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Abstract In this paper we show how higher-order
averaging can be used to remedy serious technical
issues with the direct application of the averaging the-
orem. While doing so, we reconcile two higher-order
averagingmethodologies that were developed indepen-
dently using different tools and within different com-
munities: (i) perturbation theory using a near-identity
transformation and (ii) chronological calculus using
Lie algebraic tools. We provide the underpinning con-
cepts behind each averaging approach and provide a
mathematical proof for their equivalence up to the
fourth order.Moreover, we provide a higher-order aver-
aging study and analysis for two applications: the clas-
sical problem of the Kapitza pendulum and the modern
application of flapping flight dynamics of micro-air-
vehicles and/or insects.
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1 Introduction

Nature is teeming with periodically forced creatures
(e.g., insects, birds, fish). With the current active
research trend of mimicking nature’s designs, there
are plenty of bio-inspired engineering systems that are
represented by nonlinear time-periodic (NLTP) mod-
els such as swimming robots [1–4] and flapping-wing
micro-air-vehicles [5,6]. Additionally, high-frequency
periodic control is a common approach for stabilization
and path planning for under-actuated mechanical sys-
tems (with control inputs less than degrees of freedom)
[2,7–9]. Vibrational control is an open-loop stabiliza-
tion technique via the application of sufficient high-
frequency, high-amplitude, periodic inputs. It was first
introduced by Meerkov [10] for linear time-varying
systems. It is well known for its robustness [11] and
elegance (stabilization without feedback). By defini-
tion, vibrationally controlled systems are time-periodic
systems.

Analyzing the dynamics of these time-varying sys-
tems is quite more challenging than that of autonomous
(time-invariant) ones. For example, a NLTP system
usually attains equilibrium when all of its states
undergo periodic solutions. That is, its equilibria may
not be represented by fixed points but rather by periodic
orbits. Moreover, even when the system is linear and
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Fig. 1 The two main approaches used to analyze NLTP systems

has a fixed point (ẋ = [A(t)]x), its stability cannot be
assessed through the eigenvalues of the system matrix
[A(t)]. That is, in contrast to linear time-invariant sys-
tems ẋ = [A]x where a Hurwitz matrix (its eigenval-
ues have strictly negative real parts) implies exponen-
tial stability, if all the eigenvalues of the time-varying
matrix [A(t)] lie in the open left half of the complex
plane for all times, the system may still be unstable;
Markus and Yamabe [12] provided a counterexample.

In general, the stability analysis of NLTP systems
is conducted using one of two main approaches: a
numerical approach based on the Floquet theorem [13–
15] and an analytical approach based on the averag-
ing theorem [16–19]. As shown in Fig. 1, the first
approach requires determination of the periodic orbit
(i.e., solving the dynamic equations). Then, the Flo-
quet theorem is used to analyze the stability of the lin-
ear, time-periodic (LTP) system obtained by lineariz-
ing the dynamics about the concerned periodic orbit.
For non-trivial applications, this approach cannot be
performed analytically. Hence, the inevitable numeri-

cal implementation of the Floquet theorem precludes
scrutinizing the dynamical behavior of the system on
an analytical level. The second approach is to use the
averaging theorem to transform theNLTP system into a
nonlinear, time-invariant (NLTI), i.e., an autonomous,
system in which the periodic orbit of the original sys-
tem corresponds to a fixed point. Then, the averaging
theorem guarantees that, for high enough frequency,
exponential stability of this fixed point implies expo-
nential stability of the corresponding periodic orbit.
Thus, the averaging approach dodges the determination
of the periodic orbit under study and, hence, provides
a compact, constructive technique to ensure the peri-
odic orbit and to analyze its stability (by ensuring the
corresponding fixed point and studying its stability). In
fact, averaging has been the standard andmost common
technique to design vibrational control systems [7,20].

Despite its convenience to analyze NLTP systems,
the application of averaging should be performed care-
fully. In fact, there might not be a more expressive
statement about the subtleties of averaging than that by
Sanders and Verhulst in their book on the topic [17]:

To many physicists and astronomers averaging
seems to be such a natural procedure that they do
not even bother to justify the process. However,
it is important to have a rigorous approximation
theory, since it is precisely the fact that averaging
seems so natural that obscures the pitfalls and
restrictions of the method.

Sticking to the standard form of averaging, its direct
application may not be admissible and/or practically
useful in many cases. First, the averaging theorem
necessitates a special structure (weakly forced sys-
tems). Therefore, it cannot be applied directly to
vibrational control systems, which are typically high-
amplitude, periodically forced systems. The standard
remedy for this case is to apply the nonlinear variation
of constants formula [7,21] to transform themulti-scale
system into two companion systems, each of which is
amenable to the averaging theorem (see [7,8,22,23]).
It is interesting to note that the use of the variation of
constants (VOC) formula before averaging goes back
to Lagrange in his analysis of the perturbed two-body
problem (see [24, pp. 181–184]). However, the VOC
formula,which requires computation of flowmaps (i.e.,
solution of part of the differential equation), may not
be analytically tractable for complex systems, hence
frittering away the analytical advantage of the averag-
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ing analysis. Second, even when the system structure
permits analytical application of the VOC (e.g., sim-
ple mechanical systems [7]), a major issue with the
averaging theorem is that it is applicable only for high
enough oscillation frequency. That is, it only guaran-
tees the existence of a threshold frequency ω∗ above
which stability of the averaged dynamics implies sta-
bility of the corresponding NLTP system. The predica-
ment is that almost none of the averaging theorems tell
how much ω∗ is. As such, vibrational control is typi-
cally achieved by ensuring that the averaged dynamics
is stable and then sweeping the frequency (e.g., by sim-
ulation) until hopefully the threshold is hit. Then, the
averaging theorems guarantee stability for the origi-
nal time-periodic system for all frequencies above this
threshold. The main issue stressed in the recent work
of Berg and Wickramasinghe [20] is that finding a sta-
ble response of the time-periodic system at a certain
frequency does not necessarily mean that the threshold
is reached. That is, the time-periodic system may be
stable at some ω1 and unstable at ω2 > ω1 (clearly,
ω1 < ω2 < ω∗). This finding also points to the pos-
sibility for vibrational stabilization at a frequency less
than the threshold value, hence relaxing the averaging
unfeasible requirements.

In this paper, we propose higher-order averaging
techniques as potential remedy for the two issues raised
above regarding direct (first-order) averaging. In par-
ticular, we show how higher-order averaging captures
more dynamical features that are typically neglected
by direct averaging. Moreover, the threshold frequency
maydecrease as the order of averaging increases.While
doing this, we find it necessary to reconcile differ-
ent averaging approaches in the literature. Two higher-
order averaging techniques can be found in the litera-
ture, which are developed separately employing differ-
ent tools. The first technique is based on the classical
averaging theory developed by Krilov et al. [25,26];
some authors such as Vela [27] refer to it as the
KBM method. This classical approach has its roots
in the perturbation theory; the main objective is to
find a near-identity transformation that transforms the
time-periodic system into a time-invariant system after
neglecting terms of arbitrary small order of magnitude.

