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Abstract. We study heat kernel measures on sub-Riemannian infinite-dimensional

Heisenberg-like Lie groups. In particular, we show that Cameron-Martin type

quasi-invariance results hold in this subelliptic setting and give Lp-estimates
for the Radon-Nikodym derivatives. The main ingredient in our proof is a

generalized curvature-dimension estimate which holds on approximating finite-

dimensional projection groups. Such estimates were first introduced by Bau-
doin and Garofalo in [8].
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1. Introduction

We prove Cameron-Martin type quasi-invariance results for subelliptic heat ker-
nel measures on infinite-dimensional Heisenberg-like groups. These groups were
first defined in [15] and quasi-invariance was proved for elliptic heat kernel mea-
sures in this setting. Quasi-invariance results are of interest, for example, in the
study of smoothness of measures on infinite-dimensional spaces. In finite dimen-
sions, one typically defines smoothness as absolute continuity with respect to some
reference measure and smoothness of the associated density. In infinite dimen-
sions, in the absence of a canonical reference measure, alternative interpretations
of smoothness must be made; see for example [9, 14, 28, 29]. In particular, in an
infinite-dimensional setting, it is natural to interpret quasi-invariance as a smooth-
ness property.

Quasi-invariance of heat kernel measures in infinite dimensions has previously
been the subject of much study in elliptic settings; see for example the review [12]
and references therein. Typically the proofs in the elliptic case rely on lower bounds
on the Ricci curvature (as was the case in [15]); of course such lower bounds are
unavailable in a subelliptic setting. To the authors’ knowledge, this is the first
quasi-invariance result in an infinite-dimensional subelliptic setting.

1.1. Statement of Results. Let (W,H, µ) be an abstract Wiener space and let
C be a finite-dimensional inner product space. Define g = W × C to be an
infinite-dimensional Heisenberg-like Lie algebra, which is constructed as an infinite-
dimensional step 2 nilpotent Lie algebra with continuous Lie bracket satisfying the
following condition:

(1.1) [W,W ] = C.

Let G denote W ×C thought of as a group with operation

g1 · g2 = g1 + g2 +
1

2
[g1, g2].

Then G is a Lie group with Lie algebra g, and G contains the subgroup GCM =
H ×C which has Lie algebra gCM . See Section 3.2 for definitions and details.

Now let {Bt}t≥0 be a Brownian motion on W . The solution to the stochastic
differential equation

dgt = gt ◦ dBt with g0 = e

is a Brownian motion on G, which is defined explicitly in Proposition 5.1 and
Definition 5.2. For all t > 0, let νt = Law(g2t) denote the heat kernel measure at
time 2t. At this point, let us briefly comment that, as mentioned in [19], it may
seem at first glance that the restriction dim(C) < ∞ implies that this subelliptic
example is in some sense only finitely many steps from being elliptic. However,
this is truly a subelliptic model and the topologies one must deal with in this
setting significantly change the standard analysis and introduce several non-trivial
complications not present in the elliptic case. For further discussion, see Section
1.3 of [19].

The main results of the present paper are presented in Section 5.2. Namely, in
Theorem 5.9, we prove that νt is quasi-invariant under translation by elements of
GCM and obtain bounds on the Lp-norms of the Radon-Nikodym derivatives. Then
given the equivalence of measures and the Lp-estimates on the associated densities,
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we are able to immediately prove in Corollary 5.11 that the semi-group is strong
Feller on GCM .

To put these results in context, again recall that if W is finite-dimensional,

then (1.1) implies that span{(ξi, 0), [(ξi, 0), (ξj , 0)]} = g, where {ξi}dim(W )
i=1 is some

orthonormal basis of W , and thus we have satisfaction of Hörmander’s condition.
This then implies that νt is a smooth measure, in the sense that νt is absolutely
continuous with respect to Haar measure on G = W×C and its density is a smooth
function on G. If W (and thus G) is infinite-dimensional, however, the notion of
smoothness is not so well-defined, and quasi-invariance may be interpreted as a first
step toward proving νt is a “strictly positive” smooth measure.

1.2. Discussion of proofs. Functional inequalities provide a powerful tool to
study the problem of the equivalence of heat kernel measures. In particular, it
is a well-known fact that, on a finite-dimensional complete Riemannian manifold
M with non-negative Ricci curvature, the heat semi-group {Pt}t≥0 satisfies the
Harnack type inequality

(Ptf)α(x) ≤ Ptfα(y) exp

(
α

α− 1

d2(x, y)

4t

)
,(1.2)

where x, y ∈ M, f ∈ L∞(M) with f ≥ 0, and α > 1 (see for example [34]).
Using the above inequality with indicator functions immediately implies that the
heat kernel measures pt(x, dz) and pt(y, dz) are equivalent. Of course, in a finite-
dimensional framework, the latter is obvious and may be seen from the positivity
of the heat kernel. But the relevant fact here is that the functional inequality (1.2)
is independent of the dimension of the manifold M and we may therefore hope that
it holds even in some infinite-dimensional settings, where equivalence of measures
is a highly non-trivial problem.

Again, a lower bound on the Ricci curvature of M typically plays a major role
in the proof of inequalities like (1.2) and such bounds are unavailable in our subel-
liptic setting. However, in a recent work [8], Baudoin and Garofalo introduced
a generalized curvature-dimension inequality that holds in a general class of sub-
Riemannian settings. The main idea is to control sub-Riemannian curvature quan-
tities both in the horizontal and the vertical directions. In the present paper, we
prove that a uniform generalized curvature-dimension inequality holds on appro-
priate finite-dimensional approximation groups of G, and that, as a consequence, a
uniform version of (1.2) holds on the finite-dimensional approximation groups. A
by-product of this is a Cameron-Martin type quasi-invariance result for the heat
kernel measure on G.

Let us emphasize that our approach is actually quite general and does not rely
on the specific nature of the infinite-dimensional Heisenberg-like groups we consider
here. The main ingredient is the existence of good finite-dimensional approxima-
tions on which uniform generalized curvature-dimension bounds hold. As was done
in [16] in the elliptic setting, one could significantly generalize the method to include
other infinite-dimensional subelliptic settings.

The organization of the paper is briefly as follows. In Section 2 we review results
for subelliptic heat kernels on finite-dimensional Lie groups under the assumption of
generalized curvature-dimension estimates and satisfaction of certain commutation
relations. In particular, in Section 2.1, we show that under these assumptions
reverse Poincaré and log Sobolev estimates hold, and in Section 2.2 we show how
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these estimates in turn give Wang type and integrated Harnack inequalities. The
ideas in this section in a finite-dimensional setting are discussed in more detail and
greater generality in [6].

In Section 3 we review the definition of the infinite-dimensional Heisenberg-
like groups first considered in [15]. In the present paper, we choose a topological
structure that is better adapted to subellipticity, and in this way our construction
parallels [19], where subelliptic heat kernel measure was also studied. In this section,
we also review the properties of infinite-dimensional Heisenberg-like groups required
for the sequel, as well as recalling the Cameron-Martin subgroup and the finite-
dimensional projection groups which serve as approximations.

In Section 4.1 we show that the curvature-dimension estimates and commutation
relations considered in Section 2 are satisfied on the infinite-dimensional Heisenberg-
like groups and their finite-dimensional projections, and thus in Section 4.2 we are
able to show that reverse Poincaré and log Sobolev inequalities, as well as Wang
type Harnack inequalities, hold on the finite-dimensional projection groups.

Finally, in Section 5.1 we review the construction of subelliptic heat kernel mea-
sures on the infinite-dimensional Heisenberg-like groups, and in Section 5.2 we
show how the Wang type Harnack inequalities proved in Section 4.2 for the finite-
dimensional projection groups imply quasi-invariance of the subelliptic heat kernel
measure under translation by elements of the Cameron-Martin space, as well as
yielding Lp-estimates for the Radon-Nikodym derivatives. We also show how the
quasi-invariance and Lp-estimates then immediately imply that Pt is strong Feller
on GCM .

Acknowledgements. The authors are grateful to the anonymous referee for
the careful reading of the manuscript and the useful remarks. The second author
thanks M. Röckner who asked about the Feller property in this context and thus
inspired the inclusion of Corollary 5.11.

2. Functional inequalities on finite-dimensional Lie groups

For the whole of this section, G will denote a real finite-dimensional connected
unimodular Lie group with Lie algebra g and identity element e. Let dx denote
bi-invariant Haar measure on G. For x ∈ G, let Lx and Rx denote left and right
translation by x, respectively. For A ∈ g, let Ã denote the unique left invariant
vector field on G such that Ã(e) = A ∈ g, that is, Ã(g) = Lx∗A.

We will fix a linearly independent collection {Xi}ni=1 ⊂ g for which there exists
some r such that

(2.1) g = span{Xi1 , [Xi1 , Xi2 ], . . . , [Xi1 , [Xi2 , · · · , [Xir−1 , Xir ] · · · ]] :

i1, . . . , ir = 1, . . . , n}.

We will refer to H := span({Xi}ni=1) as the horizontal directions, and we will sup-
pose that g is equipped with an inner product for which {Xi}ni=1 is an orthonormal

basis of H. In particular, (2.1) implies that {X̃i}ni=1 is a Hörmander set of vector

fields, in the sense that the X̃i’s and all their commutators up to order r generate
TgG for all g ∈ G. Thus, by the classical Hörmander’s theorem [23] the second
order differential operator

L =
n∑
i=1

X̃2
i
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is hypoelliptic, and, for all t > 0, there exists a smooth kernel pt : G×G→ R+ so
that

Ptf(x) := etL̄f(x) =

∫
G

f(y)pt(x, y) dy,

for all f ∈ L2(G, dy), where L̄ denotes the L2(G, dy) closure of L|C∞c (G). The heat
semi-group {Pt}t>0 is a symmetric Markov semi-group, and, since pt is smooth, the
mapping (t, x) 7→ Ptf(x) is smooth on (0,∞)×G for any f ∈ Lp(dx), p ∈ [1,∞].

In a slight abuse of notation, we will write that pt(e, x) = pt(x). In particular,
the left invariance of L implies that pt is a left convolution kernel and thus pt(x, y) =
pt(xy

−1). We call the measure pt dy the heat kernel measure on G associated to L.
By construction, the operator Pt commutes with left translations, and since our Lie
group is unimodular the Haar measure is bi-invariant. Thus, pt(x, y) = pt(e, x

−1y).
Since it is additionally known that pt is a symmetric kernel, we have the following
lemma of some standard properties of the heat kernel, which we state without proof.

Lemma 2.1. For all t > 0 and x, y ∈ G,

(1) pt(x, y) = pt(x
−1y) = pt(y

−1x), and
(2) pt(x

−1) = pt(x).

Another well-known interpretation of the heat kernel measure pt dy is as the
distribution at time 2t of Brownian motion on G. For {bi}ni=1 independent real-
valued Brownian motions, bt =

∑n
i=1 b

i
tXi is a Brownian motion on H. Now for

t > 0 let gt denote the solution to the following Stratonovitch stochastic differential
equation:

dgt = gt ◦ dbt := Lgt∗ ◦ dbt =
n∑
i=1

X̃(gt) ◦ dbit, with g0 = e.

Then, {gt}t≥0 is a Brownian motion on G started at the identity, and, for all t > 0,
Law(gt) = pt/2 dy.

For f, g ∈ C∞(G), we define the standard differential forms

Γ (f, g) :=
1

2
(L(fg)− fLg − gLf) =

n∑
j=1

(
X̃if

)(
X̃ig

)
and

Γ2 (f, g) :=
1

2
(LΓ (f, g)− Γ (f, Lg)− Γ (g, Lf)) .

