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1. Introduction
1.1. Background

In this paper we study quasi-invariance properties and related integration by parts
formulas for the horizontal Wiener measure on a foliated Riemannian manifold equipped
with a sub-Riemannian structure. These are most closely related to the well-known
results by B. Driver [17] who established such properties for the Wiener measure on a
path space over a compact Riemannian manifold. Quasi-invariance in such settings can
be viewed as a curved version of the classical Cameron-Martin theorem for the Euclidean
space. While the techniques developed for path spaces over Riemannian manifolds are
not easily adaptable to the sub-Riemannian case we consider, we take advantage of the
recent advances in this field. The geometric and stochastic analysis of sub-Riemannian
structures on foliated manifolds has attracted a lot of attention in the past few years
(see for instance [2,7,21,29-32,48]).

In particular, we make use of the tools such as Weitzenbock formulas for the sub-
Laplacian extending results by J.-M. Bismut, B. Driver et al. to foliated Riemannian
manifolds. More precisely, the first progress in developing geometric techniques in the
sub-Riemannian setting has been made in [5], where a version of Bochner’s formula for
the sub-Laplacian was established and generalized curvature-dimension conditions have
been studied. This Bochner-Weitzenbock formula was then used in [2] to develop a sub-
Riemannian stochastic calculus. One of the difficulties in this case is that, a priori, there
is no canonical connection on such manifolds such as the Levi-Civita connection in the
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Riemannian case. However, [2] introduces a one-parameter family of metric connections
associated with Bochner’s formula proved in [5] and shows that the derivative of the sub-
Riemannian heat semigroup can be expressed in terms of a damped stochastic parallel
transport.

It should be noted that these connections do not preserve the geometry of the foliation
in general. In particular, the corresponding parallel transport does not necessarily trans-
form a horizontal vector into a horizontal vector, that is, these connections in general
are not horizontal. As a consequence, establishing an integration by parts formulas for
directional derivatives on the path space of the horizontal Brownian motion, similarly
to Driver’s integration by parts formula in [17] for the Riemannian Brownian motion, is
not straightforward. As a result, the integration by parts formula we prove in the current
paper can not be simply deduced from the derivative formula for the corresponding semi-
group by applying the standard techniques of covariant stochastic analysis on manifolds
as presented for instance in [23, Section 4], in particular [23, Theorems 4.1.1, 4.1.2]. A dif-
ferent approach to proving quasi-invariance in an infinite-dimensional sub-Riemannian
setting has been used in [6].

Analysis on path and loop spaces has been developed over several decades, and we
will not be able to refer to all the relevant publications, but we mention some which are
closer to the subject and techniques of this paper. In particular, J.-M. Bismut’s book [12]
contains an integration by parts formula on a path space over a compact Riemannian
manifold. His methods were based on the Malliavin calculus and Bismut’s motivation
was to deal with a hypoelliptic setting as described in [12, Section 5]. A breakthrough
has been achieved by B. Driver [17], who established quasi-invariance properties of the
Wiener measure over a compact Riemannian manifold, and as a consequence an integra-
tion by parts formula. This work has been simplified and extended by E. Hsu [34], and
also approached by O. B. Enchev and D. W. Stroock in [25]. A review of these techniques
can be found in [36]. In [37,39] the noncompact case has been studied. Let us observe
here that B. Driver in [17] and later E. Hsu in [34] have considered connections on a
Riemannian manifold which are metric-compatible, but not necessarily torsion-free. This
is very relevant in our setting of a foliated Riemannian manifold equipped with a sub-
Riemannian structure, because on sub-Riemannian manifolds the natural connections
are not torsion-free. A different approach to analysis on Riemannian path space can be
found in [15], where tangent processes, Markovian connections, structure equations and
other elements of what the authors call the renormalized differential geometry on the
path space have been introduced.

1.2. Main results and organization of the paper

We now explain in more detail our main results without the technical details, and
describe how the paper is organized. Section 4 studies quasi-invariance properties for
the horizontal Wiener measure of a Riemannian foliation, and in Section 5 we prove
integration by parts formulas. Although quasi-invariance properties and integration by
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parts formulas are intimately related and actually equivalent in many settings (see [9,
17,18]), we use very different techniques and approaches in these two sections. To prove
quasi-invariance, we develop a stochastic calculus of variations for the horizontal Brow-
nian motion on a foliation in the spirit of [15,17,34], whereas to prove integration by
parts formulas, we shall make use of Markovian techniques and martingale methods as
presented for instance in [23, Section 4].

Let (M, g, F) be a smooth connected compact Riemannian manifold of dimension
n + m equipped with a totally geodesic and bundle-like foliation F by m-dimensional
leaves as described in Section 2. On such manifolds, one can define a horizontal Laplacian
L according to [1, Section 2.2, Section 2.3]), allowing to define a horizontal Brownian
motion as the diffusion on M with generator %L, as we describe in Section 4.1.1. The
distribution of the horizontal Brownian motion is called the horizontal Wiener measure.

Recall that for a Riemannian manifold (M, g), for a given metric connection one can
construct a development map B —— W, where B is a Brownian motion in R®*™ and
W the Brownian motion on the manifold (M, g), see for instance [17, Theorem 3.4]. We
construct development maps in the setting of a totally geodesic Riemannian foliation
even though we do not have a Levi-Civita connection in this sub-Riemannian setting.

The foliation structure on M induces a natural splitting of the tangent bundle into a
vertical and horizontal subbundles V and H as described in Section 2.2. This allows us
to define horizontal Brownian motion with respect to this structure. In Section 4.1.2 we
show that there exist metric connections on M which are compatible with the foliation
F in such a way that the above development map sends (53, 0) to a horizontal Brownian
motion of the foliation, where (3 is a Brownian motion in R™. In particular, the horizontal
Brownian motion W on M constructed in this way is a semimartingale on M and it
becomes possible to develop a horizontal stochastic calculus of variations. In this paper,
the map 8 —— W is referred to as the horizontal stochastic development map. The main
result of Section 3 is Theorem 1 that characterizes the variations of horizontal paths (i.e.
paths transverse to the leaves of the foliation).

Before we can formulate our first main result, we need to describe some of the notation
used. For details the reader is referred to Section 3. Let D be a metric connection on
(M, g, F) adapted to the foliation structure as described by Assumption 1. An example
of such a connection is the Bott connection introduced in Section 2.4.

The first observation is that the connection D allows us to define vector fields on
the space W§° (M) of smooth M-valued paths on the interval [0,1] as follows. For v €
W§© (R™™), the space of smooth R™*™-valued paths, we denote by D, the vector field
on the space of smooth paths [0, 1] — M defined by

D,(7)s = us(7)vs,

where u is the D-lift of v to the orthonormal frame in the orthonormal frame bundle
O(M). In addition, we can use the connection D to introduce the corresponding devel-
opment map ¢ : W (R"t™) — W§® (M) as defined in Definition 3.5. The inverse map
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¢~ WES (M) — WE° (R™™) is referred to as an anti-development map. We also
define horizontal development and anti-development maps in Definition 3.10.

In addition the connection D can be used to lift vector fields on M to vector fields on
O(M) consistent with the foliation structure as explained in Notation 3.3. We denote by
A,V the fundamental vector fields on O(M) associated with this D-lift. For details we
refer the reader to Notation 3.3. As motivation for the semimartingale version, we start
with a theorem combining the results in the smooth setting.

Theorem 1 (Theorem 3.11, Theorem 5.15). Let D be a metric connection on (M, g, F)
adapted to the foliation structure as described by Assumption 1. For a smooth path v on
R™ ™ we let {7, t € R} be the flow generated by the vector field D, on W§° (M). Then
for a smooth horizontal path v on M

d - v n
at ¢1(Ct7)s€R7 s €[0,1]
t=0
if and only if the path
v(s) — /TUT(A (dwi“) JAv(r)), s € [0,1] takes values in R™, (1.1)

0

that is, it is horizontal. Here w™

is the horizontal anti-development of the horizontal
path v, and T is the torsion of the Bott connection.

Moreover, if (1.1) is satisfied, then

d
QZ)?I(CZ}"Y)S == pv(wﬂ)sa

where

/ /QET (A (dwl) , Av(1) + V(1)) | dw?

0 0

Here TP is the torsion form of the connection D and QP its curvature form.

If (1.1) is satisfied, we will say that the path v is tangent to the horizontal path ~.
We stress that in (1.1) we use the torsion of the Bott connection, not the torsion of the
connection D. Thus Theorem 1 shows that the notion of a tangent path is independent
of the connection D, as long as it satisfies Assumption 1.
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Given a horizontal path, it is easy to construct tangent paths to this path. Indeed,
we show in Lemma 3.17 that if w™ is a smooth path in R™ then for every smooth path
hin R"

Th(w™)s = h(s) +/TuT(A (dw?) , Ah(r)) (1.2)

is a tangent path to ¢(w™), where u denotes the lift of ¢(w™).

In Section 4.3 we use Malliavin’s principe de transfert ansatz (see [41, Part IV Chap-
ter VIII]) to extend the definitions for p, and 7, to semimartingale paths by replacing
integration against smooth paths by Stratonovich stochastic integrals with respect to
semimartingales. More precisely, we work on the probability space (Wy(R™), B, uz),
where B is the Borel g-algebra on the path space Wy (R™) of continuous paths [0, 1] — R™
starting at 0, g is the Wiener measure. The measure py can be also described as the
distribution of the horizontal Brownian motion on M.

Given a deterministic Cameron-Martin path h : [0,1] — R™, one can then consider
the R™"*™_valued semimartingale

S

Th(wH)s = h(s) + /Tur (Ao dcu;",'L?Ah(r))7
0

where w’ is the coordinate process and odw™ denotes the Stratonovich integral. Note
that 75, is defined px-a.s. One can then think of 7;,(w*) as a tangent process to the
horizontal Brownian motion of the foliation. We will view 75, : Wp(R"™) — Wo(R™*™)
as an adapted process with respect to the natural filtration {B,,0 < s < 1} generated
by the horizontal Brownian motion in R™®*™. Notice that 73, is really an equivalence
class of processes with two processes being equivalent if they are equal py-a.s. similarly
to [34, p. 425]. Thus when we say that a map is defined uy-a.s. we mean that we are
actually working with equivalence classes of maps. It will be an important part of our
results that the flows and the compositions we consider preserve the equivalence classes
we are working with, but for simplicity of the presentation, those considerations will
remain in the background in our discussions similarly to [34]. This aspect is discussed
more thoroughly in [17].

Similarly, given an R®*"-valued semimartingale v, one can define the semimartingale

S

pv(wH)s =v(s) — /TuDT (Ao de'L, Av(r) + Vo(r))—
0

S

/ /Qi (Aodw?, Av(T) + Vu(r)) | odw?.
0 \0
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The main results of Section 4.3 include Theorem 4.21 and Theorem 4.23 which can
be summarized as follows. Here we use the notion of stochastic horizontal development
and anti-development ¢ and (b;{l as defined in Definition 4.9.

Theorem 2 (Theorem 4.21, Theorem /.23). There exists a family of semimartingales
{vh,t € R} such that for each fized t the random variable v} : Wy (R™) — Wy (R™)
can be regarded as a py-a. s. defined map from the path space to itself. In particular,
s — vl (s) is a R™-valued semi-martingale over the probability space Wo(R™). In addition
vl has the group property. Thus we can regard {v}',t € R} as the flow on Wy (R™)
generated by pr, : Wo (R™) — Wy (R™) which is defined py-a.s.

Moreover, the measure gy is quasi-invariant under this flow, that is, the law pw of
the horizontal Brownian motion on M is quasi-invariant under the py-a.s. defined flow
Ch = puovtody : Wy (M) — Wy (M), t € R. Here ¢y and ¢3;' are horizontal
stochastic development and anti-development map correspondingly.

It should be noted that our argument follows relatively closely the one by B. Driver in
[17] and later by E. Hsu in [34] (see also [14,15,25]) and therefore going from Theorem 1
to Theorem 2 is quite routine. In Section 4.3.6 we illustrate our results in the case
of Riemannian submersions and explicitly compute the flow ¢} associated to the Bott
connection in some examples.

The goal of the second part of the paper is to establish several types of integra-
tion by parts formulas for the horizontal Brownian motion. In Section 5.1.1, we survey
known geometric and stochastic results and introduce the notation and conventions used
throughout Section 5. Most of this material is based on [7] for the geometric part and [2]
for the stochastic part. The most relevant result that will be used later is the Weitzen-
bock formula given in Theorem 5.4. Tt asserts that for every f € C°(M), z € M and
every € >0

where [, is a one-parameter family of sub-Laplacians on one-forms indexed by a param-
eter € > 0. These sub-Laplacians on one-forms are constructed from a family of metric
connections V¢ introduced in [2] whose adjoint connections V¢ in the sense of B. Driver
in [17] are also metric. These connections satisfy Assumption 1, so that the results of
Section 4 are applicable. Even though Section 5.1.1 introduces mostly preliminaries, we
present a number of new results there such as Lemma 5.6.

In Section 5.2, we prove integration by parts formulas for the horizontal Wiener
measure with the main result being Theorem 5.20 which includes the following result.
Suppose F' is a cylinder function, v is a tangent process on T,M as defined in Defini-
tion 5.16, then we have

E, (D,F) =E, | F / <v;{<s>+§//o‘,:mic%s7d38> ! (1.4)

H
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where z is the starting point of the horizontal Brownian motion, D, F' is the directional
derivative of F' in the direction of v, //o,s is the stochastic parallel transport for the
Bott connection, and fRicy is the horizontal Ricci curvature of the Bott connection.
The Bott connection as defined in Section 2.4 corresponds to the adjoint connection
Ve as € — oo. In the integration by parts formula (1.4), the tangent process v is a
T, M—valued process such that its horizontal part vy is absolutely continuous and satisfies
E (fol HUZH(S)”%IMdS) < oo and its vertical part is given by

() = [ I T, By fo ou(r). (1.5)

where T is the torsion tensor of the Bott connection. Observe that (1.4) looks similar to
the integration by parts formulas by J.-M. Bismut and B. Driver. This is not too sur-
prising if one thinks about the special case when the foliation comes from a Riemannian
submersion with totally geodesic fibers. We consider this case in Section 5.3.1, and we
prove that then that the integration by parts formula in Theorem 5.20 is actually a hori-
zontal lift of Driver’s formula from the base space of the fibers to M. However, in general
foliations do not come from submersions (see for instance [26] for necessary and sufficient
conditions) and one therefore needs to develop an intrinsic horizontal stochastic calculus
on M to prove (1.4). Developing such a calculus is one of the main accomplishments of
the current paper.