The other higher-order averaging technique is based
on the so-called chronological calculus, exploiting
Lie algebraic tools. In honor of the 70th birthday of
the great Russian mathematician Lev Pontryagin, the
founder of the optimal control theory, his students and

colleagues Agrachev and Gamkrelidze [28,29] devel-
oped a new branch of calculus to study time-varying
dynamical systems: the chronological calculus. The
main objective was to provide an exponential repre-
sentation of the flow along a time-varying vector field,
in a way that resembles the exponential representation
of the flow of autonomous vector fields given by the
Fliess functional expansion [30]. Utilizing these math-
ematical tools, Sarychev [31] and Vela [27] developed
higher-order averaging techniques for time-periodic
systems, generalizing the classical averaging theorem
to cases where the excitation frequency is not high
enough. Inspired by the Floquet theorem, the main
objective was to determine a time-invariant (averaged)
system whose flow after one period matches the flow
of the time-periodic system after one period. Hence,
the stability characteristics of the NLTP system can
be deduced from the stability characteristics of the
averaged system, thereby extending the Floquet the-
orem to nonlinear systems. Because this approach is
developed using differential geometric techniques, the
higher-order averaged dynamics are given in terms of
Lie brackets between the time-periodic vector field and
its integrals.

Throughout several discussions between the third
author and Prof. Ali Nayfeh, the latter always sug-
gested that the two averaging approaches are just the
same. Yet, it is not clear in the literature whether such
approaches are equivalent or not. Therefore, we find it
a good opportunity to reconcile the two higher-order
averaging techniques in this special issue in the mem-
ory of Prof. Nayfeh, particularly because he made
several important contributions to the first classical
approach [13–15,32].

The main contribution of this paper is to recon-
cile these two averaging techniques, under a unified
notation, providing explicit formulas for higher-order
averaging terms. Moreover, we prove that the two
approaches are equivalent up to the fourth order. It is
noteworthy tomention that, unlike the classical averag-
ing approach, the one based on chronological calculus
does not provide a recursive formula for the compu-
tation of higher-order terms. Hence, the equivalence
between the two averaging techniques cannot be sys-
tematically carried out for an arbitrarily high order. In
this paper, the equivalence is mathematically proven
only up to the fourth order. Moreover, we show a
“conceptual” equivalence between the two approaches
which suggests that the mathematical equivalence can
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be extended for terms beyond the fourth order. This
equivalence will allow each approach to benefit from
tools and results developed in the other branch. After
proving such an equivalence, we apply these tech-
niques to two applications: (i) a classical application of
the Kapitza pendulum (inverted pendulum subjected to
vertical oscillation) and (ii) amodern application on the
hovering flight of insects and flapping-wing micro-air-
vehicles. In these examples, we show how higher-order
averaging capturesmore dynamical features than direct
averaging and how it can mitigate the technical issues
associated with the direct application of the averaging
theorem.

The paper is organized as follows: In Sect. 2, the
two approaches (classical averaging and chronological
calculus) are described separately. The reconciliation
of the two averaging approaches is given in detail in
Sect. 3. Lastly, Sect. 4 discusses the two applications
mentioned above.

2 Two higher-order averaging techniques

NLTP systems are usually characterized by two
timescales: a fast timescale and a slow timescale. The
goal of averaging is to filter the slow behavior by cap-
turing the mean effect of the dynamics over a period of
the fast timescale. During a period, the slowly vary-
ing states (that do not explicitly depend on the fast
time) are approximated as constants. As an example,
let us consider a hummingbird flapping its wings. The
wings move periodically at a frequency ω that is much
higher than the natural frequency associated with the
bird’s body flight ωn (i.e., ω � ωn). During one flap-
ping cycle, the body oscillates in all directions. Nev-
ertheless, on the average, it is hovering in the same
place (e.g., over a flower). Moreover, the oscillation of
the body around the mean position/attitude is minimal.
Therefore, averaging seems so natural to analyze such
a dynamical system. Analyzing the averaged dynamics
can be extremely beneficial because the complexity of
the system can be noticeably reduced. In particular, the
explicit dependence on time is eliminated and the aver-
aged system becomes autonomous (i.e., it is fast time-
invariant). The approximation by averaging is justified
by the following theorem, better known simply as the
averaging theorem.

Theorem 1 Averaging Theorem (Theorem 10.4 in
[16]). Consider the following NLTP system written in
averaging-canonical form

ẋ = ε f(x, t, ε), (1)

where x ∈ R
n, ẋ denotes the derivative of xwith respect

to t , and ε is a small parameter such that 0 < ε � 1.
The vector field f is smooth in x, analytic in ε, and T -
periodic in t . The averaged system corresponding to
(1) is

ẋ = ε f(x) (2)

where f(x) = 1
T

∫ T
0 f(x, τ, 0) dτ .

1. If x(0) − x(0) = O(ε), then there exist b, ε∗ ∈ R
+

such that x(t) − x(t) = O(ε) for all t ∈ [0, b/ε]
and for all ε ∈ (0, ε∗).

2. If the origin x = 0 is an exponentially stable equi-
librium of system (2) and if x(0) − x(0) = O(ε),
then there exists an ε∗ such that x(t)−x(t) = O(ε)

for all t ≥ 0 and for all ε ∈ (0, ε∗). Furthermore,
system (1) has a unique, exponentially stable, T -
periodic solution xT (t) such that ‖xT (t)‖ ≤ kε for
some k ∈ R

+.
Sometimes, the first-order averaging approximation

is too poor and the averaged system (2) fails to cap-
ture some important characteristics of the NLTP sys-
tem. In particular, Theorem 1 is valid only for weakly
forced systems or for systems with large separation
between the two time scales (e.g., the ratio of the body’s
flight natural frequency to the flapping frequency for
the hummingbird, ε ≈ ωn/ω, ε � 1). Also, no infor-
mation is given about how large this separation should
be for the theorem to be valid. For these reasons, higher-
order averaging terms are introduced. The higher-order
terms are also time-invariant and are scaled by powers
of the small parameter ε � 1. In the averaging the-
ory, an r th-order averaged system implies neglecting
terms of order εr . As such, this truncation becomes
more accurate as the order increases and/or the param-
eter ε decreases.

In this section we briefly summarize the two higher-
order averaging approaches that are found in the liter-
ature. We start with the classical averaging approach
[15,17,18,33] and proceed with the description of the
less known approach based on chronological calculus
[27,31,34].