We follow the usual notational convention that Γ (f) := Γ (f, f) and Γ2(f) :=
Γ2(f, f). We will also need to consider derivatives in non-horizontal, or vertical,
directions. Let V ⊂ g denote the Lie subalgebra such that we have the orthogonal
decomposition (with respect to the inner product on g)

g = H⊕ V,
and let {Z`}N`=1 denote an orthonormal basis of V, where N = dim(V). Following
[2] and [8] we define

ΓZ (f, g) :=

N∑
`=1

(
Z̃`f

)(
Z̃`g
)

and

ΓZ2 (f, g) :=
1

2

(
LΓZ(f, g)− ΓZ(f, Lg)− ΓZ(g, Lf)

)
.

Again we will let ΓZ(f) := ΓZ(f, f) and ΓZ2 (f) := ΓZ2 (f, f).
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2.1. Reverse inequalities under curvature bound assumptions. In this sec-
tion we consider some implications of certain curvature bound assumptions on G.
These curvature bounds first appeared in [8] and serve as generalizations of the
standard curvature-dimension inequalities which appear in the elliptic literature
(see for example [3, 4, 5, 26] and references therein). The assumption may be
stated as follows: Suppose that there exist α, β > 0 such that, for any ν > 0 and
f ∈ C∞(G),

(2.2) Γ2(f) + νΓZ2 (f) ≥ αΓZ(f)− β

ν
Γ(f).

Before proceeding with the primary results of this section, we prove the following
lemma which will be helpful in the sequel.

Lemma 2.2. Suppose φ : J → R is a smooth function on an open interval J ⊂ R
and f : G→ R is a measurable function. Fix T > 0 and set

Σ(t, x) = Pt(φ(PT−tf))(x),

for all t ∈ [0, T ] and x ∈ G (assuming PT−tf(G) ⊂ J). Then

dΣ

dt
= Pt(φ

′′(PT−tf)Γ(PT−tf))(x).

Proof. For simplicity, set ut = PT−tf . Then we just compute

dΣ

dt
= Pt

(
Lφ(ut) +

d

dt
φ(ut)

)
= Pt (Lφ(ut)− φ′(ut)Lut) .(2.3)

Note that

L(φ(ut)) =

n∑
i=1

X̃2
i (φ(ut)) =

n∑
i=1

X̃i

(
φ′(ut)(X̃iut)

)
=

n∑
i=1

(
φ′′(ut)(X̃iut)

2 + φ′(ut)(X̃
2
i ut)

)
= φ′′(ut)Γ(ut) + φ′(ut)Lut.

Then combining this with (2.3) yields the desired result. �

We now prove that, assuming the curvature bound stated above, a reverse
Poincaré inequality holds on G.

Notation 2.3. Let C denote the set of functions f : G→ R such that f ∈ C∞(G) ∩
L∞(G) and f,

√
Γ(f),

√
ΓZ(f) ∈ L2(G). Note for example that C includes all

smooth functions with compact support. We will also let C+ denote functions f
such that f = g + ε for some g ∈ C with g ≥ 0 and ε > 0.

Remark 2.4. It is shown in [8] that these function spaces are stable under Pt; that
is, if f ∈ C then Ptf ∈ C for all t > 0, and similarly for C+.

Proposition 2.5. Assume that a curvature bound is satisfied as stated above in
(2.2). Then, for all T > 0 and f ∈ C,

Γ(PT f) + αTΓZ(PT f) ≤
1 + 2β

α

2T
(PT (f2)− (PT f)2).

In particular, this implies that

Γ(PT f) ≤
1 + 2β

α

2T
(PT (f2)− (PT f)2).
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Proof. For t ∈ [0, T ], define the functional

Φ(t) = a(t)Pt (Γ(PT−tf)) + b(t)Pt
(
ΓZ(PT−tf)

)
,

where a, b : [0, T ]→ [0,∞) are control functions yet to be chosen. A straightforward
computation shows that

Φ′(t) = a′(t)Pt (Γ(PT−tf)) + b′(t)Pt
(
ΓZ(PT−tf)

)
+ 2a(t)Pt (Γ2(PT−tf)) + 2b(t)Pt

(
ΓZ2 (PT−tf)

)
,

and the inequality (2.2) implies that

Γ2(PT−tf) +
b(t)

a(t)
ΓZ2 (PT−tf) ≥ −βa(t)

b(t)
Γ(PT−tf) + αΓZ(PT−tf).

Thus,

(2.4) Φ′ ≥
(
a′ − 2β

a2

b

)
Pt(Γ(PT−tf)) + (b′ + 2αa)Pt(Γ

Z(PT−tf)).

We now choose the functions a and b so that

b′ + 2αa = 0

and

a′ − 2β
a2

b
= C,

where C is a constant independent of t. This leads to the candidates

a(t) =
1

α
(T − t)

and

b(t) = (T − t)2.

For this choice of a and b, the inequality (2.4) becomes

(2.5) Φ′(t) ≥ − 1

α

(
1 +

2β

α

)
Pt (Γ(PT−tf)) .

By Lemma 2.2 with φ(x) = x2, we have that

d

dt
Pt(PT−tf)2 = 2Pt(Γ(PT−tf)),

and thus integrating (2.5) from 0 to T yields the desired result. �

Under an additional assumption, the curvature bound (2.2) also implies a re-
verse log Sobolev type inequality which is much stronger than the previous reverse
Poincaré inequality. The additional required assumption here is the following com-
mutation: for any f ∈ C∞(G),

(2.6) Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)).

First we prove the following lemma given this assumption.

Lemma 2.6. For fixed T > 0, x ∈ G, and f ∈ C, define the entropy functionals

Φ1(t) = Pt ((PT−tf)Γ(lnPT−tf)) (x)

and

Φ2(t) = Pt
(
(PT−tf)ΓZ(lnPT−tf)

)
(x),
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for t ∈ [0, T ]. Then, assuming (2.6) holds,

Φ′1(t) = 2Pt ((PT−tf)Γ2(lnPT−tf)) (x)

and
Φ′2(t) = 2Pt

(
(PT−tf)ΓZ2 (lnPT−tf)

)
(x).

Proof. For t ∈ [0, T ] and x ∈ G, consider the functionals

φ1(t, x) = (PT−tf)(x)Γ(lnPT−tf)(x)

and
φ2(t, x) = (PT−tf)(x)ΓZ(lnPT−tf)(x).

If we prove that

Lφ1 +
∂φ1

∂t
= 2(PT−tf)Γ2(lnPT−tf)

and

Lφ2 +
∂φ2

∂t
= 2(PT−tf)ΓZ2 (lnPT−tf),

then the result follows almost immediately.
Again for simplicity, take u(t, x) = PT−tf(x) and here let ut = ∂u

∂t . Then a
simple computation gives

∂φ1

∂t
= utΓ(lnu) + 2uΓ

(
lnu,

ut
u

)
.

On the other hand,

Lφ1 = LuΓ(lnu) + uLΓ(lnu) + 2Γ(u,Γ(lnu)).

Combining these equations we obtain

Lφ1 +
∂φ1

∂t
= uLΓ(lnu) + 2Γ(u,Γ(lnu)) + 2uΓ

(
lnu,

ut
u

)
.

We now see that

2uΓ2(lnu) = u(LΓ(lnu)− 2Γ(lnu, L(lnu)))

= uLΓ(lnu)− 2uΓ(lnu, L(lnu)).

Observing that

L(lnu) = −Γ(u)

u2
− ut
u
,

we may conclude

Lφ1 +
∂φ1

∂t
= 2(PT−tf)Γ2(lnPT−tf).

In the same vein, we obtain

Lφ2 +
∂φ2

∂t
= uLΓZ(lnu) + 2Γ(u,ΓZ(lnu)) + 2uΓZ

(
lnu,

ut
u

)
.

This time using the definition of ΓZ2 , we find

2uΓZ2 (lnu) = u(LΓZ(lnu)− 2ΓZ(lnu, L(lnu)))

= uLΓZ(lnu) + 2uΓZ
(

lnu,
Γ(u)

u2

)
+ 2uΓZ

(
lnu,

ut
u

)
.

From this last equation it is now clear that under the assumption (2.6) we have

Lφ2 +
∂φ2

∂t
= 2uΓZ2 (lnu),
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and this concludes the proof. �

Given this lemma, we may now prove the following reverse log Sobolev inequality
holds.

Theorem 2.7. Suppose that (2.2) and (2.6) are satisfied. Then, for any T > 0
and f ∈ C+,

Γ(lnPT f) + αTΓZ(lnPT f) ≤
1 + 2β

α

T

(
PT (f ln f)

PT f
− lnPT f

)
.

In particular, the following reverse log Sobolev inequality holds

Γ(lnPT f) ≤
1 + 2β

α

T

(
PT (f ln f)

PT f
− lnPT f

)
.

Proof. For t ∈ [0, T ], we define the functional

Ψ(t) = a(t)Φ1(t) + b(t)Φ2(t),

where Φ1 and Φ2 are as defined in Lemma 2.6 and a, b are non-negative control
functions to be chosen later. Since we assume (2.6) holds, Lemma 2.6 implies that

Ψ′(t) = a′(t)Φ1(t) + b′(t)Φ2(t)

+ 2a(t)Pt ((PT−tf)Γ2(lnPT−tf)) + 2b(t)Pt
(
(PT−tf)ΓZ2 (lnPT−tf)

)
.

Thus, given the curvature bound and working exactly as in Proposition 2.5, we are
lead to the same choices

a(t) =
1

α
(T − t) and b(t) = (T − t)2.

For this choice of a and b, we have the inequality

(2.7) Ψ′(t) ≥ − 1

α

(
1 +

2β

α

)
Φ1(t).

Taking φ(x) = x lnx in Lemma 2.2 implies that

d

dt
Pt((PT−tf)(lnPT−tf)) = Pt

(
Γ(PT−tf)

PT−tf

)
= Pt((PT−tf)Γ(lnPT−tf)) = Φ1(t),

and thus integrating (2.7) from 0 to T then yields the claimed result. �

Remark 2.8. Other choices of control functions could be made to satisfy the desired
criteria in the proofs of Proposition 2.5 and Theorem 2.7. In particular, we could
have taken

a(t) =
1

α
((1 + δ)T − t)

and
b(t) = ((1 + δ)T − t)2,

for any δ ≥ 0. This choice of a and b would give the following generalized estimates.
The following would generalize Proposition 2.5: for all T > 0 and f ∈ L∞(G),

Γ(PT f) + α(1 + δ)TΓZ(PT f)

≤
1 + 2β

α

2(1 + δ)T
(PT (f2)− (PT f)2) +

δ

1 + δ
PT (Γ(f)) +

αδ2

1 + δ
TPT (ΓZ(f)).
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Also, the following statement would generalize Theorem 2.7: for all T > 0 and
f ∈ C,

PT fΓ( lnPT f) + α(1 + δ)TPT fΓZ(lnPT f)

≤
1 + 2β

α

(1 + δ)T
(PT (f ln f)− (PT f) lnPT f)

+
δ

1 + δ
PT (fΓ(ln f)) +

αδ2

1 + δ
TPT

(
fΓZ(ln f)

)
.

Such generalized estimates have been used in [7] to prove lower bounds for the heat
kernel.

2.2. Wang type and integrated Harnack inequalities. A reverse log Sobolev
inequality such as in Theorem 2.7 is sufficient to prove an analogue of Wang’s
dimension-free Harnack inequality. Estimates of this type were first proved by
Wang in a Riemannian setting under the assumption of a lower bound on the Ricci
curvature [34]. Before stating the estimate, we must make the following definition.