The proof of Theorem 5.20 proceeds in several steps. As in [2], the Weitzenbock for-
mula (1.3) yields a stochastic representation for the derivative of the semigroup of the
horizontal Brownian motion in terms of a damped stochastic parallel transport associ-
ated to the connection V¢ (see Lemma 5.21). By using techniques of [4], Lemma 5.21
implies an integration by parts formula for the damped Malliavin derivative as stated in
Theorem 5.19. The final step is to prove Theorem 5.20 from Theorem 5.19. The main
difficulty is that the connection V¢ is in general not horizontal. However, it turns out
that the adjoint connection Ve is not only metric but also horizontal. As a consequence,
one can use the orthogonal invariance of the horizontal Brownian motion (Lemma 5.26)
to filter out the redundant noise which is given by the torsion tensor of V¢. It is remark-
able that the integration by parts formula for the directional derivatives in Theorem 5.20
is actually independent of the choice of a particular connection and therefore is indepen-
dent of € in the one-parameter family of connections used to define the damped Malliavin
derivative. While integration by parts formulas for the damped Malliavin derivative may
be used to prove gradient bounds for the heat semigroup (as in [2]) and log-Sobolev
inequalities on the path space (as in [4]), we prove that the integration by parts formula
(1.4) comes from the quasi-invariance property of the horizontal Wiener measure proved
in Section 4.3.
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Remark 1.1. In the current paper, we restrict consideration to the case of compact man-
ifolds mainly for the sake of conciseness. It is reasonable to conjecture that as in [39],
our results may be extended to complete manifolds.

Acknowledgments. The authors thank Bruce Driver for stimulating discussions and an
anonymous referee for insightful remarks that helped to improve the presentation of the
paper significantly and to clarify key definitions.

2. Geometric preliminaries: Riemannian foliations
2.1. Riemannian foliations

We start by recalling the notion of a foliation. Let M be a smooth connected manifold
of dimension n + m. Then a foliation of dimension m on M is usually described as a
collection F of disjoint connected non-empty immersed m-dimensional submanifolds of
M (called the leaves of the foliation), whose union is M, and such that in a neighborhood
of each point in M there exists a chart for F as follows.

Before we define such Riemannian foliations, let us introduce some standard notation.

Notation 2.1. Suppose (M, g) is a Riemannian manifold. By TM we denote the tangent
bundle and by T*M the cotangent bundle, and by T, M (T;M) the tangent (cotangent)
space at x € M. The inner product on TM induced by the metric g will be denoted by
g (-,+). If U is a subbundle of the tangent bundle TM, the restriction of g to Y will be
denoted by gy (-, ).

As always, for any x € M we denote by g (-,-), (or (,-)z), gu (-,-), (or {-,-)u,) (or
(-, Yu, ) the inner product on the fibers T, M and U,, correspondingly. The space of smooth
functions on M will be denoted by C°°(M). The space of smooth sections of a vector
bundle &€ over M will be denoted I'™°(£).

Definition 2.2. Let M be a smooth connected n + m-dimensional manifold. An
m-dimensional foliation F on M is defined by a (maximal) collection of pairs
{(Us,7a), € I} of open subsets U, of M and submersions 7, : U, — U? onto
open subsets of R™ satisfying

° Uaej Uoz = Ma
o IfU,NUz # 0, there exists a local diffeomorphism ¥,g of R” such that 7, = ¥,57p
on U, NUg.

In addition, we assume that the foliation F on M is a Riemannian foliation with a
bundle-like metric g and totally geodesic m-dimensional leaves. Informally a bundle-like
metric is similar to a product metric locally, and the notion has been introduced in [45].
We refer to [1,43,45,49] for details about the geometry of Riemannian foliations, but for
convenience of the reader we recall some basic definitions.
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The maps 7, are called disintegrating maps of F. The connected components of the
sets m,1(c), ¢ € R™, are called the plaques of the foliation. For each p € U,, we de-
fine V, := Ker((my)«p). The subbundle V of TM with fibers V, is referred to as the
vertical distribution. These are the vectors tangent to the leaves, the maximal integral
sub-manifolds of V.

Definition 2.3. Let Ml be a smooth connected n + m-dimensional Riemannian manifold.
An m-dimensional foliation F on M is said to be Riemannian with a bundle-like metric
if the disintegrating maps 7, are Riemannian submersions onto U? with its given Rie-
mannian structure. If moreover the leaves are totally geodesic sub-manifolds of M, then
we say that the Riemannian foliation is totally geodesic with a bundle-like metric.

2.2. Horizontal and vertical subbundles of TM and forms

The subbundle ‘H which is normal to the vertical subbundle V is referred to as the set
of horizontal directions. Though this assumption is not strictly necessary in many parts
of the paper, to simplify the presentation we always assume that H is bracket-generating,
that is, the Lie algebra of vector fields generated by global C'>°—sections of H has the full
rank at each point in M. Using Notation 2.1, we denote the restrictions of the metric g
to H and V by gy (-,-) and gy (-, ) respectively.

We say that a one-form is horizontal (resp. vertical) if it vanishes on the vertical
bundle V (resp. on the horizontal bundle H). Then the splitting of the tangent space

TM=H, DV,
induces a splitting of the cotangent space
T"M=H,aV,.

The subbundle H* of the cotangent bundle will be referred to as the cohorizontal
bundle. Similarly, V* will be referred to as the covertical bundle.

2.8. Eramples

Example 2.1 (Riemannian submersions, Hopf fibrations). Let (M, g) and (B, j) be two
smooth and connected Riemannian manifolds. A smooth surjective map = : M — B is
called a Riemannian submersion if for every x € M the differential T,,7 : T, M — T (,)B
is an orthogonal projection, i.e. the map T,m(T,7m)* : Tr(yB — Tr()B is the identity
map. The foliation given by the fibers of a Riemannian submersion is then bundle-like
(see [1, Section 2.3]). We refer to [11, Chapter 9, Section F, pp. 249-252] for Riemannian
submersions with totally geodesic fibers.

The generalized Hopf fibrations (e.g. [11, Chapter 9, Section H], [44, Section 1.4.6]) of-
fer a wide range of examples of Riemannian submersions whose fibers are totally geodesic.
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Let G be a Lie group, and H, K be two compact subgroups of G with K C H. Then, we
have a natural fibration given by the coset map

m:G/K — G/H

aK — aH,

where the fiber is H/K. From [10], there exist G-invariant metrics on respectively G/K
and G/H that make m a Riemannian submersion with totally geodesic fibers isometric
to H/K. For instance with G = SU(n+ 1), H = S(U(1)U(n)) ~ U(n) and K =
SU(n), one obtains the usual Hopf fibration 7 : S?"*1 — CP™, see [11, Chapter 9,
Section H, Example 9.81]. For n = 1, this reduces to the Hopf fibration 7 : SU(2) ~
S3 = CP' ~ §2.

Example 2.2 (K -contact manifolds). Another important example of a Riemannian folia-
tion is obtained in the context of contact manifolds. Let (M, 6) be a 2n + 1-dimensional
smooth contact manifold, where 6 is a contact form. Then there is a unique smooth
vector field Z on M, called the Reeb vector field, satisfying

0(Z2)=1, Lz(0) =0,

where Lz denotes the Lie derivative with respect to Z. The Reeb vector field induces
a foliation on M, the Reeb foliation, whose leaves are the orbits of the vector field Z.
It is known (see [46,47]), that it is always possible to find a Riemannian metric g and a
(1,1)-tensor field J on M so that for every vector fields X, Y

g(X,Z):Q(X), JQ(X):7X+0(X)Z> g(X,JY):(dQ)(X,Y)
The triple (M, 6, g) is called a contact Riemannian manifold. We see then that the Reeb
foliation is totally geodesic with a bundle-like metric if and only if the Reeb vector field
Z is a Killing field, that is,
£Z.‘] = Oa

as is stated in [13, Proposition 6.4.8]. In this case, (M, 0, g) is called a K-contact Rie-
mannian manifold. Observe that the horizontal distribution H is then the kernel of § and
that H is bracket generating because ¢ is a contact form. We refer to [8,47] for further
details on this class of examples.

2.4. Bott connection

If we view (M, g) as a Riemannian manifold, the Levi-Civita connection V¥ is a
natural choice for stochastic analysis on M. But this connection is not adapted to the

Please cite this article in press as: F. Baudoin et al., Integration by parts and quasi-invariance
for the horizontal Wiener measure on foliated compact manifolds, J. Funct. Anal. (2019),
https://doi.org/10.1016/j.jfa.2019.06.006




YJFAN:8263

12 F. Baudoin et al. / Journal of Functional Analysis sss (sess) see—see

study of foliations because the horizontal and vertical bundles may not be parallel with
respect to V. We will rather make use of the Bott connection on M which is defined as
follows.

mu(VEY), XY €T (H)

Oy _ | X YD X er=m). Y €
m([X.Y]) X €T™(H).Y €
™

VEY), XY € I>®(V),

> (#),
(V)7

)

where 7y (resp. my) is the projection on H (resp. V). One can check that since the
foliation is bundle-like and totally geodesic the Bott connection is metric-compatible, that
is, Vg = 0, though unlike the Levi-Civita connection it is not torsion-free. The following
properties of the Bott connection are standard but require tedious computations. We
refer to [49, Chapter 5] for some of these, and to [42] for the details of the statements
below and also point out that the Bott connection is a special case of a general class of
connections introduced by R. Hladky in [33, Lemma 2.13].
Let T be the torsion of the Bott connection V. Observe that for X, Y € I'°(H)

T(X,Y)=VxY - VyX — [X,Y]
=an(VEY - VEX) - [X,Y]
= ([X,Y]) - [X,Y]
= —my([X,Y]).

Similarly one can check that the Bott connection satisfies the following properties
that we record here for later use

VxY € T°(H) for any X,Y € I'>°(H),

VxY eT*°(V) for any X, Y € T'°(V),

T(X,Y) € T®(V) for any X,Y € I (H), (2.1)
T (U, V) =0 for any U,V € T>(V),

T(X,U)=0for any X € I'°(H),U € I'*°(V).

Example 2.3 (Exzample 2.1 revisited). Let = : (M, g) — (B,j) be a Riemannian sub-
mersion with totally geodesic leaves. A vector field X € T'*°(TM) is said to be pro-
jectable if there exists a smooth vector field X on B such that for every x € M,
T,7n(X(x)) = X(m(x)). In that case, we say that X and X are w-related. A vector
field X on M is called basic if it is projectable and horizontal. If X is a smooth vector
field on B, then there exists a unique basic vector field X on M which is w-related to X.
This vector is called the lift of X. The Bott connection is then a lift of the Levi-Civita
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connection of (B, j) in the following sense:

VEBY =VxY, X,Y eI™(B), (2.2)

where VB is the Levi-Civita connection on B.

Example 2.4 (Ezample 2.2 revisited). Let (M, 0, g) be a K-contact Riemannian manifold.
The Bott connection coincides with Tanno’s connection that was introduced in [47] and
which is the unique connection that satisfies the following properties.

(1) Vo =0;
(2) VZ =0;
(3) Vg=0;
(4) T(X,Y)=di(X,Y)Z for any X, Y € T'°(H);
(5) T(Z,X) = 0 for any vector field X € I'™°(H).

2.5. Orthonormal frame bundle

We will use standard notation for orthonormal frame bundles. Suppose M is a compact
Riemannian manifold of dimension d. Note that in the setting of Riemannian foliations
we have d = n+m. Recall that a frame at x € M can be described as a linear isomorphism
u : R? — T,M such that for the standard basis {ei}le of R? the collection {u (ei)}f=1
is a basis (frame) for T, M. The collection of all such frames F (M) := (J, cpg F (M),
is called the frame bundle with the group GL (R,d) acting on the bundle. If M is in
addition Riemannian, we can restrict ourselves to consideration of Euclidean isometries
w: (R () = (T,M, g) with the group O (R, d) acting on the bundle. The orthonormal
frame bundle will be denoted by O(M).

Suppose that D is a connection on M, then D induces a decomposition of each tangent
space T,,O(M) into the direct sum of a horizontal subspace and a vertical subspace as
described in [38, Section 2.1]. Using such decomposition, one can then lift smooth maps
on M into smooth horizontal paths on O(M), see [34, p. 421]. Such a lift is usually
called the horizontal lift to O(M). However, to avoid the confusion with the notion of
horizontality given by the foliation on M, in this paper it shall often simply be referred
to as the D-lift to O(M).

3. Horizontal calculus of variations

To motivate the definition of the tangent processes to the horizontal Brownian motion
on M that we will use to prove quasi-invariance, we first present results on the horizontal
calculus of variations of deterministic paths.
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3.1. Adapted connections

Using the notation in Section 2.5, we consider uv € O(M). To take into account the
foliation structure on M, we shall be interested in a special subbundle of O(M), the
horizontal frame bundle.

Definition 3.1. An isometry u : (R™"*™ (-,-)) — (T M, g) will be called horizontal if
u(R™ x {0}) € H, and u({0} x R™) C V,. The horizontal frame bundle O, (M) is then
defined as the set of (x,u) € O(M) such that u is horizontal.

For notational convenience, when needed we identify R"*™ with R™ x R™, hence we
have embeddings of R™ and R™ into R"+™.

Assumption 1. We assume that D is a connection on M satisfying the following proper-
ties.

e D is a metric connection on M, that is, Dg = 0;
e D is adapted to the foliation F in the following sense

DxY € T®(H), if X e T®°(M),Y € I'°(H),
DxZ eT>(V), it X e (M), Z € T>™(V);

e Forevery X e I°(H),Y e (M), DxY = VxY, where V is the Bott connection.

Remark 3.2. In the case of a Riemannian submersion in Example 2.1, these assumptions
imply that the connection D is a lift of the Levi-Civita connection on (B, j), namely,

VEY =DxY, XY eI™(B),
where VB is the Levi-Civita connection on B. We refer to Example 2.3 for further details.

Of course, an example of a connection D that satisfies the above assumptions is
given by the Bott connection V itself. However, we state the results of the section
in greater generality using a connection D satisfying Assumption 1. This generality
is relevant for Section 5, where we use other connections than the Bott connection (see
Remark 5.2). The main reason for using different connections is that while the Bott
connection is adapted to the foliation structure, the torsion of the Bott connection is not
skew-symmetric.

The connection D allows us to lift vector fields on M to vector fields on O(M) (see
[34, p. 421]). Let e1,- -+ ,en, f1,*** , fm be the standard basis of R?+™.

Notation 3.3. We denote by A; the vector field on O(M) such that A;(z,u) is the lift of
u(e;), i =1,...,n, (z,u) € OM), and we denote by V; the vector field on O(M) such
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that Vj(z,u) is the lift of u(f;), j = 1,..,m. We sometimes call A and V' fundamental
vector fields on O(M). For any v € R™*™  we denote

n
Av = Z v; Aj,
i=1
m
Vo= Zvj+7l‘/j'
j=1

Then Av and Vv are vector fields on O(M) whose values at some u € O(M) will be
denoted respectively by A,v and V,v.

Notation 3.4. Let zo be a fixed point in M. By W§°(R"*™) we denote the space of
smooth paths v : [0,1] — R"™*™ such that v(0) = 0, and by W°(M) we denote the
space of smooth paths 7 : [0,1] — M such that v(0) = z.