2.1 Higher-order averaging via a near-identity
transformation (lie transform)

This higher-order averaging approach utilizes a partic-
ular change of coordinates to approximate the NLTP
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system by a NLTI one. The original NLTP system will
be at times referred to as the exact system. The method-
ology has been developed fromperturbation theory (see
[13,15,17,18]).

We begin our analysis by considering a NLTP
dynamical system written in the averaging-canonical
form1 (1). Since f is smooth in x and analytical in ε, it
can be expanded in power series of ε as

f(x, t, ε) =
∞∑

m=1

εm−1

m! fm(x, t) = f1(x, t)

+ ε

2! f2(x, t) + ε2

3! f3(x, t) + · · · (3)

where the functions fm are computed as,

fm(x, t) = m
∂m−1f
∂εm−1

∣
∣
∣
∣
ε=0

. (4)

The objective is to find a transformation that con-
verts the x-dynamics into a time-invariant system in the
transformed coordinates y. Given a transformation w,
we perform the following change of coordinates x → y

x = y + εw(y, t, ε), (5)

where y ∈ R
n is the transformed state. For ε = 0,

Eq. (5) reduces to the identity x = y; because ε is small,
the transformation in (5) is a quasi-identity, hence the
name near-identity transformation. This transforma-
tion is sometimes referred to as a Lie transform. When
working with NLTP systems, the function w is also
required to be T -periodic in t . Furthermore, we assume
w to be smooth in y and analytic in ε, so we can expand
it in an asymptotic power series of ε as

w(y, t, ε) =
∞∑

m=1

εm−1

m! wm(y, t)

When transformation (5) is applied to system (1), we
obtain a new nonlinear smooth system in the form

ẏ =
∞∑

m=1

εm

m! gm(y, t), (6)

where the functions gm(y, t) depend on the particular
choice of the near-identity transformation (5) and are
in general time-varying vector fields. We now demon-
strate the procedure to make g1(y, t) time-invariant,
and we then extend the reasoning to higher-order terms
gm(y, t) with m > 1.

1 It is important to notice that, if direct averaging is applied to
a system that is not written in the averaging-canonical form, the
following analysis might not be correct. Averaging a system not
written in canonical form is known as crude averaging and is
discouraged as pointed out in [17].

2.1.1 First-order averaging

Let us rewrite Eqs. (1), (5) and (6) as

ẋ = εf1(x, t) + ε2 f̂(x, t, ε), (7)

x = y + εw1(y, t) + ε2ŵ(y, t, ε), (8)

ẏ = εg1(y, t) + ε2ĝ(y, t, ε), (9)

where f̂ , ĝ and ŵ denote remainders. Differentiating
Eq. (8) with respect to t and substituting by Eq. (9) in
the resulting equation, we obtain

ẋ = εg1(y, t) + ε2ĝ(y, t, ε)

+ ε

(
∂w1

∂y

(
εg1(y, t) + ε2ĝ(y, t, ε)

)
+ ∂w1

∂t

)

+O(ε2). (10)

Substituting Eq. (8) into the argument of f1 in Eq. (7),
we obtain

ẋ = εf1 (y + εw1(y, t), t) + O(ε2). (11)

Equating the terms in Eqs. (10) and (11) of the same
ε-power, the ε1 equality implies

g1(y, t) = f1(y, t) − ∂w1(y, t)
∂t

. (12)

The vector field g1(y, t) in Eq. (12) is still time-varying.
The only way to make g1 time-independent, while w
is T -periodic, is to take g1 equal to the average, over a
period T , of the vector field f1 [17,18]

g1(y) = f1(y) = 1

T

∫ T

0
f1(y, t) dt. (13)

Combining Eqs. (12) and (13) we find an expression
for the first term of the expansion of the transformation
w(y, t) as

w1(y, t) =
∫ t

0
(f1(y, τ ) − g1(y)) dτ + C1(y), (14)

where C1(y) is an arbitrary t-independent and y-
dependent constant of integration.

2.1.2 Higher-order averaging

Theprevious reasoning canbe easily extended to higher
orders. In fact, the terms gm(y, t) are obtained by differ-
entiating both sides of Eq. (5) with respect to time, sub-
stituting the ε-expandedEqs. (1) and (6) in the resulting
expression, and finally equating terms of like power of
ε. We thus obtain expressions equivalent to Eq. (12)

gm(y, t) = f (m)
0 (y, t) − ∂wm(y, t)

∂t
. (15)
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Equation (15) is also known as the homological equa-
tion [17]. Proceeding analogously, we make gm(y, t)
time-invariant by taking

gm(y) = f
(m)

0 (y) = 1

T

∫ T

0
f (m)
0 (y, t) dt, (16)

and the higher-order terms of the transformation w are
given, similarly to Eq. (14) as

wm(y, t) =
∫ t

0

(
f (m)
0 (y, τ ) − gm(y)

)
dτ + Cm(y).

(17)

It is important to highlight that in Eqs. (15), (16)
and (17), the functions f (m)

0 (y, t) are not to be con-
fused with the functions fm(y, t) previously defined
in Eq. (4). In fact, as previously described, the func-
tions f (m)

0 (y, t) stem from equating coefficients of like
power of ε and can be computed recursively using the
following algorithm. Given f (1)0 = f (0)1 = f1 and g1
computed as in Eq. (13), then the higher-order aver-
aged vector fields gm for m > 1 can be computed
following Algorithm 1. In Algorithm 1, we dropped
the argument of f , g and w for the sake of notation
clarity. Moreover, Ak

i = k!/((k − i)!i !) are the bino-
mial coefficients and [·, ·] represents the Lie bracket
between vector fields. The standard results in the liter-
ature [15,33] are written in this section in terms of Lie
brackets to facilitate the reconciliation with the other
averaging approach based on chronological calculus.
The Lie bracket [X,Y] between the two vector fields
X(x, t),Y(x, t) ∈ R

n is defined as (see [21,35–37])

[X,Y] = ∂Y
∂x

X − ∂X
∂x

Y. (18)

Algorithm 1 Computing gm for m > 1.
For k = 2, . . . ,m:

f (0)k = fk ,

wk−1 =
∫ t

0

(
f (k−1)
0 − gk−1

)
dτ + Ck−1,

f (1)k−1 = f (0)k +
k−2∑

i=0

Ak−1
i

[
wi+1, f

(0)
k−i−1

]
,

f ( j)k− j = f ( j−1)
k− j+1 +

k− j∑

i=0

Ak− j
i

×
[
wi+1, f

( j−1)
k− j−i − f (k−i−1)

0 + gk−i−1

]
, j = 2, . . . , k,

gk = 1

T

∫ T

0
f (k)0 dt.