Notation 2.9. (Horizontal distance)

(1) The length of a C1-path σ : [a, b]→ G is defined as

`(σ) :=

∫ b

a

|Lσ−1(s)∗σ̇(s)|g ds.

(2) A C1-path σ : [a, b] → G is horizontal if Lσ(t)−1∗σ̇(t) ∈ H × {0} for a.e. t.

Let C1,h denote the set of horizontal paths σ : [0, 1]→ G.
(3) The horizontal distance between x, y ∈ G is defined by

d(x, y) := inf{`(σ) : σ ∈ C1,h such that σ(0) = x and σ(1) = y}.

For references on horizontal distance, or more general sub-Riemannian geometry,
see for example [20, 31] and references contained therein.

Proposition 2.10. Suppose there exists a constant C <∞ such that, for all T > 0
and f ∈ C+,

(2.8) Γ(lnPT f) ≤ C

T

(
PT (f ln f)

PT f
− lnPT f

)
.

Then, for all T > 0, x, y ∈ G, f ∈ L∞(G) with f ≥ 0, and p ∈ (1,∞),

(2.9) (PT f)p(x) ≤ PT fp(y) exp

(
Cp

p− 1

d2(x, y)

4T

)
.

Proof. First take f ∈ C+. Let b(s) = 1 + (p − 1)s for s ∈ [0, 1] and σ : [0, 1] → G
be an arbitrary horizontal C1-path such that σ(0) = x and σ(1) = y. Define the
functional

φ(s) =
p

b(s)
lnPT f

b(s)(σ(s)), for s ∈ [0, 1].
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Differentiating φ with respect to s and applying (2.8) yields

φ′(s) = −pb
′(s)

b(s)2
lnPT f

b(s)(σ(s)) +
p

b(s)

(
d

ds
lnPT f

b(s)

)
(σ(s))

+
p

b(s)
〈(d(lnPT f

b(s)))(σ(s)), σ′(s)〉

=
p(p− 1)

b(s)2

(
PT (f b(s) ln f b(s))(σ(s))

PT f b(s)(σ(s))
− lnPT f

b(s)(σ(s))

)
+

p

b(s)
〈d(lnPT f

b(s))(σ(s)), σ′(s)〉

≥ p(p− 1)T

b(s)2C
Γ(lnPT f

b(s))(σ(s)) +
p

b(s)
〈d(lnPT f

b(s))(σ(s)), σ′(s)〉.

Now, for every λ > 0,

〈d(lnPT f
b(s))(σ(s)), σ′(s)〉 ≥ − 1

2λ
Γ(lnPT f

b(s))(σ(s))− λ

2
|σ′(s)|2,

since σ being horizontal implies that σ′(s) ∈ span{X̃i(σ(s))}ni=1. In particular,
choosing

λ =
C

2(p− 1)T
b(s)

gives

φ′(s) ≥ − Cp

4(p− 1)T
|σ′(s)|2.

Integrating this inequality from 0 to 1 yields

lnPT f
p(y)− ln(PT f)p(x) ≥ − Cp

4(p− 1)T

∫ 1

0

|σ′(s)|2ds.

Minimizing
∫ 1

0
|σ′(s)|2ds over the set of horizontal paths such that σ(0) = x and

σ(1) = y shows that (2.9) holds for f ∈ C ∩ C∞(G).
To prove the estimate for general f ≥ 0, let C∞(G) 3 hn ≥ 0 be an increasing

sequence of functions with compact support such that hn ↑ 1. Then (2.9) holds for
g = hnPτf +ε ∈ C ∩C∞(G) for all n, τ > 0, and ε > 0. Then letting ε→ 0, τ → 0,
and n→∞ in the inequality completes the proof of (2.9) for f ≥ 0. �

Wang type Harnack inequalities in turn are equivalent to so-called “integrated
Harnack inequalities” as in the following lemma. Here we follow the proof of Propo-
sition 2.4 in [36]. An alternative form and proof of the following equivalence can
be found in Lemma D.1 of [16].

Lemma 2.11. Let T > 0, x, y ∈ G, p ∈ (1,∞), and C ∈ (0,∞]. Then

(2.10) (PT f)p(x) ≤ CPT fp(y), for all f ∈ L∞(G) with f ≥ 0,

if and only if

(2.11)

(∫
G

[
pT (x, z)

pT (y, z)

]1/(p−1)

pT (y, z) dz

)p−1

≤ C.
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Proof. Set Jx,y(z) = pT (x,z)
pT (y,z) and fn := (n ∧ Jx,y)1/(p−1) for n ≥ 1. Then applying

(2.10) to fn yields

(PT fn)p(x) ≤ CPT fpn(y) = C

∫
G

(n ∧ Jx,y(z))p/(p−1)pT (y, z) dz

≤ C
∫
G

(
n ∧ pT (x, z)

pT (y, z)

)1/(p−1)

pT (x, z) dz = CPT fn(x).

Thus,

PTJ
1/(p−1)
x,y (x) = lim

n→∞
PT fn(x) ≤ C1/(p−1),

which yields (2.11).
For the converse, we have by Hölder’s inequality that

PT f(x) =

∫
G

f(z)
pT (x, z)

pT (y, z)
pT (y, z)dz

≤ (PT f
p)1/p(y)

(∫
G

pT (x, z)

pT (y, z)

p/(p−1)

pT (y, z)dz

)(p−1)/p

= (PT f
p)1/p(y)

(∫
G

pT (x, z)

pT (y, z)

1/(p−1)

pT (x, z)dz

)(p−1)/p

≤ (PT f
p)1/p(y)C1/p,

which completes the proof. �

3. Infinite-dimensional Heisenberg-like groups

In this section, we review the definitions for infinite-dimensional Heisenberg-
like groups, which are infinite-dimensional Lie groups based on an abstract Wiener
space. Much of the material is this section also appears in [19].

3.1. Abstract Wiener spaces. For the reader’s convenience, we summarize sev-
eral well-known properties of Gaussian measures and abstract Wiener spaces that
are required for the sequel. These results as well as more details on abstract Wiener
spaces and some particular examples may be found in [10, 25].

Suppose that W is a real separable Banach space and BW is the Borel σ-algebra
on W .

Definition 3.1. A measure µ on (W,BW ) is called a (mean zero, non-degenerate)
Gaussian measure provided that its characteristic functional is given by

(3.1) µ̂(u) :=

∫
W

eiu(x)dµ(x) = e−
1
2 q(u,u), for all u ∈W ∗,

for q = qµ : W ∗ ×W ∗ → R a symmetric, positive definite quadratic form. That is,
q is a real inner product on W ∗.

Lemma 3.2. If u, v ∈W ∗, then∫
W

u(w)v(w) dµ(w) = q(u, v).
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Proof. Let u∗µ := µ ◦ u−1 denote the measure on R which is the push forward of µ
under u. Then by equation (3.1) u∗µ is normal with mean 0 and variance q(u, u).
Thus, ∫

W

u2(w) dµ(w) = q(u, u).

Polarizing this identity gives the desired result. �

A proof of the following standard theorem may be found for example in Appendix
A of [15].

Theorem 3.3. Let µ be a Gaussian measure on a real separable Banach space W .
For p ∈ [1,∞), let

(3.2) Cp :=

∫
W

‖w‖pW dµ(w).

For w ∈W , let

‖w‖H := sup
u∈W∗\{0}

|u(w)|√
q(u, u)

and define the Cameron-Martin subspace H ⊂W by

H := {h ∈W : ‖h‖H <∞}.

Then

(1) For all p ∈ [1,∞), Cp <∞.
(2) H is a dense subspace of W .
(3) There exists a unique inner product 〈·, ·〉H on H such that ‖h‖2H = 〈h, h〉H

for all h ∈ H, and H is a separable Hilbert space with respect to this inner
product.

(4) For any h ∈ H, ‖h‖W ≤
√
C2‖h‖H .

(5) If {ej}∞j=1 is an orthonormal basis for H, then for any u, v ∈ H∗

q(u, v) = 〈u, v〉H∗ =
∞∑
j=1

u(ej)v(ej).

It follows from item (4) that any u ∈ W ∗ restricted to H is in H∗. Therefore,
by item (5) and Lemma 3.2,

(3.3)

∫
W

u2(w) dµ(w) = q(u, u) = ‖u‖2H∗ =
∞∑
j=1

|u(ej)|2.

More generally we have the following lemma.

Lemma 3.4. Let K be a real Hilbert space and ϕ : W → K be a linear map. Then

‖ϕ‖2H∗⊗K =
∞∑
j=1

‖ϕ(ej)‖2K =

∫
W

‖ϕ(w)‖2K dµ(w).
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Proof. Let {f`}dim(K)
`=1 be an orthonormal basis of K. Then by equation (3.3)∫

W

‖ϕ(w)‖2K dµ(w) =

∫
W

dim(K)∑
`=1

|〈ϕ(w), f`〉K |2 dµ(w)

=

dim(K)∑
`=1

‖〈ϕ(·), f`〉K‖2H∗ =

dim(K)∑
`=1

∞∑
j=1

|〈ϕ(ej), f`〉K |2

=
∞∑
j=1

‖ϕ(ej)‖2K = ‖ϕ‖2H∗⊗K .

�

This leads to the following facts for linear maps on W . First we set the some
notation.

Notation 3.5. Let K be a real Hilbert space, and suppose α : H⊗m → K is a
multi-linear map. Then the Hilbert-Schmidt norm of α is defined by

‖α‖22 := ‖α‖2(H∗)⊗m⊗K =
∞∑

j1,...,jm=1

‖α(ej1 , . . . , ejm)‖2K

=
∞∑

j1,...,jm=1

dim(K)∑
`=1

〈α(ej1 , . . . , ejm), f`〉2K ,

where {ej}∞j=1 and {f`}dim(K)
`=1 are orthonormal bases of H and K, respectively.

One may verify directly that these norms are independent of the chosen bases.

Lemma 3.6. Suppose K is a Hilbert space and ϕ : W → K is a continuous linear
map. Then ϕ : H → K is Hilbert-Schmidt, that is, ‖ϕ‖2 <∞.

Proof. By Lemma 3.4,

‖ϕ‖22 = ‖ϕ‖2H∗⊗K =

∫
W

‖ϕ(w)‖2K dµ(w)

≤ ‖ϕ‖20
∫
W

‖w‖2W dµ(w) = C2‖ϕ‖20,

where C2 <∞ is as defined in (3.2) and

‖ϕ‖0 := sup{ϕ(w)‖K : ‖w‖W = 1} <∞
by the continuity of ϕ. �

Similarly, we may prove the following.

Lemma 3.7. Suppose K is a Hilbert space and ρ : W ×W → K is a continuous
bilinear map. Then ρ : H ×H → K is Hilbert-Schmidt.

Proof. Note first that, for each w ∈ W , ϕ = ρ(w, ·) is a continuous linear operator
and thus, by the proof Lemma 3.6,

‖ρ(w, ·)‖22 = ‖ρ(w, ·)‖H∗⊗K ≤ C2‖ρ(w, ·)‖20 ≤ C2‖ρ‖0‖w‖2W ,
where

‖ρ‖0 := sup{ρ(w,w′)‖K : ‖w‖W = ‖w′‖W = 1} <∞.
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Then viewing w 7→ ρ(w, ·) as a continuous linear map from W to the Hilbert space
H∗ ⊗K, Lemma 3.4 implies that

‖ρ‖22 = ‖h 7→ ρ(h, ·)‖2H∗⊗(H∗⊗K) =

∫
W

‖ρ(w, ·)‖2H∗⊗K dµ(w)

≤
∫
W

C2‖ρ‖20‖w‖2W dµ(w) = C2
2‖ρ‖20 <∞.

