
JID:YJFAN AID:8263 /FLA [m1L; v1.260; Prn:11/06/2019; 15:36] P.1 (1-61)
Journal of Functional Analysis ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Integration by parts and quasi-invariance 

for the horizontal Wiener measure on foliated 

compact manifolds

Fabrice Baudoin a,1, Qi Feng b, Maria Gordina a,∗,2

a Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA
b Department of Mathematics, University of Southern California, Los Angeles, CA 
90089-2532, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 July 2017
Accepted 5 June 2019
Available online xxxx
Communicated by L. Gross

MSC:
primary 58G32
secondary 58J65, 53C12, 53C17

Keywords:
Wiener measure
Cameron-Martin theorem
Quasi-invariance
Sub-Riemannian geometry
Riemannian foliation

We prove several sub-Riemannian versions of Driver’s integra-
tion by parts formula which first appeared in [17]. Namely, 
our results are for the horizontal Wiener measure on a 
totally geodesic Riemannian foliation equipped with a sub-
Riemannian structure. It is also shown that the horizontal 
Wiener measure is quasi-invariant under the action of flows 
generated by suitable tangent processes.

© 2019 Published by Elsevier Inc.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

* Corresponding author.
E-mail address: maria.gordina@uconn.edu (M. Gordina).

1 Research was supported in part by NSF Grant DMS-1660031.
2 Research was supported in part by NSF Grant DMS-1405169, DMS-1712427 and the Simons Fellowship.
https://doi.org/10.1016/j.jfa.2019.06.006
0022-1236/© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jfa.2019.06.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:maria.gordina@uconn.edu
https://doi.org/10.1016/j.jfa.2019.06.006


JID:YJFAN AID:8263 /FLA [m1L; v1.260; Prn:11/06/2019; 15:36] P.2 (1-61)
2 F. Baudoin et al. / Journal of Functional Analysis ••• (••••) •••–•••
1.2. Main results and organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Geometric preliminaries: Riemannian foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Riemannian foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Horizontal and vertical subbundles of TM and forms . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Bott connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5. Orthonormal frame bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Horizontal calculus of variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1. Adapted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. Development maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3. Horizontal paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4. Paths tangent to horizontal paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5. Variations on the horizontal path space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Quasi-invariance of the horizontal Wiener measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1. Horizontal Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2. Horizontal semimartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3. Quasi-invariance of the horizontal Wiener measure . . . . . . . . . . . . . . . . . . . . . . . . 28

5. Integration by parts formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1. Horizontal Weitzenböck type formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2. Integration by parts formula on the horizontal path space . . . . . . . . . . . . . . . . . . . 44
5.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1. Introduction

1.1. Background

In this paper we study quasi-invariance properties and related integration by parts 
formulas for the horizontal Wiener measure on a foliated Riemannian manifold equipped 
with a sub-Riemannian structure. These are most closely related to the well-known 
results by B. Driver [17] who established such properties for the Wiener measure on a 
path space over a compact Riemannian manifold. Quasi-invariance in such settings can 
be viewed as a curved version of the classical Cameron-Martin theorem for the Euclidean 
space. While the techniques developed for path spaces over Riemannian manifolds are 
not easily adaptable to the sub-Riemannian case we consider, we take advantage of the 
recent advances in this field. The geometric and stochastic analysis of sub-Riemannian 
structures on foliated manifolds has attracted a lot of attention in the past few years 
(see for instance [2,7,21,29–32,48]).

In particular, we make use of the tools such as Weitzenböck formulas for the sub-
Laplacian extending results by J.-M. Bismut, B. Driver et al. to foliated Riemannian 
manifolds. More precisely, the first progress in developing geometric techniques in the 
sub-Riemannian setting has been made in [5], where a version of Bochner’s formula for 
the sub-Laplacian was established and generalized curvature-dimension conditions have 
been studied. This Bochner-Weitzenböck formula was then used in [2] to develop a sub-
Riemannian stochastic calculus. One of the difficulties in this case is that, a priori, there 
is no canonical connection on such manifolds such as the Levi-Civita connection in the 
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Riemannian case. However, [2] introduces a one-parameter family of metric connections 
associated with Bochner’s formula proved in [5] and shows that the derivative of the sub-
Riemannian heat semigroup can be expressed in terms of a damped stochastic parallel 
transport.

It should be noted that these connections do not preserve the geometry of the foliation 
in general. In particular, the corresponding parallel transport does not necessarily trans-
form a horizontal vector into a horizontal vector, that is, these connections in general 
are not horizontal. As a consequence, establishing an integration by parts formulas for 
directional derivatives on the path space of the horizontal Brownian motion, similarly 
to Driver’s integration by parts formula in [17] for the Riemannian Brownian motion, is 
not straightforward. As a result, the integration by parts formula we prove in the current 
paper can not be simply deduced from the derivative formula for the corresponding semi-
group by applying the standard techniques of covariant stochastic analysis on manifolds 
as presented for instance in [23, Section 4], in particular [23, Theorems 4.1.1, 4.1.2]. A dif-
ferent approach to proving quasi-invariance in an infinite-dimensional sub-Riemannian 
setting has been used in [6].

Analysis on path and loop spaces has been developed over several decades, and we 
will not be able to refer to all the relevant publications, but we mention some which are 
closer to the subject and techniques of this paper. In particular, J.-M. Bismut’s book [12]
contains an integration by parts formula on a path space over a compact Riemannian 
manifold. His methods were based on the Malliavin calculus and Bismut’s motivation 
was to deal with a hypoelliptic setting as described in [12, Section 5]. A breakthrough 
has been achieved by B. Driver [17], who established quasi-invariance properties of the 
Wiener measure over a compact Riemannian manifold, and as a consequence an integra-
tion by parts formula. This work has been simplified and extended by E. Hsu [34], and 
also approached by O. B. Enchev and D. W. Stroock in [25]. A review of these techniques 
can be found in [36]. In [37,39] the noncompact case has been studied. Let us observe 
here that B. Driver in [17] and later E. Hsu in [34] have considered connections on a 
Riemannian manifold which are metric-compatible, but not necessarily torsion-free. This 
is very relevant in our setting of a foliated Riemannian manifold equipped with a sub-
Riemannian structure, because on sub-Riemannian manifolds the natural connections 
are not torsion-free. A different approach to analysis on Riemannian path space can be 
found in [15], where tangent processes, Markovian connections, structure equations and 
other elements of what the authors call the renormalized differential geometry on the 
path space have been introduced.

1.2. Main results and organization of the paper

We now explain in more detail our main results without the technical details, and 
describe how the paper is organized. Section 4 studies quasi-invariance properties for 
the horizontal Wiener measure of a Riemannian foliation, and in Section 5 we prove 
integration by parts formulas. Although quasi-invariance properties and integration by 
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parts formulas are intimately related and actually equivalent in many settings (see [9,
17,18]), we use very different techniques and approaches in these two sections. To prove 
quasi-invariance, we develop a stochastic calculus of variations for the horizontal Brow-
nian motion on a foliation in the spirit of [15,17,34], whereas to prove integration by 
parts formulas, we shall make use of Markovian techniques and martingale methods as 
presented for instance in [23, Section 4].

Let (M, g,F) be a smooth connected compact Riemannian manifold of dimension 
n + m equipped with a totally geodesic and bundle-like foliation F by m-dimensional 
leaves as described in Section 2. On such manifolds, one can define a horizontal Laplacian 
L according to [1, Section 2.2, Section 2.3]), allowing to define a horizontal Brownian 
motion as the diffusion on M with generator 1

2L, as we describe in Section 4.1.1. The 
distribution of the horizontal Brownian motion is called the horizontal Wiener measure.

Recall that for a Riemannian manifold (M, g), for a given metric connection one can 
construct a development map B �−→ W , where B is a Brownian motion in Rn+m and 
W the Brownian motion on the manifold (M, g), see for instance [17, Theorem 3.4]. We 
construct development maps in the setting of a totally geodesic Riemannian foliation 
even though we do not have a Levi-Civita connection in this sub-Riemannian setting.

The foliation structure on M induces a natural splitting of the tangent bundle into a 
vertical and horizontal subbundles V and H as described in Section 2.2. This allows us 
to define horizontal Brownian motion with respect to this structure. In Section 4.1.2 we 
show that there exist metric connections on M which are compatible with the foliation 
F in such a way that the above development map sends (β, 0) to a horizontal Brownian 
motion of the foliation, where β is a Brownian motion in Rn. In particular, the horizontal 
Brownian motion W on M constructed in this way is a semimartingale on M and it 
becomes possible to develop a horizontal stochastic calculus of variations. In this paper, 
the map β �−→ W is referred to as the horizontal stochastic development map. The main 
result of Section 3 is Theorem 1 that characterizes the variations of horizontal paths (i.e. 
paths transverse to the leaves of the foliation).

Before we can formulate our first main result, we need to describe some of the notation 
used. For details the reader is referred to Section 3. Let D be a metric connection on 
(M, g,F) adapted to the foliation structure as described by Assumption 1. An example 
of such a connection is the Bott connection introduced in Section 2.4.

The first observation is that the connection D allows us to define vector fields on 
the space W∞

0 (M) of smooth M-valued paths on the interval [0, 1] as follows. For v ∈
W∞

0 (Rn+m), the space of smooth Rn+m-valued paths, we denote by Dv the vector field 
on the space of smooth paths [0, 1] → M defined by

Dv(γ)s = us(γ)vs,

where u is the D-lift of γ to the orthonormal frame in the orthonormal frame bundle 
O(M). In addition, we can use the connection D to introduce the corresponding devel-
opment map φ : W∞

0 (Rn+m) −→ W∞
0 (M) as defined in Definition 3.5. The inverse map 
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φ−1 : W∞
0 (M) −→ W∞

0 (Rn+m) is referred to as an anti-development map. We also 
define horizontal development and anti-development maps in Definition 3.10.

In addition the connection D can be used to lift vector fields on M to vector fields on 
O(M) consistent with the foliation structure as explained in Notation 3.3. We denote by 
A, V the fundamental vector fields on O(M) associated with this D-lift. For details we 
refer the reader to Notation 3.3. As motivation for the semimartingale version, we start 
with a theorem combining the results in the smooth setting.

Theorem 1 (Theorem 3.11, Theorem 3.15). Let D be a metric connection on (M, g,F)
adapted to the foliation structure as described by Assumption 1. For a smooth path v on 
Rn+m, we let {ζvt , t ∈ R} be the flow generated by the vector field Dv on W∞

0 (M). Then 
for a smooth horizontal path γ on M

d

dt

∣∣∣∣
t=0

φ−1(ζvt γ)s ∈ Rn, s ∈ [0, 1]

if and only if the path

v(s) −
s∫

0

Tur
(A

(
dωH

r

)
, Av(r)), s ∈ [0, 1] takes values in Rn, (1.1)

that is, it is horizontal. Here ωH is the horizontal anti-development of the horizontal 
path γ, and T is the torsion of the Bott connection.

Moreover, if (1.1) is satisfied, then

d

dt

∣∣∣∣
t=0

φ−1(ζvt γ)s = pv(ωH)s,

where

pv(ωH)s = v(s) −
s∫

0

TD
ur

(A
(
dωH

r

)
, Av(r) + V v(r))−

s∫
0

⎛⎝ r∫
0

ΩD
uτ

(A
(
dωH

τ

)
, Av(τ) + V v(τ))

⎞⎠ dωH
r .

Here TD is the torsion form of the connection D and ΩD its curvature form.

If (1.1) is satisfied, we will say that the path v is tangent to the horizontal path γ. 
We stress that in (1.1) we use the torsion of the Bott connection, not the torsion of the 
connection D. Thus Theorem 1 shows that the notion of a tangent path is independent 
of the connection D, as long as it satisfies Assumption 1.
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Given a horizontal path, it is easy to construct tangent paths to this path. Indeed, 
we show in Lemma 3.17 that if ωH is a smooth path in Rn then for every smooth path 
h in Rn

τh(ωH)s := h(s) +
s∫

0

Tur
(A

(
dωH

r

)
, Ah(r)) (1.2)

is a tangent path to φ(ωH), where u denotes the lift of φ(ωH).
In Section 4.3 we use Malliavin’s principe de transfert ansatz (see [41, Part IV Chap-

ter VIII]) to extend the definitions for pv and τh to semimartingale paths by replacing 
integration against smooth paths by Stratonovich stochastic integrals with respect to 
semimartingales. More precisely, we work on the probability space (W0(Rn),B, μH), 
where B is the Borel σ-algebra on the path space W0(Rn) of continuous paths [0, 1] → Rn

starting at 0, μH is the Wiener measure. The measure μW can be also described as the 
distribution of the horizontal Brownian motion on M.

Given a deterministic Cameron-Martin path h : [0, 1] → Rn, one can then consider 
the Rn+m-valued semimartingale

τh(ωH)s := h(s) +
s∫

0

Tur
(A ◦ dωH

r , Ah(r)),

where ωH is the coordinate process and ◦dωH denotes the Stratonovich integral. Note 
that τh is defined μH-a.s. One can then think of τh(ωH) as a tangent process to the 
horizontal Brownian motion of the foliation. We will view τh : W0(Rn) → W0(Rn+m)
as an adapted process with respect to the natural filtration {Bs, 0 � s � 1} generated 
by the horizontal Brownian motion in Rn+m. Notice that τh is really an equivalence 
class of processes with two processes being equivalent if they are equal μH-a.s. similarly 
to [34, p. 425]. Thus when we say that a map is defined μH-a.s. we mean that we are 
actually working with equivalence classes of maps. It will be an important part of our 
results that the flows and the compositions we consider preserve the equivalence classes 
we are working with, but for simplicity of the presentation, those considerations will 
remain in the background in our discussions similarly to [34]. This aspect is discussed 
more thoroughly in [17].

Similarly, given an Rn+m-valued semimartingale v, one can define the semimartingale

pv(ωH)s = v(s) −
s∫

0

TD
ur

(A ◦ dωH
r , Av(r) + V v(r))−

s∫
0

⎛⎝ r∫
0

ΩD
uτ

(A ◦ dωH
τ , Av(τ) + V v(τ))

⎞⎠ ◦ dωH
r .
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The main results of Section 4.3 include Theorem 4.21 and Theorem 4.23 which can 
be summarized as follows. Here we use the notion of stochastic horizontal development 
and anti-development φH and φ−1

H as defined in Definition 4.9.

Theorem 2 (Theorem 4.21, Theorem 4.23). There exists a family of semimartingales 
{νht , t ∈ R} such that for each fixed t the random variable νht : W0 (Rn) −→ W0 (Rn)
can be regarded as a μH-a. s. defined map from the path space to itself. In particular, 
s → νht (s) is a Rn-valued semi-martingale over the probability space W0(Rn). In addition 
νht has the group property. Thus we can regard {νht , t ∈ R} as the flow on W0 (Rn)
generated by pτh : W0 (Rn) → W0 (Rn) which is defined μH-a.s.

Moreover, the measure μH is quasi-invariant under this flow, that is, the law μW of 
the horizontal Brownian motion on M is quasi-invariant under the μW -a.s. defined flow 
ζht = φH ◦ νht ◦ φ−1

H : Wx0 (M) → Wx0 (M), t ∈ R. Here φH and φ−1
H are horizontal 

stochastic development and anti-development map correspondingly.

It should be noted that our argument follows relatively closely the one by B. Driver in 
[17] and later by E. Hsu in [34] (see also [14,15,25]) and therefore going from Theorem 1
to Theorem 2 is quite routine. In Section 4.3.6 we illustrate our results in the case 
of Riemannian submersions and explicitly compute the flow ζht associated to the Bott 
connection in some examples.