To compute a certain gm , one only needs to know
the power expansions f1, f2, . . . , fm in Eq. (4) and
to set the integration constants C1,C2, . . . ,Cm−1 in
Algorithm 1. The constants of integration Cm(y) are
independent of time, but are dependent on the state y;
therefore, different choices of such constants can lead
to significantly different results. The selection of Cm

is arbitrary; there are typically three main choices that
are found in the literature:

1. Stroboscopic Averaging:

Cm = 0. (19)

By choosing the stroboscopic averaging, the near-
identity transformation (5) reduces to the identity
when t = nT , with n ∈ Z. In other words, if one
were to observe, using a stroboscopic light flashing
at these times, the solutions of the exact system (1)
and the transformed system (21) (with the same ini-
tial conditions), they would appear to coincide. For
elegance and simplicity of computations, this is the
most common choice for higher-order averaging.

2. Zero-mean wm :

Cm = − 1

T

∫ T

0

(∫ τ

0
f̃mdτ

)

dt. (20)

By choosing the constants of integration as in
Eq. (20), the periodic functions wm will have
zero mean over the period T . In other words,
1
T

∫ T
0 wmdt = 0. This choice is preferable when

fm are written as Fourier series so thatwm maintain
the same structure (see [18, Ch. 6]).

3. Reduced Averaging: Cm are chosen so that all the
functions gm vanish for m > 1. In other words, the
dynamics is not captured by the averaged system,
but only via the near-identity transformation. (see
[17, Ch. 3]).

The transformed system (6), when all the vector
fields gm are computed as in Eq. (13) and Algorithm 1
(i.e., gm are all time-invariant), becomes aNLTI system

ẏ =
∞∑

m=1

εm

m! gm(y). (21)

After proving equivalence with the complete averaging
of Sarychev [38] andVela [27] in the next section, itwill
be clearly seen that system (21) represents the complete
averaging of the NLTP system (1). That is, system (21)
is an exact transformation of the original system (1):
No approximation has been introduced yet; if y(t) is
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the solution of system (21), one can exactly recover
the solution x(t) of the original system (1) via the Lie
transformation (5). However, when the summation is
truncated after m = r ,

ẏ =
r∑

m=1

εm

m! gm(y), (22)

the following theorem relates the solution of the r th
averaged system (22) and the complete averaged sys-
tem (21).

Theorem 2 (Theorem 6.5.2 in [18]) Let y(t) and y(t)
be the solutions of (21) and (22), respectively. There
exist positive constants K and ε0 such that, for all ε ≤
ε0

|y(t) − y(t)| = O(εr ),

for all 0 ≤ t ≤ K/ε.

Therefore, we can express the solution of the original
system (1) as

x(t) = y(t) +
r−1∑

m=1

εm

m!wm(y(t), t) + O(εr ). (23)

For the convenience of the reader, we report the first
four terms of (22).

g1(y) = 1

T

∫ T

0
f1dt, (24)

g2(y) = 1

T

∫ T

0

(
f2 + [w1, f1] + [

w1, g1
])
dt, (25)

g3(y) = 1

T

∫ T

0

(
f3 + [w1, f2] + 2[w2, f1] + 2[w1, g2]

+ [w1, [g1,w1]] + [w2, g1]
)
dt, (26)

g4(y) = 1

T

∫ T

0

(
f4 + [w1, f3] + 3[w2, f2]

+ [w1, [w1, [w1, g1]]] +
− [w1, [w2, g1]] − 2[w2, [w1, g2]]
− 3[w1, [w1, g2]]
+ [w3, g1] + 3[w2, g2] + 3[w1, g3]
+ 3[w3, f1]]

)
dt, (27)

where

w1(y, t) =
∫ t

0
(f1 − g1)dτ + C1,

w2(y, t) =
∫ t

0
(f2 + [w1, f1]

+ [w1, g1] − g2)dτ + C2,

w3(y, t) =
∫ t

0

(
f3 + [w1, f2] + 2[w2, f1]

+ 2[w1, g2]
− [w1, [w1, g1]] + [w2, g1] − g3

)
dτ

+ C3,

(28)

and f1 = f(y, t, 0), f2 = 2 ∂f/∂ε|ε=0, f3 =
3 ∂2f/∂ε2|ε=0, and f4 = 4 ∂3f/∂ε3|ε=0.

2.2 Higher-order averaging via chronological calculus

In this subsection, we present the higher-order averag-
ing approach based on chronological calculus, which
was developed in the late 1970s by the Russian mathe-
maticiansAgrachev andGamkrelidze [28,39]. Chrono-
logical calculus is concerned with time-varying vec-
tor fields and the asymptotic expansion generated by
their flows. Sarychev and Vela [27,31,34] utilized the
chronological calculus tools to develop a generalized
averaging theory (GAT), which gives arbitrarily high-
order approximation of the flow along a time-periodic
vector field. We provide below a brief description of
the technique.

Consider the NLTP dynamics

ẋ = εf(x, t). (29)

Equation (29) is similar to (1) with the only difference
that f does not depend explicitly on ε.2 The vector field
f is smooth in x and T -periodic in t . The solution of
the differential Eq. (29) for the initial condition x(0) =
x0 is denoted by x(t) = φ(x0, t) = φεf

t (x0), where
φεf
t : Rn → R

n is the t-dependent flow associatedwith
the vector field εf(x, t) and φεf

0 (x0) = φ(x0, 0) = x0.
Also,φεf

t is a diffeomorphism satisfying the differential

equation φ̇
εf
t = φεf

t ◦ εf(x, t), where “◦” indicates the
composition of maps (functions).

2 Although Sarychev [34] acknowledges the case of explicit
dependence of f on ε, it is the authors’ opinion that the anal-
ysis of such a case needs further investigation. Hence, we restrict
our demonstration to systems in the form (29).
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We can write the solution of Eq. (29) using the
Volterra series expansion as

x(t) = x0

+
∞∑

m=1

∫ t

0

∫ τ1

0
· · ·
∫ τm−1

0
Y(x0) dτm . . . dτ1

(30)

where Y = (
Yτ1 ◦ Yτ2 ◦ · · · ◦ Yτm

)
. Here, Yτ =

εf(x, τ ) and Y τ1 ◦ Y τ2 = ∂Y τ2
∂x Y τ1 . The condi-

tions of convergence of series (30) are provided by
Agrachev and Gamkrelidze [29]. In a similar fash-
ion to the exponential representation of solutions of
time-invariant systems [30,40],Agrachev andGamkre-
lidze [29] expressed the flow of the time-varying vector
field εf(x, t) as

φεf
t = →

exp

(∫ t

0
εf(x, τ ) dτ

)

. (31)

In the chronological calculus, this flow is also known
as the right-chronological exponential.

Then, the logarithm of (31) is defined as

Vt = ln(φεf
t ).

In other words, the flow along the time-invariant vector
field Vt for a unit time is equivalent to the flow along
the time-varying vector field εf(x, t) for a time t .