3.2. Development maps

Next we would like to recall the notion of a rolling map ¢ between path spaces over
M and R™*™ or equivalently development and anti-development maps (see for instance
[34, Section 2]). Let w : O(M) — M be the bundle projection map. To define the rolling
map ¢ : W (R"+™) — W2 (M) we need the following differential equation on O(M)

dus = Z Ay (ug)dw? + Z Vi(us)dw™™ = A, dws + Vy,_dws, (3.1)
i=1 i=1

where w € W (R™™). By compactness of M and thus of O(M) this equation has a
unique solution given an initial condition vy € O(M). In the sequel we fix ug € O(M)
such that 7(ug) = xo.

Definition 3.5.

(1) For any w € W (R™™) the development of w in M is defined as v, = m(us),
where {us} () is the solution to (3.1) with initial condition ug. Then we denote
¢(w) := . The map ¢ is also called the rolling map.

(2) For any v € Woo(M) the anti-development of v in R™*™ is the unique path w €
W (R™™) such that if {us}sepo,1) is the solution to (3.1), then 5 = m(us). Then
we denote ¢~ (7) 1= w.

This definition extends to continuous semimartingales, in which case we speak of
stochastic development and stochastic anti-development (e.g. [38, Section 2.3] and [34,
p. 433]).
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3.3. Horizontal paths

Definition 3.6. A smooth path w : [0,1] — R"™™ is called horizontal if it takes values
in R™. The space of smooth horizontal paths such that w(0) = 0 will be denoted by
Woo (Rn-i-m)

Definition 3.7. A smooth path 7 : [0,1] — M is called horizontal if for every vertical
smooth one-form 6 we have f,y f# = 0. The space of smooth horizontal paths such that
7(0) = ¢ will be denoted We° ,, (M).

Remark 3.8. The space ngH(M) contains only smooth paths, therefore it can be equiv-
alently described as follows. A path 7 is in W2° ; (M) if and only if 7/(s) € H () for every
€ [0,1]. The advantage of Definition 3.7 is that it will easily extend to non-smooth
paths such as semimartingales.
The next step is to define the horizontal rolling map ¢y : (R”*m) — W (M)
similarly to Definition 3.5 on the spaces of horizontal paths. For any w’ € W5 (R™+™)
we consider the differential equation on O(M) with initial condition wg

dug = Z Ai(us)dw:"i = Autde{. (3.2)
Observe that for v = m(u) we have

drys = Z dr(A; (us))dw??

and therefore 7 is horizontal since dm(A;(us)) is.

Lemma 3.9. Suppose v € W< 5 (M), then there exists a unique wh e W&?H(R"“‘m) such
that if {us},cpo 1) 4 the solution to (3.2), then vs = m(us).

Proof. As before, let ey, -+ ,en, f1,--- , fm be the standard basis of R™™. Note that
any v € W2, (M) can be viewed as an element in Wp¢(M). Let w € Wg°(R"*™) be
the anti-development of y introduced in Definition 3.5. Then if {us} [ 1 is the solution
to the differential equation (3.1) with initial condition ug, then v5 = m(us). Since « is
horizontal, then for every smooth vertical one-form 6 one has

/ 6=0.
7[0,s]

Therefore
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/H—Z/Bur )duw —I-Z/Qurfl dwlt = 0.

7[0,5] =10
The form # being vertical, one deduces
m
> / (i ) = 0.
i=1 0

Since it is true for any €, one deduces

> [ sdurt =0
=1 0

Now observe that w,fi,- - ,usrf;, are linearly independent, thus for every r one has
dw!** = 0. As a conclusion, w is horizontal. O

Definition 3.10 (Horizontal development and anti-development).

(1) For any w? € Wg%,(R"*™) the horizontal development of w in M is v, = 7(us),
where {us}c(o 1) i the solution to (3.2) with initial condition ug € O(M). Then we
denote ¢y (w) := . The map ¢4 is called the horizontal rolling map.

(2) Forany v € Wpe 4 (M) the horizontal anti-development of  is wh e Wi (R™H) s
the unique path such that if {us} ;) is the solution to (3.2) with initial condition
ug, then v, = m(u,). Then we denote ¢, (7) := w.

3.4. Paths tangent to horizontal paths
For any v € Wg°(R"""™) we consider the vector field D,, on W2° (M) defined by
Dy(7)s :=us(7)vs, v € W>(M),

where u is the D-lift of v to O(M). Let {(},t € R} be the flow generated by D,, i.e.

d
E(Cf’}/)s :Dv(gtvr}/)sa 46)7:7-

One can use the development and anti-development maps ¢ and ¢! in Definition 3.5
to introduce a flow on W5 (R™+™) as follows

&:=0¢""o(og, teR.

Note that D,, ¢/ and & depend on the connection D. We now recall [34, Theorem
2.1] that describes the generator of the flow £} in the situation when a connection is
metric-compatible but not necessarily torsion-free.
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Theorem 3.11 (Theorem 2.1, [3/]). Suppose that v € W (R™™) and w € W (R™™).
Then

a
dt

v

¢ (W)s = Po(W)s,

t=0
where

po(w)s = v(s) — /T£(Adwr + Vdw,, Av(r) + Vo(r))—

0

S T

/ /Qﬁ (Adw, + Vdw,, Av(T) + Vo(r)) | dw,.
0 \0o

Here u is the D-lift to O(M) of the development of w, TP is the torsion form of the
connection D and QP is its curvature form.

We are interested in the variation of horizontal paths. Let us observe that for w? €
W&OH (Rner)

S

pow™)s = v(s) — / TP (Adw?, Av(r) + Vo(r)) (3.3)

0
—/ /QET (Adw, Av(T) + V(1)) | dw?t.
0 \0

Definition 3.12. We will say that v € W§°(R"t™) is tangent to the horizontal path
v € W2, (M) if for every s € [0,1], £|,_ ¢~ (¢/7)s € R™

Remark 3.13. From this definition, v € W§°(R™™™) is tangent to the horizontal path
7 if and only if p,(w™) is horizontal, where w is the horizontal anti-development of .
Intuitively, v is tangent to -~y if it yields a variation of + in the horizontal directions
only. More precisely, call a vector field £ along v € W;’EH(M) an horizontal variation
of v if {(xg) = 0 and if there exists (01)c(—c o C We¥ 4 (M) with 09 = v such that
%|t:0 (0¢)s = & for s € [0,1]. Then, by Theorem 3.11 and Proposition 3.20, £ is an
horizontal variation of v if and only if u,(y) 1€, is tangent to the horizontal path «y. Let
us note that the notion of horizontal variation is independent from any metric and any
connection. It therefore yields an intrinsic notion of horizontal tangent path space. We
are grateful to the referee for this observation.

Remark 3.14. One should note that even if v € W§°(R"T™) is tangent to the horizontal
path v, it may not be true that for every ¢ € R, (v € Wee , (M).
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One has the following characterization of tangent paths, which is the main result of
the section.

Theorem 3.15. Let v € W°, (M). A path v € Wg®(R" ™) is tangent to the horizontal
path ~v if and only if the path

S

o(s) — / T (Adw™, Av(r)

is horizontal, i.e. takes values in R™, where w™ is the horizontal anti-development of v,
w is its D-lift to O(M), and T is the torsion of the Bott connection.

Proof. The path v € W§°(R"™) is tangent to the horizontal path v if and only if the
path

S

pow™)s = v(s) — /ng (Adw?, Av(r) + Vo(r))

S T

- / / O (Adw’, Av(r) + V(7)) | dwlt

is horizontal. Since D satisfies Assumption 1, the integral

S I8

/ / QP (AdwH, Av(r) + V(7)) | du?

is always horizontal. Let us now denote by J the difference between connections D and V,
that is, the tensor J is defined for any X,Y € I'*°(M) by
JxY =DxY — VxY.

We have then

TP(X,Y)=DxY — DyX — [X,Y]
=T(X,Y)+ JxY — v X.
Let us assume that X is horizontal. We have then Jxy = 0, because Dy = V. Also

Jy X is horizontal, because D is adapted to the foliation F. We deduce that the vertical
part of

S

v(s) — /TUDT (Adwzi, Av(r) + Vo(r))
0
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is the same as the vertical part of

S

v(s)— | Ty, (Ado.;Z't7 Av(r) + Vo(r)).
/

We conclude that the vertical part of p,(w?) is zero if and only if the vertical part of

S

o(s) — / T (Adw™, Av(r) + Vo(r))
0

is zero. By the properties in Equation (2.1), we have

S

/TuT(Ade'l,Vv(r)) =0,
0

which concludes the proof. 0O

Remark 3.16. By Theorem 3.15, the notion of tangent path does not depend on the
particular choice of the connection D as long as it satisfies Assumption 1.

3.5. Variations on the horizontal path space

In this section, we describe two types of variations on the horizontal path space that
are induced by tangent paths. The first one is explicit and inspired by the approach by
B. Driver in [19]. The second one is based on more classical flow constructions. The key
ingredient is the following lemma.

Lemma 3.17. Let h € Wg5, (R"T™). If w™ € Wg5, (R™+™), then

S

n(w™)s = h(s) + / T (Adw™, Ah(r)) (3.4)
0
is a tangent path to ¢(w™), where u denotes the D-lift of the horizontal development
of w™.
Proof. Let

S

v(s) = h(s) + /Tur(Ade{7Ah(r)).
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Since h is horizontal and T is a vertical tensor, one deduces that the horizontal part of
v is h. Therefore,

S

v(s) — /TuT(Ade'[,Av(r)) = h(s)

0

is horizontal. O

Let v € W°(R™™), w™ € Wg%, (R"*™) and assume that v is tangent to the hori-
zontal development of w™. Recall that

S

pv(wH)5 =wv(s) — /Tu'i(Ade,'[, Av(r) + Vo(r))

S T

— / / QY (Adw!, Av(r) + V(7)) | dwlt

0 0

As before, let us now denote by J the difference between connections D and V. For
X,Y € I'°(M), we have thus

JxY =DxY — VxY.

We can then write

pv(wH) +/ (Jvo@r) u Adw )
0
—/ /QET(Adwi'L,Av(T)—G—Vv(T)) dw?t.
0o \0o

More concisely, we have therefore

where q,(w?), € s0(n) is defined in such a way that

/ o (W™
0
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= / (Jvo(r))u, (Adw!t) — / / QY (Adw!, Av(T) + V(7)) | dwlt
0 0 0

As a consequence, with the above notation, one has that for every h € Wg3, (R7HM)

S

p.,_h/(wﬂ)(w%)s = h(s) + /th(wH)(wH)ude{
0

We are now ready to introduce two relevant variations of horizontal paths.
Notation 3.18. Let h € W35, (R"*™).

(1) For t € R, we define a map pf : W55, (R™*™) — W5, (R"*™) by

S

(pha™), = / e @ g1 L ). (3.5)
0

(2) Fort € R, we define a map v} : W5, (R"F™) — WS, (R"™) as the flow generated
by pr,
d h ’H)

ﬁ(utw

_ h H _
s — pr’l(u{‘wH)(Vt w )37 Vpw' ™ =w

Remark 3.19. Unless g, = 0, the family {p},# € R} is not a flow on Wg5,(R"*™), but
it is a convenient explicit one-parameter variation, since we observe that png = wH
and

)

S

d
7 li=0(pfw™)s = Pr () (W
We then have the following result, which is immediate in view of Theorem 3.11 since

d d
o7 li=o(pfw™)s = pn limo (W' w™)s = Py oy (W)

Proposition 3.20 (Variation of horizontal paths along tangent paths). Let h €

WS (R™™), then for every v € Wip (M)

d ~ _
| uo prod (Ms= —|  Suovody (7)s=us(y)h(w
t=0 t=0

where u is the D-lift of v, and w™ its horizontal development.
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4. Quasi-invariance of the horizontal Wiener measure

In this part of the paper, we first describe two constructions of the horizontal Brownian
motion, and then we develop horizontal stochastic calculus and prove quasi-invariance
of the horizontal Wiener measure. Throughout this section we consider a smooth con-
nected n 4+ m-dimensional Riemannian manifold M equipped with the structure of an
m-dimensional foliation F, a bundle-like metric g and totally geodesic m-dimensional
leaves. In addition, we assume that M is compact.

4.1. Horizontal Brownian motion

4.1.1. Construction from the horizontal Dirichlet form

We define the horizontal gradient Vy f of a smooth function f as the projection of the
Riemannian gradient of f on the horizontal bundle H. Similarly, we define the vertical
gradient Vy f of a function f as the projection of the Riemannian gradient of f on the
vertical bundle V.

Consider the pre-Dirichlet form

En(f.h) = / 3 (Vouf, Vagh) dVol, f.h e C=(M),
M

where d Vol is the Riemannian volume measure on Ml. We note that £y is closable since it
can be dominated by the Dirichlet form generated by the Laplace-Beltrami on M which is
closable since M is compact, thus complete. Then there exists a unique diffusion operator
L on M such that for all f,h € C>(M)

En(f,h) =— [ fLh dVol = — [ hLf dVol.
Jomva=-]

The operator L is called the horizontal Laplacian of the foliation. If {X;}._, is a local
orthonormal frame of horizontal vector fields, then we can write L in this frame

n

=1

where X is a smooth vector field. Observe that the subbundle H satisfies Hérmander’s
(bracket generating) condition, therefore by Hoérmander’s theorem the operator L is
locally subelliptic (for comments on this terminology introduced by Fefferman-Phong we
refer to [28], see also the survey papers [3,40] or [20, p. 944]).

By [1, Proposition 5.1] the completeness of the Riemannian metric g implies that
L is essentially self-adjoint on C°°(M) and thus that £ is uniquely closable. Then
we can define the semigroup P, = e2” by using the spectral theorem. The diffusion
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process {W} -, corresponding to the semigroup {Fs},, will be called the horizontal
Brownian motion on the Riemannian foliation (F, g). Since M is assumed to be compact,
1 € dom(&3) and thus Ps1 = 1. This implies that {Ws} . is a non-explosive diffusion.

If the horizontal Laplacian can be written in the form 4.1 globally for smooth hori-
zontal vector fields Xg, X1, -+, X,,, then {Wt}t>0 can be constructed from a stochastic
differential equation on M.

Even if the horizontal Laplacian can not be written in the form 4.1 globally, the
horizontal Brownian motion {W;},., can still be constructed from a globally defined
stochastic differential equation on a bundle over M (see [21, Theorem 3.8] or Corol-
lary 4.4). The following section provides an explicit description of such a construction
that shall be used in the sequel.

4.1.2. Construction from the orthonormal frame bundle
We can write the vector fields {A4;};-; locally in terms of the normal frames introduced
in [7].

Lemma 4.1 (Lemma 2.2 in [7]). Let xy € M. Around xg, there exist a local orthonormal
horizontal frame {Xi,---,X,} and a local orthonormal vertical frame {Zy1,--- ,Zn}
such that the following structure relations hold

(Xi, X} Zw Xk+Z%]Zk,
(X4, Z] = Zﬁm

where wfj,'yfﬁﬁfk are smooth functions such that

5 = =85

Moreover, at xg we have

wfj:O,ijZO.