The goal of the second part of the paper is to establish several types of integra-
tion by parts formulas for the horizontal Brownian motion. In Section 5.1.1, we survey 
known geometric and stochastic results and introduce the notation and conventions used 
throughout Section 5. Most of this material is based on [7] for the geometric part and [2]
for the stochastic part. The most relevant result that will be used later is the Weitzen-
böck formula given in Theorem 5.4. It asserts that for every f ∈ C∞(M), x ∈ M and 
every ε > 0

dLf(x) = �εdf(x), (1.3)

where �ε is a one-parameter family of sub-Laplacians on one-forms indexed by a param-
eter ε > 0. These sub-Laplacians on one-forms are constructed from a family of metric 
connections ∇ε introduced in [2] whose adjoint connections ∇̂ε in the sense of B. Driver 
in [17] are also metric. These connections satisfy Assumption 1, so that the results of 
Section 4 are applicable. Even though Section 5.1.1 introduces mostly preliminaries, we 
present a number of new results there such as Lemma 5.6.

In Section 5.2, we prove integration by parts formulas for the horizontal Wiener 
measure with the main result being Theorem 5.20 which includes the following result. 
Suppose F is a cylinder function, v is a tangent process on TxM as defined in Defini-
tion 5.16, then we have

Ex (DvF ) = Ex

⎛⎝F

1∫
0

〈
v′H(s) + 1

2 //
−1
0,s RicH//0,s, dBs

〉
H

⎞⎠ , (1.4)
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where x is the starting point of the horizontal Brownian motion, DvF is the directional 
derivative of F in the direction of v, //0,s is the stochastic parallel transport for the 
Bott connection, and RicH is the horizontal Ricci curvature of the Bott connection. 
The Bott connection as defined in Section 2.4 corresponds to the adjoint connection 
∇̂ε as ε → ∞. In the integration by parts formula (1.4), the tangent process v is a 
TxM–valued process such that its horizontal part vH is absolutely continuous and satisfies 
E 
(∫ 1

0 ‖v′H(s)‖2
TxM

ds
)
< ∞ and its vertical part is given by

vV(s) =
s∫

0

//
−1
0,r T (//0,r ◦ dBr,//0,rvH(r)), (1.5)

where T is the torsion tensor of the Bott connection. Observe that (1.4) looks similar to 
the integration by parts formulas by J.-M. Bismut and B. Driver. This is not too sur-
prising if one thinks about the special case when the foliation comes from a Riemannian 
submersion with totally geodesic fibers. We consider this case in Section 5.3.1, and we 
prove that then that the integration by parts formula in Theorem 5.20 is actually a hori-
zontal lift of Driver’s formula from the base space of the fibers to M. However, in general 
foliations do not come from submersions (see for instance [26] for necessary and sufficient 
conditions) and one therefore needs to develop an intrinsic horizontal stochastic calculus 
on M to prove (1.4). Developing such a calculus is one of the main accomplishments of 
the current paper.

The proof of Theorem 5.20 proceeds in several steps. As in [2], the Weitzenböck for-
mula (1.3) yields a stochastic representation for the derivative of the semigroup of the 
horizontal Brownian motion in terms of a damped stochastic parallel transport associ-
ated to the connection ∇ε (see Lemma 5.21). By using techniques of [4], Lemma 5.21
implies an integration by parts formula for the damped Malliavin derivative as stated in 
Theorem 5.19. The final step is to prove Theorem 5.20 from Theorem 5.19. The main 
difficulty is that the connection ∇ε is in general not horizontal. However, it turns out 
that the adjoint connection ∇̂ε is not only metric but also horizontal. As a consequence, 
one can use the orthogonal invariance of the horizontal Brownian motion (Lemma 5.26) 
to filter out the redundant noise which is given by the torsion tensor of ∇ε. It is remark-
able that the integration by parts formula for the directional derivatives in Theorem 5.20
is actually independent of the choice of a particular connection and therefore is indepen-
dent of ε in the one-parameter family of connections used to define the damped Malliavin 
derivative. While integration by parts formulas for the damped Malliavin derivative may 
be used to prove gradient bounds for the heat semigroup (as in [2]) and log-Sobolev 
inequalities on the path space (as in [4]), we prove that the integration by parts formula 
(1.4) comes from the quasi-invariance property of the horizontal Wiener measure proved 
in Section 4.3.
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Remark 1.1. In the current paper, we restrict consideration to the case of compact man-
ifolds mainly for the sake of conciseness. It is reasonable to conjecture that as in [39], 
our results may be extended to complete manifolds.

Acknowledgments. The authors thank Bruce Driver for stimulating discussions and an 
anonymous referee for insightful remarks that helped to improve the presentation of the 
paper significantly and to clarify key definitions.

2. Geometric preliminaries: Riemannian foliations

2.1. Riemannian foliations

We start by recalling the notion of a foliation. Let M be a smooth connected manifold 
of dimension n + m. Then a foliation of dimension m on M is usually described as a 
collection F of disjoint connected non-empty immersed m-dimensional submanifolds of 
M (called the leaves of the foliation), whose union is M, and such that in a neighborhood 
of each point in M there exists a chart for F as follows.

Before we define such Riemannian foliations, let us introduce some standard notation.

Notation 2.1. Suppose (M, g) is a Riemannian manifold. By TM we denote the tangent 
bundle and by T ∗M the cotangent bundle, and by TxM (T ∗

xM) the tangent (cotangent) 
space at x ∈ M. The inner product on TM induced by the metric g will be denoted by 
g (·, ·). If U is a subbundle of the tangent bundle TM, the restriction of g to U will be 
denoted by gU (·, ·).

As always, for any x ∈ M we denote by g (·, ·)x (or 〈·, ·〉x), gU (·, ·)x (or 〈·, ·〉Ux
) (or 

〈·, ·〉Ux
) the inner product on the fibers TxM and Ux correspondingly. The space of smooth 

functions on M will be denoted by C∞(M). The space of smooth sections of a vector 
bundle E over M will be denoted Γ∞(E).

Definition 2.2. Let M be a smooth connected n + m-dimensional manifold. An 
m-dimensional foliation F on M is defined by a (maximal) collection of pairs 
{(Uα, πα), α ∈ I} of open subsets Uα of M and submersions πα : Uα → U0

α onto 
open subsets of Rn satisfying

•
⋃

α∈I Uα = M;
• If Uα∩Uβ �= ∅, there exists a local diffeomorphism Ψαβ of Rn such that πα = Ψαβπβ

on Uα ∩ Uβ .

In addition, we assume that the foliation F on M is a Riemannian foliation with a 
bundle-like metric g and totally geodesic m-dimensional leaves. Informally a bundle-like 
metric is similar to a product metric locally, and the notion has been introduced in [45]. 
We refer to [1,43,45,49] for details about the geometry of Riemannian foliations, but for 
convenience of the reader we recall some basic definitions.
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The maps πα are called disintegrating maps of F . The connected components of the 
sets π−1

α (c), c ∈ Rn, are called the plaques of the foliation. For each p ∈ Uα, we de-
fine Vp := Ker((πα)∗p). The subbundle V of TM with fibers Vp is referred to as the 
vertical distribution. These are the vectors tangent to the leaves, the maximal integral 
sub-manifolds of V.

Definition 2.3. Let M be a smooth connected n + m-dimensional Riemannian manifold. 
An m-dimensional foliation F on M is said to be Riemannian with a bundle-like metric
if the disintegrating maps πα are Riemannian submersions onto U0

α with its given Rie-
mannian structure. If moreover the leaves are totally geodesic sub-manifolds of M, then 
we say that the Riemannian foliation is totally geodesic with a bundle-like metric.

2.2. Horizontal and vertical subbundles of TM and forms

The subbundle H which is normal to the vertical subbundle V is referred to as the set 
of horizontal directions. Though this assumption is not strictly necessary in many parts 
of the paper, to simplify the presentation we always assume that H is bracket-generating, 
that is, the Lie algebra of vector fields generated by global C∞–sections of H has the full 
rank at each point in M. Using Notation 2.1, we denote the restrictions of the metric g
to H and V by gH (·, ·) and gV (·, ·) respectively.

We say that a one-form is horizontal (resp. vertical) if it vanishes on the vertical 
bundle V (resp. on the horizontal bundle H). Then the splitting of the tangent space

TxM = Hx ⊕ Vx

induces a splitting of the cotangent space

T ∗
xM = H∗

x ⊕ V∗
x .

The subbundle H∗ of the cotangent bundle will be referred to as the cohorizontal 
bundle. Similarly, V∗ will be referred to as the covertical bundle.

2.3. Examples

Example 2.1 (Riemannian submersions, Hopf fibrations). Let (M, g) and (B, j) be two 
smooth and connected Riemannian manifolds. A smooth surjective map π : M → B is 
called a Riemannian submersion if for every x ∈ M the differential Txπ : TxM → Tπ(x)B

is an orthogonal projection, i.e. the map Txπ(Txπ)∗ : Tπ(x)B → Tπ(x)B is the identity 
map. The foliation given by the fibers of a Riemannian submersion is then bundle-like 
(see [1, Section 2.3]). We refer to [11, Chapter 9, Section F, pp. 249-252] for Riemannian 
submersions with totally geodesic fibers.

The generalized Hopf fibrations (e.g. [11, Chapter 9, Section H], [44, Section 1.4.6]) of-
fer a wide range of examples of Riemannian submersions whose fibers are totally geodesic. 
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Let G be a Lie group, and H, K be two compact subgroups of G with K ⊂ H. Then, we 
have a natural fibration given by the coset map

π :G/K −→ G/H

αK �−→ αH,

where the fiber is H/K. From [10], there exist G-invariant metrics on respectively G/K

and G/H that make π a Riemannian submersion with totally geodesic fibers isometric 
to H/K. For instance with G = SU(n + 1), H = S(U(1)U(n)) � U(n) and K =
SU(n), one obtains the usual Hopf fibration π : S2n+1 → CPn, see [11, Chapter 9, 
Section H, Example 9.81]. For n = 1, this reduces to the Hopf fibration π : SU(2) �
S3 → CP 1 � S2.

Example 2.2 (K-contact manifolds). Another important example of a Riemannian folia-
tion is obtained in the context of contact manifolds. Let (M, θ) be a 2n + 1-dimensional 
smooth contact manifold, where θ is a contact form. Then there is a unique smooth 
vector field Z on M, called the Reeb vector field, satisfying

θ(Z) = 1, LZ(θ) = 0,

where LZ denotes the Lie derivative with respect to Z. The Reeb vector field induces 
a foliation on M, the Reeb foliation, whose leaves are the orbits of the vector field Z. 
It is known (see [46,47]), that it is always possible to find a Riemannian metric g and a 
(1, 1)-tensor field J on M so that for every vector fields X, Y

g(X,Z) = θ(X), J2(X) = −X + θ(X)Z, g(X, JY ) = (dθ)(X,Y ).

The triple (M, θ, g) is called a contact Riemannian manifold. We see then that the Reeb 
foliation is totally geodesic with a bundle-like metric if and only if the Reeb vector field 
Z is a Killing field, that is,

LZg = 0,

as is stated in [13, Proposition 6.4.8]. In this case, (M, θ, g) is called a K-contact Rie-
mannian manifold. Observe that the horizontal distribution H is then the kernel of θ and 
that H is bracket generating because θ is a contact form. We refer to [8,47] for further 
details on this class of examples.

2.4. Bott connection

If we view (M, g) as a Riemannian manifold, the Levi-Civita connection ∇R is a 
natural choice for stochastic analysis on M. But this connection is not adapted to the 
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study of foliations because the horizontal and vertical bundles may not be parallel with 
respect to ∇R. We will rather make use of the Bott connection on M which is defined as 
follows.

∇XY =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πH(∇R

XY ), X, Y ∈ Γ∞(H),
πH([X,Y ]), X ∈ Γ∞(V), Y ∈ Γ∞(H),
πV([X,Y ]), X ∈ Γ∞(H), Y ∈ Γ∞(V),
πV(∇R

XY ), X, Y ∈ Γ∞(V),

where πH (resp. πV) is the projection on H (resp. V). One can check that since the 
foliation is bundle-like and totally geodesic the Bott connection is metric-compatible, that 
is, ∇g = 0, though unlike the Levi-Civita connection it is not torsion-free. The following 
properties of the Bott connection are standard but require tedious computations. We 
refer to [49, Chapter 5] for some of these, and to [42] for the details of the statements 
below and also point out that the Bott connection is a special case of a general class of 
connections introduced by R. Hladky in [33, Lemma 2.13].

Let T be the torsion of the Bott connection ∇. Observe that for X, Y ∈ Γ∞(H)

T (X,Y ) = ∇XY −∇Y X − [X,Y ]

= πH(∇R
XY −∇R

Y X) − [X,Y ]

= πH([X,Y ]) − [X,Y ]

= −πV([X,Y ]).

Similarly one can check that the Bott connection satisfies the following properties 
that we record here for later use

∇XY ∈ Γ∞(H) for any X,Y ∈ Γ∞(H),

∇XY ∈ Γ∞(V) for any X,Y ∈ Γ∞(V),

T (X,Y ) ∈ Γ∞(V) for any X,Y ∈ Γ∞(H), (2.1)

T (U, V ) = 0 for any U, V ∈ Γ∞(V),

T (X,U) = 0 for any X ∈ Γ∞(H), U ∈ Γ∞(V).

Example 2.3 (Example 2.1 revisited). Let π : (M, g) → (B, j) be a Riemannian sub-
mersion with totally geodesic leaves. A vector field X ∈ Γ∞(TM) is said to be pro-
jectable if there exists a smooth vector field X on B such that for every x ∈ M, 
Txπ(X(x)) = X(π(x)). In that case, we say that X and X are π-related. A vector 
field X on M is called basic if it is projectable and horizontal. If X is a smooth vector 
field on B, then there exists a unique basic vector field X on M which is π-related to X. 
This vector is called the lift of X. The Bott connection is then a lift of the Levi-Civita
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connection of (B, j) in the following sense:

∇B
X
Y = ∇XY , X, Y ∈ Γ∞(B), (2.2)

where ∇B is the Levi-Civita connection on B.

Example 2.4 (Example 2.2 revisited). Let (M, θ, g) be a K-contact Riemannian manifold. 
The Bott connection coincides with Tanno’s connection that was introduced in [47] and 
which is the unique connection that satisfies the following properties.

(1) ∇θ = 0;
(2) ∇Z = 0;
(3) ∇g = 0;
(4) T (X, Y ) = dθ(X, Y )Z for any X, Y ∈ Γ∞(H);
(5) T (Z, X) = 0 for any vector field X ∈ Γ∞(H).

2.5. Orthonormal frame bundle

We will use standard notation for orthonormal frame bundles. Suppose M is a compact 
Riemannian manifold of dimension d. Note that in the setting of Riemannian foliations 
we have d = n +m. Recall that a frame at x ∈ M can be described as a linear isomorphism 
u : Rd → TxM such that for the standard basis {ei}di=1 of Rd the collection {u (ei)}di=1
is a basis (frame) for TxM. The collection of all such frames F (M) :=

⋃
x∈M F (M)x

is called the frame bundle with the group GL(R, d) acting on the bundle. If M is in 
addition Riemannian, we can restrict ourselves to consideration of Euclidean isometries 
u :

(
Rd, 〈·, ·〉

)
→ (TxM, g) with the group O(R, d) acting on the bundle. The orthonormal 

frame bundle will be denoted by O(M).
Suppose that D is a connection on M, then D induces a decomposition of each tangent 

space TuO(M) into the direct sum of a horizontal subspace and a vertical subspace as 
described in [38, Section 2.1]. Using such decomposition, one can then lift smooth maps 
on M into smooth horizontal paths on O(M), see [34, p. 421]. Such a lift is usually 
called the horizontal lift to O(M). However, to avoid the confusion with the notion of 
horizontality given by the foliation on M, in this paper it shall often simply be referred 
to as the D-lift to O(M).