It is noteworthy to mention that although Vt is an
autonomous vector field, it is parametrized by time;
if the final time t is changed, the vector field will
change. Furthermore, in Ref. [29] it was shown that
V t = ∑∞

m=1 V
(m)
t , with

V(m)
t =

∫ t

0

∫ τ1

0

· · ·
∫ τm−1

0
Gm(Yτ1 , . . . ,Yτm )dτm . . . dτ1,

andGm are the commutators polynomials. For instance,
for m = 1, 2, 3, we obtain

G1(ζ1) = ζ1, G2(ζ1, ζ2) = 1

2
[ζ2, ζ1]

G3(ζ1, ζ2, ζ3) = 1

6
([ζ3, [ζ2, ζ1]] + [[ζ3, ζ2], ζ1]) ,

where [·, ·] denotes the commutator, which, for vec-
tor fields, coincides with the Lie bracket. There-
fore, chronological calculus provides an algorithmic
approach to determine the logarithm of time-periodic
vector fields analytically.

To better understand the concept of GAT, we now
recall some key results from the linear Floquet theory.
Consider the homogeneous LTP system,

ẋ = A(t)x, (32)

with A ∈ R
n×n and T -periodic in t . The flow asso-

ciated with (32) can be represented by the so-called
fundamental solution matrix, written as

ΦA
t = →

exp

(∫ t

0
A(τ )dτ

)

∈ R
n×n .

The fundamental solution matrix of system (32), com-
puted after one period T , is known as the monodromy
matrix M = ΦA

T .

Theorem 3 Linear Floquet Theorem [41, p. 11] Every
fundamental matrix solutionΦA

t of the LTP system (32)
can be represented as the product ΦA

t = P(t)eRt of a
T -periodic matrix (i.e., P(t) = P(t + T )) and R is a
constant matrix given by R = 1

T lnM.

Theorem 4 System (32) is uniformly stable if and only
if all Floquet multipliers (eigenvalues ofM) have mod-
uli less than 1.

Based on Theorem 3, one can use the transformation
x = Py to transform the LTP system (32) to the LTI
system

ẏ = Ry (33)

whose flow after one period is exactly equivalent to the
flow of the original LTP system (32) after one period:
eRT = ΦA

T . That is, based on our discussion in the pre-
vious section on classical averaging, system (33) rep-
resents a stroboscopic averaged dynamics of the LTP
system (32). Moreover, one can determine the stabil-
ity of the LTP system (32) from the Floquet multipliers
according toTheorem4, or from the averageddynamics
(33): The solution x(t) of (32) converges to the origin if
and only if the solution y(t) of (33) converges to zero.
Therefore, the LTP system (32) is stable if and only if
the averaged dynamics (33) is stable (i.e., the eigen-
values of the R lie in the open left half of the complex
plane); there is no approximation here. It is complete
averaging. The eigenvalues of R are called the Floquet
exponents, or the characteristic exponents.

Sarychev [38] utilized the Floquet concept of aver-
aging without approximation to extend the Floquet
theory to the nonlinear case, equivalently extending
the averaging theorem to higher order. Similar to the
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Reconciliation of two higher-order averaging techniques

Table 1 Linear versus nonlinear Floquet theory

Linear Nonlinear

ẋ = A(t)x ẋ = εf(x, t)

ΦA
t = →

exp
(∫ t

0 A(τ )dτ
)

φεf
t = →

exp
(∫ t

0 εf(x, τ ) dτ
)

M = ΦA
T M = φεf

T

R = 1
T lnM VT = 1

T lnM
ẏ = Ry ẋ = (x) = ∑∞

m=1
εm

m! m(x)

definition of the averaged dynamics R = 1
T lnM =

1
T lnΦA

T = 1
T ln

→
exp

∫ T
0 A(t)dt , Sarychev [38] intro-

duced the notion of complete averaging of the NLTP
system (29) to indicate the autonomous vector field

Λ = 1

T
VT = 1

T
ln φεf

T = 1

T
lnM, (34)

whereM = φεf
T is the flow of εf(x, t) computed after

one period T and is called the monodromy map, which
maps x0 to x(T ) (i.e., the solution after a period T ). The
monodromy map can be seen as the nonlinear analo-
gous to the monodromy matrixM in the linear Floquet
decomposition. The vector fieldΛ is then equivalent to
the matrix R. Furthermore, the linear Floquet theorem
can also be extended to the nonlinear case as follows

Theorem 5 Nonlinear Floquet Theorem (Theorem3.2
in [34] and Theorem 8 in [27]) Assume that φεf

t is
the flow generated by the NLTP system in (29). If the
diffeomorphism M = φεf

T admits a logarithm VT ,
then the flow φεf

t can be represented as a composition
φεf
t = eΛt ◦P t of the flow eΛt of the autonomous vec-

tor field Λ = 1
T VT and a T -periodic map P t (i.e.,

P t = P t+T ).

Moreover, the stability characteristics of this logarithm
Λ are exactly related to the stability characteristics of
the original NLTP system (29) in a Floquet theorem
fashion.

Theorem 6 (Theorem 9 in [27]). If the monodromy
map,M, of system (29) has a fixed point, then the flow,
φεf
t , has a periodic orbit whose stability is determined

by the stability of the monodromy map.

Theorem 6 clearly represents the nonlinear extension
of Theorem 4. Table 1 summarizes the parallel between
the linear and the nonlinear Floquet theorems.

The vector field Λ in Eq. (34) can be written as a
power series expansion in ε such that

ẋ = Λ(x) =
∞∑

m=1

εm

m!Λm(x), (35)

where x is the average of x. According to Theorem 5,
the solution of (29) oscillates around the solution of
the averaged NLTI system (35). Finally, if the series in
Eq. (35) is truncated after r terms, one arrives at the
r th-order averaged version

ẏ =
r∑

m=1

εm

m!Λm(y). (36)

The power of this generalization is that the Λm

terms can be computed analytically using Lie brack-
ets between the vector fields that describe the time-
periodic dynamics.

For the convenience of the reader, we report the first
four truncations as seen in Refs. [8,27,34].

