be made for the infinite-dimen-
sional case. Similar arguments were used in [5] and [8]. Still, we collect the proofs here
for completeness and to stress the dimension independence of the arguments. Addi-
tionally, Corollary 3.20 will be critical in the proof of surjectivity of the restriction map
in Sect. 4, and this proof will require some adaptation for the subelliptic construction.

Definition 3.16 A tensor & = > ;o ok € T(gcm) is said to have finite rank if
ax = 0 for all but finitely many k € N.

The next lemma is essentially a special case of [10, Lemma 3.5]. See also [5,
Theorem 41] and [8, Lemma 7.3].

Lemma 3.17 The finite rank tensors in J are dense in J?.
Proof First note that gcyy = H x C is a graded Lie algebra with [H, H] = C,
[H,C] = 0, and [C, C] = 0. Thus, for 6 € R, we may define the dilations ¢ :

gcm —> gom by

w9(A,a) = ('PA, e*%a), forall (A,a) € gcu,
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and it is straightforward to verify that ¢y is an automorphism of gcys. Let &y :
T(gcm) — T (gcm) be the automorphism of the tensor algebra over gc s induced by
@, that is,

k times

Dy = m on g%ﬁ,,.
Then
Do NE —[5,E']) = (9o8) A (9o&") — pol€, &1 = (9o&) A (9oE") — 9o, pot].
From this it follows that & (J) C J and therefore ifa € JO, thenao®y € J O.Letting

{&; }"O_1 be an orthonormal basis of H and I' = {(§;, 0)}2,, we have gyn = e for
all n € T'. Therefore,

j=r

oo @, m @ @ mi)* = e, oom @ -+ @ gpmid 1> = oty m1 @ -+~ @ i) |2,
and hence

llow 0 Dg |7 = Zk, > Hao®p,m @ @m)l

N1 EED

—Zk, > lem @@l = llal?.

N1y €D
So the map J? 3 & > a o @y € J? is unitary. Moreover, since

et o1 ® -+~ @ o) — (o, m ® -+~ @ mi) |*
<2l m ® - @ M),

the dominated convergence theorem implies that

lim o o g — a)?

o0
tk .
Z—, Z 911_1)110““7(?0771®"'®‘P97lk)—(05,771®"'®’7k>|2
k=0 sk €l

=0, (3.2

and @ > « o @y is continuous. (Notice that g o &, = Py, so it suffices to check
continuity at 6 = 0.)
Now, for any n € N, let

| / 1 sin2(j6/2)
Fa®) = 5— ELZ_] = R0
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denote Fejer’s kernel [27, p. 143]. Then one may show the following: ff - Fa(0)do =1
foralln e N;

lim / Fo(@)u(6)d6 = u(0),

for all continuous functions u : [—7m, 7] — C; and
w

/ F,(6)e™ do =0
-7

whenever m > n. Given o € J?, we let

T
a(n) == /O{ o Oy F,(0)d6.
-
IfB=h ® - ®hy € gon, then there exist B¢ € g}, such that

2m

Bup— S .
l=m
So,if m > n,
@ p) = [ @ ®0p) F@)d0 = 3" (e ) [ @) d0 =0,
L=m

—7T -7

from which it follows that a(n),, = O for all m > n. Thus «(n) is a finite rank tensor
for all n € N, and (3.2) implies that

n— 00 n—o0

b
lim sup || — oz(n)||t2 = lim sup /[oz —aoDylF,(0)do
-

t

n—oo

g
< lim sup/ ot — & 0 Dyl Fn(0) dO = 0.
—TT
O

The surjectivity of the Taylor map may now be proved by finding a preimage in
H,Z(G cm) under 7; for any finite rank tensor in JtO. The following lemma is a special
case of Proposition 5.1 in [6] and motivates our construction of the inverse of the
Taylor map. This version of the result may also be found in Lemma 6.9 of [8].

Lemma 3.18 Forevery f € H(Gcy) and g € Gey,

o]

1 4
F(&) =2 o fie), %),

k=0

where by convention g*° = 1 € C and the above sum is absolutely convergent.
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Proof The function u(z) := f(zg) is a holomorphic function of z € C. Therefore,

o0

1
f@=u =2 7u®0),
k=0

and the sum is absolutely convergent. In fact, for all » > 0, there exists C(r) < oo
such that ;u® (0)| < C(r)r=* for all k € N. Finally, note that

k
® ey = L _dt
w0 = Z7| w® =] a9
dk R
= 7| FEH=@"NHe =), ™).
=0

O

The following proof of the surjectivity of the Taylor map is directly analogous to
the proof of Lemma 3.6 in [11].