3. Horizontal calculus of variations

To motivate the definition of the tangent processes to the horizontal Brownian motion 
on M that we will use to prove quasi-invariance, we first present results on the horizontal 
calculus of variations of deterministic paths.



JID:YJFAN AID:8263 /FLA [m1L; v1.260; Prn:11/06/2019; 15:36] P.14 (1-61)
14 F. Baudoin et al. / Journal of Functional Analysis ••• (••••) •••–•••
3.1. Adapted connections

Using the notation in Section 2.5, we consider u ∈ O(M). To take into account the 
foliation structure on M, we shall be interested in a special subbundle of O(M), the 
horizontal frame bundle.

Definition 3.1. An isometry u : (Rn+m, 〈·, ·〉) −→ (TxM, g) will be called horizontal if 
u(Rn × {0}) ⊂ Hx and u({0} ×Rm) ⊂ Vx. The horizontal frame bundle OH(M) is then 
defined as the set of (x, u) ∈ O(M) such that u is horizontal.

For notational convenience, when needed we identify Rn+m with Rn ×Rm, hence we 
have embeddings of Rn and Rm into Rn+m.

Assumption 1. We assume that D is a connection on M satisfying the following proper-
ties.

• D is a metric connection on M, that is, Dg = 0;
• D is adapted to the foliation F in the following sense

DXY ∈ Γ∞(H), if X ∈ Γ∞(M), Y ∈ Γ∞(H),

DXZ ∈ Γ∞(V), if X ∈ Γ∞(M), Z ∈ Γ∞(V);

• For every X ∈ Γ∞(H), Y ∈ Γ∞(M), DXY = ∇XY , where ∇ is the Bott connection.

Remark 3.2. In the case of a Riemannian submersion in Example 2.1, these assumptions 
imply that the connection D is a lift of the Levi-Civita connection on (B, j), namely,

∇B
X
Y = DXY , X, Y ∈ Γ∞(B),

where ∇B is the Levi-Civita connection on B. We refer to Example 2.3 for further details.

Of course, an example of a connection D that satisfies the above assumptions is 
given by the Bott connection ∇ itself. However, we state the results of the section 
in greater generality using a connection D satisfying Assumption 1. This generality 
is relevant for Section 5, where we use other connections than the Bott connection (see 
Remark 5.2). The main reason for using different connections is that while the Bott 
connection is adapted to the foliation structure, the torsion of the Bott connection is not 
skew-symmetric.

The connection D allows us to lift vector fields on M to vector fields on O(M) (see 
[34, p. 421]). Let e1, · · · , en, f1, · · · , fm be the standard basis of Rn+m.

Notation 3.3. We denote by Ai the vector field on O(M) such that Ai(x, u) is the lift of 
u(ei), i = 1, ..., n, (x, u) ∈ O(M), and we denote by Vj the vector field on O(M) such 
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that Vj(x, u) is the lift of u(fj), j = 1, .., m. We sometimes call A and V fundamental 
vector fields on O(M). For any v ∈ Rn+m, we denote

Av :=
n∑

i=1
viAi,

V v :=
m∑
j=1

vj+nVj .

Then Av and V v are vector fields on O(M) whose values at some u ∈ O(M) will be 
denoted respectively by Auv and Vuv.

Notation 3.4. Let x0 be a fixed point in M. By W∞
0 (Rn+m) we denote the space of 

smooth paths v : [0, 1] −→ Rn+m such that v(0) = 0, and by W∞
x0

(M) we denote the 
space of smooth paths γ : [0, 1] −→ M such that γ(0) = x0.

3.2. Development maps

Next we would like to recall the notion of a rolling map φ between path spaces over 
M and Rn+m or equivalently development and anti-development maps (see for instance 
[34, Section 2]). Let π : O(M) → M be the bundle projection map. To define the rolling 
map φ : W∞

0 (Rn+m) → W∞
x0

(M) we need the following differential equation on O(M)

dus =
n∑

i=1
Ai(us)dωi

s +
m∑
i=1

Vi(us)dωn+i
s = Aus

dωs + Vus
dωs, (3.1)

where ω ∈ W∞
0 (Rn+m). By compactness of M and thus of O(M) this equation has a 

unique solution given an initial condition u0 ∈ O(M). In the sequel we fix u0 ∈ O(M)
such that π(u0) = x0.

Definition 3.5.
(1) For any ω ∈ W∞

0 (Rn+m) the development of ω in M is defined as γs = π(us), 
where {us}s∈[0,1] is the solution to (3.1) with initial condition u0. Then we denote 
φ(ω) := γ. The map φ is also called the rolling map.

(2) For any γ ∈ W∞
x0

(M) the anti-development of γ in Rn+m is the unique path ω ∈
W∞

0 (Rn+m) such that if {us}s∈[0,1] is the solution to (3.1), then γs = π(us). Then 
we denote φ−1(γ) := ω.

This definition extends to continuous semimartingales, in which case we speak of 
stochastic development and stochastic anti-development (e.g. [38, Section 2.3] and [34, 
p. 433]).
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3.3. Horizontal paths

Definition 3.6. A smooth path ω : [0, 1] → Rn+m is called horizontal if it takes values 
in Rn. The space of smooth horizontal paths such that ω(0) = 0 will be denoted by 
W∞

0,H(Rn+m).

Definition 3.7. A smooth path γ : [0, 1] → M is called horizontal if for every vertical 
smooth one-form θ we have 

∫
γ
θ = 0. The space of smooth horizontal paths such that 

γ(0) = x0 will be denoted W∞
x0,H(M).

Remark 3.8. The space W∞
x0,H(M) contains only smooth paths, therefore it can be equiv-

alently described as follows. A path γ is in W∞
x0,H(M) if and only if γ′(s) ∈ Hγ(s) for every 

s ∈ [0, 1]. The advantage of Definition 3.7 is that it will easily extend to non-smooth 
paths such as semimartingales.

The next step is to define the horizontal rolling map φH : W∞
0,H(Rn+m) → W∞

x0,H(M)
similarly to Definition 3.5 on the spaces of horizontal paths. For any ωH ∈ W∞

0,H(Rn+m)
we consider the differential equation on O(M) with initial condition u0

dus =
n∑

i=1
Ai(us)dωH,i

s = Aut
dωH

s . (3.2)

Observe that for γ = π(u) we have

dγs =
n∑

i=1
dπ(Ai(us))dωH,i

s ,

and therefore γ is horizontal since dπ(Ai(us)) is.

Lemma 3.9. Suppose γ ∈ W∞
x0,H(M), then there exists a unique ωH ∈ W∞

0,H(Rn+m) such 
that if {us}s∈[0,1] is the solution to (3.2), then γs = π(us).

Proof. As before, let e1, · · · , en, f1, · · · , fm be the standard basis of Rn+m. Note that 
any γ ∈ W∞

x0,H(M) can be viewed as an element in W∞
x0

(M). Let ω ∈ W∞
0 (Rn+m) be 

the anti-development of γ introduced in Definition 3.5. Then if {us}s∈[0,1] is the solution 
to the differential equation (3.1) with initial condition u0, then γs = π(us). Since γ is 
horizontal, then for every smooth vertical one-form θ one has∫

γ[0,s]

θ = 0.

Therefore
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∫
γ[0,s]

θ =
n∑

i=1

s∫
0

θ(urei)dωi
r +

m∑
i=1

s∫
0

θ(urfi)dωn+i
r = 0.

The form θ being vertical, one deduces

m∑
i=1

t∫
0

θ(usfi)dωn+i
s = 0.

Since it is true for any θ, one deduces

m∑
i=1

s∫
0

(urfi)dωn+i
r = 0.

Now observe that urf1, · · · , usrfm are linearly independent, thus for every r one has 
dωn+i

r = 0. As a conclusion, ω is horizontal. �
Definition 3.10 (Horizontal development and anti-development).
(1) For any ωH ∈ W∞

0,H(Rn+m) the horizontal development of ω in M is γs = π(us), 
where {us}s∈[0,1] is the solution to (3.2) with initial condition u0 ∈ O(M). Then we 
denote φH(ω) := γ. The map φH is called the horizontal rolling map.

(2) For any γ ∈ W∞
x0,H(M) the horizontal anti-development of γ is ωH ∈ W∞

0,H(Rn+m) is 
the unique path such that if {us}s∈[0,1] is the solution to (3.2) with initial condition 

u0, then γs = π(us). Then we denote φ−1
H (γ) := ω.

3.4. Paths tangent to horizontal paths

For any v ∈ W∞
0 (Rn+m) we consider the vector field Dv on W∞

x0
(M) defined by

Dv(γ)s := us(γ)vs, γ ∈ W∞(M),

where u is the D-lift of γ to O(M). Let {ζvt , t ∈ R} be the flow generated by Dv, i.e.

d

dt
(ζvt γ)s = Dv(ζvt γ)s, ζv0γ = γ.

One can use the development and anti-development maps φ and φ−1 in Definition 3.5
to introduce a flow on W∞

0 (Rn+m) as follows

ξvt := φ−1 ◦ ζvt ◦ φ, t ∈ R.

Note that Dv, ζvt and ξvt depend on the connection D. We now recall [34, Theorem 
2.1] that describes the generator of the flow ξvt in the situation when a connection is 
metric-compatible but not necessarily torsion-free.
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Theorem 3.11 (Theorem 2.1, [34]). Suppose that v ∈ W∞
0 (Rn+m) and ω ∈ W∞

0 (Rn+m). 
Then

d

dt

∣∣∣∣
t=0

ξvt (ω)s = pv(ω)s,

where

pv(ω)s = v(s) −
s∫

0

TD
ur

(Adωr + V dωr, Av(r) + V v(r))−

s∫
0

⎛⎝ r∫
0

ΩD
uτ

(Adωτ + V dωτ , Av(τ) + V v(τ))

⎞⎠ dωr.

Here u is the D-lift to O(M) of the development of ω, TD is the torsion form of the 
connection D and ΩD is its curvature form.

We are interested in the variation of horizontal paths. Let us observe that for ωH ∈
W∞

0,H(Rn+m)

pv(ωH)s = v(s) −
s∫

0

TD
ur

(AdωH
r , Av(r) + V v(r)) (3.3)

−
s∫

0

⎛⎝ r∫
0

ΩD
uτ

(AdωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r .

Definition 3.12. We will say that v ∈ W∞
0 (Rn+m) is tangent to the horizontal path

γ ∈ W∞
x0,H(M) if for every s ∈ [0, 1], d

dt

∣∣
t=0 φ

−1(ζvt γ)s ∈ Rn.

Remark 3.13. From this definition, v ∈ W∞
0 (Rn+m) is tangent to the horizontal path 

γ if and only if pv(ωH) is horizontal, where ω is the horizontal anti-development of γ. 
Intuitively, v is tangent to γ if it yields a variation of γ in the horizontal directions 
only. More precisely, call a vector field ξ along γ ∈ W∞

x0,H(M) an horizontal variation
of γ if ξ(x0) = 0 and if there exists (σt)t∈[−ε,ε] ⊂ W∞

x0,H(M) with σ0 = γ such that 
d
dt

∣∣
t=0 (σt)s = ξs for s ∈ [0, 1]. Then, by Theorem 3.11 and Proposition 3.20, ξ is an 

horizontal variation of γ if and only if us(γ)−1ξs is tangent to the horizontal path γ. Let 
us note that the notion of horizontal variation is independent from any metric and any 
connection. It therefore yields an intrinsic notion of horizontal tangent path space. We 
are grateful to the referee for this observation.

Remark 3.14. One should note that even if v ∈ W∞
0 (Rn+m) is tangent to the horizontal 

path γ, it may not be true that for every t ∈ R, ζvt γ ∈ W∞
x ,H(M).

0
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One has the following characterization of tangent paths, which is the main result of 
the section.

Theorem 3.15. Let γ ∈ W∞
x0,H(M). A path v ∈ W∞

0 (Rn+m) is tangent to the horizontal 
path γ if and only if the path

v(s) −
s∫

0

Tur
(AdωH

r , Av(r))

is horizontal, i.e. takes values in Rn, where ωH is the horizontal anti-development of γ, 
u is its D-lift to O(M), and T is the torsion of the Bott connection.

Proof. The path v ∈ W∞
0 (Rn+m) is tangent to the horizontal path γ if and only if the 

path

pv(ωH)s = v(s) −
s∫

0

TD
us

(AdωH
r , Av(r) + V v(r))

−
s∫

0

⎛⎝ r∫
0

ΩD
uτ

(AdωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r

is horizontal. Since D satisfies Assumption 1, the integral

s∫
0

⎛⎝ r∫
0

ΩD
uτ

(AdωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r

is always horizontal. Let us now denote by J the difference between connections D and ∇, 
that is, the tensor J is defined for any X, Y ∈ Γ∞(M) by

JXY = DXY −∇XY.

We have then

TD(X,Y ) = DXY −DY X − [X,Y ]

= T (X,Y ) + JXY − JY X.

Let us assume that X is horizontal. We have then JX = 0, because DH = ∇H. Also 
JY X is horizontal, because D is adapted to the foliation F . We deduce that the vertical 
part of

v(s) −
s∫
TD
ur

(AdωH
r , Av(r) + V v(r))
0
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is the same as the vertical part of

v(s) −
s∫

0

Tur
(AdωH

r , Av(r) + V v(r)).

We conclude that the vertical part of pv(ωH) is zero if and only if the vertical part of

v(s) −
s∫

0

Tur
(AdωH

r , Av(r) + V v(r))

is zero. By the properties in Equation (2.1), we have

s∫
0

Tur
(AdωH

r , V v(r)) = 0,

which concludes the proof. �
Remark 3.16. By Theorem 3.15, the notion of tangent path does not depend on the 
particular choice of the connection D as long as it satisfies Assumption 1.

3.5. Variations on the horizontal path space

In this section, we describe two types of variations on the horizontal path space that 
are induced by tangent paths. The first one is explicit and inspired by the approach by 
B. Driver in [19]. The second one is based on more classical flow constructions. The key 
ingredient is the following lemma.

Lemma 3.17. Let h ∈ W∞
0,H(Rn+m). If ωH ∈ W∞

0,H(Rn+m), then

τh(ωH)s = h(s) +
s∫

0

Tur
(AdωH

r , Ah(r)) (3.4)

is a tangent path to φ(ωH), where u denotes the D-lift of the horizontal development 
of ωH.

Proof. Let

v(s) = h(s) +
s∫
Tur

(AdωH
r , Ah(r)).
0
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Since h is horizontal and T is a vertical tensor, one deduces that the horizontal part of 
v is h. Therefore,

v(s) −
s∫

0

Tur
(AdωH

r , Av(r)) = h(s)

is horizontal. �
Let v ∈ W∞

0 (Rn+m), ωH ∈ W∞
0,H(Rn+m) and assume that v is tangent to the hori-

zontal development of ωH. Recall that

pv(ωH)s = v(s) −
s∫

0

TD
us

(AdωH
r , Av(r) + V v(r))

−
s∫

0

⎛⎝ r∫
0

ΩD
uτ

(AdωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r .

As before, let us now denote by J the difference between connections D and ∇. For 
X, Y ∈ Γ∞(M), we have thus

JXY = DXY −∇XY.

We can then write

pv(ωH)s = vH(s) +
s∫

0

(JV v(r))ur
(AdωH

r )

−
s∫

0

⎛⎝ r∫
0

ΩD
uτ

(AdωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r .

More concisely, we have therefore

pv(ωH)s = vH(s) +
s∫

0

qv(ωH)udωH
u ,

where qv(ωH)u ∈ so(n) is defined in such a way that

s∫
qv(ωH)udωH

u

0
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=
s∫

0

(JV v(r))ur
(AdωH

r ) −
s∫

0

⎛⎝ r∫
0

ΩD
uτ

(AdωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r .

As a consequence, with the above notation, one has that for every h ∈ W∞
0,H(Rn+m)

pτh(ωH)(ωH)s = h(s) +
s∫

0

qτh(ωH)(ωH)udωH
u .