Λ1(y) = 1

T

∫ T

0
f dt, (37)

Λ2(y) = 1

T

∫ T

0

[∫ t

0
fτ dτ , f

]

dt, (38)

Λ3(y) = −3

2
T [Λ1,Λ2]

+ 2

T

∫ T

0

[∫ t

0
fτ dτ ,

[∫ t

0
fτ dτ, f

]]

dt

= −3

2
T

[
1

T

∫ T

0
f dt,

1

T

∫ T

0

[∫ t

0
fτ dτ , f

]

dt

]

+ 2

T

∫ T

0

[∫ t

0
fτ dτ ,

[∫ t

0
fτ dτ, f

]]

dt. (39)

Λ4(y) = 2

T

∫ T

0

(∫ t

0

[∫ τ

0

[∫ τ1

0
fτ2dτ2, fτ1

]

dτ1, [fτ , f]
]

dτ

+
[∫ t

0

[∫ τ

0

[∫ τ1

0
fτ2 dτ2, fτ1

]

dτ1, fτ

]

dτ, f
]

+
∫ t

0

[∫ τ

0
fτ1dτ1,

[[∫ τ

0
fτ1dτ1, fτ

]

, f
]]

dτ

)

dt,

(40)

where f = f(y, t), fτ = f(y, τ ), fτ1 = f(y, τ1), and
fτ2 = f(y, τ2). It is worth mentioning that the expres-
sions for Λ3 and Λ4 are not agreed upon between all
cited references. In particular, there is a mismatch in
the sign of the term [Λ1,Λ2] in Eq. (39) and in the sign
of the entire expression of Λ4 in Eq. (40). Based on
our analysis, we believe that the expressions for Λ3 in
Eq. (39) and forΛ4 in Eq. (40) are the correct ones. We
will provide further evidence in the next section.
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3 Reconciliation of the two higher-order averaging
approaches

In this section we will show that, under some key
assumptions, the two higher-order methodologies can
be proven equivalent despite the fact that they were
developed following very different and independent
derivations. We prove equivalence mathematically up
to the fourth-order averaging (r = 4) under the follow-
ing assumptions:

Assumption 1 Assume that the NLTP system is writ-
ten in the form (29)

ẋ = εf(x, t),

with f smooth in x and T -periodic in t .

Assumption 2 (Stroboscopic averaging) Assume that
the arbitrary constants of integration in Eq. (17) and
Algorithm 1 are taken to be null

Cm = 0, for m ≥ 1.

With Assumption 1, we reduce the analysis to the
class of systems in which the parameter ε does not
appear explicitly in f . As a result, Eq. (3) becomes
f(x, t, ε) = f(x, t) = f1(x, t) (i.e., fm(x, t) = 0 for
m > 1) and system (1) is in the form (29). Other-
wise, the chronological calculus technique would not
be even applicable. The second assumption renders the
first approach a fundamental concept similar to the
chronological calculus approach: The solution of the
averaged system coincides with that of the original sys-
tem stroboscopically (after each cycle). This concept
was the basis of the chronological calculus averaging:
The goal was to find an autonomous vector field whose
flow after one period matches that of the time-periodic
vector field after one period. Therefore, while we pro-
vide below a mathematical proof for the equivalence
between the two approaches up to fourth order, this
conceptual matching suggests that the equivalence can
be extended to all higher orders.

First, we state the following properties of Lie
brackets which will be useful in reconciling the
two higher-order averaging techniques. Let X(x, t),
Y(x, t), Z(x, t) ∈ R

n and α ∈ R. The Lie brackets,
as defined in Eq. (18), satisfy the following properties:

1. [X,Y] = −[Y,X] (skew-symmetry),
2. [X + Y, αZ] = α[X,Z] + α[Y,Z] (linearity),
3. [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y] = 0 (Jacobi

identity).

Lemma 1 Given two smooth vector fields X(x, t),Y
(x, t) ∈ R

n, then

∂

∂t
[X,Y] =

[

X,
∂Y
∂t

]

+
[
∂X
∂t

,Y
]

, (41)

and if X is time-invariant, the following are true

∂

∂t
[X,Y] =

[

X,
∂Y
∂t

]

, (42)

and
∫

[X,Y]dt =
[

X,

∫
Ydt

]

.

Proof Using Eq. (18), it follows that

∂

∂t
[X,Y]

= ∂

∂t

(
∂Y
∂x

X − ∂X
∂x

Y
)

,

= ∂

∂t

(
∂Y
∂x

)

X + ∂Y
∂x

∂X
∂t

− ∂

∂t

(
∂X
∂x

)

Y − ∂X
∂x

∂Y
∂t

,

= ∂

∂x

(
∂Y
∂t

)

X − ∂X
∂x

∂Y
∂t

+ ∂Y
∂x

∂X
∂t

− ∂

∂x

(
∂X
∂t

)

Y,

=
[

X,
∂Y
∂t

]

+
[

∂X
∂t

,Y
]

.

IfX is time-invariant, then ∂X
∂t = 0 andEq. (41) reduces

to (42). Moreover,
∫

[X,Y]dt =
∫ (

∂Y
∂x

X − ∂X
∂x

Y
)

dt,

=
∫

∂Y
∂x

Xdt −
∫

∂X
∂x

Ydt,

= ∂
(∫

Ydt
)

∂x
X − ∂X

∂x

∫
Ydt,

=
[

X,

∫
Ydt

]

.


�
Theorem 7 Given Assumptions 1 and 2, the following
are true: g1 = Λ1, g2 = Λ2, g3 = Λ3, and g4 = Λ4.

Proof Given in the following Subsect. 3.1–3.4. 
�

3.1 First order

By comparing Eqs. (24) and (37), it trivially follows
that g1 = Λ1. This equivalence holds also without
Assumption 2.
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3.2 Second order

For the second-order terms, we start by expanding g2
given in Eq. (25) as

g2 = 1

T

∫ T

0

(

f2 +
[∫ t

0
f1 dτ, f1

]

−
[∫ t

0
g1 dτ , f1

]

+
[∫ t

0
f1 dτ , g1

]

−
[∫ t

0
g1 dτ , g1

]

+ [C1, f1] + [C1, g1]
)

dt.

(43)

From Assumption 1, we have f2 = 0 and f1 = f ,
and from Assumption 2, C1 = 0. Equation (43) then
becomes

g2 = 1

T

∫ T

0

([∫ t

0
f dτ, f

]

−
[∫ t

0
g1 dτ , f

]

+
[∫ t

0
f dτ , g1

]

−
[∫ t

0
g1 dτ , g1

])

dt.

Since g1 is time-invariant, Lemma 1 implies
[∫ t

0
g1 dτ , g1

]

= [
t g1 , g1

] = t
[
g1 , g1

] = 0.

To recover the second-order averaging using chrono-
logical calculus,Λ2 in Eq. (38), it remains to show that

1

T

∫ T

0

([∫ t

0
f dτ , g1

]

−
[∫ t

0
g1 dτ , f

])

dt = 0.

(44)

Using the skew-symmetry property of the Lie bracket
(18), the left-hand side of Eq. (44) becomes

1

T

∫ T

0

([∫ t

0
f dτ, g1

]

+
[

f,
∫ t

0
g1 dτ,

])

dt.

Applying property (41), we obtain

1

T

∫ T

0

∂

∂t

([∫ t

0
f dτ,

∫ t

0
g1 dτ,

])

dt.