Theorem 3.19 The Taylor map 7; : H,Z(Gc M) — Jt0 is surjective.
Proof Consider first « a finite rank tensor in J,O. By Lemma 3.18,if f = ’Zfla exists,
then it must be given by

1

Ja(g): Zk_ Ok, g
k=0

for all g € G¢y. This is a finite sum since « is of finite rank, and thus f, is a finite
sum of continuous complex multilinear forms in g € G¢y. Thus, fy is holomorphic,
and, in particular, for any & € gcu,

oo

> i,<an, (t)®") = (a, k).
n.

1=0 =0

<A(>h®k>—d—k (th)—d—k
fae). T dt ,:Of“ T dik

So fa (e) = a on span{h®* : h € gcp, k € {0} UN} = {symmetric R-tensors} =: S.
By the Poincaré-Birkhoff-Witt theorem (see [28, Lemma 3.3.3] or [22, Corollary E)),
T(gcy) =S @ J, and, since fa (e) — « annihilates J, this implies that fa (¢) = o on

T(gcm)-
Thus, for every finite rank tensor o € J,O, the function f, is holomorphic and

an (e) = «a, and so Proposition 3.13 implies that f, € th(Gc m ). Hence, the image
of f > f (e) is dense in J,O, which suffices to prove surjectivity. O

The following is an immediate consequence of Lemma 3.17 and Theorem 3.19.

@ Springer



Subelliptic Taylor isomorphism 415

Corollary 3.20 The vector space,
thgﬁn(GCM) = {f € HIZ(GCM) : f(e) € Jt0 is finite rank}
is a dense subspace of HZZ(GC M)-

4 The restriction map

In this section, we construct the “skeleton” or “restriction” map between a class of
square integrable holomorphic functions on G and H,z(Gc M), and we prove that this
map is an isometric isomorphism. Before proceeding, we must first define the appro-
priate class of holomorphic functions on G we wish to deal with.

Recall from Definition 2.23 that a function f : G — C is a cylinder function if
f = F onp for some P € Proj(W) and F : Gp — C. We say that f is a holo-
morphic cylinder polynomial if F is a holomorphic polynomial on G p. The space of
holomorphic cylinder polynomials will be denoted by P. Propositions 2.28 and 2.29
imply that P C L?(v;) for all p € [1, 00), so we may make the following definition.

Definition 4.1 For ¢ > 0, let H,z(G) denote the L2(v;)-closure of P.

Remark 4.2 Let A denote the class of holomorphic cylinder functions on G. As
remarked in [8], it is natural to expect that H?(G) coincides with the closure of
AN L%(v;) in L*(v;), however, this is currently not known even in much simpler
settings. But in a sense HTZ(G) is the appropriate space to consider, as the polynomials
should constitute a dense subset of the square integrable holomorphic functions, when
one can make sense of polynomials.

In Sect. 4.1, we show that the restriction of holomorphic cylinder polynomials
to G constitutes a dense subspace of H,Z(GCM), and with this result in hand, in
Sect. 4.2 we construct the restriction map as a linear map on H%(G).

4.1 Another density theorem

Techniques similar to those used in this section were used in [8], as well as in Cecil
[5] to prove an analogous result for path groups over stratified Lie groups.

Theorem 4.3 Forallt > 0,

PCM = {plGCM 2SS P}
is a dense subspace ofH,Z(GCM).

This result is analogous to Theorem 7.1 of [8], and as done in that paper, Theo-
rem 4.3 will be proved by showing that Pcj, is dense in yet another dense subspace
of H,Z(GCM). In particular, Corollary 3.20 implies that it suffices to show that any
element of Hiﬁn (G cm) may be approximated by elements of Pc ;. However, the fact
that in our case Jt0 is defined not using the full Hilbert—Schmidt norm complicates
some limiting arguments that appear in [8].

@ Springer



416 M. Gordina, T. Melcher

Again we recall Notation 2.20: let {& j}‘]?o: | C Hy be a complex orthonormal basis

of H and let {’Ij}?il = {(§;, O)}?‘;l. Define P, € Proj(W) by

n

P,w = Z(w,gjmgj forall w e W,
j=1

and 7, : G - G, = P,W x C defined by 7, (w, ¢) = (P,w, c).