We are now ready to introduce two relevant variations of horizontal paths.

Notation 3.18. Let h ∈ W∞
0,H(Rn+m).

(1) For t ∈ R, we define a map ρht : W∞
0,H(Rn+m) → W∞

0,H(Rn+m) by

(ρht ωH)s :=
s∫

0

e
tqτh(ωH)(ω

H)udωH
u + th(s). (3.5)

(2) For t ∈ R, we define a map νht : W∞
0,H(Rn+m) → W∞

0,H(Rn+m) as the flow generated 
by pτh

d

dt
(νht ωH)s = pτh(νh

t ωH)(νht ωH)s, νh0ω
H = ωH.

Remark 3.19. Unless qτh = 0, the family 
{
ρht , t ∈ R

}
is not a flow on W∞

0,H(Rn+m), but 
it is a convenient explicit one-parameter variation, since we observe that ρh0ωH = ωH

and

d

dt

∣∣
t=0(ρht ωH)s = pτh(ωH)(ωH)s.

We then have the following result, which is immediate in view of Theorem 3.11 since

d

dt

∣∣
t=0(ρht ωH)s = d

dt

∣∣
t=0(νht ωH)s = pτh(ωH)(ωH)s.

Proposition 3.20 (Variation of horizontal paths along tangent paths). Let h ∈
W∞

0,H(Rn+m), then for every γ ∈ W∞
H (M)

d

dt

∣∣∣∣
t=0

φH ◦ ρht ◦ φ−1
H (γ)s = d

dt

∣∣∣∣
t=0

φH ◦ νht ◦ φ−1
H (γ)s = us(γ)τh(ωH)s,

where u is the D-lift of γ, and ωH its horizontal development.
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4. Quasi-invariance of the horizontal Wiener measure

In this part of the paper, we first describe two constructions of the horizontal Brownian 
motion, and then we develop horizontal stochastic calculus and prove quasi-invariance 
of the horizontal Wiener measure. Throughout this section we consider a smooth con-
nected n + m-dimensional Riemannian manifold M equipped with the structure of an 
m-dimensional foliation F , a bundle-like metric g and totally geodesic m-dimensional 
leaves. In addition, we assume that M is compact.

4.1. Horizontal Brownian motion

4.1.1. Construction from the horizontal Dirichlet form
We define the horizontal gradient ∇Hf of a smooth function f as the projection of the 

Riemannian gradient of f on the horizontal bundle H. Similarly, we define the vertical 
gradient ∇Vf of a function f as the projection of the Riemannian gradient of f on the 
vertical bundle V.

Consider the pre-Dirichlet form

EH(f, h) =
∫
M

gH (∇Hf,∇Hh) dVol, f, h ∈ C∞(M),

where d Vol is the Riemannian volume measure on M. We note that EH is closable since it 
can be dominated by the Dirichlet form generated by the Laplace-Beltrami on M which is 
closable since M is compact, thus complete. Then there exists a unique diffusion operator 
L on M such that for all f, h ∈ C∞(M)

EH(f, h) = −
∫
M

fLh dVol = −
∫
M

hLf dVol .

The operator L is called the horizontal Laplacian of the foliation. If {Xi}ni=1 is a local 
orthonormal frame of horizontal vector fields, then we can write L in this frame

L =
n∑

i=1
X2

i + X0, (4.1)

where X0 is a smooth vector field. Observe that the subbundle H satisfies Hörmander’s 
(bracket generating) condition, therefore by Hörmander’s theorem the operator L is 
locally subelliptic (for comments on this terminology introduced by Fefferman-Phong we 
refer to [28], see also the survey papers [3,40] or [20, p. 944]).

By [1, Proposition 5.1] the completeness of the Riemannian metric g implies that 
L is essentially self-adjoint on C∞(M) and thus that EH is uniquely closable. Then 
we can define the semigroup Ps = e

s
2L by using the spectral theorem. The diffusion 
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process {Ws}s�0 corresponding to the semigroup {Ps}s�0 will be called the horizontal 
Brownian motion on the Riemannian foliation (F , g). Since M is assumed to be compact, 
1 ∈ dom(EH) and thus Ps1 = 1. This implies that {Ws}s�0 is a non-explosive diffusion.

If the horizontal Laplacian can be written in the form 4.1 globally for smooth hori-
zontal vector fields X0, X1, · · · , Xn, then {Wt}t�0 can be constructed from a stochastic 
differential equation on M.

Even if the horizontal Laplacian can not be written in the form 4.1 globally, the 
horizontal Brownian motion {Ws}s�0 can still be constructed from a globally defined 
stochastic differential equation on a bundle over M (see [21, Theorem 3.8] or Corol-
lary 4.4). The following section provides an explicit description of such a construction 
that shall be used in the sequel.

4.1.2. Construction from the orthonormal frame bundle
We can write the vector fields {Ai}ni=1 locally in terms of the normal frames introduced 

in [7].

Lemma 4.1 (Lemma 2.2 in [7]). Let x0 ∈ M. Around x0, there exist a local orthonormal 
horizontal frame {X1, · · · , Xn} and a local orthonormal vertical frame {Z1, · · · , Zm}
such that the following structure relations hold

[Xi, Xj ] =
n∑

k=1

ωk
ijXk +

m∑
k=1

γk
ijZk,

[Xi, Zk] =
m∑
j=1

βj
ikZj ,

where ωk
ij , γ

k
ij , β

j
ik are smooth functions such that

βj
ik = −βk

ij .

Moreover, at x0 we have

ωk
ij = 0, βk

ij = 0.

We will also need the fact (see [7, p. 918]) that in this frame the Christoffel symbols 
of the Bott connection ∇ are given by

∇Xi
Xj = 1

2

n∑
k=1

(
ωk
ij + ωj

ki + ωi
kj

)
Xk,

∇Zj
Xi = 0,

∇Xi
Zj =

m∑
k=1

βk
ijZk.
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Thus, from the assumption that DH = ∇H, we have

DXi
Xj = 1

2

n∑
k=1

(
ωk
ij + ωj

ki + ωi
kj

)
Xk,

DXi
Zj =

m∑
k=1

βk
ijZk.

For x0 ∈ M we let {X1 · · · , Xn, Z1, · · · , Zm} be a normal frame around x0. If u ∈ OH(M)
is a horizontal isometry, we can find an orthogonal matrix 

{
eji

}n

i,j=1
such that u(ei) =∑n

j=1 e
j
iXj , and u(fi) =

∑m
j=1 f

j
i Zj for f j

i , i = 1, ..., n, j = 1, ..., m. Let Xj be the vector 
field on OH(M) defined by

Xjf(x, u) = lim
t→0

f(etXj (x), u) − f(x, u)
t

,

where etXj (x) is the exponential map on M .

Lemma 4.2. Let x0 ∈ M and (x, u) ∈ OH(M), then

Ai(x, u) =
n∑

j=1
ejiXj

−
n∑

j,k,l,r=1

ejie
l
r〈DXj

Xl, Xk〉
∂

∂ekr
−

n∑
j=1

m∑
k,l,r=1

ejif
l
r〈DXj

Zl, Zk〉
∂

∂fk
r

.

In particular, at x0 we have

Ai(x0, u) =
n∑

j=1
ejiXj .

Proof. Let u : Rn+m → TxM be a horizontal isometry and x(t) be a smooth curve in 
M such that x(0) = x and x′(0) = u(ei). We denote by x∗(t) = (x(t), u(t)) the D-lift 
to O(M) of x(t) and by x′

1(t), · · · , x′
n(t) the components of x′(t) in the horizontal frame 

X1, · · · , Xn. Since D is adapted to the foliation F , the curve x∗(t) takes its values in the 
horizontal frame bundle OH(M). By definition of Ai, one has

Ai =
n∑

j=1
x′
j(0)Xj +

n∑
k,l=1

u′
kl(0) ∂

∂elk
+

m∑
k,l=1

v′kl(0) ∂

∂f l
k

,

where ukl(t) = 〈u(t)(ek), Xl〉 and vkl(t) = 〈u(t)(fk), Zl〉. Since u(t)(ek) and u(t)(fk) are 
parallel along x(t), one has
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Dx′(t)u(t)(ek) = 0, Dx′(t)u(t)(fk) = 0.

At t = 0, this yields the expected result. �
In particular, Lemma 4.2 implies the following statement.

Proposition 4.3. Let π : O(M) → M be the bundle projection map. For a smooth f :
M → R, and (x, u) ∈ OH(M),(

n∑
i=1

A2
i

)
(f ◦ π)(x, u) = Lf ◦ π(x, u).

Proof. It is enough to prove this identity at x0. Using the fact that at x0 we have 
〈DXj

Xl, Xk〉 = 〈DXj
Zl, Zk〉 = 0, we see that

n∑
i=1

A2
i =

n∑
j=1

X
2
j .

The conclusion follows. �
As a straightforward corollary, we can introduce the horizontal Brownian motion as 

follows.

Corollary 4.4. Let (Ω, (Fs)s�0, P ) be a filtered probability space that satisfies the usual 
conditions and let {Bs}s�0 be an adapted Rn-valued Brownian motion on that space. Let 
{Us}s�0 be a solution to the Stratonovich stochastic differential equation

dUs =
n∑

i=1
Ai(Us) ◦ dBi

s = AUs
◦ dBs, U0 ∈ OH(M), (4.2)

then Ws = π(Us) is a horizontal Brownian motion on M, that is, a Markov process with 
the generator 1

2L. Here we used Notation 3.3 and identified the Rn-valued Brownian 
motion {Bs}s�0 with an Rn+m-valued process (Bs, 0).

4.2. Horizontal semimartingales

Let (Ω, (Fs)s�0, P ) be a filtered probability space that satisfies the usual conditions.

Definition 4.5. An Rn+m-valued Fs-adapted continuous semimartingale (Ws)s�0 is called 
horizontal if for all s � 0

P (Ws ∈ Rn × {0}) = 1.

The space of horizontal semimartingales with W0 = 0 will be denoted by SWH(Rn+m).
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Definition 4.6. An M-valued Fs-adapted continuous semimartingale {Ms}s�0 is called 
horizontal if for every vertical smooth one-form θ, and every s � 0 the Stratonovich 
stochastic line integral 

∫
M [0,s] θ = 0 almost surely. The space of horizontal semimartin-

gales such that M0 = x0 will be denoted by SWH(M).

Remark 4.7. We refer to [38, Section 2.4, Definition 2.4.1] for the definition of 
Stratonovich stochastic line integrals.

Then we have the following result, whose proof is essentially identical to the proof of 
Lemma 3.9 and thus omitted for conciseness.

Proposition 4.8. As before π is the bundle projection map OH(M) −→ M.

(1) Let {Ws}s�0 ∈ SWH(Rn+m) and let {Us}s�0 be the solution to the Stratonovich 
stochastic differential equation

dUs =
n∑

i=1
Ai(Us) ◦ dW i

s = AUs
◦ dWs, U0 ∈ OH(M),

then Ms := π(Us) is a horizontal semimartingale on M.
(2) Let {Ms}s�0 ∈ SWH(M). Then there exists a unique {Ws}s�0 ∈ SWH(Rn+m) such 

that if {Us}s�0 is the solution to the Stratonovich stochastic differential equation

dUs =
n∑

i=1
Ai(Us) ◦ dW i

s = AUs
◦ dWs, U0 ∈ OH(M),

then Ms = π(Us).

Here we used Notation 3.3, where we introduced how fundamental vector fields A and 
V on O(M) in Notation 3.3 act on vectors in Rn+m. Note that A acts on Rn × {0} in 
Rn+m, and so we can apply it to ωH

s .
Proposition 4.8 allows us to introduce the following notion.

Definition 4.9. Suppose {Ws}s�0 and {Ms}s�0 are as in Proposition 4.8. Then

(1) {Ms}s�0 is called the stochastic horizontal development of {Ws}s�0, and we denote 
φH(W ) := M .

(2) The path {Ws}s�0 is called the stochastic horizontal anti-development of {Ms}s�0, 
and we denote φ−1

H (M) := W .

As a consequence, one deduces that the horizontal Brownian motion constructed in 
Corollary 4.4 is a horizontal semimartingale.
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Definition 4.10. The horizontal Itô map (or horizontal stochastic development map) is 
the following adapted map defined μH-a.s.

φH :W0 (Rn) −→ Wx0 (M) ,

ωH �−→ W

By using Proposition 4.8 and arguing as in [34, p. 433], one can construct an adapted 
map φ−1

H : Wx0 (M) → W0 (Rn) defined μW -a.s. We will call φ−1
H the stochastic horizontal 

anti-development map.
We also refer to [16, Definition 2.5] for a discussion of the Itô map in the Riemannian 

setting and to the previous section for explicit constructions in our setting.

Remark 4.11. If one uses a Dirichlet form to construct the horizontal Brownian motion 
as in Section 4.1.1, then it does not straightforward to prove that one obtains a semi-
martingale. In particular, a standard approach such as the proof of [38, Theorem 3.2.1]
does not readily extend to our setting.

4.3. Quasi-invariance of the horizontal Wiener measure

In this section we prove quasi-invariance of the law of the horizontal Brownian motion 
with respect to variations generated by suitable tangent processes. Our argument follows 
relatively closely the one by B. Driver [17] and then E. Hsu in [34] (see also [14,15,25]). 
More precisely, we will describe two types of variation of the horizontal Brownian motion 
paths with respect to which the horizontal Wiener measure is quasi-invariant. The first 
one is largely inspired by Driver [19, Theorem 7.28]. It is explicit, see Equation (4.7) and 
readily yields the integration by parts formula in Section 4.3.5, but does not induce a 
flow. The second type of variation induces a flow and yields the sub-Riemannian analogue 
of [34, Theorem 4.1].

4.3.1. Framework
We will use the same framework and notation as before. In particular, we still consider 

an arbitrary connection D on M that satisfies the properties in Assumption 1. In addition 
we now introduce notation needed to establish quasi-invariance. We will mainly follow 
the presentation in [16,19,34].

We work in the probability space (W0 (Rn) , B, μH), where W0 (Rn) is the space of 
continuous functions ωH : [0, 1] → Rn such that ωH(0) = 0, B is the Borel σ-field on the 
path space W0 (Rn), and μH is the Wiener measure. The coordinate process (ωH

s )0�s�1
is therefore a Brownian motion in Rn. The usual completion of the natural filtration 
generated by 

{
ωH
s

}
0�s�1 will be denoted by Bs.

We use the subscripts or superscripts H, because, as before, Rn is identified with the 
subspace Rn × {0} ⊂ Rn+m. The Rn+m-valued process 

(
ωH
s , 0

)
will be referred to as 

a horizontal Brownian motion. The process {Wt}0�s�1 constructed using Corollary 4.4
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is the horizontal Brownian motion and the law μW of the horizontal Brownian motion 
on M will be referred to as the horizontal Wiener measure on M. Therefore, μW is a 
probability measure on the space Wx0 (M) of continuous paths w : [0, 1] → M with 
w(0) = x0.

Remark 4.12. If the horizontal Laplacian can be written in Hörmander’s form globally 
as in 4.1, then by [48, Corollary 5.4] the support of the horizontal Wiener measure μW

is Wx0 (M) itself.

4.3.2. Tangent processes to the horizontal Brownian motion
We now introduce the relevant class of tangent processes to the horizontal Brownian 

motion. To prove quasi-invariance, we consider the following class of tangent processes.

Definition 4.13. We define the horizontal Cameron-Martin space denoted by CMH(Rn+m)
as the space of absolutely continuous Rn-valued (deterministic) functions {h(s)}0�s�1
such that h(0) = 0 and

1∫
0

|h′(s)|2Rnds < ∞.