We will also need the fact (see [7, p. 918]) that in this frame the Christoffel symbols
of the Bott connection V are given by

n

1 . A
Vx,X; = ) Z (wfj +wi, + w,éj) X,
k=1

V., Xi =0,

Vx.Zj=> B
k=1
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Thus, from the assumption that Dy = V4, we have

1 ) )

k=1

Dx,7Z; = Zﬁszk.
k=1

Forxzg € Mwelet {X; -+, X,,Z1, -+, Z} be anormal frame around xg. If u € Oy (M)

NN
is a horizontal isometry, we can find an orthogonal matrix {eg} such that u(e;) =
) ) . tLyj=1
Z?Zl el X, andu(fi)=>"" f1Z; for f{,i=1,...,n,5=1,...,m. Let X; be the vector

i j=1
field on Oy (M) defined by

Xjf(fﬂ,u) — tlg% f(eth (1')’,:/) _ f(fE/LL)’

where e/Xi(z) is the exponential map on M.

Lemma 4.2. Let xg € M and (z,u) € Ox(M), then

n . ) n m 4 P
B Z e‘zelT<DXle7Xk> k- Z ezf7l“<DXJZlaZk>a—fk
Jikdr=1 v y

In particular, at xo we have

Proof. Let u : R™™™ — T, M be a horizontal isometry and x(¢) be a smooth curve in
M such that z(0) = = and 2/'(0) = u(e;). We denote by x*(t) = (x(t),u(t)) the D-lift
to O(M) of z(t) and by z(t),--- ,x},(t) the components of z’(¢) in the horizontal frame

X1, -, Xp. Since D is adapted to the foliation F, the curve x*(t) takes its values in the
horizontal frame bundle Oz (M). By definition of A;, one has

— - 0 " 0
Ai = ZJU}(O)XJ‘ + Z u%z(o)g + Z 0 (0) 577
k=1

Jj=1

,rN
>
T
_

()

;os

where ug(t) = (u(t)(er), Xi) and vg (t) = (u(t)(fx), Z1). Since u(t)(ex) and u(t)(fr) are
parallel along x(t), one has
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Dyryu(t)(ex) =0,  Dyyu(t)(fr) = 0.
At t = 0, this yields the expected result. O
In particular, Lemma 4.2 implies the following statement.

Proposition 4.3. Let 7 : O(M) — M be the bundle projection map. For a smooth f :
M — R, and (z,u) € Oyx(M),

<ZA2> (fom)(z,u) = Lfon(x,u).

Proof. It is enough to prove this identity at xg. Using the fact that at xy we have
(Dx, X1, Xp) = (Dx, Z1, Zx) = 0, we see that

S A=K,
i=1 j=1
The conclusion follows. O

As a straightforward corollary, we can introduce the horizontal Brownian motion as
follows.

Corollary 4.4. Let (2, (Fs)s>0,P) be a filtered probability space that satisfies the usual
conditions and let {Bs}s>0 be an adapted R™-valued Brownian motion on that space. Let
{Us}s>o be a solution to the Stratonovich stochastic differential equation

dU, = ZA yodB!: = Ay, 0dB,, Uy € Oy(M), (4.2)

then Wy = w(Us) is a horizontal Brownian motion on M, that is, a Markov process with
the generator %L. Here we used Notation 3.3 and identified the R™-valued Brownian
motion {Bs} o with an R"*™-valued process (Bs,0).

4.2. Horizontal semimartingales

Let (€, (Fs)s>o0,P) be a filtered probability space that satisfies the usual conditions.

Definition 4.5. An R"*™-valued F,-adapted continuous semimartingale (W;)s>o is called
horizontal if for all s > 0

P (Ws e R" x {0}) = 1.

The space of horizontal semimartingales with Wy = 0 will be denoted by SWy, (R"t™).
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Definition 4.6. An M-valued Fs-adapted continuous semimartingale {Ms}s>o is called
horizontal if for every vertical smooth one-form 6, and every s > 0 the Stratonovich
stochastic line integral | MI0,5] # = 0 almost surely. The space of horizontal semimartin-
gales such that My = ¢ will be denoted by SWy, (M).

Remark 4.7. We refer to [38, Section 2.4, Definition 2.4.1] for the definition of
Stratonovich stochastic line integrals.

Then we have the following result, whose proof is essentially identical to the proof of
Lemma 3.9 and thus omitted for conciseness.

Proposition 4.8. As before 7 is the bundle projection map Oy (M) — M.

(1) Let {Wi},5o € SWx(R™™) and let {Us} 5, be the solution to the Stratonovich
stochastic differential equation

dU, = ZAi(Us) o dW; = Ay, odWs, Uy € Ox(M),
i=1

then M := 7(Us) is a horizontal semimartingale on M.
(2) Let {Ms},5o € SWy(M). Then there exists a unique {Wi},5o € SWy(R"™) such
that if {Us} > is the solution to the Stratonovich stochastic differential equation

dUs =Y Ai(Uy) 0 dW{ = Ay, o dW,, Uy € Oy (M),
1=1

then My = w(Us).

Here we used Notation 3.3, where we introduced how fundamental vector fields A and
V on O(M) in Notation 3.3 act on vectors in R"*™. Note that A acts on R™ x {0} in
R"*™ and so we can apply it to w’t.

Proposition 4.8 allows us to introduce the following notion.

Definition 4.9. Suppose {W},, and {M;},., are as in Proposition 4.8. Then

(1) {Ms}, is called the stochastic horizontal development of {Wi} -, and we denote
ou(W) := M.

(2) The path {Wi} -, is called the stochastic horizontal anti-development of {Ms}, -,
and we denote ¢;,' (M) :== W.

As a consequence, one deduces that the horizontal Brownian motion constructed in
Corollary 4.4 is a horizontal semimartingale.
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Definition 4.10. The horizontal Ité map (or horizontal stochastic development map) is
the following adapted map defined py-a.s.

oy Wy (R?) — W, (M),

Wt W

By using Proposition 4.8 and arguing as in [34, p. 433], one can construct an adapted
map @3, : Wiy (M) — Wy (R™) defined py-a.s. We will call ¢3! the stochastic horizontal
anti-development map.

We also refer to [16, Definition 2.5] for a discussion of the 1t6 map in the Riemannian
setting and to the previous section for explicit constructions in our setting.

Remark 4.11. If one uses a Dirichlet form to construct the horizontal Brownian motion
as in Section 4.1.1, then it does not straightforward to prove that one obtains a semi-
martingale. In particular, a standard approach such as the proof of [38, Theorem 3.2.1]
does not readily extend to our setting.

4.3. Quasi-invariance of the horizontal Wiener measure

In this section we prove quasi-invariance of the law of the horizontal Brownian motion
with respect to variations generated by suitable tangent processes. Our argument follows
relatively closely the one by B. Driver [17] and then E. Hsu in [34] (see also [14,15,25]).
More precisely, we will describe two types of variation of the horizontal Brownian motion
paths with respect to which the horizontal Wiener measure is quasi-invariant. The first
one is largely inspired by Driver [19, Theorem 7.28]. It is explicit, see Equation (4.7) and
readily yields the integration by parts formula in Section 4.3.5, but does not induce a
flow. The second type of variation induces a flow and yields the sub-Riemannian analogue
of [34, Theorem 4.1].

4.3.1. Framework

We will use the same framework and notation as before. In particular, we still consider
an arbitrary connection D on M that satisfies the properties in Assumption 1. In addition
we now introduce notation needed to establish quasi-invariance. We will mainly follow
the presentation in [16,19,34].

We work in the probability space (Wy (R™), B, uy), where Wy (R™) is the space of
continuous functions w? : [0,1] — R™ such that w*(0) = 0, B is the Borel o-field on the
path space Wy (R™), and 3 is the Wiener measure. The coordinate process (w?)o<s<1
is therefore a Brownian motion in R™. The usual completion of the natural filtration
generated by {w?}ogs@ will be denoted by Bs.

‘We use the subscripts or superscripts H, because, as before, R™ is identified with the
subspace R™ x {0} € R™™. The R™""-valued process (w?f,0) will be referred to as

a horizontal Brownian motion. The process {W;}, <, constructed using Corollary 4.4
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is the horizontal Brownian motion and the law py of the horizontal Brownian motion
on M will be referred to as the horizontal Wiener measure on M. Therefore, py is a
probability measure on the space W, (M) of continuous paths w : [0,1] — M with
w(0) = xo.

Remark 4.12. If the horizontal Laplacian can be written in Hérmander’s form globally
as in 4.1, then by [48, Corollary 5.4] the support of the horizontal Wiener measure pyy
is Wy, (M) itself.

4.3.2. Tangent processes to the horizontal Brownian motion
We now introduce the relevant class of tangent processes to the horizontal Brownian
motion. To prove quasi-invariance, we consider the following class of tangent processes.

Definition 4.13. We define the horizontal Cameron-Martin space denoted by C Mz (R™T™)
as the space of absolutely continuous R"-valued (deterministic) functions {h(s)}o<,<,
such that h(0) = 0 and

1
/|h'(s)|§nds < 0.
0

Definition 4.14. Suppose {v(s)}gc,<; is a Bs-adapted R™*™-valued continuous semi-
martingale such that

1
v(0) =0 and E /|v(s)|ﬁn+mds < 0. (4.3)
0

The semimartingale {v(s)}<,<; Will be called a tangent process to the horizontal Brow-
nian motion if the process

S

v(s) — [ Ty (Aodwlt, Av(r))
/

is a horizontal Cameron-Martin path, where T denotes the torsion form of the Bott
connection (not D). The space of tangent processes to the horizontal Brownian motion
will be denoted by TWy (M).

Remark 4.15. In Definition 4.14 we used the torsion T" of the Bott connection. Observe
that since T is a vertical tensor, a Bs-adapted R”T™-valued continuous semimartingale

{v(8)}ocscy satisfying (4.3) is in TW3 (M) if and only if

(1) The horizontal part vy is in CMy (R™T™);
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(2) The vertical part vy is given by

S

ov(s) = [ T, (Ao dw, Avy(r)).
/

As a consequence, for any h € CMy (R™"T™),

S

M)y = h(s) + / T (Ao du, Ah(r)) (4.4)
0

is a tangent process to the horizontal Brownian motion.

Notation 4.16. If v € TWy (M) is a tangent process, we denote

S

pv(o.)H)S =wv(s) — /T{]DT (Ao dwz,"‘,Av(r) + Vu(r))
0

S T

—/ /QgT(Aodwi{,Av(T)—i—Vv(T)) odwh,
0 \0

where QP is the curvature form of the connection D.

This definition comes from Equation (3.3), where dw™ is replaced by the Stratonovich
differential odw®. Since D is a horizontal metric connection, the stochastic integral
Jo QF (Ao dw?, Av(7) + Vo(r)) restricts to R" as a skew-symmetric endomorphism
of R™. Also, from the proof of Theorem 3.15 we have

/TUDT (Ao dwjf, Av(r) + Vo(r))

0

S S

= /TUT(AOde{,Av(r)) —/JVU(T)(AOde{)UT,
0 0

where J = D — V. As a consequence, p,(w’), is actually a horizontal process, that is,
it is R™-valued.
We can rewrite p,(w’), by using Itd’s integral, and we obtain

S

po(@™)s = v(s) + % / (icR), (Av(r) + Volr)dr
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s
+ / va(r) (A o de")U,,,
0
- / /QET (Aodw?, Av(T) + Vu(r)) | dwl
0 0

where S)“{icg is the horizontal Ricci curvature of the connection D. We can further simplify
this expression as follows.

JVv(s)(A ° dw:t)Us =

ZJV”() U odw

n

Tvu(s) (A (dwl))o, + = ZA Jvo(sy(Ai)u,ds
i=1

1 n
-3 Z (A Avy (s)) (Ai)u,ds (4.5)
=1

As a result, we see that

1 |
pv(WH)G = U’H + ) Z/A ']Vv(r) U dr
i=1

S

1 .
Y / Jras v (Addu,dr + 5 / (ick),, (Av(r) + Vo(r)dr
i=1

s
0

[\)

T

+ / Jvory (A (de{))UT —/ /Qa (Ao dw:fl,Av(T) + Vo(r)) de{.

0 0 0

More concisely, one can thus write

S S

po(w), = /qv(wH),.de" —I—/rv(wH),,.dr, (4.6)

0 0

where ¢, is a so(n)-valued adapted process and r, is an R™-valued adapted process such
that fo |7 (1 |R" du < oo a.s. The process p, is therefore an adapted vector field on
Wo (R™) in the sense of [16, Definition 3.2].
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4.8.3. First type of variation

We are now ready to construct the first relevant variation of the horizontal Brownian
motion paths. The idea is to use the formula for the deterministic variation given by 3.5
to infer a formula for a convenient stochastic variation.

Notation 4.17. For any h € CM4(R"™) and any t € R, we denote by pf : Wy (R™) —
Wo (R™) a map which is defined puy-a.s. as follows

S S

H
(phwn)s = /ethMw”)(w )“dw;’:{ —l—t/rTh(wu)(wH)udu. (4.7)
0 0

Remark 4.18. As in the deterministic case, observe that p is not the flow generated by

pr, on Wy (R™). This variation is similar to [19, Theorem 7.28]. Let us however observe

that py a.s., phw™ = w™ and that from (4.6) one has
d h, H H
pn |t:0(ﬂtw )s = Py () (W)s-

We also note that for every t € R, ' is an so(n)-valued process so that for every t € R

H
the semimartingale { J: OS !l (@ )“dw;’:‘} o) is a horizontal Brownian motion with
s€(0,1
respect to pyy.

One has then the following analogue of [19, Theorem 7.28] (see [16] for the details)
which describes the differential of the horizontal stochastic development map and proves
quasi-invariance of the horizontal Wiener measure for the variation described in (4.7).

Theorem 4.19 (Quasi-invariance I). Suppose h € CMz (R™T™).

(1) For every t € R the law of the semimartingale {(pf}w;.t)s}o<S<1 (under py ) is
equivalent to gy, and the corresponding Radon-Nikodym density is given by

1

(wH) = exp t/<TTh,(wH)(WH)S,ethh(“H>(wH)a‘dwz-t>
0

d(p?)*lﬂ-l
dpy

2 Hy |2
=5 [ o).l
0

(2) For every t € R the law of the semimartingale {¢H(pgw7“)s}0gsg1 (under pz) is
equivalent to pyw and the corresponding Radon-Nikodym density is given by

1

d P ) w
(¢Hpt d)H et (w) = exp t/<T7h(wH)(wH>s>ethh(wH)( H)de?>
dpw

0
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e Hy |2
_5/‘?"Th(w7-¢)(w )s|]Rnd5 s
0

where wM = ¢3! (w).
(3) There exists a version of ¢ ((plwy))s which is continuous in (s,t), differentiable in
t, and such that

d
7 l=0on((plwn)s = Umn (@) e — aus.