We will show that for all f € H; in(Gcum), fom, € Pand f omylge,, — fin
H?(Gcm). The proof of this statement is complicated by the fact that, for general w
and P € Proj(W),mp : G — Gp C Gy is not a group homomorphism. In fact, for
g= (w,c)and g = (W', ),

np(gg) —mpg -mpg =Tp(w, w)

where
/ l / /
'p(w,w") = 5(0, o(w,w) —w(Pw, Pw"))

1 / A
=3 (Lg. ¢'1—[mpg. mpg']). 4.1)

So unless w is “supported” on the range of P, wp is not a group homomorphism. Note
that the case where w is supported on a finite-dimensional space is exactly the trivial
case where L is “finitely many steps from being elliptic,” and the proof of several of
the other results included here would be greatly simplified.

The proof of the following proposition is similar to Proposition 2.13 and is left to
the reader.

Proposition 4.4 For any P € Proj(W), g = (w,c) € G, h; = (Aj,a;) € g, and
f :+ G — C a smooth function,

n

hn-m(fomp)@) = D fParg) D (huv... . hDE (2,  (4.2)

k=[n/2] GGAZ,I{

where, for 0 = {{i1,i2}, ..., {iak—1, D2k}, {i2k+1}, - .., {in}} € AZ a partition of
{1, ..., n} as defined in Notation 2.12,

s hDE0 (@) o= [hiy i) ® -+ @ [hi_y hiy 1@ B (@) ® - @ K[ (2),
with
P 1
h"(g) =(PA,a+ Ea)(w, A)).
Again as we did for Proposition 2.13, let us write out (4.2) for the first few n:

h(f om)(g) = f'(m)h? ()
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hahi (f 0 7)(8) = f"(rg) (W5 () @ ]’ (&) + £ (eg)lha. hn]
hahahi (f o) (@) = f"(xg) (h () @ 1 () @ b (o))
1 " P
+5£"Grg) (1hs. hal @ T ()
3, 1] @ hE (9) + 2. il @ hE ()

In particular, when ¢ = e and h; = (A;, 0), we have hf(e) = (PA;,0) = mh;, and
the above formulae become

hi(fom)(e) = f'(e)mh (4.3)

hahi(f om)(e) = f"(e)(why @ h) + f’(e)%[hz, hil (4.4)
hyhahy (f om)(e) = f"(e)(wh3 ® mhy @ why)

217 (Uhs, o @ why 4k @ s, gl ehs © U, ).

4.5)

Now using Propositions 2.13 and 4.4 we may prove the following.

Proposition 4.5 Fix k € N and suppose that f € H(Gc ) satisfies || fk(e)||k < 00.
Then

tin [0 (777), o], =o.

Proof We will write out the first few cases for small k before proving the conver-
gence for arbitrary k. Consider first k = 1. Then Propositions 2.13 and 4.4, [more
particularly, Egs. (2.5) and (4.3)] imply that

Ifie) = (Fomn @I} = D | fe) — i (f om)(e)|

j=1
= |f@m; — f@an = 3 |f @’ =0
j=I j=n+1

as n — 00, since by hypothesis

1h@R =3 lif@] => | @n;] < oo

j=1 j=I
Now, for k = 2, Egs. (2.7) and (4.4) give
Ife) = (Fomn@li= D |ipinfe) —ipin(fom@l|
Jjt.2=1
- 1
= > [J’”(e)(nj1 ®np) + 51 @) 7]]2]]
Jtij2=1
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418 M. Gordina, T. Melcher

2

1
- [f”(e)(nnjl ®nnj) + Ef/(e)[njl, 77/2]]
f" @y @njy — 7y @ 70|
J2=1

2
"

3

1
@)+ Ef’(E)[Tijl, njs ]

2
f//(e)(nn ®7712)+ f(e)[ﬂ/pﬂ/z]

If(e)[n].,njzll + Z Zlf(e)[n,],nnll — 0,

]1—n+1 j2=1

NI*—‘

as n — 00, since

00 2
N 1
1@ = 2 @) ®npp) + 3 @l njl| < oo,
Jisj2=1
by hypothesis, and
o0 o0
D@ nplP <1 @©F D) oG Eple =1 @©Pllolfs < oo,
J1,j2=1 J1.2=1

by Proposition 2.33 which states that f’(e) is a bounded operator on G ¢y and Prop-
osition 2.5 which implies that @ is Hilbert—Schmidt.
For k = 3, Egs. (2.8) and (4.5) give