Definition 4.14. Suppose {v(s)}0�s�1 is a Bs-adapted Rn+m-valued continuous semi-
martingale such that

v(0) = 0 and E

⎛⎝ 1∫
0

|v(s)|2Rn+mds

⎞⎠ < ∞. (4.3)

The semimartingale {v(s)}0�s�1 will be called a tangent process to the horizontal Brow-
nian motion if the process

v(s) −
s∫

0

TUr
(A ◦ dωH

r , Av(r))

is a horizontal Cameron-Martin path, where T denotes the torsion form of the Bott 
connection (not D). The space of tangent processes to the horizontal Brownian motion 
will be denoted by TWH(M).

Remark 4.15. In Definition 4.14 we used the torsion T of the Bott connection. Observe 
that since T is a vertical tensor, a Bs-adapted Rn+m-valued continuous semimartingale 
{v(s)}0�s�1 satisfying (4.3) is in TWH(M) if and only if

(1) The horizontal part vH is in CMH(Rn+m);
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(2) The vertical part vV is given by

vV(s) =
s∫

0

TUr
(A ◦ dωH

r , AvH(r)).

As a consequence, for any h ∈ CMH(Rn+m),

τh(ωH)s = h(s) +
s∫

0

TUr
(A ◦ dωH

r , Ah(r)) (4.4)

is a tangent process to the horizontal Brownian motion.

Notation 4.16. If v ∈ TWH(M) is a tangent process, we denote

pv(ωH)s := v(s) −
s∫

0

TD
Ur

(A ◦ dωH
r , Av(r) + V v(r))

−
s∫

0

⎛⎝ r∫
0

ΩD
Uτ

(A ◦ dωH
τ , Av(τ) + V v(τ))

⎞⎠ ◦ dωH
r ,

where ΩD is the curvature form of the connection D.

This definition comes from Equation (3.3), where dωH is replaced by the Stratonovich 
differential ◦dωH. Since D is a horizontal metric connection, the stochastic integral ∫ s

0 ΩD
Uτ

(A ◦ dωH
τ , Av(τ) + V v(τ)) restricts to Rn as a skew-symmetric endomorphism 

of Rn. Also, from the proof of Theorem 3.15 we have

s∫
0

TD
Ur

(A ◦ dωH
r , Av(r) + V v(r))

=
s∫

0

TUr
(A ◦ dωH

r , Av(r)) −
s∫

0

JV v(r)(A ◦ dωH
r )Ur

,

where J = D − ∇. As a consequence, pv(ωH)s is actually a horizontal process, that is, 
it is Rn-valued.

We can rewrite pv(ωH)s by using Itô’s integral, and we obtain

pv(ωH)s = vH(s) + 1
2

s∫ (
Ric

D
H

)
Ur

(Av(r) + V v(r))dr

0
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+
s∫

0

JV v(r)(A ◦ dωH
r )Ur

−
s∫

0

⎛⎝ r∫
0

ΩD
Uτ

(A ◦ dωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r ,

where Ric
D
H is the horizontal Ricci curvature of the connection D. We can further simplify 

this expression as follows.

JV v(s)(A ◦ dωH
s )Us

=
n∑

i=1
JV v(s)(Ai)Us

◦ dωi
s =

JV v(s)(A
(
dωH

s

)
)Us

+ 1
2

n∑
i=1

AiJV v(s)(Ai)Us
ds

− 1
2

n∑
i=1

JT (Ai,AvH(s))(Ai)Us
ds (4.5)

As a result, we see that

pv(ωH)s = vH(s) + 1
2

n∑
i=1

s∫
0

AiJV v(r)(Ai)Ur
dr

− 1
2

n∑
i=1

s∫
0

JT (Ai,AvH(r))(Ai)Ur
dr + 1

2

s∫
0

(
Ric

D
H

)
Ur

(Av(r) + V v(r))dr

+
s∫

0

JV v(r)(A
(
dωH

r

)
)Ur

−
s∫

0

⎛⎝ r∫
0

ΩD
Uτ

(A ◦ dωH
τ , Av(τ) + V v(τ))

⎞⎠ dωH
r .

More concisely, one can thus write

pv(ωH)s =
s∫

0

qv(ωH)rdωH
r +

s∫
0

rv(ωH)rdr, (4.6)

where qv is a so(n)-valued adapted process and rv is an Rn-valued adapted process such 
that 

∫ s

0 |rv(u)|2Rndu < ∞ a.s. The process pv is therefore an adapted vector field on 
W0 (Rn) in the sense of [16, Definition 3.2].
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4.3.3. First type of variation
We are now ready to construct the first relevant variation of the horizontal Brownian 

motion paths. The idea is to use the formula for the deterministic variation given by 3.5
to infer a formula for a convenient stochastic variation.

Notation 4.17. For any h ∈ CMH(Rn+m) and any t ∈ R, we denote by ρht : W0 (Rn) →
W0 (Rn) a map which is defined μH-a.s. as follows

(ρht ωH)s =
s∫

0

e
tqτh(ωH)(ω

H)udωH
u + t

s∫
0

rτh(ωH)(ωH)udu. (4.7)

Remark 4.18. As in the deterministic case, observe that ρh is not the flow generated by 
pτh on W0 (Rn). This variation is similar to [19, Theorem 7.28]. Let us however observe 
that μH a.s., ρh0ωH = ωH and that from (4.6) one has

d

dt

∣∣
t=0(ρht ωH)s = pτh(ωH)(ωH)s.

We also note that for every t ∈ R, etqτh is an so(n)-valued process so that for every t ∈ R

the semimartingale 
{∫ s

0 e
tqτh(ωH)(ω

H)udωH
u

}
s∈[0,1]

is a horizontal Brownian motion with 

respect to μH.

One has then the following analogue of [19, Theorem 7.28] (see [16] for the details) 
which describes the differential of the horizontal stochastic development map and proves 
quasi-invariance of the horizontal Wiener measure for the variation described in (4.7).

Theorem 4.19 (Quasi-invariance I). Suppose h ∈ CMH(Rn+m).

(1) For every t ∈ R the law of the semimartingale 
{
(ρht ωH)s

}
0�s�1 (under μH) is 

equivalent to μH, and the corresponding Radon-Nikodym density is given by

d(ρht )∗μH
dμH

(ωH) = exp

⎛⎝t

1∫
0

〈
rτh(ωH)(ωH)s, etqτh(ωH)(ω

H)sdωH
s

〉

− t2

2

1∫
0

|rτh(ωH)(ωH)s|2Rnds

⎞⎠ .

(2) For every t ∈ R the law of the semimartingale 
{
φH(ρht ωH)s

}
0�s�1 (under μH) is 

equivalent to μW and the corresponding Radon-Nikodym density is given by

d(φHρht φ
−1
H )∗μW

dμW
(w) = exp

⎛⎝t

1∫ 〈
rτh(ωH)(ωH)s, etqτh(ωH)(ω

H)sdωH
s

〉

0
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− t2

2

1∫
0

|rτh(ωH)(ωH)s|2Rnds

⎞⎠ ,

where ωH = φ−1
H (w).

(3) There exists a version of φH((ρht ωH))s which is continuous in (s, t), differentiable in 
t, and such that

d

dt

∣∣
t=0φH((ρht ωH))s = Usτh(ωH) μH − a.s.

Proof. The first part follows from Girsanov’s theorem in the form of [17, Lemma 8.2]. 
The second part follows from Proposition 3.20 and is similar to [19, Theorem 7.28]. �
4.3.4. Second type of variation

We now turn to the discussion of the stochastic flow generated by pτh .

Notation 4.20. For a fixed h ∈ CMH(Rn+m) we denote by SMH(h) the space of contin-
uous and Bs-adapted Rn-valued semimartingales {zs}0�s�1 that can be written as

zs =
s∫

0

ardr +
s∫

0

σrdω
H
r , 0 � s � 1,

where a is an Rn-valued Bs-adapted process such that there exists a deterministic con-
stant C

|as|Rn � C(1 + |h′(s)|Rn), (4.8)

and where σ is a Bs-adapted process taking values in the space of isometries of Rn.

Observe that by Girsanov’s theorem in the form of [17, Lemma 8.2], the law of z ∈
SMH(h) is equivalent to the law μH of the horizontal Brownian motion. We are now 
in position to prove that pτh generates a flow on the horizontal path space for which 
the horizontal Wiener measure on Rn+m is quasi-invariant. The following statement is 
similar to [34, Theorem 3.1]. The proof of that theorem relied on the Picard iteration to 
find a solution in a space of Rn+m-valued continuous semimartingales equipped with a 
suitable norm. In our setting the proof is almost identical, so we omit it for conciseness.

Theorem 4.21. For any h ∈ CMH(Rn+m) there exists a unique family of semimartingales 
{νht , t ∈ R} such that

• νht ∈ SMH(h) for all t ∈ R and νh0ω
H = ωH, μH a.s.; hence the law of νht is 

equivalent to μH;
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• For μH-almost every ωH, the function t �−→ νht ω
H is a W0 (Rn)-valued continuous 

function;
• μH-almost surely, νht1 ◦ νht2(ωH) = νht1+t2(ω

H), for every (t1, t2) ∈ R ×R;
• There exists a continuous version of {pτhνh

t
(νht ), t ∈ R} such that μH-almost surely, 

{νht , t ∈ R} satisfies the equation

νht (ωH) = ωH +
t∫

0

pτh(νh
s (ωH))(νhs (ωH))ds. (4.9)

Remark 4.22. In the previous theorem, the word unique is understood in the sense of 
[34, Proposition 3.3], that is, in the space SMH(h).

We are now in position to prove quasi-invariance properties for the horizontal Wiener 
measure with respect to a suitable flow. The following statement is similar to Theorem 
4.1 in [34]. We recall that the horizontal stochastic development φH and its inverse φ−1

H
are defined in Definition 4.10.

Theorem 4.23 (Quasi-invariance II). Let h ∈ CMH(Rn+m). The flow ζht = φH◦νht ◦φ−1
H :

Wx0 (M) → Wx0 (M), t ∈ R, is defined μW -a.s. with the generator Uτhφ−1
H , and for 

every t ∈ R the distribution of ζht under μW is equivalent to μW . More precisely, there 
exists a family of measurable maps

ζht : Wx0 (M) → Wx0 (M) , t ∈ R,

with the following properties.

• For every fixed t ∈ R, the law μζh
t

of ζht is equivalent to the horizontal Wiener 
measure μW and the Radon-Nikodym derivative is given by

dμζh
t

dμX
(w) =

dμνh
t

dμH
(φ−1

H w), w ∈ Wx0 (M) .

• For μW -almost every w ∈ Wx0 (M), the function t �→ ζht w is a Wx0 (M)-valued 
continuous differentiable function;

• For μW -almost every w ∈ Wx0 (M), there is a continuous version of t �→
Utτ

h(φ−1
H ζht w) such that ζtvw satisfies the differential equation

dζht w

dt
= Utτ

h(φ−1
H ζht w);

• μW -almost surely,

ζht1 ◦ ζ
h
t2 = ζht1+t2 , for all (t1, t2) ∈ R×R.
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Proof. The result follows from Theorem 4.21. For details, we refer to the proof of [34, 
Theorem 4.1]. �
4.3.5. Towards the integration by parts formulas

It is well known that a quasi-invariance result yields an integration by parts formula 
on the path space of the underlying diffusion, see B. Driver [17] and then E. Hsu [34]
(see also [14,15,25]). Integration by parts formulas will be studied in more detail in 
the second part of the paper, so we only briefly comment on the immediate corollary of 
Theorem 4.19, which will be proved in another way (see Lemma 4.24) and then extended 
to cylinder functions. It is obtained from Theorem 4.19 by taking the Bott connection 
∇ as the connection D, and following the arguments of the proof in [19, Theorem 7.32].

Lemma 4.24. Let h ∈ CMH(Rn+m), then for f ∈ C∞(M),

E
(〈
df(W1), U1τh(ωH)

〉)
= E

⎛⎝f(W1)
1∫

0

〈
h′(s) + 1

2(RicH)Us
h(s), dωH

s

〉
Rn

⎞⎠ ,

where E is the expectation with respect to μH and RicH is the horizontal Ricci curvature 
of the Bott connection (viewed as an operator on Rn).

4.3.6. The case of a Riemannian submersion: examples
To finish this part of the paper, we discuss the case when the foliation on M comes 

from a totally geodesic submersion π : (M, g) → (B, j) as described in Example 2.1. This 
should allow the reader to relate our quasi-invariance result to the Riemannian result by 
B. Driver in [17].

In the submersion case, the notion of horizontal lift of curves plays an important role.

Definition 4.25. Let γ : [0, ∞) → B be a C1-curve. Let x ∈ M, such that π(x) = γ(0). 
Then, there exists a unique C1-horizontal curve γ : [0, ∞) → M such that γ(0) = x and 
π(γ(t)) = γ(t). The curve γ is called the horizontal lift of γ at x.

The notion of horizontal lift may be extended to Brownian motion paths on B by 
using stochastic calculus. The argument is similar to the case of the stochastic lift of the 
Brownian motion of a Riemannian manifold to the orthonormal frame bundle, see for 
instance [17, Theorem 3.2]).

The submersion has totally geodesic fibers, therefore π is harmonic and the projected 
process

WB
t = π(Wt)
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is, under μH, a Riemannian Brownian motion on B started at π(x0). The submersion 
π induces a map Wx0 (M) → Wπ(x0) (B) that we still denote by π. Let now h be a 
Cameron-Martin path in Rn and consider the flow ζht : Wx0 (M) → Wx0 (M), t ∈ R, 
which is defined μW -a.s. according to Theorem 4.23. By using the horizontal stochastic 
lift Wπ(x0) (B) → Wx (M), one can construct a flow ζ̃ht : Wπ(x0) (B) → Wπ(x0) (B), t ∈ R

which is unique μWB -a.s. as mentioned in Remark 4.22. Then we have the following 
commutative diagram

Wx0 (M) Wx0 (M)

Wπ(x0) (B) Wπ(x0) (B)

ζh
t

π π

ζ̃h
t

(4.10)

By Theorem 4.23, the law of WB is quasi-invariant under the flow ζ̃ht . Note that the 
connection D projects down to the Levi-Civita connection on B, therefore the flow ζ̃ht
provides a version of the flow considered by E. Hsu in [34, Theorem 4.1]. Thus we recover 
Driver’s quasi-invariance result [17] on the manifold B. Further details on this example 
will be given in Section 5.3.1, where the generator ζ̃ht will be computed explicitly.

It may be useful to illustrate the diagram (4.10) in a very simple situation. Recall 
that the Heisenberg group is the set

H2n+1 = {(x, y, z), x ∈ Rn, y ∈ Rn, z ∈ R}

endowed with the group law

(x1, y1, z1) � (x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + 〈x1, y2〉Rn − 〈x2, y1〉Rn).

The vector fields

Xi = ∂

∂xi
− yi

∂

∂z
, 1 � i � n,

Yi = ∂

∂yi
+ xi

∂

∂z
, 1 � i � n,

Z = ∂

∂z

form a basis for the space of left-invariant vector fields on H2n+1. We choose a left-
invariant Riemannian metric on H2n+1 in such a way that {X1, ..., Xn, Y1, ..., Yn, Z} are 
orthonormal with respect to this metric. Note that these vector fields satisfy the following 
commutation relations

[Xi, Yj ] = 2δijZ, [Xi, Z] = [Yi, Z] = 0, i = 1, ..., n.

Then, the projection map
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π : H2n+1 −→ R2n

(x, y, z) �−→ (x, y)

is a Riemannian submersion with totally geodesic fibers. In that example, the Bott 
connection is trivial: ∇Xi = ∇Yj = ∇Z = 0 and its torsion is given by

T (Xi, Yj) = −2δijZ, T (Xi, Z) = T (Yi, Z) = 0.