Proof. The first part follows from Girsanov’s theorem in the form of [17, Lemma 8.2].
The second part follows from Proposition 3.20 and is similar to [19, Theorem 7.28]. O

4.8.4. Second type of variation
We now turn to the discussion of the stochastic flow generated by p.n.

Notation 4.20. For a fixed h € CM3(R"T™) we denote by SMy(h) the space of contin-
uous and Bs-adapted R™-valued semimartingales {Zs}ogsgl that can be written as

S S

zsz/ardr—&—/ardwzi, 0<s<1,
0 0

where a is an R™-valued Bs-adapted process such that there exists a deterministic con-
stant C

R < C(1+ |1 (s)[rn), (4.8)

‘as
and where o is a Bs-adapted process taking values in the space of isometries of R™.

Observe that by Girsanov’s theorem in the form of [17, Lemma 8.2], the law of z €
SMy (h) is equivalent to the law ug of the horizontal Brownian motion. We are now
in position to prove that p,». generates a flow on the horizontal path space for which
the horizontal Wiener measure on R™™ is quasi-invariant. The following statement is
similar to [34, Theorem 3.1]. The proof of that theorem relied on the Picard iteration to
find a solution in a space of R"*™-valued continuous semimartingales equipped with a
suitable norm. In our setting the proof is almost identical, so we omit it for conciseness.

Theorem 4.21. For any h € CMz (R"™) there exists a unique family of semimartingales
{vf,t € R} such that

o P € SMy/(h) for all t € R and viw™ = W™, uy a.s.; hence the law of vl is
equivalent to g ;
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o For py-almost every w™, the function t — vw™ is a Wy (R™)-valued continuous
function;

o py-almost surely, v} o vl (W) =vf ., (W), for every (t1,t2) € R x R;

o There exists a continuous version of {p.rh,l,th(VZL)ﬂt € R} such that sy -almost surely,

{vh,t € R} satisfies the equation

(w

t

M) = 4 [ ooy (). (4.9)
0

Remark 4.22. In the previous theorem, the word unique is understood in the sense of
[34, Proposition 3.3], that is, in the space SMy (h).

We are now in position to prove quasi-invariance properties for the horizontal Wiener
measure with respect to a suitable flow. The following statement is similar to Theorem
4.1 in [34]. We recall that the horizontal stochastic development ¢ and its inverse gf)q__[l
are defined in Definition 4.10.

Theorem 4.23 (Quasi-invariance II). Let h € CMy (R™™). The flow (' = ¢y ovfod;, :
Wyo M) — W, (M), t € R, is defined pw-a.s. with the generator UTth);Ll, and for
every t € R the distribution of (' under uw is equivalent to py . More precisely, there
exists a family of measurable maps

Wy (M) = Wy, (M), teR,
with the following properties.

o For every fired t € R, the law Wk of ¢I' is equivalent to the horizontal Wiener
measure py and the Radon-Nikodym derivative is given by

diigy
dpx

dpyp
(w) = CZIL—H(¢H w), w € Wy, (M).
o For py-almost every w € Wy, (M), the function t — (fw is a W, (M)-valued
continuous differentiable function;
o For pw-almost every w € Wy, (M), there is a continuous wversion of t
UtTh(qS;_Ll([‘w) such that Ctw satisfies the differential equation

d¢tw
dt

= Ut (3 (fw);
o Ly -almost surely,

(ol =( ., forall (ti,t2) € R xR.
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Proof. The result follows from Theorem 4.21. For details, we refer to the proof of [34,
Theorem 4.1]. O

4.83.5. Towards the integration by parts formulas

It is well known that a quasi-invariance result yields an integration by parts formula
on the path space of the underlying diffusion, see B. Driver [17] and then E. Hsu [34]
(see also [14,15,25]). Integration by parts formulas will be studied in more detail in
the second part of the paper, so we only briefly comment on the immediate corollary of
Theorem 4.19, which will be proved in another way (see Lemma 4.24) and then extended
to cylinder functions. It is obtained from Theorem 4.19 by taking the Bott connection
V as the connection D, and following the arguments of the proof in [19, Theorem 7.32].

Lemma 4.24. Let h € CMy (R™™), then for f € C>(M),

E ({df (W1), Urmi(w™)))

1
1.
=E f(Wl)/<h’(s) + 5(9%1c%)Ush(s),de{> ,
3 R~
where E is the expectation with respect to uy and Ricy is the horizontal Ricci curvature
of the Bott connection (viewed as an operator on R™).

4.8.6. The case of a Riemannian submersion: examples

To finish this part of the paper, we discuss the case when the foliation on M comes
from a totally geodesic submersion 7 : (M, g) — (B, j) as described in Example 2.1. This
should allow the reader to relate our quasi-invariance result to the Riemannian result by
B. Driver in [17].

In the submersion case, the notion of horizontal lift of curves plays an important role.

Definition 4.25. Let % : [0,00) — B be a C'-curve. Let € M, such that m(z) = v(0).
Then, there exists a unique C''-horizontal curve v : [0, 00) — M such that v(0) = x and
m(v(t)) = F(t). The curve « is called the horizontal lift of 7 at x.

The notion of horizontal lift may be extended to Brownian motion paths on B by
using stochastic calculus. The argument is similar to the case of the stochastic lift of the
Brownian motion of a Riemannian manifold to the orthonormal frame bundle, see for
instance [17, Theorem 3.2]).

The submersion has totally geodesic fibers, therefore 7 is harmonic and the projected
process

WP = (W)
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is, under py;, a Riemannian Brownian motion on B started at m(zo). The submersion
7 induces a map Wy, (M) — Wy, (B) that we still denote by 7. Let now h be a
Cameron-Martin path in R™ and consider the flow ¢f : W, (M) — W,, (M), t € R,
which is defined pyy-a.s. according to Theorem 4.23. By using the horizontal stochastic
lift Wi (z0) (B) — W, (M), one can construct a flow e We(zo) (B) = Wr(z) (B), t €R
which is unique pys-a.s. as mentioned in Remark 4.22. Then we have the following
commutative diagram

h
Wy (M) —s W, (M)

ﬂl ) lﬂ (4.10)

¢
WW(IO) (B) —— WTF(-TO) (B)

By Theorem 4.23, the law of W® is quasi-invariant under the flow fth Note that the
connection D projects down to the Levi-Civita connection on B, therefore the flow fth
provides a version of the flow considered by E. Hsu in [34, Theorem 4.1]. Thus we recover
Driver’s quasi-invariance result [17] on the manifold B. Further details on this example
will be given in Section 5.3.1, where the generator C:“th will be computed explicitly.

It may be useful to illustrate the diagram (4.10) in a very simple situation. Recall
that the Heisenberg group is the set

H*"*! = {(2,y,2),2 € R",y € R", z € R}
endowed with the group law

(1,91, 21) * (T2,Y2, 22) := (1 + @2, 91 + Y2, 21 + 22 + (X1, y2)R" — (T2, Y1)R")-

The vector fields

0 0 )
Xizaxi—yia, <i<n,
0 0
l/i: 1771<< )
ayﬁxaz LS
0
7 = —
0z

form a basis for the space of left-invariant vector fields on H?"*!'. We choose a left-
invariant Riemannian metric on H?"*! in such a way that {Xi,..., X,,, Y1, ..., Yy, Z} are
orthonormal with respect to this metric. Note that these vector fields satisfy the following
commutation relations

[Xivy}] = 26ijza [X“Z} = [E?Z} = 07 i = ]-7 ey T

Then, the projection map
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m: H2Hl —y R27
(z,y,2) — (2,y)

is a Riemannian submersion with totally geodesic fibers. In that example, the Bott
connection is trivial: VX; = VY; = VZ = 0 and its torsion is given by

Let now Wy (]RQ”) be the Wiener space of continuous functions [0, 1] — R?" starting
at 0. We denote by (By, 5t)o<t<1 the coordinate maps on Wy (RQ") and by py the Wiener
measure on Wy (]RQ"), so that (B, Bt)o<i<1 is a 2n-dimensional Brownian motion under
. By using the submersion 7, the Brownian motion (B, 5¢)o<i<1 can be horizontally
lifted to the horizontal Brownian motion on H?"*! which is given explicitly by

W, = Bt,ﬁt,Z/B dBi — BidB;

110

Let h = (h1, ha) be a Cameron-Martin path in R?” and consider the Cameron-Martin
flow ¢ : Wy (R?™) — W, (R?"), t € R, explicitly given by

(B, B) = (B,B) + th.

One has then a commutative diagram

WO (H2n+1) Ct W (H2n+1)

”l ~ l” (4.11)

Wo (R2") — W, (R27)
where ¢} is the flow on W, (HQ”H) defined py-a. s. by

(' (W) = (B + thy, B + tha,

Z/ (B, + thi(u))d(Bl, + thh(u)) — (B} + thi(u))d(B], + thi(u))
0

=1

One can compute the generator of this flow as

d
— ‘t:OCth w

o
= hl,hg,Z/h’ )dBi — hy(u)dB:, + Z/Bgdhg(u) — BLdR (u)
=1 0

110
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o DSBS o RO Rt e
=1 1= 0

n

:ZhiXi(W)+Xn:héifi(W)+2 Zn:/h VB — ki (u)dB:, | Z(W)

As expected, we can interpret this generator in terms of the Bott connection as a
straightforward computation shows that

/(ZXode—i—ZYodﬁu,Zhl X+th )

0

= 22/}# dﬂl—QZ/hg VB | Z(W)

110

Therefore, we showed that
d
Lot

=Y MXi(W)+ D hpYi(W

i=1 i=1

+/T<i:XiodB;+Xn:Yiod,6 th X+Zhl )
0 i=1 i=1

This is exactly Equation (4.4) written in the parallel frame {X;,Y;, Z}7,
5. Integration by parts formulas

The goal of this part of the paper is to establish several types of integration by parts
formulas for the horizontal Brownian motion. This part relies on very different techniques
than the ones used in the first part and therefore we need to introduce more notation.
Though we will consider the horizontal Brownian motion constructed from the frame
bundle, in this part of the paper we will rely on the stochastic parallel transport rather
than the stochastic lift to the frame bundle (although these are of course equivalent).
Also, instead of working with general connections denoted by D in Section 4, we now
consider connections satisfying Assumption 1 and with the additional property that the
torsion satisfies B. Driver’s anti-symmetry condition. Throughout this part, we will work
with the following probability space.

Notation 5.1. We will work in the probability space (€, B, uy), where Q@ = Wy (R™)
is the space of continuous functions w?* : [0,1] — R™ such that w*(0) = 0, B is the
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Borel o-field on Wy (R™), and py is the Wiener measure on 2. The coordinate process
{wz"}o <<y is therefore a Brownian motion in R". The usual completion of the natural

filtration generated by {wZ“} o<s<q Will be denoted by F.

Recall that for x € M the horizontal Brownian motion on M started at x is defined as
W, = 7(Us), where Uy is a solution to the Stratonovich stochastic differential equation
(4.2) with Uy = ug € Oy (M) such that 7(ug) = .

5.1. Horizontal Weitzenbock type formulas

We start by introducing a family of connections that will be of interest to us later,
and we review some known results on the Weitzenbock formulas proved previously in [7].

5.1.1. Generalized Levi-Civita connections and adjoint connections

In Section 5.1.2 we aim at studying Weitzenbock-type identities for the horizontal
Laplacian, and for this we need to introduce a new class of connections. The main reason
why we use these connections is that we can not make use of the Bott connection since
the adjoint connection to the Bott connection is not metric. We refer to [7,22,30,31] and
especially the books [23,24] for a discussion on Weitzenbock-type identities and adjoint
connections. Instead we make use of the family of connections first introduced in [2] and
only keep the Bott connection as a reference connection.

This family of connections is constructed from a natural variation of the metric that we
recall now. The Riemannian metric g can be split using horizontal and vertical subbundles
described in Section 2.2

9=9gn®dgv. (5.1)

Using the splitting of the Riemannian metric g in (5.1) we can introduce the following
one-parameter family of Riemannian metrics

1
ge:gﬂ@ggv, e > 0.

One can check that for every ¢ > 0, Vg. = 0 where V is the Bott connection. The
metric g. then induces a metric on the cotangent bundle which we still denote by g.,
and therefore

Inl12 = lInll3, + ellnll$, for every n € Ty M.

For each Z € T'°°(V) there is a unique skew-symmetric endomorphism Jyz : H, — H,,
x € M such that for all horizontal vector fields X,Y € H,

gH(JZ(X)7Y>z :gV(Z’T(X’ Y)>$7 (52)
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where T is the torsion tensor of V. We then extend Jz to be 0 on V,. Also, to ensure
(5.2) holds also for Z € T'*°(H), taking into account (2.1) we set Jz = 0.
Following [2] we introduce the following family of connections

1
Y =VxY -T(X,Y)+ gJyX, X, Y e I'>*(M).
It is easy to check that V¢g. = 0 and the torsion of V¢ is given by
1 1
T*(X,)Y)=-T(X,Y)+ -Jy X — —JxY, X, Y eT'>(M).
€ €

The adjoint connection to V¢ as described by B. Driver in [17], see also [23, Section 1.3]
for a discussion about adjoint connections, is then given by

_ 1
XY = VXY —T5(X.Y) = VxY + _JxY, (5.3)

thus V¢ is also a metric connection. Moreover, it preserves the horizontal and vertical
bundles.

Remark 5.2. Note that the connection V¢ therefore satisfies Assumption 1 for every
e>0.

For later use, we record that the torsion of Ve is

~

1 1
T(X,Y)=-T(X,Y)=T(X,Y) — ~Jy X + - JxY. (5.4)
€ e

The Riemannian curvature tensor of V¢ can be computed explicitly in terms of the
Riemannian curvature tensor R of the Bott connection V and it is given by the following
lemma.

Lemma 5.3. For XY, Z € I'>°(M)

~

1 1
RE(X, Y)Z :R(X,Y)Z + gJT(X,Y)Z + ?(JXJY — Jny)ZJr

1 1
E(VXJ)YZ - E(VYJ)XZ»

where R is the curvature tensor of the Bott connection.

P f. oy =~ -~ A~ A~ ~
O R(XY)Z =955 2 - VSV Z — Vi Z

1 1 1 1 1
= (vay + E(VXJ)Y + EJXVY + gJyVX + EJVXy + 6_2JXJY)Z
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1 1 1 1 1
- (VyVX + g(VyJ)X + gJyVX + EJVYX + gJva + 6_2JYJX>Z

1
-V Z ~ Jixy)Z

1
= R<X7Y)Z+ 8_2(JXJY — Jny)Z+
1 1 1
g(V}Q])yZ — g(VyJ)XZ‘F EJT(X,Y)Z- O

We define the horizontal Ricci curvature Ricy for the Bott connection as the fiberwise
symmetric linear map on one-forms such that for all smooth functions f,g on M

(Ricy (df),dg) = Ric (V. f, Vag) = Ricy(Vf, Vg),

where Ric is the Ricci curvature of the Bott connection V and Ricy is its horizontal
Ricci curvature (horizontal trace of the full curvature tensor R of the Bott connection).
The fact that Ricy is symmetric follows from [33, Lemma 4.2 ].