�

3.2. Infinite-dimensional Heisenberg-like groups. We revisit the definition
of the infinite-dimensional Heisenberg-like groups that were first considered in [15].
Note that since we are interested in subelliptic heat kernel measures on these groups,
there are some necessary modifications to the topology as was done in [19]. First
we set the following notation which will hold for the rest of the paper.

Notation 3.8. Let (W,H, µ) be a real abstract Wiener space. Let C be a real Hilbert
space with inner product 〈·, ·〉C and dim(C) = N <∞. Let ω : W ×W → C be a
continuous skew-symmetric bilinear form on W . We will also trivially assume that
ω is surjective (otherwise, we just restrict to a linear subspace of C).

Definition 3.9. Let g denote W ×C when thought of as a Lie algebra with the
Lie bracket given by

(3.4) [(X1, V1), (X2, V2)] := (0, ω(X1, X2)).

Let G denote W ×C when thought of as a group with multiplication given by

g1g2 := g1 + g2 +
1

2
[g1, g2],

where g1 and g2 are viewed as elements of g. For gi = (wi, ci), this may be written
equivalently as

(3.5) (w1, c1) · (w2, c2) =

(
w1 + w2, c1 + c2 +

1

2
ω(w1, w2)

)
.

We will call G constructed in this way a Heisenberg-like group.

It is easy to verify that, given this bracket and multiplication, g is indeed a Lie
algebra and G is a group. Note that g−1 = −g and the identity e = (0, 0).

Notation 3.10. Let gCM denote H ×C when thought of as a Lie subalgebra of g,
and we will refer to gCM as the Cameron-Martin subalgebra of g. Similarly, let
GCM denote H×C when thought of as a subgroup of G, and we will refer to GCM
as the Cameron-Martin subgroup of G.

We will equip g = G with the homogeneous norm

‖(w, c)‖g :=
√
‖w‖2W + ‖c‖C,

and analogously on gCM = GCM we define

‖(A, a)‖gCM
:=
√
‖A‖2H + ‖a‖C.

One may easily see that G and GCM are topological groups with respect to the
topologies induced by the homogeneous norms, see for example Lemma 2.9 of [19].
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Before proceeding, let us give the basic motivating examples for the construction
of these infinite-dimensional Heisenberg-like groups. In what follows, if X is a com-
plex vector space, let XRe denote X thought of as a real vector space. If (H, 〈·, ·〉H)
is a complex Hilbert space, let 〈·, ·〉HRe

:= Re〈·, ·〉H , in which case (HRe, 〈·, ·〉HRe
)

becomes a real Hilbert space.

Example 3.11 (Finite-dimensional Heisenberg group). Let W = H = (Cn)Re
∼=

R2n and µ be standard Gaussian measure on R2n. Then (W,H, µ) is an abstract
Wiener space. Let C = R and ω(w, z) := Im〈w, z〉, where 〈w, z〉 = w · z̄ is the
usual inner product on Cn. Then G = R2n × R equipped with a group operation
as defined in (3.5) is a finite-dimensional Heisenberg group.

Example 3.12 (Heisenberg group of a symplectic vector space). Let (K, 〈·, ·〉) be
a complex Hilbert space and Q be a strictly positive trace class operator on K. For
h, k ∈ K, let 〈h, k〉Q := 〈h,Qk〉 and ‖h‖Q :=

√
〈h, h〉Q, and let (KQ, 〈·, ·〉Q) denote

the Hilbert space completion of (K, ‖ · ‖Q). Then W = (KQ)Re and H = KRe

determines an abstract Wiener space (see, for example, exercise 17 on p.59 of [25]).
Letting C = R and

ω(w, z) := Im〈w, z〉Q,
then G = (KQ)Re × R equipped with a group operation as defined in (3.5) is an
infinite-dimensional Heisenberg-like group.

3.3. Finite-dimensional projection groups. The finite-dimensional projections
of G defined in this section will be important in the sequel. Note that the construc-
tion of these projections is quite natural in the sense that they come from the usual
projections of the abstract Wiener space; however, the projections defined here are
not group homomorphisms, which is a complicating factor in the analysis.

As usual, let (W,H, µ) denote an abstract Wiener space. Let i : H → W be
the inclusion map, and i∗ : W ∗ → H∗ be its transpose so that i∗` := ` ◦ i for all
` ∈W ∗. Also, let

H∗ := {h ∈ H : 〈·, h〉H ∈ Range(i∗) ⊂ H∗}.
That is, for h ∈ H, h ∈ H∗ if and only if 〈·, h〉H ∈ H∗ extends to a continuous linear
functional on W , which we will continue to denote by 〈·, h〉H . Because H is a dense
subspace of W , i∗ is injective and thus has a dense range. Since H 3 h 7→ 〈·, h〉H ∈
H∗ is a linear isometric isomorphism, it follows that H∗ 3 h 7→ 〈·, h〉H ∈ W ∗ is a
linear isomorphism also, and so H∗ is a dense subspace of H.

Suppose that P : H → H is a finite rank orthogonal projection such that PH ⊂
H∗. Let {ej}nj=1 be an orthonormal basis for PH. Then we may extend P to a
(unique) continuous operator from W → H (still denoted by P ) by letting

(3.6) Pw :=

n∑
j=1

〈w, ej〉Hej

for all w ∈W .

Notation 3.13. Let Proj(W ) denote the collection of finite rank projections on W
such that

(1) PW ⊂ H∗,
(2) P |H : H → H is an orthogonal projection (that is, P has the form given in

equation (3.6)), and
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(3) PW is sufficiently large to satisfy Hörmander’s condition (that is, {ω(A,B) :
A,B ∈ PW} = C).

For each P ∈ Proj(W ), we define GP := PW ×C ⊂ H∗ ×C and a corresponding
projection πP : G→ GP

πP (w, x) := (Pw, x).

We will also let gP = Lie(GP ) = PW ×C. In the context of Section 2, note that,
for each P ∈ Proj(W ), GP is a finite-dimensional connected unimodular Lie group
(in fact, gP is step 2 stratified) with H = PH and V = C.

3.4. Derivatives and differential forms on G. For x ∈ G, again let Lx : G→ G
and Rx : G → G denote left and right multiplication by x, respectively. As G is
a vector space, to each x ∈ G we can associate the tangent space TxG to G at x,
which is naturally isomorphic to G.

Notation 3.14 (Linear and group derivatives). Let f : G → C denote a Fréchet
smooth function for G considered as a Banach space with respect to the norm

|(w, c)|G :=
√
‖w‖2W + ‖c‖2C.

Then, for x ∈ G, and h, k ∈ g, let

f ′(x)h := ∂hf(x) =
d

dt

∣∣∣∣
0

f(x+ th)

and
f ′′(x) (h⊗ k) := ∂h∂kf(x).

For v, x ∈ G, let vx ∈ TxG denote the tangent vector satisfying vxf = f ′(x)v.
If x(t) is any smooth curve in G such that x(0) = x and ẋ(0) = v (for example,
x(t) = x+ tv), then

Lg∗vx =
d

dt

∣∣∣∣
0

g · x(t).

In particular, for x = e and ve = h ∈ g, again we let h̃(g) := Lg∗h, so that h̃ is the

unique left invariant vector field on G such that h̃(e) = h. As usual we view h̃ as a
first order differential operator acting on smooth functions by

(h̃f)(x) =
d

dt

∣∣∣∣
0

f(x · σ(t)),

where σ(t) is a smooth curve in G such that σ(0) = e and σ̇(0) = h (for example,
σ(t) = th).

Proposition 3.15. Let f : G → R be a smooth function, h = (A, a) ∈ g and
x = (w, c) ∈ G. Then

h̃(x) := lx∗h =

(
A, a+

1

2
ω (w,A)

)
x

for all x = (w, c) ∈ G

and in particular

(3.7) (̃A, a)f(x) = f ′ (x)

(
A, a+

1

2
ω (w,A)

)
.

Furthermore, if h = (A, a) , k = (B, b), then

(3.8)
(
h̃k̃f − k̃h̃f

)
= [̃h, k]f.
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That is, the Lie algebra structure on g induced by the Lie algebra structure on the
left invariant vector fields on G is the same as the Lie algebra structure defined in
equation (3.4).

Proof. Since th = t (A, a) is a curve in G passing through the identity at t = 0, we
have

h̃(x) =
d

dt

∣∣∣∣
0

[x · (th)] =
d

dt

∣∣∣∣
0

[(w, c) · t(A, a)]

=
d

dt

∣∣∣∣
0

[(
w + tA, c+ ta+

t

2
ω (w,A)

)]
=

(
A, a+

1

2
ω (w,A)

)
.

So by the chain rule, (h̃f)(x) = f ′(x)h̃(x) and hence

(h̃k̃f)(x) =
d

dt

∣∣∣∣
0

[
f ′ (x · th) k̃ (x · th)

]
= f ′′(x)

(
h̃ (x)⊗ k̃(x)

)
+ f ′′ (x)

d

dt

∣∣∣∣
0

k̃ (x · th) ,(3.9)

where

d

dt

∣∣∣∣
0

k̃ (x · th) =
d

dt

∣∣∣∣
0

(
B, a+

1

2
ω (w + tA,B)

)
=

(
0,

1

2
ω (A,B)

)
.

Since f ′′(x) is symmetric, it now follows by subtracting equation (3.9) from itself
with h and k interchanged that(

h̃k̃f − k̃h̃f
)

(x) = f ′(x) (0, ω (A,B)) = f ′(x) [h, k] =
(

[̃h, k]f
)

(x)

as desired. �

Definition 3.16. A function f : G → C is a (smooth) cylinder function if it may
be written as f = F ◦ πP , for some P ∈ Proj(W ) and (smooth) F : GP → C.

The following lemma is Lemma 3.16 of [15]. We reproduce the proof here for the
reader’s convenience.

Lemma 3.17. Suppose that ` : H → C is a continuous linear map. Then for any
orthonormal basis {ej}∞j=1 of H the series

(3.10)
∞∑
j=1

` (ej)⊗ ` (ej) ∈ C⊗C

and

(3.11)
∞∑
j=1

` (ej)⊗ ej ∈ C⊗H

are convergent and independent of the basis.
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Proof. First note that, since dim(C) = N < ∞, ` is Hilbert-Schmidt since it is
bounded and thus, for {fi}Ni=1 an orthonormal basis of C,

∞∑
j=1

‖` (ej)⊗ ` (ej)‖C⊗C =
∞∑
j=1

‖` (ej)‖2C

=
N∑
i=1

∞∑
j=1

〈fi, `(ej)〉2C =
N∑
i=1

‖〈fi, `(·)〉‖2H∗ <∞.

This also shows that the sum in equation (3.10) is absolutely convergent. Similarly,
since {` (ej)⊗ ej}∞j=1 is an orthogonal set in C⊗H and

∞∑
j=1

‖` (ej)⊗ ej‖2C⊗H =
∞∑
j=1

‖` (ej)‖2C <∞,

the sum in equation (3.11) is convergent as well.
Now recall that if H and K are two real Hilbert spaces then the Hilbert space

tensor product H⊗K is unitarily equivalent to the space of Hilbert-Schmidt opera-
tors HS (H,K) from H to K. Under this identification, h⊗k ∈ H⊗K corresponds
to the operator (still denoted by h⊗ k) in HS (H,K) defined by

H 3 h′ 7→ (h⊗ k)h′ = 〈h, h′〉H k ∈ K.