Let now W0
(
R2n) be the Wiener space of continuous functions [0, 1] → R2n starting 

at 0. We denote by (Bt, βt)0�t�1 the coordinate maps on W0
(
R2n) and by μH the Wiener 

measure on W0
(
R2n), so that (Bt, βt)0�t�1 is a 2n-dimensional Brownian motion under 

μH. By using the submersion π, the Brownian motion (Bt, βt)0�t�1 can be horizontally 
lifted to the horizontal Brownian motion on H2n+1 which is given explicitly by

Wt =

⎛⎝Bt, βt,

n∑
i=1

t∫
0

Bi
tdβ

i
t − βi

tdB
i
t

⎞⎠ .

Let h = (h1, h2) be a Cameron-Martin path in R2n and consider the Cameron-Martin 
flow ζ̃ht : W0

(
R2n) → W0

(
R2n), t ∈ R, explicitly given by

ζ̃ht (B, β) = (B, β) + th.

One has then a commutative diagram

W0
(
H2n+1) W0

(
H2n+1)

W0
(
R2n) W0

(
R2n)

ζh
t

π π

ζ̃h
t

(4.11)

where ζht is the flow on W0
(
H2n+1) defined μH-a. s. by

ζht (W ) = (B + th1, β + th2,

n∑
i=1

·∫
0

(Bi
u + thi

1(u))d(βi
u + thi

2(u)) − (βi
u + thi

2(u))d(Bi
u + thi

1(u))

⎞⎠ .

One can compute the generator of this flow as

d

dt

∣∣
t=0ζ

h
t (W )

=

⎛⎝h1, h2,

n∑
i=1

·∫
hi

1(u)dβi
u − hi

2(u)dBi
u +

n∑
i=1

·∫
Bi

udh
i
2(u) − βi

udh
i
1(u)

⎞⎠

0 0
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=

⎛⎝h1, h2,

n∑
i=1

Bihi
2 − βihi

1 + 2
n∑

i=1

·∫
0

hi
1(u)dβi

u − hi
2(u)dBi

u

⎞⎠
=

n∑
i=1

hi
1Xi(W ) +

n∑
i=1

hi
2Yi(W ) + 2

⎛⎝ n∑
i=1

·∫
0

hi
1(u)dβi

u − hi
2(u)dBi

u

⎞⎠Z(W )

As expected, we can interpret this generator in terms of the Bott connection as a 
straightforward computation shows that

s∫
0

T

(
n∑

i=1
Xi ◦ dBi

u +
n∑

i=1
Yi ◦ dβi

u,

n∑
i=1

hi
1(u)Xi +

n∑
i=1

hi
2(u)Yi

)

=

⎛⎝2
n∑

i=1

s∫
0

hi
1(u)dβi

u − 2
n∑

i=1

s∫
0

hi
2(u)dBi

u

⎞⎠Z(W )

Therefore, we showed that

d

dt

∣∣
t=0ζ

h
t (W )

=
∑
i=1

hi
1Xi(W ) +

n∑
i=1

hi
2Yi(W )

+
·∫

0

T

(
n∑

i=1
Xi ◦ dBi

u +
n∑

i=1
Yi ◦ dβi

u,
n∑

i=1
hi

1(u)Xi +
n∑

i=1
hi

2(u)Yi

)

This is exactly Equation (4.4) written in the parallel frame {Xi, Yj , Z}ni=1.

5. Integration by parts formulas

The goal of this part of the paper is to establish several types of integration by parts 
formulas for the horizontal Brownian motion. This part relies on very different techniques 
than the ones used in the first part and therefore we need to introduce more notation. 
Though we will consider the horizontal Brownian motion constructed from the frame 
bundle, in this part of the paper we will rely on the stochastic parallel transport rather 
than the stochastic lift to the frame bundle (although these are of course equivalent). 
Also, instead of working with general connections denoted by D in Section 4, we now 
consider connections satisfying Assumption 1 and with the additional property that the 
torsion satisfies B. Driver’s anti-symmetry condition. Throughout this part, we will work 
with the following probability space.

Notation 5.1. We will work in the probability space (Ω, B, μH), where Ω = W0 (Rn)
is the space of continuous functions ωH : [0, 1] → Rn such that ωH(0) = 0, B is the 
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Borel σ-field on W0 (Rn), and μH is the Wiener measure on Ω. The coordinate process {
ωH
s

}
0�s�1 is therefore a Brownian motion in Rn. The usual completion of the natural 

filtration generated by 
{
ωH
s

}
0�s�1 will be denoted by Fs.

Recall that for x ∈ M the horizontal Brownian motion on M started at x is defined as 
Ws = π(Us), where Us is a solution to the Stratonovich stochastic differential equation 
(4.2) with U0 = u0 ∈ OH(M) such that π(u0) = x.

5.1. Horizontal Weitzenböck type formulas

We start by introducing a family of connections that will be of interest to us later, 
and we review some known results on the Weitzenböck formulas proved previously in [7].

5.1.1. Generalized Levi-Civita connections and adjoint connections
In Section 5.1.2 we aim at studying Weitzenböck-type identities for the horizontal 

Laplacian, and for this we need to introduce a new class of connections. The main reason 
why we use these connections is that we can not make use of the Bott connection since 
the adjoint connection to the Bott connection is not metric. We refer to [7,22,30,31] and 
especially the books [23,24] for a discussion on Weitzenböck-type identities and adjoint 
connections. Instead we make use of the family of connections first introduced in [2] and 
only keep the Bott connection as a reference connection.

This family of connections is constructed from a natural variation of the metric that we 
recall now. The Riemannian metric g can be split using horizontal and vertical subbundles 
described in Section 2.2

g = gH ⊕ gV . (5.1)

Using the splitting of the Riemannian metric g in (5.1) we can introduce the following 
one-parameter family of Riemannian metrics

gε = gH ⊕ 1
ε
gV , ε > 0.

One can check that for every ε > 0, ∇gε = 0 where ∇ is the Bott connection. The 
metric gε then induces a metric on the cotangent bundle which we still denote by gε, 
and therefore

‖η‖2
ε = ‖η‖2

H + ε‖η‖2
V , for every η ∈ T ∗

xM.

For each Z ∈ Γ∞(V) there is a unique skew-symmetric endomorphism JZ : Hx → Hx, 
x ∈ M such that for all horizontal vector fields X, Y ∈ Hx

gH(JZ(X), Y )x = gV(Z, T (X,Y ))x, (5.2)
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where T is the torsion tensor of ∇. We then extend JZ to be 0 on Vx. Also, to ensure 
(5.2) holds also for Z ∈ Γ∞(H), taking into account (2.1) we set JZ ≡ 0.

Following [2] we introduce the following family of connections

∇ε
XY = ∇XY − T (X,Y ) + 1

ε
JY X, X, Y ∈ Γ∞(M).

It is easy to check that ∇εgε = 0 and the torsion of ∇ε is given by

T ε(X,Y ) = −T (X,Y ) + 1
ε
JY X − 1

ε
JXY, X, Y ∈ Γ∞(M).

The adjoint connection to ∇ε as described by B. Driver in [17], see also [23, Section 1.3]
for a discussion about adjoint connections, is then given by

∇̂ε
XY := ∇ε

XY − T ε(X,Y ) = ∇XY + 1
ε
JXY, (5.3)

thus ∇̂ε is also a metric connection. Moreover, it preserves the horizontal and vertical 
bundles.

Remark 5.2. Note that the connection ∇̂ε therefore satisfies Assumption 1 for every 
ε > 0.

For later use, we record that the torsion of ∇̂ε is

T̂ ε(X,Y ) = −T ε(X,Y ) = T (X,Y ) − 1
ε
JY X + 1

ε
JXY. (5.4)

The Riemannian curvature tensor of ∇̂ε can be computed explicitly in terms of the 
Riemannian curvature tensor R of the Bott connection ∇ and it is given by the following 
lemma.

Lemma 5.3. For X, Y, Z ∈ Γ∞(M)

R̂ε(X,Y )Z =R(X,Y )Z + 1
ε
JT (X,Y )Z + 1

ε2 (JXJY − JY JX)Z+

1
ε
(∇XJ)Y Z − 1

ε
(∇Y J)XZ,

where R is the curvature tensor of the Bott connection.

Proof.
R̂ε(X,Y )Z = ∇̂ε

X∇̂ε
Y Z − ∇̂ε

Y ∇̂ε
XZ − ∇̂ε

[X,Y ]Z

= (∇X∇Y + 1(∇XJ)Y + 1
JX∇Y + 1

JY ∇X + 1
J∇XY + 1

JXJY )Z

ε ε ε ε ε2
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− (∇Y ∇X + 1
ε
(∇Y J)X + 1

ε
JY ∇X + 1

ε
J∇Y X + 1

ε
JX∇Y + 1

ε2 JY JX)Z

−∇[X,Y ]Z − 1
ε
J[X,Y ]Z

= R(X,Y )Z + 1
ε2 (JXJY − JY JX)Z+

1
ε
(∇XJ)Y Z − 1

ε
(∇Y J)XZ + 1

ε
JT (X,Y )Z. �

We define the horizontal Ricci curvature RicH for the Bott connection as the fiberwise 
symmetric linear map on one-forms such that for all smooth functions f, g on M

〈RicH(df), dg〉 = Ric (∇Hf,∇Hg) = RicH(∇f,∇g),

where Ric is the Ricci curvature of the Bott connection ∇ and RicH is its horizontal 
Ricci curvature (horizontal trace of the full curvature tensor R of the Bott connection). 
The fact that RicH is symmetric follows from [33, Lemma 4.2 ].

5.1.2. Weitzenböck formulas
A key ingredient in studying the horizontal Brownian motion is the Weitzenböck 

formula that has been proven in [2,7]. We recall here this formula. If Z1, . . . , Zm is a 
local vertical frame, then the (1, 1) tensor

J2 :=
m∑
�=1

JZ�
JZ�

does not depend on the choice of the frame and may be defined globally.

Example 5.1 (Example 2.2 revisited). If M is a K-contact manifold equipped with the 
Reeb foliation, then, by taking Z to be the Reeb vector field, one gets J2 = J2

Z = −IdH.

The horizontal divergence of the torsion T is the (1, 1) tensor which in a local horizontal 
frame X1, . . . , Xn is defined by

δHT (X) := −
n∑

j=1
(∇Xj

T )(Xj , X). (5.5)

By using the duality between the tangent and cotangent bundles with respect to the 
metric g, we can identify the (1, 1) tensors J2 and δHT with linear maps on the cotangent 
bundle T ∗M.

Namely, let � : T ∗M → TM be the standard musical (raising an index) isomorphism 
which is defined as the unique vector ω� such that for any x ∈ M

g
(
ω�, X

)
= ω (X) for all X ∈ TxM,
x
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while in local coordinates the isomorphism � can be written as follows

ω =
n+m∑
i=1

ωidx
i �−→ ω� =

n+m∑
j=1

ωj∂j =
n+m∑
j=1

n+m∑
i=1

gijωi∂j .

The inverse of this isomorphism is the (lowering an index) isomorphism � : TM → T ∗M

defined by

X
 = g (X, ·)x , X ∈ TxM

and in local coordinates

X =
n+m∑
i=1

Xi∂i �−→ X
 =
n+m∑
i=1

Xidx
i =

n+m∑
i=1

n+m∑
j=1

gijX
jdxi.

If η is a one-form, we define the horizontal gradient in a local adapted frame of η as 
the (0, 2) tensor

∇Hη =
n∑

i=1
∇Xi

η ⊗ θi,

where θi, i = 1, . . . , n is the dual to Xi.
Finally, for ε > 0, we consider the following operator which is defined on one-forms 

by

�ε :=
n∑

i=1
(∇Xi

− Tε
Xi

)2 − (∇∇Xi
Xi

− Tε
∇Xi

Xi
) − 1

ε
J2 + 1

ε
δHT −RicH, (5.6)

where Tε is the (1, 1) tensor defined by

Tε
XY = −T (X,Y ) + 1

ε
JY X, X, Y ∈ Γ∞(M).

Similarly as before, we will use the notation

Tε
Hη :=

n∑
i=1

Tε
Xi

η ⊗ θi.

The expression in (5.6) does not depend on the choice of the local horizontal frame and 
thus �ε may be globally defined. Formally, we have

�ε = −(∇H − Tε
H)∗(∇H − Tε

H) − 1
ε
J2 + 1

ε
δHT −RicH, (5.7)
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where the adjoint is understood with respect to the L2 (M, gε, μ) inner product on sec-
tions, i.e. 

∫
M〈·, ·〉εdμ (see [1, Lemma 5.3] for more detail). The main result in [7] is the 

following. Here the Laplacian L is defined by Equation (4.1) in Section 4.1.1

Theorem 5.4 (Lemma 3.3, Theorem 3.1 in [7]). Let f ∈ C∞(M), x ∈ M and ε > 0, then

dLf(x) = �εdf(x), (5.8)

where L is defined by Equation (4.1).

Remark 5.5. Using [7, Lemma 3.4], we see that for ε1, ε2 > 0, the operator �ε1 − �ε2

vanishes on exact one-forms. It is therefore no surprise that the left hand side of (5.8)
does not depend of ε.

To conclude this section we remark, and this is not a coincidence, that the potential 
term in the Weitzenböck identity can be identified with the horizontal Ricci curvature 
of the adjoint connection ∇̂ε.

Lemma 5.6. The horizontal Ricci curvature of the adjoint connection ∇̂ε is given by

R̂ic
ε

H = RicH − 1
ε
δ∗HT + 1

ε
J2,

where δ∗HT denotes the adjoint of δHT with respect to the metric g.

Proof. Let X, Y ∈ Γ∞(TM) and X1, · · · , Xn be a local horizontal orthonormal frame. 
By the definition of the horizontal Ricci curvature and Lemma 5.3 we have

R̂ic
ε

H(X,Y )

=
n∑

i=1
gH(R̂ε(Xi, X)Y,Xi)

=
n∑

i=1
gH(R(Xi, X)Y,Xi) +

n∑
i=1

gH

(
1
ε
JT (Xi,X)Y,Xi

)

+
n∑

i=1
gH

(
1
ε
(∇Xi

J)XY − 1
ε
(∇XJ)Xi

Y,Xi

)
.

For the first term, we have

n∑
i=1

gH(R(Xi, X)Y,Xi) = RicH(X,Y ).

For the second term, we easily see that



JID:YJFAN AID:8263 /FLA [m1L; v1.260; Prn:11/06/2019; 15:36] P.44 (1-61)
44 F. Baudoin et al. / Journal of Functional Analysis ••• (••••) •••–•••
n∑
i=1

gH
(
JT (Xi,X)Y,Xi

)
= −

n∑
i=1

gV (T (X,Xi), T (Y,Xi))

= gH(J2X,Y ).

For the third term, we first observe that gH((∇XJ)Xi
Y, Xi) = 0. Then, we have

n∑
i=1

gH ((∇Xi
J)XY,Xi) = −

n∑
i=1

gH ((∇Xi
J)XXi, Y )

= −
n∑

i=1
gV ((∇Xi

T )(Xi, Y ), X)

= gV (δHT (Y ), X) . �
5.2. Integration by parts formula on the horizontal path space

We fix ε > 0 throughout the section. Our goal in this section is to prove integration by 
parts formulas on the path space of the horizontal Brownian motion. Some of the integra-
tion by parts formulas for the damped Malliavin derivative have been already announced 
in a less general and slightly different setting in [4]. The integration by part formulas for 
the intrinsic Malliavin derivative are new. We point out a significant difference of our 
techniques from what have been used in [1,2,4]. Namely, we shall mostly make use of the 
adjoint connection ∇̂ε instead of the Bott connection. Below we summarize important 
properties of the connection ∇̂ε which will be used extensively in the sequel.

Remark 5.7 (Properties of the adjoint connection). Let ∇̂ε be the adjoint connection 
defined by Equation 5.3. Then it satisfies the following properties.