1@ — Foma@3= > |ipininf© —ipinis(f o) @]
Jisj2,j3=1

o0
= z ‘f”/(e)(n]é ®nj, ®Njy —TNj; TNj Q7TNj))
Ji.j2,j3=1

1
+§f//(e)([77j3a 77]2] ® Mj + [njp 77]1] & Mjr + [njzv 77]1] ®7']J3

2
—mjs.npl®@mnj —njs.njl @ wnjy —[nj, nji 1@ wnj;)
3 oo oo
<> > > @y ®n;©n;)
=1 jy=n+1 ji =1
1 #L
2

-0

1
+§f”(€)([77j3, 77]2] ® R + [77/'3: 77]1] X Mja + [njzv ’7]|] ®'7j3)

@ Springer



Subelliptic Taylor isomorphism 419

asn — 00, since

]

IAs@IE= >

J1sJ2,j3=1

" @mj, ®nj, ®n;j)

2

1
+§f”(e)([nj3, Nl ®nj + i, i1 ®nj, + j,, nj) ] ®njy)| < oo,

again by hypothesis.
More generally, using Egs. (2.6) and (4.2) with g = e and n; = (&}, 0) for k odd

shows that
k

I1fc(e) — (Fomu(e)? < Z Z

=1

2
‘—)O

\(fk(e), M ® @)

#”Mg

as n — oo. Similarly, for k even,

k 00 o0
N — N 2
I fi(e) = (F o (o)l < Z Z > { )(fk(e), N ®--®nj,)
=1 jy=n+1 j; =1
i £
2
+5 > | P @0 0| ] -0,
GeAllj/z
asn — oo, since for 0 = {{iy, iz}, ..., {ix—1,ix}} € Aﬁ/z, we have
Mjis -+ ’7j1)®9 =i njp 1© - @y, mji, 1
which implies that
> 2
> [ @m |
Jlsees Jke=1
2 o
< [F4P@ D My W I
Jlseeos k=1
k/2 2
= [r42 @ Nolys < o,
again by Propositions 2.33 and 2.5. O

The following proposition completes the proof of Theorem 4.3.

Proposition 4.6 If f € H, an(Gcm) as defined in Corollary 3.20, then f om, € P
foralln e Nand f omylGey — fin HIZ(GCM).

Proof Suppose m € N is chosen so that fk(e) = 0 if k > m. Comparing Eqgs. (2.6)
and (4.2), one may determine that, for Ay, ..., hx € gcum,
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(Fom) @ @ @) =@, ... ), (4.6)

where K,Z’ is defined as follows: for h; = (A;, a;),

k
ki, o) = D D T, ... ).

J=Lk/2) pent_

where, for 6 = {{i1, ia}, ..., {ize—1, iac}, linesn), - lik}) € A,
F%?(hka ) hl)::FPn (Ails Aiz) Q- FP,, (Aizg,I s Aizz)®nhi24+1 - ﬂhik,

and I'p(A;, Aj) = %([hi, hjl — [mh;, wh;]) as in Eq. (4.1). Alternatively, one may
consult Sect. 7.2 of [8] for a direct derivation of K;: and Eq. (4.6) (in this reference,
our k' (g, ..., hy) is just kg (e)).

By definition, «J'(hy.....h1) € @5_y 5 a0h and so (4.6) implies that
<(f omp)e), hy ® - ® h1> = 0 when k > 2m + 2. Therefore, f o m, restricted to

G, = P,H x Cis a holomorphic polynomial, and, since f o, = (f om,)|g, © p,
it follows that f o, € P.
Moreover,

n—o0

R o 5 2m—+2 tk R - 2
o [0~ (r5m) el = a3 o (757, o <o
k=0 :

since Proposition 4.5 implies that limy_ oo H fele) — (f/oZ)k () H = Oforcachk.
Thus, by Proposition 3.13,

Jim (L f = f o mallyp ey, = Him H fler= (m) © Hr =0

4.2 Construction and proof of restriction isomorphism
Before we construct the restriction map, we require some preliminary estimates. Again,

we let {n; ;?i] = {(Ej,O)}?O:] C Hy x {0}, {P,}32, C Proj(W),and 7, : G — G,
be as in Notation 2.20. Also, for f : G — Cor f : Gey — C, let

£ 120 = 1161720, = ELF (DI,
where {g/'};>0 C G, C Gcm C G isaBrownian motion on G, as in Proposition 2.25.