Using this identification we have that, for all c ∈ C, ∞∑
j=1

` (ej)⊗ ` (ej)

 c =

∞∑
j=1

` (ej) 〈` (ej) , c〉C =

∞∑
j=1

` (ej) 〈ej , `∗c〉C

= `

 ∞∑
j=1

〈ej , `∗c〉C ej

 = ``∗c

and  ∞∑
j=1

` (ej)⊗ ej

 c =

∞∑
j=1

ej 〈` (ej) , c〉C =

∞∑
j=1

ej 〈ej , `∗c〉C = `∗c,

which clearly shows that equations (3.10) and(3.11) are basis-independent. �

Notation 3.18. For x = (w, c) ∈ G, let γ(x) and χ(x) be the elements of gCM⊗gCM
defined by

γ(x) :=

∞∑
j=1

(0, ω (w, ej))⊗ (ej , 0) and

χ(x) :=
∞∑
j=1

(0, ω (w, ej))⊗ (0, ω (w, ej))

where {ej}∞j=1 is any orthonormal basis for H. Both γ and χ are well defined by

Lemma 3.17 taking ` = ω(x, ·).

The following proposition is proved in Proposition 3.29 of [15], although the
statement given there is for the elliptic case. Again, we reproduce the short proof
here for the reader’s convenience.
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Proposition 3.19. Let {ej}∞j=1 be an orthonormal basis for H. Then, for any

smooth cylinder function f : G→ R,

Lf(x) :=
∞∑
j=1

[
(̃ej , 0)

2

f

]
(x)

is well-defined and independent of basis. In particular, if f = F◦πP , x = (w, c) ∈ G,
∂h is as in Notation 3.14 for all h ∈ gCM , and

∆Hf(x) :=
∞∑
j=1

∂2
(ej ,0)f(x) = (∆PHF ) (Pw, c) ,

then

(3.12) Lf(x) = (∆Hf) (x) + f ′′(x)

(
γ(x) +

1

4
χ(x)

)
,

where f ′′ is as defined in Notation 3.14 and γ and χ are as defined in Notation
3.18.

Proof. Recall from equation (3.7) that

(̃ej , 0)f(x) = f ′ (x)

(
ej ,

1

2
ω (w, ej)

)
,

where f ′ is also as defined in Notation 3.14 Applying (̃ej , 0) to both sides of this
equation then gives

(̃ej , 0)
2

f(x) = f ′′(x)

((
ej ,

1

2
ω (w, ej)

)
⊗
(
ej ,

1

2
ω (w, ej)

))
= f ′′(x) ((ej , 0)⊗ (ej , 0)) + f ′′(x) ((0, ω (w, ej))⊗ (ej , 0))

+
1

4
f ′′(x) ((0, ω (w, ej))⊗ (0, ω (w, ej))) ,

wherein we have used that

∂ejω (·, ej) = ω (ej , ej) = 0

and the fact that f ′′(x) is symmetric. Summing on j then shows that

∞∑
j=1

[
(̃ej , 0)

2

f

]
(x) =

∞∑
j=1

f ′′(x) ((ej , 0)⊗ (ej , 0)) + f ′′(x)

(
γ(x) +

1

4
χ(x)

)

=
∞∑
j=1

∂2
(ej ,0)f (x) + f ′′(x)

(
γ(x) +

1

4
χ(x)

)
,

which verifies equation (3.12) and thus shows that Lf is independent of the choice
of orthonormal basis for H. �

Similarly, we may prove the following proposition.

Proposition 3.20. Let {ej}∞j=1 be an orthonormal basis for H. Then, for any

smooth cylinder functions f, g : G→ R,

Γ(f, g) (x) :=
∞∑
j=1

(
(̃ej , 0)f

)
(x)
(

(̃ej , 0)g
)

(x)
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is well-defined and independent of basis. In particular, if f = F ◦πP and g = G◦πQ
for P,Q ∈ Proj(W ), x = (w, c) ∈ G, ∂h is as in Notation 3.14 for all h ∈ gCM ,
and

∇Hf(x) :=
∞∑
j=1

(∂(ej ,0)f(x))ej = ∇PHF (Pw, c),

then

Γ(f, g)(x) = 〈∇Hf(x),∇Hg(x)〉H +
1

4
(f ′(x)⊗ g′(x))χ(x)

+
1

2
(f ′(x)⊗ g′(x) + g′(x)⊗ f ′(x))γ(x),

where f ′ is as defined in Notation 3.14 and γ and χ are as defined in Notation
3.18.

Proof. Recall again from equation (3.7) that

(̃ej , 0)f(x) = f ′(x)

(
ej ,

1

2
ω(w, ej)

)
= f ′(x)

(
(ej , 0) +

1

2
(0, ω(w, ej)

)
= ∂(ej ,0)f(x) +

1

2
f ′(x)(0, ω(w, ej)).

Thus,

Γ(f, g)(x) =
∞∑
j=1

{
∂(ej ,0)f(x)∂(ej ,0)g(x) +

1

2
f ′(x)(0, ej)g

′(x)(0, ω(w, ej))

+
1

2
f ′(x)(0, ω(w, ej))g

′(x)(0, ej) +
1

4
f ′(x)(0, ω(w, ej))g

′(x)(0, ω(w, ej))

}
.

Note for example that

∞∑
j=1

f ′(x)(0,ω(w, ej))g
′(x)(ej , 0))

=

∞∑
j=1

〈f ′(x)⊗ g′(x), (0, ω(w, ej))⊗ (ej , 0)〉

=

〈
f ′(x)⊗ g′(x),

∞∑
j=1

(0, ω(w, ej))⊗ (ej , 0)

〉
= 〈f ′(x)⊗ g′(x), γ(x)〉.

Similarly,

∞∑
j=1

f ′(x)(0, ω(w, ej))g
′(x)(0, ω(w, ej))

=

〈
f ′(x)⊗ g′(x),

∞∑
j=1

(0, ω(w, ej))⊗ (0, ω(w, ej))

〉
= 〈f ′(x)⊗ g′(x), χ(x)〉.

�
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Thus, along with L and Γ, we are able to consider the following differential forms
which are well-defined for smooth cylinder functions f , g on G

Γ2 (f, g) :=
1

2
(LΓ (f, g)− Γ (f, Lg)− Γ (g, Lf)) ,

ΓZ (f, g) :=
N∑
`=1

(
(̃0, f`)f

)(
(̃0, f`)g

)
, and

ΓZ2 (f, g) :=
1

2

(
LΓZ(f, g)− ΓZ(f, Lg)− ΓZ(g, Lf)

)
.

Of course, for the finite-dimensional groups GP we may define the same forms for
f, g ∈ C∞(GP ) as was done for more general finite-dimensional groups in Section
2. These will be denoted by LP , ΓP , Γ2,P , and ΓZ2,P . In particular, if {ei}ni=1 is an
orthonormal basis of PH, then

LP f =

n∑
j=1

(̃ej , 0)
2

f and ΓP (f, g) =

n∑
j=1

(
(̃ej , 0)f

)(
(̃ej , 0)g

)
.

3.5. Distances on GCM . We define the sub-Riemannian distance on GCM anal-
ogously to how it was done in finite dimensions in Section 2. We recall its relevant
properties, including the fact that the topology induced by this metric is equivalent
to the topology induced by ‖ · ‖gCM

.

Notation 3.21. (Horizontal distance on GCM )

(1) For x = (A, a) ∈ GCM , let

|x|2gCM
:= ‖A‖2H + ‖a‖2C.

The length of a C1-path σ : [a, b]→ GCM is defined as

`(σ) :=

∫ b

a

|Lσ−1(s)∗σ̇(s)|gCM
ds.

(2) A C1-path σ : [a, b] → GCM is horizontal if Lσ(t)−1∗σ̇(t) ∈ H × {0} for

a.e. t. Let C1,h
CM denote the set of horizontal paths σ : [0, 1]→ GCM .

(3) The horizontal distance between x, y ∈ GCM is defined by

d(x, y) := inf{`(σ) : σ ∈ C1,h
CM such that σ(0) = x and σ(1) = y}.

The horizontal distance is defined analogously on GP and will be denoted by dP .
In particular, for a sequence {Pn}∞n=1 ⊂ Proj(W ), we will let Gn := GPn

and
dn := dPn .

Remark 3.22. Note that if σ(t) = (A(t), a(t)) is a horizontal path, then

Lσ(t)−1∗σ̇(t) =

(
Ȧ(t), ȧ(t)− 1

2
ω(A(t), Ȧ(t))

)
∈ H × {0}

implies that σ must satisfy

a(t) = a(0) +
1

2

∫ t

0

ω(A(s), Ȧ(s)) ds,

and the length of σ is given by

`(σ) =

∫ 1

0

|Lσ−1(s)∗σ̇(s)|gCM
ds =

∫ 1

0

‖Ȧ(s)‖H ds.
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The following proposition is Propositions 2.17 and 2.18 of [19]. We refer the
reader to that paper for the proof.

Proposition 3.23. If {ω(A,B) : A,B ∈ H} = C, then there exist finite constants
K1 = K1(ω) and K2 = K2(N,ω) such that

(3.13) K1(‖A‖H +
√
‖a‖C) ≤ d(e, (A, a)) ≤ K2(‖A‖H +

√
‖a‖C),

for all (A, a) ∈ gCM . In particular, this is sufficient to imply that the topologies
induced by d and ‖ · ‖gCM

are equivalent.

Remark 3.24. The equivalence of the homogeneous norm and horizontal distance
topologies is a standard result in finite dimensions. However, the usual proof of this
result relies on compactness arguments that must be avoided in infinite dimensions.
Thus, the proof for Proposition 3.23 included in [19] necessarily relies on different
methods particular to the structure of the present groups. Using these methods, we
are currently unable to remove the dependence on N = dim(C) from the coefficient
in the upper bound. The reader is referred to [19] for further details.

Lemma 3.25. Fix P0 ∈ Proj(W ) and let x ∈ G0 = GP0 . Let {Pn}∞n=1 ⊂ Proj(W )
such that P0H ⊂ PnH for all n and Pn|H ↑ IH . Then

dn (e, x)→ d (e, x) , as n→∞,
where dn is the horizontal distance on Gn = GPn as in Notation 3.21.

Proof. First, it is clear that, for any n and x, y ∈ Gn, dn (x, y) ≥ d (x, y). In
particular, if x, y ∈ Gm for some m, then x, y ∈ Gn for all n ≥ m and dn (x, y)
is decreasing as n → ∞. Now let x = (w, c) ∈ G0, and consider an arbitrary
horizontal C1-path σ : [0, 1]→ GCM such that σ(0) = e and σ(1) = g. Recall that,
by Remark 3.22, σ must have the form

σ(t) =

(
A(t),

1

2

∫ t

0

ω(A(s), Ȧ(s)) ds

)
.

For n ∈ N, consider the “projected” horizontal paths σn : [0, 1]→ Gn given by

σn(t) = (An(t), an(t)) :=

(
PnA(t),

1

2

∫ t

0

ω(PnA(s), PnȦ(s)) ds

)
.

Note that An(1) = PnA(1) = Pnw = w, and let

εn := c− an(1) = c− 1

2

∫ 1

0

ω(PnA(s), PnȦ(s)) ds ∈ C.

Then

dn(e, x) = dn(e, (w, c)) = dn(e, (w, an(1) + εn)) = dn(e, (w, an(1)) · (0, εn)).

Now, for any left-invariant metric d, we have that

d(e, xy) ≤ d(e, x) + d(x, xy) = d(e, x) + d(e, y).