• The adjoint connection is metric, that is, ∇̂εgε = 0;
• The adjoint connection is horizontal, that is, if X ∈ Γ∞(H) and Y ∈ Γ∞(M) then 

∇̂ε
Y X ∈ Γ∞(H);

• The torsion tensor T̂ ε of ∇̂ε is skew-symmetric, that is, it satisfies B. Driver’s total 
skew-symmetry condition ([17, p. 272]) as follows. For X, Y, Z ∈ Γ∞(M)

〈T̂ ε(X,Y ), Z〉ε = −〈T̂ ε(X,Z), Y 〉ε.

The latter can be seen from Equation (5.4)

T̂ ε(X,Y ) = T (X,Y ) − 1
ε
JY X + 1

ε
JXY

and the definition of J .
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Next recall that a stochastic parallel transport on forms can be defined following [38, 
p. 50].

Notation 5.8. Let ∇̃ be a general connection on M, and {Ms}0�s�1 be a semimartingale 
on M. We denote by

/̃/0,s : TM0M → TMs
M

the stochastic parallel transport of vector fields along the paths of {Ms}0�s�1. Then by 
duality we can define the stochastic parallel transport on one-forms as follows. We have

/̃/0,s : T ∗
Ms

M → T ∗
M0

M

such that for α ∈ T ∗
Ms

M

〈̃//0,sα, v〉 = 〈α,/̃/0,sv〉, v ∈ TM0M. (5.9)

In particular, the stochastic parallel transport for the adjoint connection ∇̂ε = ∇ + 1
εJ

along the paths of the horizontal Brownian motion {Ws}0�s�1 will be denoted by Θ̂ε
s. 

Since the adjoint connection ∇̂ε is horizontal, the map Θ̂ε
s : TxM → TWs

M is an isometry 
that preserves the horizontal bundle, that is, if u ∈ Hx, then Θ̂ε

su ∈ HWt
. We see then 

that the anti-development of {Ws}0�s�1 defined as

Bs :=
s∫

0

(Θ̂ε
r)−1 ◦ dWr,

is a Brownian motion in the horizontal space Hx.

Remark 5.9. Observe that on one-forms the process Θ̂ε
s : T ∗

Ws
M → T ∗

xM is a solution to 
the following covariant Stratonovich stochastic differential equation

d[Θ̂ε
sα(Ws)] = Θ̂ε

s∇̂ε
◦dWs

α(Ws),

where α is any smooth one-form. Since ∇̂ε
◦dWs

= ∇◦dWs
+ 1

εJ◦dWs
= ∇◦dWs

, we deduce 

that Θ̂ε is actually independent of ε and is therefore also the stochastic parallel transport 
for the Bott connection. As a consequence, the Brownian motion {Bs}0�s�1 and its 
filtration are also independent of the particular choice of ε.

We define a damped parallel transport τεs : T ∗
Ws

M → T ∗
xM by the formula

τ εs = Mε
sΘε

s, (5.10)
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where the process Θε
s : T ∗

Ws
M → T ∗

xM is the stochastic parallel transport of one-forms 
with respect to the connection ∇ε = ∇ − Tε along the paths of {Ws}0�s�1. The multi-
plicative functional Mε

s : T ∗
xM → T ∗

xM, s � 0, is defined as the solution to the following 
ordinary differential equation

dMε
s

ds
= −1

2M
ε
sΘε

s

(
1
ε
J2 − 1

ε
δHT + RicH

)
(Θε

s)−1, (5.11)

Mε
0 = Id.

Observe that the process τ εs : T ∗
Ws

M → T ∗
xM is a solution of the following covariant 

Stratonovich stochastic differential equation

d[τ εsα(Ws)] (5.12)

= τ εs

(
∇◦dWs

− Tε
◦dWt

− 1
2

(
1
ε
J2 − 1

ε
δHT + RicH

)
ds

)
α(Ws),

τ0 = Id,

where α is any smooth one-form.
Also observe that Mε

s is invertible and that its inverse is the solution of the following 
ordinary differential equation

d(Mε
s)−1

ds
= 1

2Θε
s

(
1
ε
J2 − 1

ε
δHT + RicH

)
(Θε

s)−1(Mε
s)−1. (5.13)

In particular, it implies that τ εs is invertible.

5.2.1. Malliavin and directional derivatives
We recall that the horizontal Wiener measure on Wx0 (M) is defined as the distribution 

of the horizontal Brownian motion. The coordinate process on Wx0 (M) as before is 
denoted by {ws}0�s�1.

Definition 5.10. A function F : Wx0 (M) → R is called a Ck-cylinder function if there 
exists a partition

π := {0 = s0 < s1 < s2 < · · · < sn � 1}

of the interval [0, 1] and f ∈ Ck(Mn) such that

F (w) = f (ws1 , ..., wsn) for all w ∈ Wx0 (M) . (5.14)

The function F is called a smooth cylinder function on Wx0 (M), if there exists a partition 
π and f ∈ C∞(Mn) such that (5.14) holds.
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We denote by FCk(Wx0(M)) the space of Ck-cylinder functions, and by FC∞(Wx0(M) )
the space of C∞-cylinder functions.

Remark 5.11. Note that the representation (5.14) of a cylinder function is not unique. 
However, let F ∈ FC∞ (Wx0 (M)) and n � 0 be the minimal n such that there exists a 
partition

π := {0 = s0 < s1 < s2 < · · · < sn � 1}

of the interval [0, 1] and f ∈ Ck(Mn) such that

F (w) = f (ws1 , ..., wsn) for all w ∈ Wx0 (M) . (5.15)

In that case, if

π̃ = {0 = s̃0 < s̃1 < s̃2 < · · · < s̃n � 1}

is another partition of the interval [0, 1] and f̃ ∈ Ck(Mn) is such that

F (w) = f̃ (ws̃1 , ..., ws̃n) for all w ∈ Wx(M),

then π = π̃ and f = f̃ . Indeed, since

f (ws1 , ..., wsn) = f̃ (ws̃1 , ..., ws̃n)

we first deduce that s1 = s̃1. Otherwise d1f = 0 or d1f̃ = 0, where d1 denotes the differ-
ential with respect to the first component. This contradicts the fact that n is minimal. 
Similarly, s2 = s̃2 and more generally sk = s̃k. The representation (5.11) will be referred 
to as the minimal representation of F .

We now turn to the definition of directional derivative on the horizontal path space.

Definition 5.12. Let F = f (ws1 , ..., wsn) ∈ FC∞ (Wx(M)). For an F-adapted and 
TxM-valued semimartingale (v(s))0�s�1 such that v(0) = 0, we define the directional 
derivative

DvF =
n∑

i=1

〈
dif(Ws1 , · · · ,Wsn), Θ̂ε

siv(si)
〉

Definition 5.13. For F = f (ws1 , ..., wsn) ∈ FC∞ (Wx(M))) we define the damped Malli-
avin derivative by

D̃ε
sF :=

n∑
i=1

1[0,si](s)(τ
ε
s )−1τ εsidif(Ws1 , · · · ,Wsn), 0 � s � 1.
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Observe that from this definition D̃ε
sF ∈ T ∗

Ws
M.

Remark 5.14. Note that the directional derivative D is independent of ε, but the damped 
Malliavin derivative depends on ε. In addition, both the directional derivatives and 
damped Malliavin derivatives are independent of the representation of F . Indeed, let 
F = f (ws1 , ..., wsn) be the minimal representation of F . If f̃ (ws̃1 , ..., ws̃N ) is another 
representation of F , then for every 1 � j � N , we have either that there exists i such 
that si = s̃j in which case dif = dj f̃ , or for all i, si �= s̃j in which case dj f̃ = 0.

Before we can formulate the main result, we need to define an analog of the Cameron-
Martin subspace.

Definition 5.15. An Fs-adapted absolutely continuous Hx-valued process {γ(s)}0�s�1

such that γ(0) = 0 and Ex

(∫ 1
0 ‖γ′(s)‖2

Hds
)
< ∞ will be called a horizontal Cameron-

Martin process.

Definition 5.16. Suppose {v(s)}0�s�1 is an Fs-adapted TxM-valued continuous semi-
martingale such that v(0) = 0 and Ex

(∫ 1
0 ‖v(s)‖2ds

)
< ∞. We call {v(s)}0�s�1 a 

tangent process if the process

v(s) −
s∫

0

(Θ̂ε
r)−1T (Θ̂sr

ε ◦ dBr, Θ̂ε
rv(r))

is a horizontal Cameron-Martin process.

Remark 5.17. By Remark 5.9 the stochastic parallel transport Θ̂ε
s is independent of ε, 

therefore the notion of a tangent process is itself independent of ε as well.

Remark 5.18. As the torsion T is a vertical tensor, then an Fs-adapted TxM-valued 
continuous semimartingale {v(s)}0�s�1 such that

Ex

⎛⎝ 1∫
0

‖v(s)‖2ds

⎞⎠ < ∞, v(0) = 0

is in TWH(M) if and only if

(1) The horizontal part vH is a horizontal Cameron-Martin process;
(2) The vertical part vV is given by

vV(s) =
s∫

0

(Θ̂ε
r)−1T (Θ̂ε

r ◦ dBr, Θ̂ε
rvH(r)).
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The main results of this section are the following two theorems.

Theorem 5.19 (Integration by parts for the damped Malliavin derivative). Suppose F ∈
FC∞ (Wx(M)) and γ is a tangent process, then

Ex

⎛⎝ 1∫
0

〈D̃ε
sF, Θ̂ε

sγ
′(s)〉ds

⎞⎠ = Ex

⎛⎝F

1∫
0

〈γ′(s), dBs〉H

⎞⎠ . (5.16)

Theorem 5.20 (Integration by parts for the directional derivatives). Suppose F ∈
FC∞ (Wx(M)) and v is a tangent process, then

Ex (DvF ) = Ex

⎛⎝F

1∫
0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBt

〉
H

⎞⎠ .

Even though these two integration by parts formulas seem similar, they are quite dif-
ferent in nature. The damped derivative is used to derive gradient bounds and functional 
inequalities on the path space (e.g. [2,4]). The directional derivative, however, is more 
related to quasi-invariance properties such as in Section 4.3, and the expression

1∫
0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBs

〉
H

can be viewed as a horizontal divergence on the path space.
The remainder of the section is devoted to proving Theorem 5.19 and Theorem 5.20. 

We adapt the techniques from the Markovian stochastic calculus developed by Fang-
Malliavin [27] and E. Hsu [35] in the Riemannian case to our setting.

5.2.2. Gradient formula
In this preliminary section we recall the gradient formula for the semigroup Ps. In the 

case the Yang-Mills condition is satisfied, that is, the horizontal divergence δHT = 0, 
the operator �ε is essentially self-adjoint on L2 (M, gε, μ) equipped with inner product 
on sections, i.e. 

∫
M〈·, ·〉εdμ, and the gradient representation was first proved in [2].

Lemma 5.21 (Theorem 4.6 and Corollary 4.7 in [2], Theorem 2.7 in [32]). For f ∈
C∞(M), the process

Ns = τ εs (dP1−sf)(Ws), 0 � s � 1, (5.17)

is a martingale, where dP1−sf denotes the exterior derivative of the function P1−sf . As 
a consequence, for every 0 � s � 1,

dPsf(x) = Ex(τ εs df(Ws)). (5.18)
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Proof. From Itô’s formula and the definition of τε, we have

dNs =

τ εs

(
∇◦dWs

− Tε
◦dWs

− 1
2

(
1
ε
J2 − 1

ε
δHT + RicH

)
ds

)
(dP1−sf)(Ws)

+ τ εs
d

ds
(dP1−sf)(Ws)ds.

We now see that

d

ds
(dP1−sf) = −1

2dP1−sLf = −1
2dLP1−sf = −1

2�εdP1−sf,

where we used Theorem 5.4. Observe that the bounded variation part of

τ εs

(
∇◦dWs

− Tε
◦dWs

− 1
2

(
1
ε
J2 − 1

ε
δHT + RicH

)
ds

)
(dP1−sf)(Ws)

is given by 1
2τ

ε
s�εdP1−sf(Ws)ds which cancels out with the expression

τ εs
d

ds
(dP1−sf)(Ws)ds

in the first equation. The martingale property follows from a bound similar to [2, Lemma 
4.3] or [30,31, Theorem 2.7]. �
5.2.3. Integration by parts formula for the damped Malliavin derivative

We prove Theorem 5.19 in this section. Some of the key arguments may be found in 
[2,4], however since our framework is more general here (for example, we do not assume 
the Yang-Mills condition that the horizontal divergence δHT = 0) and we now use the 
adjoint connection ∇̂ε instead of the Bott connection, for the sake of self-containment, 
we give a complete proof.

Lemma 5.22. For f ∈ C∞(M), and γ horizontal Cameron-Martin process

Ex

⎛⎝f(W1)
1∫

0

〈γ′(s), dBs〉H

⎞⎠ =

Ex

⎛⎝〈
τ ε1df(W1),

1∫
0

(τ ε,∗s )−1Θ̂ε
sγ

′(s)ds
〉⎞⎠ .

Proof. Consider again the martingale process Ns defined by (5.17). We have then for 
f ∈ C∞(M)
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Ex

⎛⎝f(Ws)
s∫

0

〈γ′(r), dBr〉H

⎞⎠ = Ex

⎛⎝f(Ws)
s∫

0

〈Θ̂ε
rγ

′(r), Θ̂ε
rdBr〉H

⎞⎠
= Ex

⎛⎝(f(Ws) − Ex (f(Ws)))
s∫

0

〈Θ̂ε
rγ

′(r), Θ̂ε
rdBr〉H

⎞⎠
= Ex

⎛⎝ s∫
0

〈dPs−rf(Wr), Θ̂ε
rdBr〉

s∫
0

〈Θ̂ε
rγ

′(r), Θ̂ε
rdBr〉H

⎞⎠
= Ex

⎛⎝ s∫
0

〈dPs−rf(Wr), Θ̂ε
rγ

′(r)〉dr

⎞⎠
= Ex

⎛⎝ s∫
0

〈τ εr dPs−rf(Wr), (τ ε,∗r )−1Θ̂ε
rγ

′(r)〉dr

⎞⎠
= Ex

⎛⎝ s∫
0

〈Nr, (τε,∗r )−1Θ̂ε
rγ

′(r)〉dr

⎞⎠
= Ex

⎛⎝〈
Ns,

s∫
0

(τ ε,∗r )−1Θ̂ε
rγ

′(r)dr
〉⎞⎠ ,

where we integrated by parts in the last equality. �
Remark 5.23. A similar proof as above actually yields that for f ∈ C∞(M), γ horizontal 
Cameron-Martin process and 0 � s � 1,

Ex

⎛⎝f(W1)
1∫

s

〈γ′(r), dBr〉H | Fs

⎞⎠ =

Ex

⎛⎝〈
τε1df(W1),

1∫
s

(τ ε,∗r )−1Θ̂ε
rγ

′(r)dr
〉

| Fs

⎞⎠ .

Lemma 5.22 shows that integration by parts formula (5.16) holds for cylinder functions 
of the type F = f(Ws). We now turn to the proof of Theorem 5.19 by using induction 
on n in a representation of a cylinder function F . To run the induction argument we 
need the following fact.

Proposition 5.24. Let F = f(Ws1 , · · · , Wsn) ∈ FC∞ (Wx(M)). We have

dEx(F ) = Ex

(
n∑

τ εsidif(Ws1 , · · · ,Wsn)
)
.

i=1
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Proof. We will proceed by induction on n. Consider a cylinder function F =
f(Ws1 , · · · , Wsn). For n = 1 the statement follows from Lemma 5.21, which implies 
that

dEx(f(Ws1)) = dPs1f(x) = Ex(τ εs1df(Ws1)).

Now we assume that the claim holds for any cylinder function of the form F =
f(Ws1 , · · · , Wsk) for any k � n − 1. By the Markov property we have

Ex(F ) = Ex(E(F | Fs1)) = Ex(g(Ws1)),

where g(y) = Ey(f(y, Ws2−s1 , · · · , Wsn−s1)). Therefore

dEx(F ) = E(τ εs1dg(Ws1)).