Using the fundamental theorem of calculus, the expres-
sion above simplifies to

1

T

[∫ T

0
f dt,

∫ T

0
g1 dt,

]

.

Finally, noting that
∫ T
0 f dt = T g1, and

∫ T
0 g1 dt =

T g1,
1

T

[
T g1 , T g1

] = 0.

Hence, the second-order averaging via Lie transform
given in Eq. (43) reduces to

g2 = 1

T

∫ T

0

[∫ t

0
f dτ , f

]

dt. (45)

Comparing Eqs. (45) and (38), it is easy to see that
g2 = Λ2.

3.3 Third order

In a similar fashion to the second-order averaging, let
us expand g3 by substituting the values of w1 and w2

found in Eq. (28), into Eq. (26).

g3 = 1

T

∫ T

0

(

f3 +
[∫ t

0
f1dτ, f2

]

−
[∫ t

0
g1dτ, f2

]

+ 2

[∫ t

0
f2dτ, f1

]

+
[∫ t

0
f2dτ, g1

]

+ 2

[∫ t

0

[∫ τ

0
f1dτ1, f1

]

dτ, f1

]

+
[∫ t

0

[∫ τ

0
f1dτ1, f1

]

dτ, g1

]

+

− 2

[∫ t

0

[∫ τ

0
g1dτ1, f1

]

dτ, f1

]

−
[∫ t

0

[∫ τ

0
g1dτ1, f1

]

dτ, g1

]

+ 2

[∫ t

0

[∫ τ

0
f1dτ1, g1

]

dτ, f1

]

+
[∫ t

0

[∫ τ

0
f1dτ1, g1

]

dτ, g1

]

− 2

[∫ t

0

(
1

T

∫ T

0

(

f2

+
[∫ t

0
f1dτ, f1

])

dt

)

dτ, f1

]

−
[∫ t

0

(
1

T

∫ T

0

(

f2

+
[∫ t

0
f1dτ, f1

])

dt

)

dτ, g1

]

−
[∫ t

0
f1dτ,

[∫ t

0
f1dτ, g1

]]

+
[∫ t

0
g1dτ,

[∫ t

0
f1dτ, g1

]]

+ 2

[∫ t

0
f1dτ,

1

T

∫ T

0

(

f2 +
[∫ t

0
f1dτ, f1

])

dt

]

− 2

[∫ t

0
g1dτ,

1

T

∫ T

0

(

f2 +
[∫ t

0
f1dτ, f1

])

dt

]

+ 2

[∫ t

0
[C1, f1] dτ, f1

]

− 2

[∫ t

0
[C1, g1] dτ, f1

]

+[C1, f2] +
[∫ t

0
(f1 − g1) dτ + 3[C1, g1]

]

+
[∫ t

0
[C1, g1] dτ , g1

]

+
[

C1 , −
[∫ t

0
(f1 − g1) dτ, g1

]]

+ 2

[

C1,
1

T

∫ T

0

(

f2 +
[∫ t

0
f1 dτ , f1

])

dt

]
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+ [C1, 3[C1, g1]]
)

dt + 3[C2, g1]. (46)

According to Assumption 1, f = f1 and f2 = f3 =
0. Assumption 2 leads to C1 = C2 = 0. Therefore,
Eq. (46) simplifies to

g3 = 2

T

∫ T

0

[∫ t

0

[∫ τ

0
f dτ1, f

]

dτ, f
]

dt

− 2

T

∫ T

0

[∫ t

0

[∫ τ

0
g1dτ1, f

]

dτ, f
]

dt

+ 1

T

∫ T

0

[∫ t

0

[∫ τ

0
f dτ1, f

]

dτ, g1

]

dt

− 1

T

∫ T

0

[∫ t

0

[∫ τ

0
g1dτ1, f

]

dτ, g1

]

dt

+ 2

T

∫ T

0

[∫ t

0

[∫ τ

0
f dτ1, g1

]

dτ, f
]

dt

+ 1

T

∫ T

0

[∫ t

0

[∫ τ

0
f dτ1, g1

]

dτ, g1

]

dt

− 2

T

∫ T

0

[∫ t

0
g2 dτ, f

]

dt

− 1

T

∫ T

0

[∫ t

0
g2 dτ, g1

]

dt

− 1

T

∫ T

0

[∫ t

0
f dτ,

[∫ t

0
f dτ, g1

]]

dt

+ 1

T

∫ T

0

[∫ t

0
g1dτ,

[∫ t

0
f dτ, g1

]]

dt

+ 2

T

∫ T

0

[∫ t

0
f dτ, g2

]

dt

− 2

T

∫ T

0

[∫ t

0
g1dτ, g2

]

dt,

(47)

where g2 is given by Eq. (45). Using the Lie brackets
properties and some other algebraic manipulations,3

Eq. (47) can be further simplified to

g3 = T

2

[
g1, g2

]

− 2

T

∫ T

0

[

f,
∫ t

0

[∫ τ

0
f dτ1, f

]

dτ

]

dt. (48)

Using the fact that g1 = Λ1 and g2 = Λ2, we rewrite
Eq. (39) as,

Λ3 = −3T

2

[
g1, g2

]

3 The process of reducing Eqs. (47)–(48) is rather lengthy and
would take several pages. Thus, the authors decidednot to include
this part in this paper and refer the reader to our Mathematica®

file [42] for the complete proof.

+ 2

T

∫ T

0

[∫ t

0
f dτ ,

[∫ t

0
f dτ, f

]]

dt.

In order to prove that g3 = Λ3, we now need to show
that
T

2

[
g1, g2

]− 2

T

∫ T

0

[

f,
∫ t

0

[∫ τ

0
f dτ1, f

]

dτ

]

dt =

− 3T

2

[
g1, g2

]+ 2

T

∫ T

0

[∫ t

0
f dτ,

[∫ t

0
f dτ, f

]]

dt,

or equivalently, that

2T
[
g1, g2

] = 2

T

∫ T

0

[

f,
∫ t

0

[∫ τ

0
f dτ1, f

]

dτ

]

dt

+ 2

T

∫ T

0

[∫ t

0
f dτ,

[∫ t

0
f dτ, f

]]

dt.

(49)

Let us consider the right-hand side of Eq. (49)

2

T

∫ T

0

[

f,
∫ t

0

[∫ τ

0
f dτ1, f

]

dτ

]

dt

+ 2

T

∫ T

0

[∫ t

0
f dτ,

[∫ t

0
f dτ, f

]]

dt.

Using the linearity of integration and the Lie bracket
property (41), we obtain

2

T

∫ T

0

∂

∂t

[∫ t

0
f dτ,

∫ t

0

[∫ τ

0
f dτ1, f

]

dτ

]

dt,

which is further simplified, by applying the fundamen-
tal theorem of calculus, to

2

T

[∫ T

0
f dτ,

∫ T

0

[∫ t

0
f dτ, f

]

dt

]

.