Thus,

dn(e, x) ≤ dn(e, (w, an(1))) + dn(e, (0, εn)) ≤ `(σn) + C
√
‖εn‖C,

where the second inequality holds by (3.13) with constant C = C(N,ω) not de-
pending on n. (Of course, the estimate (3.13) is stated for the horizontal distance
d on GCM and not dn on Gn. However, the proof of (3.13) in [19] shows that
the same estimate holds for each dP with common coefficients K1 and K2 for all
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sufficiently large P ∈ Proj(W ). For the sake of brevity, we do not include that
proof here, but, roughly, the dependence on N of the coefficient K2 = K2(N,ω)
appearing in Proposition 3.23 is determined by a choice of {A`, B`}N`=1 ⊂ H such
that {ω(A`, B`)}N`=1 is a basis of C. By choosing {A`, B`}N`=1 ⊂ P0H ⊂ PnH, one
may find a constant K2 independent of n so that (3.13) holds with d replaced by
dn. See the proof of Proposition 2.17 of [19] for complete details.)

Now, for any k ≥ n, it is clear that `(σn) ≤ `(σk), since

`(σn) =

∫ 1

0

‖PnȦ(s)‖H ds =

∫ 1

0

√√√√ n∑
j=1

∣∣∣〈Ȧ(s), ej〉H
∣∣∣2 ds,

where {ej}nj=1 is an orthonormal basis of PnH. Thus, for all k ≥ n,

(3.14) dn(e, x) ≤ `(σk) + C
√
‖εn‖C.

Dominated convergence implies that

lim
k→∞

`(σk) = lim
k→∞

∫ 1

0

‖PkȦ(s)‖ ds =

∫ 1

0

‖Ȧ(s)‖ ds = `(σ),

and thus allowing k →∞ in (3.14) gives

dn(e, x) ≤ `(σ) + C
√
‖εn‖C.

Now taking the infimum over all horizontal paths in GCM such that σ(0) = e and
σ(1) = g implies that

dn(e, x) ≤ d(e, x) + C
√
‖εn‖C.

One may also show via dominated convergence that

lim
n→∞

‖εn‖C = lim
n→∞

∥∥∥∥1

2

∫ 1

0

ω(A(s), Ȧ(s))− ω(PnA(s), PnȦ(s)) ds

∥∥∥∥
C

= 0.

Thus, given an arbitrary ε > 0, for all sufficiently large n,

d(e, x) ≤ dn(e, x) ≤ d (e, x) + ε.

�

4. Infinite-dimensional computations

Now given the structure of the infinite-dimensional Heisenberg-like groups and
their finite-dimensional projections defined in the previous section, we wish to con-
sider estimates like the ones discussed in Section 2. In the first subsection, we will
show that the desired curvature-dimension estimate (2.2) and commutation formula
(2.6) hold for the differential forms defined on G and GP . In the second section, we
then record the reverse inequalities and Harnack estimates that follow as a result.

4.1. Curvature-dimension bounds and commutation relations. In this sec-
tion, {ei}∞i=1 and {f`}N`=1 will denote orthonormal bases for H and C respectively,
where N = dim(C). Let ‖ω‖2 denote the Hilbert-Schmidt norm of ω : H ×H → C
as defined in Notation 3.5. That is,

‖ω‖22 := ‖ω‖2H∗⊗H∗⊗C :=
∞∑

i,j=1

‖ω (ei, ej)‖2C =
∞∑

i,j=1

N∑
`=1

〈ω(ei, ej), f`〉2C.
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As ω is a continuous bilinear operator on W , Lemma 3.7 implies that ω is Hilbert-
Schmidt and so ‖ω‖2 <∞.

For the rest of this section, we also fix P ∈ Proj (W ) and let {ei}ni=1 denote
an orthonormal basis of PH. Let ‖ω‖2,P denote the Hilbert-Schmidt norm of ω
restricted to PH, that is,

‖ω‖22,P :=
n∑

i,j=1

‖ω (ei, ej) ‖2C =
n∑

i,j=1

N∑
`=1

〈ω (ei, ej) , f`〉2C.

We will also let

ρ2 := inf


∞∑

i,j=1

(
N∑
`=1

〈ω (ei, ej) , f`〉Cx`

)2

:
N∑
`=1

x2
` = 1

 and

ρ2,P := inf


n∑

i,j=1

(
N∑
`=1

〈ω (ei, ej) , f`〉Cx`

)2

:
N∑
`=1

x2
` = 1

 .

Remark 4.1. Note first that, given that [PW,PW ] = C, it must be that ρ2,P > 0.
One way to see this is to let F : RN → R be given by

(4.1) F (x) = F (x1, . . . , xN ) :=
n∑

i,j=1

(
N∑
`=1

〈ω(ei, ej), f`〉Cx`

)2

.

Then F is a continuous function on RN and so attains its minimum on the compact
set ‖x‖ = 1. Thus, if ρ2,P = inf‖x‖=1 F (x) = min‖x‖=1 F (x) = 0, there exists

x ∈ RN such that ω(ei, ej)·x = 0 for all i, j. That is, x is simultaneously orthogonal
to all ω(ei, ej) and so {ω(ei, ej)}ni,j=1 can not span RN ∼= C.

One may also see that ρ2,P ≤ ‖ω‖2,P and ρ2 ≤ ‖ω‖2. Furthermore, let {Pn}∞n=1 ⊂
Proj(W ) be an increasing sequence of projections such that Pn|H ↑ IH . Let Λn
be an increasing sequence of orthonormal bases for the Pn and define Fn analo-
gously to (4.1) for each Pn. Then, for each x, the function Fn(x) is increasing in
n, and therefore ρ2,Pn

is an increasing sequence. This together with the fact that
ρ2,Pn

≤ ρ2 for all n imply that ρ2,Pn
must converge. In particular, it is clear that

ρ2,Pn
↑ ρ2. It is also clear that ‖ω‖2,Pn

↑ ‖ω‖2.

We will need the following computational lemmas.

Lemma 4.2. For any smooth cylinder function f ,

ρ2ΓZ (f) ≤
∞∑

i,j=1

(
˜(0, ω (ei, ej))f

)2

≤ ‖ω‖22ΓZ (f) .

Similarly, for any f ∈ C∞(GP ),

ρ2,PΓZ (f) ≤
n∑

i,j=1

(
˜(0, ω (ei, ej))f

)2

≤ ‖ω‖22,PΓZ (f) .

Proof. We will prove only the first set of inequalities, as the second proof is ob-
viously parallel. The upper bound follows from the Cauchy-Schwarz inequality,
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since

∞∑
i,j=1

(
˜(0, ω (ei, ej))f

)2

=
∞∑

i,j=1

(
N∑
`=1

〈ω (ei, ej) , f`〉C(̃0, f`)f

)2

≤
∞∑

i,j=1

(
N∑
`=1

〈ω (ei, ej) , f`〉2C

)(
N∑
`=1

(
(̃0, f`)f

)2
)

= ‖ω‖22ΓZ (f) .

To see the lower bound, simply note that

∞∑
i,j=1

(
˜(0, ω (ei, ej))f

)2

=
∞∑

i,j=1

(
N∑
`=1

〈ω (ei, ej) , f`〉C(̃0, f`)f

)2

≥ ρ2ΓZ (f) .

�

Lemma 4.3. For any smooth cylinder function f ,

ΓZ2 (f) =

∞∑
j=1

N∑
`=1

(
(̃ej , 0)(̃0, f`)f

)2

and

∞∑
j=1

( ∞∑
i=1

(̃ei, 0) ˜(0, ω (ei, ej))f

)2

≤ ‖ω‖22ΓZ2 (f) .

Similarly, for any f ∈ C∞(GP ),

ΓZ2,P (f) =
n∑
j=1

N∑
`=1

(
(̃ej , 0)(̃0, f`)f

)2

and

n∑
j=1

(
n∑
i=1

(̃ei, 0) ˜(0, ω (ei, ej))f

)2

≤ ‖ω‖22,PΓZ2,P (f) .

Proof. We find ΓZ2 (f) by a straightforward calculation:

ΓZ2 (f) =
1

2

∞∑
j=1

(̃ej , 0)
2 N∑
`=1

(
(̃0, f`)f

)2

−
N∑
`=1

∞∑
j=1

(
(̃0, f`)f

)(
(̃0, f`)(̃ej , 0)

2

f

)

=
∞∑
j=1

N∑
`=1

{(
(̃ej , 0)(̃0, f`)f

)2

+
(

(̃0, f`)f
)(

(̃ej , 0)
2

(̃0, f`)f

)}

−
N∑
`=1

∞∑
j=1

(
(̃0, f`)f

)(
(̃0, f`)(̃ej , 0)

2

f

)

=
∞∑
j=1

N∑
`=1

(
(̃ej , 0)(̃0, f`)f

)2

,
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where we have used that (̃0, f`) and (̃ej , 0) commute by equation (3.8). The Cauchy-
Schwarz inequality then implies that

∞∑
j=1

( ∞∑
i=1

(̃ei, 0) ˜(0, ω (ei, ej))f

)2

=
∞∑
j=1

( ∞∑
i=1

N∑
`=1

〈ω (ei, ej) , f`〉C(̃ei, 0)(̃0, f`)f

)2

≤
∞∑
j=1

( ∞∑
i=1

N∑
`=1

〈ω (ei, ej) , f`〉2C

)( ∞∑
i=1

N∑
`=1

(
(̃ei, 0)(̃0, f`)f

)2
)

= ‖ω‖22ΓZ2 (f) .

�

Lemmas 4.2 and 4.3 combine to give the desired curvature-dimension bound.

Proposition 4.4. For any ν > 0 and smooth cylinder function f ,

(4.2) Γ2 (f) + νΓZ2 (f) ≥ ρ2

4
ΓZ (f)− ‖ω‖

2
2

ν
Γ (f) .

Similarly, for any ν > 0 and f ∈ C∞(GP ),

Γ2,P (f) + νΓZ2,P (f) ≥ ρ2,P

4
ΓZP (f)−

‖ω‖22,P
ν

ΓP (f) .

Proof. Again, we prove only the first inequality. To do this, we first use Lemma

4.2 and the commutation relation in (3.4) to estimate
∑∞
i,j=1

(
(̃ei, 0)(̃ej , 0)f

)2

. In

what follows, we also use the antisymmetry of the form ω.
∞∑

i,j=1

(
(̃ei, 0)(̃ej , 0)f

)2

=
∞∑

i,j=1

(
(̃ei, 0)(̃ej , 0) + (̃ej , 0)(̃ei, 0)

2
f +

1

2
˜(0, ω (ei, ej))f

)2

=
∞∑

i,j=1

(
(̃ei, 0)(̃ej , 0) + (̃ej , 0)(̃ei, 0)

2
f

)2

+
1

4

∞∑
i,j=1

(
˜(0, ω (ei, ej))f

)2

+
1

2

∞∑
i,j=1

(
(̃ei, 0)(̃ej , 0)f + (̃ej , 0)(̃ei, 0)f

)(
˜(0, ω (ei, ej))f

)

=
∞∑

i,j=1

(
(̃ei, 0)(̃ej , 0) + (̃ej , 0)(̃ei, 0)

2
f

)2

+
1

4

∞∑
i,j=1

(
˜(0, ω (ei, ej))f

)2

= ‖∇2
Hf‖2 +

1

4

∞∑
i,j=1

(
˜(0, ω (ei, ej))f

)2

where

∇2
Hf :=

∞∑
i,j=1

(̃ei, 0)(̃ej , 0)f + (̃ej , 0)(̃ei, 0)f

2
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denotes the symmetrized Hessian. Thus by Lemma 4.2

(4.3) ‖∇2
Hf‖2 +

ρ2

4
ΓZ (f) ≤

∞∑
i,j=1

(
(̃ei, 0)(̃ej , 0)f

)2

≤ ‖∇2
Hf‖2 +

‖ω‖22
4

ΓZ (f) .