By using the induction hypothesis, we obtain

dg(y) = Ey(d1f(y,Ws2−s1 , · · · ,Wsn−s1))+

Ey

(
n∑

i=2
τ εsi−s1dif(y,Ws2−s1 , · · · ,Wtn−t1)

)

= Ey

(
n∑

i=1
τ εsi−s1dif(y,Ws2−s1 , · · · ,Wsn−s1)

)
.

By the multiplicative property of τε and the Markov property of W we have

EWs1

(
τ εsi−s1dif(y,Ws2−s1 , · · · ,Wsn−s1)

)
=

(τεs1)
−1E

(
τ εsidif(Ws1 , · · · ,Wsn) | Fs1

)
.

Therefore we conclude

dEx(F ) = Ex

(
n∑

i=1
τ εsidif(Ws1 , · · · ,Wsn)

)
. �

Remark 5.25. As expected, the expression

Ex

(
n∑

i=1
τ εsidif(Ws1 , · · · ,Wsn)

)

is independent of the choice of the representation of the cylinder function F , as follows 
from Remark 5.14.
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Proof of Theorem 5.19. We use induction on n in a representation of the cylinder func-
tion F . More precisely, we would like to show that for any F = f(Ws1 , · · · , Wsn) ∈
FC∞ (Wx(M)) and s � s1 we have

Ex

⎛⎝F

sn∫
s

〈γ′(r), dBr〉H

∣∣∣∣∣∣Fs

⎞⎠ = (5.19)

Ex

⎛⎝ n∑
i=1

〈dif(Ws1 , · · · ,Wsn), τ ε,∗si

si∫
s

(τ ε,∗r )−1γ′(r)dr〉 | Fs

⎞⎠ .

The case n = 1 is Lemma 5.22 and Remark 5.23. Assume that (5.19) holds for 
any cylinder function F represented by a partition of size n − 1 for n � 2. Let 
F = f(Ws1 , · · · , Wsn) ∈ FC∞ (Wx(M)). We have for s � s1,

Ex

⎛⎝F

1∫
s

〈γ′(r), dBr〉H | Fs

⎞⎠
= Ex

⎛⎝F

sn∫
s

〈γ′(r), dBr〉H | Fs

⎞⎠
= Ex

⎛⎝F

s1∫
s

〈γ′(r), dBr〉H | Fs

⎞⎠ + Ex

⎛⎝F

sn∫
s1

〈γ′(r), dBr〉H | Fs

⎞⎠
= Ex

⎛⎝Ex(F | Fs1)
s1∫
s

〈γ′(r), dBr〉H | Fs

⎞⎠+

Ex

⎛⎝Ex

⎛⎝F

sn∫
s1

〈γ′(r), dBr〉H|Fs1

⎞⎠ | Fs

⎞⎠ .

By the Markov property we have

Ex(F | Fs1) = g(Ws1),

where g(y) = Ey(f(y, Ws2−s1 , · · · , Wsn−s1)). Thus by Lemma 5.22 and Remark 5.23

Ex

⎛⎝ Ex(F | Fs1)
s1∫
s

〈γ′(r), dBr〉H | Fs

⎞⎠ =

Ex

⎛⎝g(Ws1)
s1∫
〈γ′(r), dBr〉H | Fs

⎞⎠ =

s
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Ex

⎛⎝〈
dg(Ws1), (τ εs1)

∗
s1∫
s

(τ ε,∗r )−1Θ̂ε
rγ

′(r)dr
〉

| Fs

⎞⎠
Now according to Proposition 5.24

dg(y) = Ey

(
n∑

i=1
τ εsi−s1dif(y,Ws2−s1 , · · · ,Wsn−s1)

)
.

Using the fact that

EWs1

(
τ εsi−s1dif(y,Ws2−s1 , · · · ,Wsn−s1)

)
=

(τεs1)
−1Ex

(
τ εsidif(Ws1 , · · · ,Wsn) | Fs1

)
,

we conclude

Ex

⎛⎝Ex(F | Fs1)
s1∫
s

〈γ′(r), dBr〉H | Fs

⎞⎠
= Ex

⎛⎝ n∑
i=1

〈dif(Ws1 , · · · ,Wsn), τε,∗si

s1∫
s

(τ ε,∗r )−1Θ̂ε
rγ

′(r)dr〉 | Fs

⎞⎠ .

Using the induction hypothesis that (5.19) holds for n − 1 we see that

Ex

⎛⎝F

sn∫
s1

〈γ′(r), dBr〉H

∣∣∣∣∣∣Fs1

⎞⎠ =

Ex

⎛⎝ n∑
i=1

〈dif(Ws1 , · · · ,Wsn), τε,∗si

si∫
s1

(τ ε,∗r )−1γ′(r)dr〉 | Fs1

⎞⎠ . �

5.2.4. Integration by parts formula for the directional derivatives
In this section we prove Theorem 5.20. One of the main ingredients B. Driver used in 

[17] in the Riemannian case was the orthogonal invariance of the Brownian motion to 
filter out redundant noise. As a complement to Lemma 5.22, we first prove the following 
result.

Lemma 5.26. Let {Os}0�s�1 be a continuous F-adapted process taking values in the 

space of skew-symmetric endomorphisms of Hx such that E 
(∫ 1

0 ‖Os‖2ds
)
< ∞, where 

‖Os‖2 = Tr(O∗
sOs). For f ∈ C∞(M), we have

Ex

⎛⎝〈
τε1df(W1),

1∫
(τ ε,∗s )−1Θ̂ε

s

(
OsdBs −

1
2T

ε
Os

ds

)〉⎞⎠ = 0,

0
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where T ε
Os

is the tensor given in a horizontal frame e1, · · · , en by

T ε
Os

=
n∑

i=1
(Θ̂ε

s)−1T ε(ei, Θ̂ε
sOs(Θ̂ε

s)−1ei).

Proof. Recall that we considered the following martingale in (5.17)

Ns = τ εs (dP1−sf)(Ws), 0 � s � 1.

We have then

Ex

⎛⎝〈
τε1df(W1),

1∫
0

(τ ε,∗s )−1Θ̂ε
sOsdBs

〉⎞⎠ =

Ex

⎛⎝〈
N1,

1∫
0

(τ ε,∗s )−1Θ̂ε
sOsdBs

〉⎞⎠ .

From the proof of Lemma 5.21, we have

dNs

= τ εs

(
∇◦dWs

− Tε
◦dWs

− 1
2

(
1
ε
J2 − 1

ε
δHT + RicH

)
ds

)
(dP1−sf)(Ws)

+ τ εs
d

ds
(dP1−sf)(Ws)ds

= τεs

(
∇Θ̂ε

sdBs
− Tε

Θ̂ε
sdBs

)
(dP1−sf)(Ws) = τεs∇ε

Θ̂ε
sdBs

dP1−sf(Ws),

where, as before, ∇ε denotes the connection ∇ −Tε. Let us denote by Hessε the Hessian 
for the connection ∇ε. One has therefore

Ex

⎛⎝〈
N1,

1∫
0

(τ ε,∗s )−1Θ̂ε
sOsdBs

〉⎞⎠ =

Ex

⎛⎝ 1∫
0

HessεP1−sf(Θ̂ε
sdBs, Θ̂ε

sOsdBs)(Ws)

⎞⎠
Due to the skew symmetry of O and the fact that for h ∈ C∞(M), X, Y ∈ Γ∞(M),

Hessεh(X,Y ) − Hessεh(Y,X) = T ε(X,Y )h,

we deduce
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Ex

⎛⎝〈
N1,

1∫
0

(τ ε,∗s )−1Θ̂ε
sOsdBs

〉⎞⎠ =

1
2Ex

⎛⎝ 1∫
0

〈
dP1−sf, Θ̂ε

sT
ε
Os

〉
ds

⎞⎠ =

1
2Ex

⎛⎝ 1∫
0

〈
Ns, (τε,∗s )−1Θ̂ε

sT
ε
Os

〉
ds

⎞⎠ .

Integrating by parts the right hand side yields the conclusion. �
We are now in position to prove the integration by parts formula for cylinder functions 

of the type F = f(Ws).

Lemma 5.27. Let v be a tangent process. For f ∈ C∞(M),

Ex

(〈
df(W1), Θ̂ε

1v(1)
〉)

=

Ex

⎛⎝f(W1)
1∫

0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBs

〉
H

⎞⎠ .

Proof. Let v be a tangent process. We define

h(s) = v(s) −
s∫

0

(Θ̂ε
r)−1T (Θ̂ε

r ◦ dBr, Θ̂ε
rv(r)).

By definition of tangent processes, we have that h = vH is a horizontal Cameron-Martin 
process. By Equation (5.4) we have

T̂ ε(◦dWs, Θ̂ε
sv(s)) = T (Θ̂ε

s ◦ dBs, Θ̂ε
sv(s)) −

1
ε
JΘ̂ε

sv(s)(Θ̂
ε
s ◦ dBs).

Therefore we get

dv(s) + (Θ̂ε
s)−1

(
−T̂ ε(◦dWs, ·) + 1

2

(
1
ε
J2 − 1

ε
δ∗HT + RicH

)
ds

)
Θ̂ε

sv(s)

= dh(s) + 1
ε
(Θ̂ε

s)−1JΘ̂ε
sv(s)(Θ̂

ε
s ◦ dBs)

+ 1
2(Θ̂ε

s)−1
(

1
ε
J2 − 1

ε
δ∗HT + RicH

)
Θ̂ε

sh(s)ds

= dh(s) + 1
ε
(Θ̂ε

s)−1JΘ̂ε
sv(s)(Θ̂

ε
sdBs) + 1

2(Θ̂ε
s)−1 (RicH) Θ̂ε

th(s)ds.



JID:YJFAN AID:8263 /FLA [m1L; v1.260; Prn:11/06/2019; 15:36] P.57 (1-61)
F. Baudoin et al. / Journal of Functional Analysis ••• (••••) •••–••• 57
In the last computation, the transformation of the Stratonovitch differential

(Θ̂ε
s)−1JΘ̂ε

sv(s)(Θ̂
ε
s ◦ dBs)

into Itô’s differential

(Θ̂ε
s)−1JΘ̂ε

sv(s)(Θ̂
ε
s dBs)

is similar to (4.5). It is then a consequence of Itô’s formula that

v(s) = (Θ̂ε
s)−1τ ε,∗s

s∫
0

(τ ε,∗r )−1Θ̂ε
r ◦ dMr,

where

dMs = dh(s) + 1
ε
(Θ̂ε

s)−1JΘ̂ε
sv(s)Θ̂

ε
sdBs + 1

2(Θ̂ε
s)−1 (RicH) Θ̂ε

sh(s)ds.

Converting the Stratonovich integral into Itô’s integral finally yields

v(s) = (Θ̂ε
s)−1τ ε,∗s

s∫
0

(τ ε,∗r )−1Θ̂ε
r

(
dh(s) + 1

2(Θ̂ε
s)−1 (RicH) Θ̂ε

sh(s)ds

+ OsdBs −
1
2T

ε
Os

ds

)
,

with

Os = 1
ε
(Θ̂ε

s)−1JΘ̂ε
sv(s)Θ̂

ε
s.

Since Os is a skew-symmetric horizontal endomorphism, one can conclude from Lem-
mas 5.22 and 5.26 that

Ex

(〈
df(Ws), Θ̂ε

tv(s)
〉)

= Ex

⎛⎝f(Ws)
1∫

0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBs

〉
H

⎞⎠
because h(s) = vH(s). �

Now Theorem 5.20 can be proven using induction on n in the representation of a 
cylinder function F . The case n = 1 is Lemma 5.27, and showing the induction step is 
similar to how Theorem 5.19 has been proven, so for the sake of conciseness of the paper, 
we omit the details. As a direct corollary of Theorem 5.20, we obtain the following.
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Corollary 5.28. Let F, G ∈ FC∞ (Wx(M)) and v be a tangent process. We have

Ex(FDvG) = Ex(GD∗
vF ),

where

D∗
v = −Dv +

1∫
0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBs

〉
H
.

Proof. By Theorem 5.20, we have

Ex(Dv(FG)) = Ex

⎛⎝FG

1∫
0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBs

〉
H

⎞⎠ .

Since Dv(FG) = FDv(G) + GDv(F ), the conclusion follows immediately. �
5.3. Examples

5.3.1. Riemannian submersions
In this section, we verify that the integration by parts formula we obtained for the 

directional derivatives is consistent with and generalizes the formulas known in the Rie-
mannian case. Let us assume here that the foliation on M comes from a totally geodesic 
submersion π : (M, g) → (B, j) as in Example 2.1. Since the submersion has totally 
geodesic fibers, π is harmonic and the projected process

WB
s = π(Ws)

is a Brownian motion on B started at π(x). Observe that from the definition of sub-
mersion, the derivative map Txπ is an isometry from Hx to TxB. From Example 2.3, 
the connection ∇̂ε projects down to the Levi-Civita connection on B. Therefore the 
stochastic parallel transport Θ̂ε

t projects down to the stochastic parallel transport for 
the Levi-Civita connection along the paths of 

{
WB

s

}
0�s�1. More precisely,

//0,s = TWs
π ◦ Θ̂ε

s ◦ (Txπ)−1,

where //0,s : Tπ(x)B → TWB
s
B is the stochastic parallel transport for the Levi-Civita 

connection along the paths of 
{
WB

s

}
0�s�1. Consider now a Cameron-Martin process 

{h(s)}0�s�1 in Tπ(x)B and a cylinder function F = f(WB
s1 , · · · , WB

sn) on B. The function 
F = f(π(Ws1), · · · , π(Wsn)) is then in FC∞ (WH(M)) (Refer to [19, Definition 7.4]). 
Using Theorem 5.20, one gets
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Ex (DvF ) = Ex

⎛⎝F

1∫
0

〈
v′H(s) + 1

2(Θ̂ε
s)−1RicHΘ̂ε

svH(s), dBs

〉
H

⎞⎠ ,

where vH is the horizontal lift of h, that is, vH = (Txπ)−1h. By definition, we have

DvF =
n∑

i=1

〈
dif(WB

s1 , · · · ,W
B
sn), (TWsi

π) ◦ Θ̂ε
siv(si)

〉

=
n∑

i=1

〈
dif(WB

s1 , · · · ,W
B
sn),//0,sih(si)

〉
It is easy to check that RicH is the horizontal lift of the Ricci curvature Ric

B of B. 
Therefore, the integration by parts formula for the directional derivative DvF can be 
rewritten as follows.

Ex

(
n∑

i=1

〈
dif(WB

s1 , · · · ,W
B
sn),//0,sih(si)

〉)

=Ex

⎛⎝F

1∫
0

〈
h′(s) + 1

2 //
−1
0,s Ric

B//0,s h(s), dBB
s

〉
Tπ(x)B

⎞⎠ ,

where BB is the Brownian motion on Tπ(x)B given by BB = Txπ(B). This is exactly 
Driver’s integration by parts formula in [17] for the Riemannian Brownian motion XB.

5.3.2. K-contact manifolds
In this section, we assume that the Riemannian foliation on M is the Reeb foliation of 

a K-contact structure. The Reeb vector field on M will be denoted by R and the almost 
complex structure by J. The torsion of the Bott connection is then

T (X,Y ) = 〈JX,Y 〉HR.

Therefore with the previous notation, one has

JZX = 〈Z,R〉JX,

and the vertical part of a tangent process is given by

vV(s) = −
s∫

0

(Θ̂ε
r)−1T (Θ̂ε

r ◦ dBr, Θ̂ε
rvH(r))

=
s∫

0

((Θ̂ε
r)−1R)〈JΘ̂ε

rvH(r), Θ̂ε
r ◦ dBr〉H.
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