5.1.2. Weitzenbock formulas

A key ingredient in studying the horizontal Brownian motion is the Weitzenbock
formula that has been proven in [2,7]. We recall here this formula. If Zy,..., %, is a
local vertical frame, then the (1, 1) tensor

= Jz,Jz
(=1

does not depend on the choice of the frame and may be defined globally.

Example 5.1 (Ezample 2.2 revisited). If M is a K-contact manifold equipped with the
Reeb foliation, then, by taking Z to be the Reeb vector field, one gets J2 = J2 = —Idy,.

The horizontal divergence of the torsion T is the (1, 1) tensor which in a local horizontal
frame X1,..., X, is defined by

ouT(X Zn: Vx,T)(X;, X). (5.5)

j=1

By using the duality between the tangent and cotangent bundles with respect to the
metric g, we can identify the (1, 1) tensors J? and d4 T with linear maps on the cotangent
bundle T*M.

Namely, let £ : T*M — TM be the standard musical (raising an index) isomorphism
which is defined as the unique vector w? such that for any z € M

g (W, X) =w(X) forall X € T,M,
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while in local coordinates the isomorphism f can be written as follows

n+m n+m n+mn+m
w = E widzt —s Wb = Zo.;]@j: Z g 9" w;0;.
i=1 j=1 j=1 1i=1

The inverse of this isomorphism is the (lowering an index) isomorphism b : TM — T*M
defined by

X' =g(X,"),,X € .M

and in local coordinates

n+m n+m n+m n+m
X=) X0+ X =) X' =) Y g X/da'.
i=1 i=1 i=1 j=1

If n is a one-form, we define the horizontal gradient in a local adapted frame of 7 as
the (0,2) tensor

Vun =Y _Vx,n®0;,

i=1

where 6;,i = 1,...,n is the dual to Xj.
Finally, for ¢ > 0, we consider the following operator which is defined on one-forms
by

0. = zn:(vxi — T2~ (Voyx, — oy x,) éﬁ + %@T ~ Qiew,  (5.6)
i=1
where T¢ is the (1, 1) tensor defined by
TLY = ~T(X,Y) + %JyX, X,Y € T (M).
Similarly as before, we will use the notation
Wi = Zn:‘z}m ® 0;.
i=1

The expression in (5.6) does not depend on the choice of the local horizontal frame and
thus 0. may be globally defined. Formally, we have

1 1
O = — (Vi — F5)" (Vyy — T5)) — gﬁ + —0nT — Ricy, (5.7)
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where the adjoint is understood with respect to the L? (M, g., 1) inner product on sec-

tions, i.e. [y(-,-)edp (see [1, Lemma 5.3] for more detail). The main result in [7] is the

following. Here the Laplacian L is defined by Equation (4.1) in Section 4.1.1

Theorem 5.4 (Lemma 3.3, Theorem 3.1 in [7]). Let f € C*° (M), x € M and € > 0, then
dLf(z) = Odf (x), (5.8)

where L is defined by Equation (4.1).

Remark 5.5. Using [7, Lemma 3.4], we see that for 1,69 > 0, the operator 0., — .,

vanishes on exact one-forms. It is therefore no surprise that the left hand side of (5.8)

does not depend of e.

To conclude this section we remark, and this is not a coincidence, that the potential
term in the Weitzenbock identity can be identified with the horizontal Ricci curvature
of the adjoint connection V©.

Lemma 5.6. The horizontal Ricci curvature of the adjoint connection Ve s given by
. 1 1
NRicy, = Ricy, — 05T+ T,
where 03, T denotes the adjoint of dyT with respect to the metric g.

Proof. Let X, Y € IT'°(TM) and Xi,---,X,, be a local horizontal orthonormal frame.
By the definition of the horizontal Ricci curvature and Lemma 5.3 we have

Ric,,(X,Y)

—ZgH “(Xi, X)Y, X))

1
_ng (X X)X + 3 n (gJT(Xi,X)Y, XZ-)
i=1
1
+ ZgH ( (Vx,J)xY — E(VXJ)X,iY,XZ) .
For the first term, we have

3" gn(R(X:, X)Y, X;) = Ricy (X, Y).
=1

For the second term, we easily see that
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Zgy Jrx,.x)Y, Xi) ng i), T(Y, Xi))
=1

= gn(J*X,Y).

For the third term, we first observe that gy ((VxJ)x,Y, X;) = 0. Then, we have

Doon (V. N)xY, Xi) = =Y gu (Vx, ) x X3, Y)

i=1 i=1
= - Zn:gv (Vx,T)(X:,Y), X)
=gv (nT(Y),X). O
5.2. Integration by parts formula on the horizontal path space

We fix € > 0 throughout the section. Our goal in this section is to prove integration by
parts formulas on the path space of the horizontal Brownian motion. Some of the integra-
tion by parts formulas for the damped Malliavin derivative have been already announced
in a less general and slightly different setting in [4]. The integration by part formulas for
the intrinsic Malliavin derivative are new. We point out a significant difference of our
techniques from what have been used in [1,2,4]. Namely, we shall mostly make use of the
adjoint connection Ve instead of the Bott connection. Below we summarize important
properties of the connection V¢ which will be used extensively in the sequel.

Remark 5.7 (Properties of the adjoint connection). Let Ve be the adjoint connection
defined by Equation 5.3. Then it satisfies the following properties.

e The adjoint connection is metric, that is, %Egs = 0;

e The adjoint connection is horizontal, that is, if X € I'*°(H) and Y € I'*°(M) then
Ve X € I®(H);

« The torsion tensor T¢ of V¢ is skew-symmetric, that is, it satisfies B. Driver’s total
skew-symmetry condition ([17, p. 272]) as follows. For X, Y, Z € T'>°(M)

(T°(X,Y), Z)e = —(T°(X, Z),Y)-.
The latter can be seen from Equation (5.4)
-~ 1 1
TE(X,Y)=T(X,Y) - ~Jy X + - JxY
€ €

and the definition of J.
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Next recall that a stochastic parallel transport on forms can be defined following [38,
p. 50].

Notation 5.8. Let V be a general connection on M, and {MS}O<S<1 be a semimartingale
on M. We denote by

//O,s : TJWOM — TMbM

the stochastic parallel transport of vector fields along the paths of {Ms}ogsgr Then by
duality we can define the stochastic parallel transport on one-forms as follows. We have

//075 Ty M — Ty M

such that for a € T, M

<7707Sa,v> = (a,7/0,sv>, v € Thy, M. (5.9)

In particular, the stochastic parallel transport for the adjoint connection Ve =V+ %J
along the paths of the horizontal Brownian motion {WS}0<S<1 will be denoted by (:)i

Since the adjoint connection Ve is horizontal, the map (:)i : TpxM — Ty M is an isometry
that preserves the horizontal bundle, that is, if u € H,, then O5u € Hyy,. We see then
that the anti-development of {W}, <, defined as

S

B, = /(@i)—l o dW,,
0

is a Brownian motion in the horizontal space H.,.

Remark 5.9. Observe that on one-forms the process (:)i 2 Ty M — Ty M is a solution to
the following covariant Stratonovich stochastic differential equation

d[Oa(W,)] = OV . a(W,),

where « is any smooth one-form. Since %idWS = Voaw, + %JodWS = Voaw,, we deduce
that ©° is actually independent of ¢ and is therefore also the stochastic parallel transport
for the Bott connection. As a consequence, the Brownian motion {Bs}ogsgl and its
filtration are also independent of the particular choice of €.

We define a damped parallel transport 75 : Ty, M — T7M by the formula

= MEOE, (5.10)
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where the process OF : Ty, Ml — T;M is the stochastic parallel transport of one-forms
with respect to the connection V¢ =V — T¢ along the paths of {Ws}ogsgl' The multi-
plicative functional M$ : T:M — T M, s > 0, is defined as the solution to the following
ordinary differential equation

dM 1 1., 1 . —1

S — _ MO 2J2% — 26T € 11
- STAGHCK <€J ~on +m1cﬂ> (@)1, (5.11)
M5 =1d.

Observe that the process 75 : 17, Ml — T M is a solution of the following covariant
Stratonovich stochastic differential equation

d[rsa(Ws)] (5.12)
R . 1/1.5 1 .

=75 | Voaw, = Foaw, — 5 | 237 = Z0uT + Riew | ds | a(Wy),

T0 = Id7

where « is any smooth one-form.
Also observe that M¢ is invertible and that its inverse is the solution of the following
ordinary differential equation

dME)=t 1 1.5 1 ) _ _

—= =0 -J - -y T+R o2 T 5.13
ds 975\ ¢ c Hd + Riey ( s) (Ms) ( )

In particular, it implies that 77 is invertible.

5.2.1. Malliavin and directional derivatives

We recall that the horizontal Wiener measure on W, (M) is defined as the distribution
of the horizontal Brownian motion. The coordinate process on W, (M) as before is
denoted by {ws}oc c1-

Definition 5.10. A function F : W, (M) — R is called a C*-cylinder function if there
exists a partition

m={0=5)<s1 <3< <8, <1}
of the interval [0,1] and f € C*(M™") such that
F(w) = f(wsy, ..., ws, ) for all we Wy, (M). (5.14)

The function F is called a smooth cylinder function on W, (M), if there exists a partition
mand f € C°°(M") such that (5.14) holds.

Please cite this article in press as: F. Baudoin et al., Integration by parts and quasi-invariance
for the horizontal Wiener measure on foliated compact manifolds, J. Funct. Anal. (2019),
https://doi.org/10.1016/j.jfa.2019.06.006




YJFAN:8263

F. Baudoin et al. / Journal of Functional Analysis ess (sess) see—see 47

We denote by FC* (W, (M)) the space of C*-cylinder functions, and by FC° (W, (M))
the space of C'*°-cylinder functions.

Remark 5.11. Note that the representation (5.14) of a cylinder function is not unique.
However, let F € FC>° (W, (M)) and n > 0 be the minimal n such that there exists a
partition

mi={0=5)<81 <s3< <8, <1}
of the interval [0,1] and f € C*(M™") such that
F(w) = f(wsy, ..., ws, ) for all w e Wy, (M). (5.15)
In that case, if
7={0=5, <8 <8< <3, <1}
is another partition of the interval [0,1] and f € C*(M™) is such that
F(w) = f (ws,,...,ws,) for all w € W, (M),
then 7 = 7 and f = f. Indeed, since

fwsy,.yws,) = f(wsl,..., ws,)

we first deduce that s; = §;. Otherwise dyf =0 or dlf = 0, where d; denotes the differ-
ential with respect to the first component. This contradicts the fact that n is minimal.
Similarly, so = 32 and more generally s; = §. The representation (5.11) will be referred
to as the minimal representation of F.

We now turn to the definition of directional derivative on the horizontal path space.

Definition 5.12. Let F = f(ws;,...,ws,) € FC>® (W,(M)). For an F-adapted and
T,M-valued semimartingale (v(s))ogs<1 such that v(0) = 0, we define the directional
derivative

n

D, F =3 (dif (Wey, o W), 05, 0(51))

i=1

Definition 5.13. For F = f (ws,, ..., ws,) € FC>® (W,(M))) we define the damped Malli-

avin derivative by

21031 S df( 519" Ws‘n), 0<s< 1.

Please cite this article in press as: F. Baudoin et al., Integration by parts and quasi-invariance
for the horizontal Wiener measure on foliated compact manifolds, J. Funct. Anal. (2019),
https://doi.org/10.1016/j.jfa.2019.06.006




YJFAN:8263

48 F. Baudoin et al. / Journal of Functional Analysis sss (sess) see—see

Observe that from this definition l~)§F € Ty, M.

Remark 5.14. Note that the directional derivative D is independent of €, but the damped
Malliavin derivative depends on e. In addition, both the directional derivatives and
damped Malliavin derivatives are independent of the representation of F. Indeed, let
F = f(ws,,...,ws,) be the minimal representation of F. If f (ws,,...,ws,) is another
representation of F then for every 1 < j < N, we have either that there exists i such
that s; = 5; in which case d; f = djf, or for all ¢, s; # 5; in which case djf =0.

Before we can formulate the main result, we need to define an analog of the Cameron-
Martin subspace.

Definition 5.15. An Fi-adapted absolutely continuous H,-valued process {7(s)}oc.<1

such that v(0) = 0 and E,, (fo Il (s HHds) < oo will be called a horizontal Cameron-
Martin process.

Definition 5.16. Suppose {v(s)}0< s<1 18 an Fg-adapted T;M-valued continuous semi-

martingale such that v(0) = 0 and E, (fo lv(s ||2ds> < oo. We call {v(s)}oc ) @
tangent process if the process

lT@ re odBT,@E (r))

o\

is a horizontal Cameron-Martin process.

Remark 5.17. By Remark 5.9 the stochastic parallel transport (:)Z is independent of ¢,
therefore the notion of a tangent process is itself independent of € as well.

Remark 5.18. As the torsion T is a vertical tensor, then an Fs-adapted T, M-valued
continuous semimartingale {v(s)}yc,<; such that

/Hv(s)||2ds < oo, v(0)=0
0

is in TWy (M) if and only if
(1) The horizontal part vy is a horizontal Cameron-Martin process;
(2) The vertical part vy is given by

S

ow(s) = / (B5)"1T(8% o dB,, 6%y (1)),

0
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The main results of this section are the following two theorems.

Theorem 5.19 (Integration by parts for the damped Malliavin derivative). Suppose F €
FC> (W,(M)) and v is a tangent process, then

1 1

E. / (D:F, 0% (s))ds | =K, | F / (+'(s),dB)a | - (5.16)

Theorem 5.20 (Integration by parts for the directional derivatives). Suppose F €
FC> (W,(M)) and v is a tangent process, then

1 ~ ~
E,(D,F)=E, | F / <U;{(s) + 2(@§)Imicﬂegvﬂ(s),d3t>
H

Even though these two integration by parts formulas seem similar, they are quite dif-
ferent in nature. The damped derivative is used to derive gradient bounds and functional
inequalities on the path space (e.g. [2,4]). The directional derivative, however, is more
related to quasi-invariance properties such as in Section 4.3, and the expression

1
1 ~ ~
[ (o661 + 580 hcw (o). )
H

0
can be viewed as a horizontal divergence on the path space.

The remainder of the section is devoted to proving Theorem 5.19 and Theorem 5.20.
We adapt the techniques from the Markovian stochastic calculus developed by Fang-
Malliavin [27] and E. Hsu [35] in the Riemannian case to our setting.

5.2.2. Gradient formula

In this preliminary section we recall the gradient formula for the semigroup Ps. In the
case the Yang-Mills condition is satisfied, that is, the horizontal divergence dxT = 0,
the operator [, is essentially self-adjoint on L? (M, g., ) equipped with inner product
on sections, i.e. fM<" Yedp, and the gradient representation was first proved in [2].