Now we want to compute Γ2 (f). The first term is simply

1

2
LΓ (f) =

∞∑
i,j=1

(
(̃ei, 0)

2

(̃ej , 0)f

)
(̃ej , 0)f +

(
(̃ei, 0)(̃ej , 0)f

)2

.

The second term may be expanded by applying (3.4) twice as follows

Γ (f, Lf) =
∞∑

i,j=1

(
(̃ej , 0)(̃ei, 0)

2

f

)
(̃ej , 0)f

=
∞∑

i,j=1

(
(̃ei, 0)

2

(̃ej , 0)f

)
(̃ej , 0)f − 2

(
(̃ei, 0) ˜(0, ω (ei, ej))f

)
(̃ej , 0)f.

Thus, by the lower bound in (4.3) we have that

Γ2 (f) =
1

2
(LΓ (f)− 2Γ (f, Lf))

=

∞∑
i,j=1

(
(̃ei, 0)(̃ej , 0)f

)2

+ 2

∞∑
i,j=1

(
(̃ei, 0) ˜(0, ω (ei, ej))f

)
(̃ej , 0)f

≥ ‖∇2
Hf‖2 +

ρ2

4
ΓZ (f) + 2

∞∑
i,j=1

(
(̃ei, 0) ˜(0, ω (ei, ej))f

)
(̃ej , 0)f.(4.4)

The Cauchy-Schwarz inequality now implies that for any ν > 0

2

∣∣∣∣∣∣
∞∑

i,j=1

(
(̃ei, 0) ˜(0, ω (ei, ej))f

)
(̃ej , 0)f

∣∣∣∣∣∣
≤ ν

∞∑
j=1

( ∞∑
i=1

(̃ei, 0) ˜(0, ω (ei, ej))f

)2

+
1

ν

∞∑
j=1

(
(̃ej , 0)f

)2

≤ ν‖ω‖22ΓZ2 (f) +
1

ν
Γ (f) ,(4.5)

where the last inequality follows from Lemma 4.3. Combining (4.4) and (4.5) then
gives

Γ2 (f) + ν‖ω‖22ΓZ2 (f) ≥ ‖∇2
Hf‖2 +

ρ2

4
ΓZ (f)− 1

ν
Γ (f)(4.6)

≥ ρ2

4
ΓZ (f)− 1

ν
Γ (f) .

Finally, taking ν to be ν
‖ω‖22

yields (4.2). �

Remark 4.5. In the finite-dimensional case, one could use the Cauchy-Schwarz
inequality in (4.6) to give a lower bound on ‖∇2

Hf‖2 by (Lf)2 with a coefficient
depending on dim(H). Such an estimate standardly leads, for example, to Li-Yau
type Harnack inequalities and bounds on logarithmic derivatives of the heat kernel.
See for example [2, 8, 27].
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We now prove that the desired commutation formula holds trivially on G and
GP .

Lemma 4.6. For any smooth cylinder function f on G,

Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)).

Similarly, for any f ∈ C∞(GP ),

ΓP (f,ΓZP (f)) = ΓZP (f,ΓP (f)).

Proof. The proof is a straightforward computation.

Γ(f,ΓZ(f)) =
∞∑
j=1

(
(̃ej , 0)f

)(
(̃ej , 0)ΓZ(f)

)

=
∞∑
j=1

N∑
`=1

(
(̃ej , 0)f

)(
(̃ej , 0)

(
(̃0, f`)f

)2
)

= 2
∞∑
j=1

N∑
`=1

(
(̃ej , 0)f

)(
(̃0, f`)f

)(
(̃ej , 0)(̃0, f`)f

)

= 2
∞∑
j=1

N∑
`=1

(
(̃0, f`)f

)(
(̃ej , 0)f

)(
(̃f`, 0)

(
(̃0, ej)f

))
= ΓZ(f,Γ(f)),

where we have again used the commutativity of (̃ej , 0) and (̃0, fl) in the penultimate
equality. The computation for the second equality is completely analogous. �

4.2. Functional inequalities on GP . Again note that for any P ∈ Proj(W ),
GP = PH × C is a finite-dimensional step 2 stratified Lie group. If {ej}nj=1 is a

orthonormal basis of PH, then {(̃ej , 0)}nj=1 is a Hörmander set of vector fields on
GP . Thus we may apply the results of Section 2 toGP . In particular, by Proposition
2.5, the curvature bound for GP found in Proposition 4.4 implies the following

reverse Poincaré inequality holds on all GP . Here, we let LP =
∑n
j=1 (̃ej , 0)

2

and

{PPt }t>0 denote the associated semi-group. Also, define the function classes CP
and C+

P analogously for GP as was done in Notation 2.3.

Proposition 4.7 (Reverse Poincaré inequality). For any P ∈ Proj(W ), T > 0,
and f ∈ CP ,

ΓP (PPT f) + ρ2,PTΓZP (PPT f) ≤
1 +

8‖ω‖22,P
ρ2,P

2T
(PPT (f2)− (PPT f)2).

In particular, the following reverse Poincaré inequality holds

ΓP (PPT f) ≤
1 +

8‖ω‖22,P
ρ2,P

2T
(PPT (f2)− (PPT f)2).

Similarly, Theorem 2.7 implies that Proposition 4.4 coupled with the commuta-
tion relation of Lemma 4.6 give the following reverse log Sobolev inequality on all
GP .
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Theorem 4.8 (Reverse log Sobolev inequality). For any P ∈ Proj(W ), T > 0,
and f ∈ C+

P ,

ΓP (lnPPT f) + ρ2,PTΓZP (lnPPT f) ≤
1 +

8‖ω‖22,P
ρ2,P

T

(
PPT (f ln f)

PPT f
− lnPPT f

)
In particular, the following reverse log Sobolev inequality holds

ΓP (lnPPT f) ≤
1 +

8‖ω‖22,P
ρ2,P

T

(
PPT (f ln f)

PPT f
− lnPPT f

)
.

The combination of Proposition 2.10 with the reverse log Sobolev inequality
found in Theorem 4.8 implies that the following Harnack type inequalities hold on
each GP .

Proposition 4.9 (Wang type Harnack inequality). Let P ∈ Proj(W ). Then, for
all T > 0, x, y ∈ GP , f ∈ L∞(GP ) with f ≥ 0, and p ∈ (1,∞),

(PPT f)p(x) ≤ PPT fp(y) exp

((
1 +

8‖ω‖22,P
ρ2,P

)
pd2
P (x, y)

4(p− 1)T

)
.

5. Heat kernel measure on G and a quasi-invariance theorem

In this section, we show how the Wang type Harnack inequalities on GP obtained
in the previous section lead to the quasi-invariance of the subelliptic heat kernel
measure on G. First, we must of course define the heat kernel measure on G, which
we define as the end point distribution of a Brownian motion.

5.1. Brownian motion on G. We define a “subelliptic” Brownian motion {gt}t≥0

on G and collect various of its properties. The primary references for this section
are Sections 4 of [15] and [17] and Section 2.5 of [19]. Any statements made here
without proof are proved in these references.

Let {Bt}t≥0 be a Brownian motion on W with variance determined by

E [〈Bs, h〉H〈Bt, k〉H ] = 〈h, k〉H min(s, t),

for all s, t ≥ 0 and h, k ∈ H∗. The following is Proposition 4.1 of [15] and this result
implicitly relies on the fact that Lemma 3.7 implies that the bilinear form ω is a
Hilbert-Schmidt.

Proposition 5.1. For P ∈ Proj(W ), let MP
t denote the continuous L2-martingale

on C defined by

MP
t =

∫ t

0

ω(PBs, dPBs).

In particular, if {Pn}∞n=1 ⊂ Proj(W ) is an increasing sequence of projections and

Mn
t := MPn

t , then there exists an L2-martingale {Mt}t≥0 in C such that, for all
p ∈ [1,∞) and t > 0,

lim
n→∞

E
[
sup
τ≤t
‖Mn

τ −Mτ‖pC
]

= 0,

and Mt is independent of the sequence of projections.
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As Mt is independent of the defining sequence of projections, we will denote the
limiting process by

Mt =

∫ t

0

ω(Bs, dBs).

Definition 5.2. The continuous G-valued process given by

gt =

(
Bt,

1

2
Mt

)
=

(
Bt,

1

2

∫ t

0

ω(Bs, dBs)

)
is a Brownian motion on G. For t > 0, let νt = Law(g2t) denote the heat kernel
measure at time 2t on G.

We include the following proposition (see [19, Proposition 2.30]) which states
that, as the name suggests, the Cameron-Martin subgroup is a subspace of heat
kernel measure 0.

Proposition 5.3. For all t > 0, νt(GCM ) = 0.

Proposition 5.1 along with the fact that, for all p ∈ [1,∞) and t > 0,

lim
n→∞

E
[
sup
τ≤t
‖Bτ − PnBτ‖pW

]
= 0

(see for example Proposition 4.6 of [15]) makes the following proposition clear.

Proposition 5.4. For P ∈ Proj(W ), let gPt be the continuous process on GP
defined by

gPt =

(
PBt,

1

2

∫ t

0

ω(PBs, dPBs)

)
.

Then gPt is a Brownian motion on GP . In particular, let {Pn}∞n=1 ⊂ Proj(W ) be

increasing projections and gnt := gPn
t . Then, for all p ∈ [1,∞) and t > 0,

lim
n→∞

E
[
sup
τ≤t
‖gnτ − gτ‖pg

]
= 0.

Notation 5.5. For all P ∈ Proj (W ) and t > 0, let νPt := Law(gP2t), and for all n ∈ N
let νnt := Law(gn2t) = Law(gPn

2t ).

Proposition 5.6. Let L be as defined in Proposition 3.19. Then we will call L the
subelliptic Laplacian, and 1

2L is the generator for {gt}t≥0, so that, for any smooth
cylinder function f : G→ R,

f(gt)−
1

2

∫ t

0

Lf(gs) ds

is a local martingale.

Corollary 5.7. Let f = F ◦πP be a cylinder function on G such that F ∈ C2(GP )
and there exist K > 0 and p <∞ such that

|F (h, c)|+ ‖F ′(h, c)‖+ ‖F ′′(h, c)‖ ≤ K(1 + ‖h‖PH + ‖c‖C)p,

for all (h, c) ∈ GP . Then

E[f(gt)] = f(e) +
1

2

∫ t

0

E[(Lf)(gs)] ds.



32 BAUDOIN, GORDINA, AND MELCHER

That is,

νt(f) :=

∫ t

0

f dνs = f(e) +

∫ t

0

νs(Lf) ds

is a weak solution to the heat equation

∂tνt = Lνt, with lim
t↓0

νt = δe.

For all projections satisfying Hörmander’s condition, the Brownian motions on
GP are subelliptic diffusions and thus their laws are absolutely continuous with
respect to the finite-dimensional reference measure and their transition kernels are
smooth. The following is Lemma 2.27 of [19].

Lemma 5.8. For all P ∈ Proj(W ) and t > 0, we have νPt (dx) = pPt (x)dx, where
dx is the Riemannian volume measure (equal to Haar measure) and pPt (x) is the
heat kernel on GP .

5.2. Quasi-invariance and Radon-Nikodym derivative estimates. For now,
let us fix P ∈ Proj(W ), and recall that by Proposition 4.9, for all T > 0, x, y ∈ GP ,
f ≥ 0, and p ∈ (1,∞),

(PPT f)p(x) ≤ PPT fp(y) exp

((
1 +

8‖ω‖22,P
ρ2,P

)
pd2
P (x, y)

4(p− 1)T

)
.