First we show that these norms are increasing in n (for sufficiently large n).
A similar result was proved in [14, Lemma 4.1].
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Lemma 4.7 Suppose f : G — C is a continuous function such that fl|g, € H(G,)
foralln € N. Then ||f||Lz(v;:> < ||f||L2(Un+1)f0r all large enough n € N.

Proof Foreachn € N, let D, = D where D is as defined in Notation 3.11. By
the Taylor isomorphism for subelhptlc heat kernels on finite dimension Lie groups
stated in Theorem 3.12,

122y = 17 (@) lns,

where we recall that

ik

If @l =2+ —II(D"f(e)II,, "

k= O

for all n sufficiently large that [ P, W, P, W] = C. Observing that, for each suchn € N
and k € {O}UN,

n

Dy H@Ie = D, D)0 @ @)l

J1seens ji=1
n n+1
~ ~ 2 ~ ~ 2
= D> iy ipf@F < D0 i dig f o)l
Jsees Jik=1 Jsees k=1
n+1

= > UDE @1, @ @) = 1(DE @y

Jtoeejk=1
completes the proof. O

Lemma 4.8 For any continuous function f : G — C such that f|G., € H(Gcu),

||f||L2(v,) = “f'GCM”H,Z(GCM)‘
Proof First, note that, if {P,}7>, C Proj(W) such that P,|y 1 Iy, then Proposi-

tion 2.25 implies that (passing to a subsequence if necessary) g — g; almost surely.
Thus,

”f”Lz(ut) = SUP ||f||L2(uf) = ”f'GCM”HZ(GCM)’

where the first inequality holds by Fatou’s lemma and the second by the definition of
I ”th(GCM)' o
Remark 4.9 Of course this lemma holds for any p € [1, 00), for H,p (G) defined
analogously to H%(G) in Definition 4.1.
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Corollary 4.10 Let § > 0 be as in Proposition 2.28, and suppose that f : G — Cis
a continuous function such that, for some ¢ € (0, §),

£ (g)] < Ceflelia/2r,
forall g € G. Then

If 2y P I L2

(In particular, this implies that ||f||L2(vtP) < I fll 2, for any P € Proj(W).) Also, if
FlGew € H(Gem), then

11220 = 1 1Gen b Gen- @.7)

Proof First,Lemma4.7 implies that {|| f| L2 }72 , is an increasing sequence. Propo-
sition 2.29 implies that f € L?(v), and taking & = e in Eq. (2.17) or Eq. (2.18) shows
that the sequence must be increasing to || f|[z2(y,)- This combined with Lemma 4.8
gives (4.7). O

Lemma 4.11 Suppose f : G — C is a continuous function such that fl|g, €
’HLz(u,”)for alln € N. Then, forall g € Gcy,

2
LF @I < I f 2 e ™8/

Proof Let g = (w, c¢) € G, and consider an arbitrary horizontal path o : [0, 1] —
Gcy such that 0(0) = e and o (1) = g. Recall that, by Remark 2.15, o must have
the form

t

o(t) = A(t),%/w(A(s),A(s))ds

0
For n > m, consider the “projected” horizontal paths o, : [0, 1] — G, given by

t

on(t) = (A (1), ay (1)) == | P,AQ), %/w(PnA(S)’ PnA(S)) ds
0

Note that A, (1) = P,A(1) = P,w = w, and let

1
gpi=c—ay(l)=c— %/a)(PnA(s), P,A(s))ds € C.
0
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Then, for d,, the horizontal distance in G,,,

dy(e, g) = dy(e, (w,c)) =dy(e, (w, a,(1) + &,)) = dy(e, (w, a, (1)) - (0, &,))
< du(e, (w,an(1))) +du(e, (0, &n))

< L(on) + CV/llenllc, (4.8)

where the first inequality holds by (2.10) and the second inequality holds by (2.13),
with constant C = C(N, w). Note that (2.13) technically gives only a bound for dj, on
G cy; however, it is clear from the proof of this bound that one may find a constant C
so that (2.13) holds for all sufficiently large » with the constant C not depending on n.