Lemma 5.21 (Theorem 4.6 and Corollary 4.7 in [2], Theorem 2.7 in [32]). For f €
C>(M), the process

Ny = 75(dPi—s f)(W), 0<s<1, (5.17)

is a martingale, where dPy_,f denotes the exterior derivative of the function Py_f. As
a consequence, for every 0 < s < 1,

4P, f(z) = B, (rEdf (W,)). (5.18)
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Proof. From Itd’s formula and the definition of 7¢, we have

dNs =

1/1

T 2

. d
+ 75 E(dPl,sf)(Ws)ds.

We now see that

d 1 1 1
E(dPl,sf) = —§dP1stf = —§dLP1,sf = _§D€dplfsfu

where we used Theorem 5.4. Observe that the bounded variation part of

1
r
2

is given by %Tj OedP;_s f(W)ds which cancels out with the expression

Tjd%(dPl,sf)(Ws)ds

1
S <VodWs - Toaw, — 5 (gJZ —owT+ mit%) dS) (dP1—sf)(Ws)

1 1
SE (VodWS - ‘ZidWS - = (gJZ — E(SHT + SRicH> dS) (dPlfsf)(WS)

YJFAN:8263

in the first equation. The martingale property follows from a bound similar to [2, Lemma

4.3] or [30,31, Theorem 2.7]. O

5.2.3. Integration by parts formula for the damped Malliavin derivative

We prove Theorem 5.19 in this section. Some of the key arguments may be found in

[2,4], however since our framework is more general here (for example, we do not assume

the Yang-Mills condition that the horizontal divergence d%T = 0) and we now use the

adjoint connection V¢ instead of the Bott connection, for the sake of self-containment,

we give a complete proof.

Lemma 5.22. For f € C*°(M), and ~ horizontal Cameron-Martin process

1
E., [ f07) / (v(5),dBo) | =
0

1
E, <def(W1),/(T§’*)1@27/(8)d8>
0

Proof. Consider again the martingale process N, defined by (5.17). We have then for

fe (M)

for the horizontal Wiener measure on foliated compact manifolds, J. Funct. Anal. (2019),
https://doi.org/10.1016/j.jfa.2019.06.006
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E, f(Ws) <71(T)adBr>H @SdB >
! /
— &, | (rov,) - ), 8248,
O/
(AP, fW,), 834, [ (85 (r). &5 B,
C
<dPs Tf( ) E /(T)>d7a

(T2 dPy f(Wy), (757) 7105 () dr

(Ny, (t2%) 7105 (r))dr

—E, <Ns,/(Tf’*)_1@i7'(r)dr> :
0

where we integrated by parts in the last equality. O

S, O, o~ o~

Remark 5.23. A similar proof as above actually yields that for f € C°°(M), v horizontal
Cameron-Martin process and 0 < s < 1

b

1

E. | f0m) / (1), dB)w | F | =

s
1

E, <T1Edf(W1),/(Tf’*)_léiv’(r)dr> | s

S

Lemma 5.22 shows that integration by parts formula (5.16) holds for cylinder functions
of the type F = f(W;). We now turn to the proof of Theorem 5.19 by using induction
on n in a representation of a cylinder function F. To run the induction argument we
need the following fact.

Proposition 5.24. Let F = f(W,,,--- ,W; ) € FC>® (Wy(M)). We have

E <ZTdf ,>>,
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Proof. We will proceed by induction on n. Consider a cylinder function F =
f(Wg,,--- W, ). For n = 1 the statement follows from Lemma 5.21, which implies
that

dEo(f(Ws,)) = dPs, f(x) = Eo (75, df (Ws,)).-

Now we assume that the claim holds for any cylinder function of the form F =
f(Ws,, -+, Ws,) for any &k < n — 1. By the Markov property we have

Ey(F) = EL(E(F | F,)) = Ex(9(Ws,)),
where g(y) = E, (f(y, Wey—sy, -+, Ws, —s,)). Therefore
0E..(F) = E(r%, dg(W,).
By using the induction hypothesis, we obtain

Ey(dlf y: So2—s815 """ 7W9n—51))+

Ey <Z ng 751 52 sy athh))

i

— § €

_Ey ( T81—81 7/ 52 s1y """ 7Wsn—51)> .
i=1

By the multiplicative property of 7¢ and the Markov property of W we have

3

EW, (7—5 7sld f(ya sp—s19 """ 7Ws”751)) =
( )1]E(Tdf( .s1a"'aWsn)|]:sl)~

Therefore we conclude

dE (ZTdf )) O

Remark 5.25. As expected, the expression

(ZT df Ss15° 77 sn))

is independent of the choice of the representation of the cylinder function F', as follows
from Remark 5.14.
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Proof of Theorem 5.19. We use induction on n in a representation of the cylinder func-

tion F. More precisely, we would like to show that for any F = f(Ws,,--- , W, ) €
FC> (W, (M)) and s < s1 we have

Ew F/<7/(T)7dBT>H fs - (519)
Eo | S (g (War, o W, 750 / () (r)dr) | F.
=1

S

The case n = 1 is Lemma 5.22 and Remark 5.23. Assume that (5.19) holds for
any cylinder function F' represented by a partition of size n — 1 for n > 2. Let
F=fWs, -, W, ) e FC>®(W,(M)). We have for s < s1,

1
E, F/WMA&MLa

Sn

:&,F/WWJ&MLE

S

S1 Sn

=E, F/(fy’(?"),dBQH | Fs | +E. F/('y'(r),dBr)H | Fs

S S1

S1

_E, |E.(F| 7)) / (' (1), dB s | o | +

S

Sn

]Er Em F/<’7/(T)7dBT>H“F51 |‘FS

S1

By the Markov property we have
E.(F'| Fs,) = g(Ws,),

where g(y) = E,(f(y, Wey—s1, -+, Ws,,—s,)). Thus by Lemma 5.22 and Remark 5.23

S1

B, | EF|£) [0/ B | 7 | =

S

S1

£, | o) [0 dB)w | 7 | =

S
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E, <dg(We1),(T§1)*/(Tf’*)1@i7’(r)dr> | s

S

Now according to Proposition 5.24

dg(y) = ]Ey <Z Tssifsldif(% Wszfsu T 7Wsn51)> .
i=1
Using the fact that

IEWS] (ngi—sldif(y7 W32—317 e 7Wsn—81)) =
(75) B (5,dif (Wey -, Wa, ) | Foy)

we conclude

S1

]E:L’ EI(F | ]:81)/<’yl(r)7dBT>'H |]:S

S

n S1

B [ S f Wi W) 75 / (r5") 185 (r)dr) |

i=1 s

Using the induction hypothesis that (5.19) holds for n — 1 we see that

Sn

B F/ (), dBr )| Fon | =

S1

n Si

]Ea: Z(dzf(Wslv o 7WS7L>7TSE1;* /(Tf’*>_1’y/<7‘)d7"> | ‘7:81 .o
i=1 2
5.2.4. Integration by parts formula for the directional derivatives
In this section we prove Theorem 5.20. One of the main ingredients B. Driver used in
[17] in the Riemannian case was the orthogonal invariance of the Brownian motion to
filter out redundant noise. As a complement to Lemma 5.22, we first prove the following
result.

Lemma 5.26. Let {Os}0<s<1 be a continuous F-adapted process taking values in the
space of skew-symmetric endomorphisms of H, such that E (fol ||(98||2d5) < oo, where
|0s]|? = Tr(0:0y). For f € C*(M), we have

1
~ 1
E, <7‘fdf(W1),/(T§’*)_1®§ (OSdBS - §Tésds>> =0,
0
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where T§, is the tensor given in a horizontal frame e1,--- ,en by

T, =3 (057" T%(e:, 0504(85) ey).
=1

Proof. Recall that we considered the following martingale in (5.17)
Ny =75(dP1_sf)(Ws), 0<s<1.

We have then

1
E, <def(W1),/(Tj’*)_l(:)i(’)sst> =
0

1
E, <N1,/(T§’*)_1é§OSdBS>
0

From the proof of Lemma 5.21, we have

dN,
_ _ 1/1., 1 ,
=T, vOdW.gfsodwsfi EJ 7;5HT+%1CH ds (dPl_sf)(Ws)
+ fi(dp £ (Wy)ds
Tg ds 1—s s
. (véist - T%gdB) (AP ) (Wy) = 7V5. 1y AP F(WS),

where, as before, V¢ denotes the connection V —%¢. Let us denote by Hess® the Hessian
for the connection V. One has therefore

1
E, <N1,/(T§’*)1@iosd33> —

0

1
E, / Hess® P, f(6°dB,, 620.,dB,)(W.)
0

Due to the skew symmetry of O and the fact that for h € C*°(M), X,Y € I'°(M),
Hess*h(X,Y) — Hess*h(Y, X) = T°(X,Y)h,

we deduce
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1
E. <N1, / <T§’*>-1ézosd35> -
0

%Em /1 <dP1_Sf,@)§T55>ds -
0

1
1 e, %\—1eqe
E]Ex /<NSa(Ts’ ) 163T03>d8
0

Integrating by parts the right hand side yields the conclusion. O

We are now in position to prove the integration by parts formula for cylinder functions
of the type F' = f(Wj).

Lemma 5.27. Let v be a tangent process. For f € C*°(M),

E. ((r(m),850(1))) =

1
o | £0%) [ (450) + 589 RienBioms), d. )
H
0

Proof. Let v be a tangent process. We define

S

h(s) = v(s) - / (09)717(8% o dB,, B0 (r)).

By definition of tangent processes, we have that h = vy is a horizontal Cameron-Martin
process. By Equation (5.4) we have

1

T#(odWy, ©%v(s)) = T(O% o dB,, O%u(s)) — EJ@EU(S)((:)i odB,).

Therefore we get

dv(s) + (©5)~! <T€(odI/Vs, )+ 3 <5J2 - 0T+ smcﬂ) ds) O%u(s)

(02) 1., (s (©5 0 dBy)

©cv(s)

1
=dh -
() + -

(©5)! (1.12 - éa;;TJr %cH) Och(s)ds

1 ~ ~ 1 ~ ~
= dh(s) + = (02) gy o) (B5BL) + 5 (09) 7 (Sicw) O h(s)ds.
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In the last computation, the transformation of the Stratonovitch differential
<@§>_1J©§v(s)(®§ o dB;)
into Itd’s differential

ChEE (6% dB,)

Ozu(s)

is similar to (4.5). It is then a consequence of It&’s formula that

S

ofs) = (82) " 1rs / (r5) 165 0 dM,,

0

where
dM, = dh(s) + (@f) Toeu(e)O5dBs + 2(@ )1 (Ricy) O%h(s)ds

Converting the Stratonovich integral into Itd’s integral finally yields

S

. . 1 ~ .
ols) = (@975 [()7185 (ah(s) + (8" (Siew) B3 (s)ds
0
1
+ OSdBS - §T(695d8) s
with
O, (@f) NCH

Since Oy is a skew-symmetric horizontal endomorphism, one can conclude from Lem-
mas 5.22 and 5.26 that

E. ({dr W), 850(5)))

1
— / <U’H @6) "Ricy O%vy (s), st>
0

H
because h(s) = vy(s). O

Now Theorem 5.20 can be proven using induction on n in the representation of a
cylinder function F'. The case n = 1 is Lemma 5.27, and showing the induction step is
similar to how Theorem 5.19 has been proven, so for the sake of conciseness of the paper,
we omit the details. As a direct corollary of Theorem 5.20, we obtain the following.
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Corollary 5.28. Let F,G € FC>™ (W,(M)) and v be a tangent process. We have
E,(FD,G) = E,(GD}F),

where

1
=-D, + <viﬂ @5) "Ricy Oy (s), dBS>

4 H

Proof. By Theorem 5.20, we have

1
ED(FG) =B | FG [ (435 + 589 Ricw®ivu(s). . )
H
0

Since D, (FG) = FD,(G) + GD,(F), the conclusion follows immediately. O
5.3. Ezxamples

5.3.1. Riemannian submersions

In this section, we verify that the integration by parts formula we obtained for the
directional derivatives is consistent with and generalizes the formulas known in the Rie-
mannian case. Let us assume here that the foliation on M comes from a totally geodesic
submersion 7 : (M, g) — (B,j) as in Example 2.1. Since the submersion has totally
geodesic fibers, 7 is harmonic and the projected process

WaB = 7"-(VVS)

is a Brownian motion on B started at m(x). Observe that from the definition of sub-
mersion, the derivative map 7,7 is an isometry from H, to T,B. From Example 2.3,
the connection V¢ projects d/?wn to the Levi-Civita connection on B. Therefore the

stochastic parallel transport ©f projects down to the stochastic parallel transport for
the Levi-Civita connection along the paths of {W;B }0 <s<1- More precisely,

flo.s = Tw,mo O o (T,m) !,

where //07S : Trz)B — TywsB is the stochastic parallel transport for the Levi-Civita
connection along the paths of {W]B}O <s<1t Consider now a Cameron-Martin process
{h(s)}ocsct I Tr(xyB and a cylinder function F' = f(W, B ..., WB) on B. The function
F = f(n(Wg,), - ,7(Ws,)) is then in FC*> (Wy(M)) (Refer to [19, Definition 7.4]).
Using Theorem .20, one gets
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/ 1
Em (DyF ) = EI F/ <U;{(8) + 5(@2)_1mkyéivy(8), dBS> y

s H

where vy is the horizontal lift of h, that is, vy = (T,7)~'h. By definition, we have

M=

D, F =Y (dif (WE - ,WE ), (T, 7) 0 65, 0(s1))

i=1

[
M=

(dif VB, WE). o, h(s))

i=1

It is easy to check that Ricy is the horizontal lift of the Ricci curvature Ric® of B.
Therefore, the integration by parts formula for the directional derivative D, F' can be
rewritten as follows.

E. <Z<dzf( B SWE ). s >>>

=1

—E, | F /1 <h/(s) + % fows Hic® o h(s),dBE > ,
0

Tﬂ.(m)B

where BB is the Brownian motion on Tr()B given by BB = T,7(B). This is exactly
Driver’s integration by parts formula in [17] for the Riemannian Brownian motion XB.

5.8.2. K-contact manifolds

In this section, we assume that the Riemannian foliation on M is the Reeb foliation of
a K-contact structure. The Reeb vector field on M will be denoted by R and the almost
complex structure by J. The torsion of the Bott connection is then

T(X,Y)=(JX,Y)yR.
Therefore with the previous notation, one has
JzX =(Z,R)JX

and the vertical part of a tangent process is given by

S

() == [(@) 178 o dB,. um(r)
0

S

- / ((65)"R) (38503, (r), 6% o dB,)

Please cite this article in press as: F. Baudoin et al., Integration by parts and quasi-invariance
for the horizontal Wiener measure on foliated compact manifolds, J. Funct. Anal. (2019),
https://doi.org/10.1016/j.jfa.2019.06.006




YJFAN:8263

60 F. Baudoin et al. / Journal of Functional Analysis sss (sess) see—see

References

[1] Fabrice Baudoin, Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foli-
ations, in: Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds, in: EMS Ser. Lect.
Math., vol. 1, Eur. Math. Soc., Ziirich, 2016, pp. 259-321.

[2] Fabrice Baudoin, Stochastic analysis on sub-Riemannian manifolds with transverse symmetries,
Ann. Probab. 45 (1) (2017) 56-81.