Then Lemma 2.11 implies that this estimate is equivalent to(∫
G

[
pPT (y, z)

pPT (x, z)

]1/(p−1)

pPT (x, z) dz

)p−1

≤ exp

((
1 +

8‖ω‖22,P
ρ2,P

)
pd2
P (x, y)

4(p− 1)T

)
where pPT is the heat kernel on GP . In particular, for p ∈ (1, 2) and q = 1/(p− 1) ∈
(1,∞), this implies that

(5.1)

(∫
G

[
pPT (y, z)

pPT (x, z)

]q
pPT (x, z) dz

)1/q

≤ exp

((
1 +

8‖ω‖22,P
ρ2,P

)
(1 + q)d2

P (x, y)

4T

)
Using the properties of heat kernels on finite-dimensional groups given in Lemma
2.1, we have that∫

G

[
pPT (y, z)

pPT (x, z)

]q
pPT (x, z) dz =

∫
G

[
pPT (yz−1)

pPT (xz−1)

]q
pPT (xz−1) dz

=

∫
G

[
pPT (zy−1)

pPT (zx−1)

]q
pPT (zx−1) dz.

Then, for x = e, we may rewrite inequality (5.1) as

(5.2)

(∫
G

[
pPT (zy−1)

pPT (z)

]q
pPT (z) dz

)1/q

≤ exp

((
1 +

8‖ω‖22,P
ρ2,P

)
(1 + q)d2

P (e, y)

4T

)
.

Now, for y ∈ GP , again we let Ry : GP → GP denote right translation. Then
νPT ◦ R−1

y is the push forward of νT under Ry. For fixed T > 0, let JrP denote the

Radon-Nikodym derivative of νPT ◦R−1
y with respect to νPT . Then (5.2) is equivalent

to

(5.3) ‖JrP ‖Lq(GP ,νP
T ) ≤ exp

((
1 +

8‖ω‖22,P
ρ2,P

)
(1 + q)d2

P (e, y)

4T

)
.



QUASI-INVARIANCE ON INFINITE-DIMENSIONAL HEISENBERG GROUPS 33

Alternatively, again using the properties of pPT described in Lemma 2.1 and the
translation invariance of Haar measure, we could write∫

G

[
pPT (y, z)

pPT (x, z)

]q
pPT (x, z) dz =

∫
G

[
pPT (y−1z)

pPT (x−1z)

]q
pPT (x−1z) dz

=

∫
G

[
pPT (y−1xz)

pPT (z)

]q
pPT (z) dz.

Then taking x = e and combining this with the inequality (5.1) gives(∫
G

[
pPT (y−1z)

pPT (z)

]q
pPT (z) dz

)1/q

≤ exp

((
1 +

8‖ω‖22,P
ρ2,P

)
(1 + q)d2

P (e, y)

4T

)
.

which is equivalent to the left translation analogue

(5.4) ‖J lP ‖Lq(GP ,νP
T ) ≤ exp

((
1 +

8‖ω‖22,P
ρ2,P

)
(1 + q)d2

P (e, y)

4T

)
,

where Ly : GP → GP is left translation, νPT ◦ L−1
y is the push forward of νPT under

Ly, and J lP denotes the Radon-Nikodym derivative of νPT ◦L−1
y with respect to νT .

Such estimates on the finite-dimensional projection groups GP may be used to
prove a quasi-invariance theorem on the infinite-dimensional groupG. The following
proof is analogous to the proofs of Theorem 7.2 and 7.3 in [16]. Similar methods
were also used for the elliptic setting in loop groups in [13], in infinite-dimensional
Heisenberg-like groups in [15], and in semi-infinite Lie groups in [30].

Theorem 5.9 (Quasi-invariance of νt). For all y ∈ GCM and T > 0, νT is quasi-
invariant under left and right translations by y. Moreover, for all q ∈ (1,∞),

(5.5)

∥∥∥∥∥d(νT ◦R−1
y )

dνT

∥∥∥∥∥
Lq(G,νT )

≤ exp

((
1 +

8‖ω‖22
ρ2

)
(1 + q)d2(e, y)

4T

)
and ∥∥∥∥∥d(νT ◦ L−1

y )

dνT

∥∥∥∥∥
Lq(G,νT )

≤ exp

((
1 +

8‖ω‖22
ρ2

)
(1 + q)d2(e, y)

4T

)
.

Proof. Fix T > 0 and P0 ∈ Proj(W ). Let y ∈ G0 and {Pn}∞n=1 be an increasing
sequence of projections such that P0H ⊂ PnH for all n and Pn|H ↑ IH . Let
Jrn := JrPn

denote the Radon-Nikodym derivative of νnT ◦ R−1
y with respect to νnT .

Then by the previous discussion and (5.3), we have

‖Jrn‖Lq(Gn,νn
T ) ≤ exp

((
1 +

8‖ω‖22,n
ρ2,n

)
(1 + q)d2

n(e, y)

4T

)
,

where we let ‖ω‖2,n := ‖ω‖2,Pn
and ρ2,n = ρ2,Pn

.
By Proposition 5.4, we have that for any bounded continuous f on G,

(5.6)

∫
G

fdνT = lim
n→∞

∫
Gn

f ◦ in dνnT ,
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where in : Gn → G denotes the inclusion map. Note that∫
Gn

|(f ◦ in)(xy)| dνnT (x) =

∫
Gn

Jrn(x)|(f ◦ in)(x)|dνnT (x)

≤ ‖f ◦ in‖Lq′ (Gn,νn
T ) exp

((
1 +

8‖ω‖22,n
ρ2,n

)
(1 + q)d2

n(e, y)

4T

)
,

where q′ is the conjugate exponent to q. Allowing n → ∞ in this last inequality
yields

(5.7)

∫
G

|f(xy)| dνT (x) ≤ ‖f‖Lq′ (G,νT ) exp

((
1 +

8‖ω‖22
ρ2

)
(1 + q)d2(e, y)

4T

)
,

by Lemma 3.25, Remark 4.1, and equation (5.6). Thus, we have proved that (5.7)
holds for f ∈ BC(G) and y ∈ ∪P∈Proj(W )GP . As this union is dense in G by
Proposition 3.23, dominated convergence along with the continuity of d(e, y) in y
implies that (5.7) holds for all y ∈ GCM .

Since the bounded continuous functions are dense in Lq
′
(G, νT ) (see for example

Theorem A.1 of [24]), the inequality in (5.7) implies that the linear functional
ϕy : BC(G)→ R defined by

ϕy(f) =

∫
G

f(xy) dνT (x)

has a unique extension to an element, still denoted by ϕy, of Lq
′
(G, νT )∗ which

satisfies the bound

|ϕy(f)| ≤ ‖f‖Lq′ (G,νT ) exp

((
1 +

8‖ω‖22
ρ2

)
(1 + q)d2(e, y)

4T

)
for all f ∈ Lq′(G, νT ). Since Lq

′
(G, νT )∗ ∼= Lq(G, νT ), there then exists a function

Jry ∈ Lq(G, νT ) such that

(5.8) ϕy(f) =

∫
G

f(x)Jry (x) dνT (x),

for all f ∈ Lq′(G, νT ), and

‖Jry‖Lq(G,νT ) ≤ exp

((
1 +

8‖ω‖22
ρ2

)
(1 + q)d2(e, y)

4T

)
.

Now restricting (5.8) to f ∈ BC(G), we may rewrite this equation as

(5.9)

∫
G

f(x) dνT (xy−1) =

∫
G

f(x)Jry (x) dνT (x).

Then a monotone class argument (again use Theorem A.1 of [24]) shows that (5.9)
is valid for all bounded measurable functions f on G. Thus, d(νT ◦R−1

y )/dνT exists
and is given by Jry , which is in Lq for all q ∈ (1,∞) and satisfies the bound (5.5).

A parallel argument employing the estimate in (5.4) gives the analogous result
for d(νT ◦ L−1

y )/dνT . Alternatively, one could use the right translation invariance
just proved along with the facts that νT inherits invariance under the inversion map
y 7→ y−1 from its finite-dimensional projections and that d(e, y−1) = d(e, y). �
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We may now observe that, by the proof of Lemma 2.11, we have the following
Wang type Harnack inequality on G. For T > 0, x ∈ G, and f ∈ L∞(G, νT ), let

PT f(x) := E[f(xg2T )] =

∫
G

f(xy) dνT (y),

where {xgt}t≥0 is Brownian motion on G started at x.

Corollary 5.10 (Wang type Harnack inequality on G). Then for all T > 0 and
x, y ∈ GCM , f ∈ L∞(G, νT ) with f ≥ 0, and p ∈ (1,∞)

(PT f)p(x) ≤ PT fp(y) exp

((
1 +

8‖ω‖22
ρ2

)
pd2(x, y)

4(p− 1)T

)
.

Our final result is the following corollary which concerns two points. First, we
are interested in the smoothing properties of the semi-group PT in the absence
of a reference measure. One way to approach this is to use a method similar to
the proof of [35, Theorem 1.1]. A significant difference is that in [35] and some
related work, the proof that the semi-group is strong Feller uses not only Harnack
type inequalities, but also a version of Girsanov’s theorem for the solution of the
stochastic differential equation they consider. Note that we do not presently have
path space quasi-invariance available in our degenerate case. The second point
concerns the fact that the semi-group has smoothing properties, but only on the
Cameron-Martin subgroup which has the heat kernel measure 0 as has been shown
in [19, Proposition 2.30]. This is an infinite-dimensional phenomenon. In the flat
abstract Wiener space setting such a phenomenon has been observed in [1]. In
the context of holomorphic functions on complex abstract Wiener space it has
been proved in [32, 33] and on complex infinite-dimensional groups in [11, 15, 18].
The importance of the strong Feller property for probabilistic potential theory in
infinite dimensions has been discussed in [21]. Also, in [22] those authors explore
the implications of a weaker version of the strong Feller property in a hypoelliptic
setting.

Corollary 5.11 (Feller skeleton). For all T > 0 and bounded continuous functions
f on G such that f ≥ 0, (PT f) (y)→ (PT f) (x) as d(x, y)→ 0 for x, y ∈ GCM .

Proof. Fix T > 0 and P0 ∈ Proj(W ). Let y ∈ G0 and {Pn}∞n=1 be an increasing
sequence of projections such that P0H ⊂ PnH for all n and Pn|H ↑ IH . Then, for

PnT := PPn

T and pnT := pPn

T ,

| (PnT f) (y)− (PnT f) (x) | ≤
∫
Gn

f (z) |pnT (x, z)− pnT (y, z) |dz

≤ ‖f‖∞
∫
Gn

|pnT (x, z)− pnT (y, z) |dz.

We also have that(∫
Gn

|pnT (x, z)− pnT (y, z) |dz
)2

=

(∫
Gn

∣∣∣∣pnT (x, z)

pnT (y, z)
− 1

∣∣∣∣ pnT (y, z) dz

)2

≤
∫
Gn

(
pnT (x, z)

pnT (y, z)
− 1

)2

pnT (y, z) dz =

∫
Gn

(
pnT (x, z)

pnT (y, z)

)2

pnT (y, z) dz − 1

≤ exp

((
1 +

8‖ω‖22,n
ρ2,n

)
3d2
n (x, y)

2T

)
− 1
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by (5.1) with q = 2. By (5.6) we may show that for any x, y ∈ GCM

|(PT f)(x)− (PT f) (y)|2

≤ ‖f‖2∞
(

exp

((
1 +

8‖ω‖22
ρ2

)
3d2(x, y)

2T

)
− 1

)
≤ ‖f‖2∞

(
1 +

8‖ω‖22
ρ2

)
3d2(x, y)

2T
exp

((
1 +

8‖ω‖22
ρ2

)
3d2(x, y)

2T

)
,

since ex − 1 ≤ xex for any x > 0. It is clear that the right-hand side tends to 0
when d (x, y)→ 0. �
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