Now consider a continuous function f : G — Csuch that f|g, € HLz(vf) for all
neN.Forn>m,g e G,, C Gy.Then, for n sufficiently large that [P, W, P, W] =
C, Theorem 3.12 (in particular (3.1)), Corollary 4.10, and (4.8) imply that

2 2
L@ < 1 Ip2amye™ 82 < 1 fll 2, e 0T eVIador2 @4.9)

One may then show via dominated convergence that

1 1
lim £(0,) = lim /uPnA(s)n ds =/||A<s>|| ds = £(0),
n—oo n—oo
0 0

and that

1
1 . .
lim |l&yllc = lim _/w(A(S)vA(S))_w(PnA(s)anA(s))ds =0.
n—o0 n—oo || 2
0 C

Thus, passing to the limit in (4.9) as n — oo gives
2
F 1= 1f l2qe" 7,

and taking the infimum over all horizontal paths o such that 0(0) = eand o (1) = g
completes the proof for all g € UpG p. Since both sides of the inequality are contin-
uous in g € Gy and Up G p is dense in G ¢y by Proposition 2.18, this is sufficient
to prove the bound for all g € G¢y. O

Notation 4.12 For g € G¢y, define the linear map R, : P — C by

Ry f = f(g).

Proposition 4.13 For all g € Gceuy, Rg can be extended uniquely to a continuous
linear functional on all of H,Z(G) satisfying

2
IRg 1 < 1f Il 2y, e ™8/ (4.10)
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Proof Lemma 4.11 implies that (4.10) holds for f € P and g € Gcy. Thus,
IRgllop < e (€822 45 an operator on P C L?(v;), and R, is continuous and
defined on a dense subset of th(G). Thus, there exists a unique extension of R, to
H2(G) (still denoted by R,) so that (4.10) is satisfied for all f € H2(G). To define

R, for an arbitrary f € H,Z(G), let {fj}‘j?‘;l C P such that f; — fin L?(v,) and

define Ry f :=1limj_. o Ry f;. O

Remark 4.14 The estimate in (4.10) implies that, if f; — f in L2(v,), then, for any
g € Geum, Ry fj = R, f and the convergence is locally uniform.

Theorem 4.15 There exists a linear map R : H%(G) — H(Gcp) with the following
properties:
1. Forany f € P, Rf = flGcy-
2
2. Forg e Gep, (Rf)(©)] < ”f”Lz(w)edh(E,g)/Zt'

Proof Given f € HZZ(G), we define Rf by (Rf)(g) := R, f forall g € Gcp. Items
(1) and (2) are satisfied by definition of R, and Proposition 4.13.
To see that Rf € H(Gcuy), first consider f € P. Then f = F o wp for some
P € Proj(W) and polynomial F' € H(G p). By Proposition 2.34, h — f(g - eM is
Frechét differentiable at 4 = 0 and this derivative is continuous with respect to g.
For general f € H?(G), fix g € Gy and choose { f;}52, C P such that f; — f

J
in L2(v;). Then

I(RFN(Q) — RO = IRe(fj = P < I1fj = Fll2qe @8/,

and so Rf is the pointwise limit of Rf; = fj|Gc,, € H(Gcm) with the limit being
uniform over any bounded subset of g’s contained in G¢ys. By Theorem 3.18.1 of
[20], this is sufficient to imply that Rf € H(Gcm). O

Theorem 4.16 The map R : H,Z(G) — ’th(GCM) is unitary.

Proof Given f € P, Corollary 4.10 implies that ”Rf”Hrz(GCM) = I fllz2(v,)- There-

fore, R|p extends to an isometry, still denoted by R, from H,Z(G) to H,z(GCM) such
that R(P) = Pcuy. Since R is isometric and Pcys is dense in H,Z(GCM) by Theo-
rem 4.3, it follows that R is surjective. O

Corollary 4.17 Suppose f : G — C is a continuous function such that f|G., €
H2(Gem). Then f € H(G) and || f 1112,y = 1 f1Gew 132 Gerpy

Proof By Theorem 4.16, there exists u € H?(G) such that Ru = f|g..,,- Let p, € P
be chosen so that p, — u in L*(v;). Then DPulGey = Rpn — Ru = flggy, in
H,Z(GCM), and, by Lemma 4.8,

If— pn”LZ(u,) < II(f = pn)lGCM”’)-{tZ(GCM)-

Thus, p, — f in L2(v,), and since pn — uin L2%(v,) also, it must be that f=uc
H2(G). o
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Corollary 4.17 along with Corollary 4.10 immediately give the following. In par-

ticular, this result states that, under the assumptions of Corollary 4.10, f € 'H?(G).

Corollary 4.18 Let § > 0 be as in Proposition 2.28, and suppose that f : G — C is
a continuous function such that f., € H(Gcm) and, for some ¢ € (0, §),

1£(@)] = Cetlslar,

forall g € G. Then f € H>(G) and 1A 2y = W lGem I m2(Gern
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