[3] Fabrice Baudoin, Geometric inequalities on Riemannian and sub-Riemannian manifolds by heat
semigroups techniques, arXiv e-prints, page, arXiv:1801.05702, January 2018.

[4] Fabrice Baudoin, Qi Feng, Log-Sobolev inequalities on the horizontal path space of a totally geodesic
foliation, arxiv preprint, https://arxiv.org/abs/1503.08180, 2016.

[5] Fabrice Baudoin, Nicola Garofalo, Curvature-dimension inequalities and Ricci lower bounds for
sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc. (JEMS) 19 (1) (2017)
151-219.

[6] Fabrice Baudoin, Maria Gordina, Tai Melcher, Quasi-invariance for heat kernel measures on
sub-Riemannian infinite-dimensional Heisenberg groups, Trans. Amer. Math. Soc. 365 (8) (2013)
4313-4350.

[7] Fabrice Baudoin, Bumsik Kim, Jing Wang, Transverse Weitzenbock formulas and curvature dimen-
sion inequalities on Riemannian foliations with totally geodesic leaves, Comm. Anal. Geom. 24 (5)
(2016) 913-937.

[8] Fabrice Baudoin, Jing Wang, Curvature dimension inequalities and subelliptic heat kernel gradient
bounds on contact manifolds, Potential Anal. 40 (2) (2014) 163-193.

[9] Denis Bell, Quasi-invariant measures on the path space of a diffusion, C. R. Math. Acad. Sci. Paris
343 (3) (2006) 197-200.

[10] Lionel Bérard-Bergery, Sur certaines fibrations d’espaces homogeénes riemanniens, Compos. Math.
30 (1975) 43-61.

[11] Arthur L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results
in Mathematics and Related Areas (3)), vol. 10, Springer-Verlag, Berlin, 1987.

[12] Jean-Michel Bismut, Large Deviations and the Malliavin Calculus, Progress in Mathematics, vol. 45,
Birkhauser Boston, Inc., Boston, MA, 1984.

[13] Charles P. Boyer, Krzysztof Galicki, Sasakian Geometry, Oxford Mathematical Monographs, Oxford
University Press, Oxford, 2008.

[14] Ana Bela Cruzeiro, Equations différentielles sur I’espace de Wiener et formules de Cameron-Martin
non-linéaires, J. Funct. Anal. 54 (2) (1983) 206-227.

[15] Ana-Bela Cruzeiro, Paul Malliavin, Renormalized differential geometry on path space: structural
equation, curvature, J. Funct. Anal. 139 (1) (1996) 119-181.

[16] B.K. Driver, The Lie bracket of adapted vector fields on Wiener spaces, Appl. Math. Optim. 39 (2)
(1999) 179-210.

[17] Bruce K. Driver, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a
compact Riemannian manifold, J. Funct. Anal. 110 (2) (1992) 272-376.

[18] Bruce K. Driver, Integration by parts and quasi-invariance for heat kernel measures on loop groups,
J. Funct. Anal. 149 (2) (1997) 470-547.

[19] Bruce K. Driver, Curved Wiener space analysis, in: Real and Stochastic Analysis, in: Trends Math.,
Birkhauser Boston, Boston, MA, 2004, pp. 43-198.

[20] Bruce K. Driver, Leonard Gross, Laurent Saloff-Coste, Holomorphic functions and subelliptic heat
kernels over Lie groups, J. Eur. Math. Soc. (JEMS) 11 (5) (2009) 941-978.

[21] David Elworthy, Decompositions of diffusion operators and related couplings, in: Stochastic Analysis
and Applications 2014, in: Springer Proc. Math. Stat., vol. 100, Springer, Cham, 2014, pp. 283-306.

[22] David Elworthy, Generalised Weitzenbock formulae for differential operators in Hérmander form,
Preprint, 2017.

[23] K.D. Elworthy, Y. Le Jan, Xue-Mei Li, On the Geometry of Diffusion Operators and Stochastic
Flows, Lecture Notes in Mathematics, vol. 1720, Springer-Verlag, Berlin, 1999.

[24] K. David Elworthy, Yves Le Jan, Xue-Mei Li, The Geometry of Filtering, Frontiers in Mathematics,
Birkhéuser Verlag, Basel, 2010.

[25] Ognian Enchev, Daniel W. Stroock, Towards a Riemannian geometry on the path space over a
Riemannian manifold, J. Funct. Anal. 134 (2) (1995) 392-416.

[26] Richard H. Escobales Jr., Sufficient conditions for a bundle-like foliation to admit a Riemannian
submersion onto its leaf space, Proc. Amer. Math. Soc. 84 (2) (1982) 280-284.

Please cite this article in press as: F. Baudoin et al., Integration by parts and quasi-invariance
for the horizontal Wiener measure on foliated compact manifolds, J. Funct. Anal. (2019),
https://doi.org/10.1016/j.jfa.2019.06.006



http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E454D5332303134s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E454D5332303134s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E454D5332303134s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E3230313762s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E3230313762s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4C657669636Fs1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4C657669636Fs1
https://arxiv.org/abs/1503.08180
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4761726F66616C6F32303137s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4761726F66616C6F32303137s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4761726F66616C6F32303137s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E476F7264696E614D656C6368657232303133s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E476F7264696E614D656C6368657232303133s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E476F7264696E614D656C6368657232303133s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4B696D57616E6732303136s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4B696D57616E6732303136s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E4B696D57616E6732303136s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E57616E673230313461s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426175646F696E57616E673230313461s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib42656C6C3230303661s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib42656C6C3230303661s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4265726172642D4265726765727931393735s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4265726172642D4265726765727931393735s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426573736531393837s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426573736531393837s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4269736D7574426F6F6B31393834s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4269736D7574426F6F6B31393834s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426F79657247616C69636B69426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib426F79657247616C69636B69426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4372757A6569726F3139383362s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4372757A6569726F3139383362s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4372757A6569726F4D616C6C696176696E31393936s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4372757A6569726F4D616C6C696176696E31393936s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723139393962s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723139393962s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723139393262s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723139393262s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723139393761s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723139393761s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723230303461s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4472697665723230303461s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib44726976657247726F737353616C6F66662D436F7374653230303961s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib44726976657247726F737353616C6F66662D436F7374653230303961s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456C776F7274687932303134s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456C776F7274687932303134s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456C776F727468794C654A616E4C69426F6F6B31393939s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456C776F727468794C654A616E4C69426F6F6B31393939s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456C776F727468794C654A616E4C69426F6F6B32303130s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456C776F727468794C654A616E4C69426F6F6B32303130s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456E636865765374726F6F636B3139393561s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib456E636865765374726F6F636B3139393561s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4573636F62616C65733139383261s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4573636F62616C65733139383261s1

ARTICLE IN PRESS

F. Baudoin et al. / Journal of Functional Analysis ess (sess) see—see 61

[27] Shizan Fang, Paul Malliavin, Stochastic analysis on the path space of a Riemannian manifold. I.
Markovian stochastic calculus, J. Funct. Anal. 118 (1) (1993) 249-274.

[28] C. Fefferman, D.H. Phong, Subelliptic eigenvalue problems, in: Conference on Harmonic Analysis
in Honor of Antoni Zygmund, Vols. I, IT, Chicago, Ill., 1981, in: Wadsworth Math. Ser., Wadsworth,
Belmont, CA, 1983, pp. 590-606.

[29] Maria Gordina, Thomas Laetsch, Sub-Laplacians on sub-Riemannian manifolds, Potential Anal.
44 (4) (2016) 811-837.

[30] Erlend Grong, Anton Thalmaier, Curvature-dimension inequalities on sub-Riemannian manifolds
obtained from Riemannian foliations: part I, Math. Z. 282 (1-2) (2016) 99-130.

[31] Erlend Grong, Anton Thalmaier, Curvature-dimension inequalities on sub-Riemannian manifolds
obtained from Riemannian foliations: part II, Math. Z. 282 (1-2) (2016) 131-164.

[32] Erlend Grong, Anton Thalmaier, Stochastic completeness and gradient representations for sub-
Riemannian manifolds, arxiv preprint, https://arxiv.org/abs/1605.00785, 2016.

[33] Robert K. Hladky, Connections and curvature in sub-Riemannian geometry, Houston J. Math. 38 (4)
(2012) 1107-1134.

[34] Elton P. Hsu, Quasi-invariance of the Wiener measure on the path space over a compact Riemannian
manifold, J. Funct. Anal. 134 (2) (1995) 417-450.

[35] Elton P. Hsu, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm.
Math. Phys. 189 (1) (1997) 9-16.

[36] Elton P. Hsu, Analysis on path and loop spaces, in: Probability Theory and Applications, Princeton,
NJ, 1996, in: IAS/Park City Math. Ser., vol. 6, Amer. Math. Soc., Providence, RI, 1999, pp. 277-347.

[37] Elton P. Hsu, Quasi-invariance of the Wiener measure on path spaces: noncompact case, J. Funct.
Anal. 193 (2) (2002) 278-290.

[38] Elton P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, vol. 38, American
Mathematical Society, Providence, RI, 2002.

[39] Elton P. Hsu, Cheng Ouyang, Quasi-invariance of the Wiener measure on the path space over a
complete Riemannian manifold, J. Funct. Anal. 257 (5) (2009) 1379-1395.

[40] David Jerison, Antonio Sdnchez-Calle, Subelliptic, second order differential operators, in: Complex
Analysis, 111, College Park, Md., 198586, in: Lecture Notes in Math., vol. 1277, Springer, Berlin,
1987, pp. 46-77.

[41] Paul Malliavin, Stochastic Analysis, Grundlehren der Mathematischen Wissenschaften (Fundamen-
tal Principles of Mathematical Sciences), vol. 313, Springer-Verlag, Berlin, 1997.

[42] Gianmarco Molino, Connections on foliated manifolds, http://gianmarcomolino.com/2018/02/23/
connections-on-foliated-manifolds-1, 2018.

[43] Pierre Molino, Riemannian Foliations, Progress in Mathematics, vol. 73, Birkhduser Boston, Inc.,
Boston, MA, 1988, Translated from the French by Grant Cairns, With appendices by Cairns, Y.
Carritre, E. Ghys, E. Salem and V. Sergiescu.

[44] Peter Petersen, Riemannian Geometry, third edition, Graduate Texts in Mathematics, vol. 171,
Springer, Cham, 2016.

[45] Bruce L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959) 119-132.

[46] Shigeo Sasaki, On differentiable manifolds with certain structures which are closely related to almost
contact structure. I, Tohoku Math. J. (2) (12) (1960) 459-476.

[47] Shukichi Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc.
314 (1) (1989) 349-379.

[48] Anton Thalmaier, The geometry of subelliptic diffusions, in: Summer School CIRM Sub-Riemannian
Manifolds: From Geodesics to Hypoelliptic Diffusion, September 1-5, 2014-2016.

[49] Philippe Tondeur, Foliations on Riemannian Manifolds, Universitext, Springer-Verlag, New York,
1988.



http://refhub.elsevier.com/S0022-1236(19)30207-1/bib46616E674D616C6C696176696E31393933s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib46616E674D616C6C696176696E31393933s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4665666665726D616E50686F6E6731393833s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4665666665726D616E50686F6E6731393833s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4665666665726D616E50686F6E6731393833s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib476F7264696E614C6165747363683230313661s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib476F7264696E614C6165747363683230313661s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib47726F6E675468616C6D616965723230313661s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib47726F6E675468616C6D616965723230313661s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib47726F6E675468616C6D616965723230313662s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib47726F6E675468616C6D616965723230313662s1
https://arxiv.org/abs/1605.00785
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib486C61646B7932303132s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib486C61646B7932303132s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753139393562s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753139393562s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753139393763s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753139393763s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753139393961s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753139393961s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753230303261s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873753230303261s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib487375456C746F6E426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib487375456C746F6E426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873754F7579616E6732303039s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4873754F7579616E6732303039s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4A657269736F6E53616E6368657A2D43616C6C6531393837s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4A657269736F6E53616E6368657A2D43616C6C6531393837s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4A657269736F6E53616E6368657A2D43616C6C6531393837s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4D616C6C696176696E53746F63686173746963416E616C79736973426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4D616C6C696176696E53746F63686173746963416E616C79736973426F6F6Bs1
http://gianmarcomolino.com/2018/02/23/connections-on-foliated-manifolds-1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4D6F6C696E6F426F6F6B31393838s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4D6F6C696E6F426F6F6B31393838s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib4D6F6C696E6F426F6F6B31393838s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib506574657273656E426F6F6B33726445646974696F6Es1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib506574657273656E426F6F6B33726445646974696F6Es1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib5265696E686172743139353961s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib536173616B6931393630s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib536173616B6931393630s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib54616E6E6F31393839s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib54616E6E6F31393839s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib5468616C6D616965724349524D4C6563747572657332303136s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib5468616C6D616965724349524D4C6563747572657332303136s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib546F6E6465617572426F6F6B31393838s1
http://refhub.elsevier.com/S0022-1236(19)30207-1/bib546F6E6465617572426F6F6B31393838s1
http://gianmarcomolino.com/2018/02/23/connections-on-foliated-manifolds-1

	Integration by parts and quasi-invariance for the horizontal Wiener measure on foliated compact manifolds
	1 Introduction
	1.1 Background
	1.2 Main results and organization of the paper

	2 Geometric preliminaries: Riemannian foliations
	2.1 Riemannian foliations
	2.2 Horizontal and vertical subbundles of TM and forms
	2.3 Examples
	2.4 Bott connection
	2.5 Orthonormal frame bundle

	3 Horizontal calculus of variations
	3.1 Adapted connections
	3.2 Development maps
	3.3 Horizontal paths
	3.4 Paths tangent to horizontal paths
	3.5 Variations on the horizontal path space

	4 Quasi-invariance of the horizontal Wiener measure
	4.1 Horizontal Brownian motion
	4.1.1 Construction from the horizontal Dirichlet form
	4.1.2 Construction from the orthonormal frame bundle

	4.2 Horizontal semimartingales
	4.3 Quasi-invariance of the horizontal Wiener measure
	4.3.1 Framework
	4.3.2 Tangent processes to the horizontal Brownian motion
	4.3.3 First type of variation
	4.3.4 Second type of variation
	4.3.5 Towards the integration by parts formulas
	4.3.6 The case of a Riemannian submersion: examples


	5 Integration by parts formulas
	5.1 Horizontal Weitzenböck type formulas
	5.1.1 Generalized Levi-Civita connections and adjoint connections
	5.1.2 Weitzenböck formulas

	5.2 Integration by parts formula on the horizontal path space
	5.2.1 Malliavin and directional derivatives
	5.2.2 Gradient formula
	5.2.3 Integration by parts formula for the damped Malliavin derivative
	5.2.4 Integration by parts formula for the directional derivatives

	5.3 Examples
	5.3.1 Riemannian submersions
	5.3.2 K-contact manifolds


	References