Finally, recalling the expressions for g1 and g2 in
Eqs. (24) and (45), respectively, we obtain

2T
[
g1, g2

]
.

Thus, g3 = Λ3 and the equivalence of the third-order
terms of the two higher-order averaging techniques is
proved.

3.4 Fourth order

According to Assumption 1, f = f1 and f2 = f3 = f4 =
0. Assumption 2 leads to C1 = C2 = C3 = 0. Sub-
stituting the expressions for w1, w2 and w3 in Eq. (28)
into Eq. (27) and after some algebraic manipulations,
the expression for g4 in Eq. (27) reduces to

g4 = 6

T

∫ T

0

[∫ t

0

[∫ τ

0

[∫ τ2

0
f dτ2 , f

]

dτ1, f
]

dτ, f
]

dt

− T 2

2

[
g1,
[
g1, g2

]]+ T
[
g1, g3

]
,

(50)
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where g1, g2 and g3 are given by Eqs. (24), (45)
and (48), respectively. 
�

It can be shown that g4 = Λ4, or equivalently,

6

T

∫ T

0

[∫ t

0

[∫ τ

0
hτ1 dτ1, f

]

dτ, f
]

dt

− T 2

2

[
g1,
[
g1, g2

]]+ T
[
g1, g3

]

= 2

T

∫ T

0

(∫ t

0

[∫ τ

0
hτ1 dτ1, [fτ , f]

]

dτ

+
[∫ t

0

[∫ τ

0
hτ1 dτ1, fτ

]

dτ, f
]

+
∫ t

0

[∫ τ

0
fτ1dτ1, [hτ , f]

]

dτ

)

dt,

(51)

wherehτ1 = [∫ τ1
0 fτ2dτ1, fτ1

]
, andhτ = [∫ τ

0 fτ1dτ, fτ
]
.

For the details of the proof of the equivalence inEq. (51)
we refer once again to our Mathematica® file [42].

With this reconciliation, each approach can bene-
fit from the tools and results developed in the other
approach. For example, there are no recursive formulas
for higher-order averaging using chronological calcu-
lus: Neither Vela [27] nor Sarychev [34] provided such
recursive formulas. For a specific desired r th-order
averaging, one has to derive it following the approaches
presented by Sarychev [34], Vela [27], and the one dis-
cussed above. Instead, Algorithm 1 provides a straight-
forward recursive formula for arbitrary higher-order
averaging terms using Lie transform. As such, with the
proved equivalence, one can use Algorithm 1, setting
f1 = f , fm = 0 for m > 1 and Cm = 0 for all m,
to determine a recursive formula for the higher-order
averaging terms defined through chronological calcu-
lus.

On the other hand, Sarychev [34] and Vela [27]
showed that system (35) represents complete averaging
of the NLTP system (29). In other words, the full series
in Eq. (35) represents the logarithm of the Monodromy
map. Therefore, if this series converges to Λ, the sta-
bility characteristics of this logarithm Λ are exactly
related to the stability characteristics of the original
NLTP system (29). Through the proved equivalence,
one can apply Theorem 6 to the full series (21) of the
averaged dynamics using Lie transform. This result is
important because it has not been proved within the
classical averaging formulation.

4 Applications

In this section, we present two applications of higher-
order averaging to mechanical systems. First, we apply
higher-order averaging to a classical problem, namely
the Kapitza inverted pendulum problem (see, for exam-
ple, [43]). Then we consider a modern application
of flapping flight of biological flyers and their man-
made counterparts: flapping-wing micro-air-vehicles
(see [22,44]).

4.1 Kapitza’s inverted pendulum

TheKapitza inverted pendulum problem has been stud-
ied for decades because it gives interesting insights into
the concept of vibrational stabilization. In fact, it has
been shown that high-frequency, high-amplitude, peri-
odic forcing, applied in the vertical direction to the pen-
dulum pivot, stabilizes the pendulum about its inverted
position [10,20]. This problem was first analyzed by
Stephenson [45] in 1908using a periodic series solution
to the linearized system (Hill’s equation) and then by
Kapitza [43,46] considering the full nonlinear dynam-
ics using an averaged potential approach. The reader
may like to watch the interesting video in Ref. [47]
that clearly shows the phenomenon and its associated
stabilizing stiffness mechanism.

The pendulum dynamics, linearized about its unsta-
ble vertical equilibrium, can be written as

θ̈ + (−Ω + B1 cos(ωt))θ = 0, (52)

where θ and θ̇ represent the angular position and veloc-
ity, respectively, ω is the forcing frequency, B1 is the
forcing amplitude, and Ω = g/ l (g is the gravitational
acceleration and l the pendulum length). Figure 2 shows
a schematic of the inverted pendulum oscillating ver-
tically about its pivot. Setting x1 = θ and x2 = θ̇ ,
Eq. (52) can be written in state space representation as
(
ẋ1
ẋ2

)

=
(

x2
(Ω − B1 cos(ωt))x1

)

.

The problemof interest (vibrational control problem) is
for high amplitude and high frequency; thus, we intro-
duce the scaling B1 = B/ε and ω = 1/ε, where ε is a
small parameter. This yields
(
ẋ1
ẋ2

)

=
(

x2
(Ω − B

ε
cos( t

ε
))x1

)

. (53)

System (53) is not amenable to the averaging theorem: f
is not analytic in epsilon because of the high-amplitude
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l

θ

g

B1 cos(ωt)

Fig. 2 Kapitza’s inverted pendulum

forcing term proportional to 1/ε. This scenario is typ-
ical with vibrational control systems (high-amplitude
periodically forced systems). The standard remedy for
this issue is performed by applying the variation of con-
stants (VOC) formula [7].

4.1.1 The nonlinear variation of constants formula

The VOC formula is used to decouple the flow along
two vector fields. In particular, when applied to the
multi-scale system (53), it decouples it into two sys-
tems, each of which is amenable to the averaging theo-
rem. The VOC is quite general; it is applicable to sys-
tems in the form

ẋ = f(x, t) + g (x, t) . (54)

The VOC formula decouples system (54) into the two
systems

ż = F(z), z(0) = x0,

ẏ = g(y, t), y(0) = z(t),
(55)

where F is the pullback of f along the flow of g, defined
as

F(z, t) = (
(φ

g
t )

∗f
)
(z) =

([
∂φ

g
t

∂z

]−1

◦ f ◦ φ
g
t

)

(z),

and φ
g
t is the flow along the vector field g for time t .

Figure 3 shows the idea behind the VOC formula: The
flowalong f+g corresponds to the flowalong the vector
field F, and then g. The two systems in Eq. (55) should
be amenable to the averaging theorem, perhaps after
a simple transformation. Moreover, since g is a zero-
mean, time-periodic vector field, its averaging vanishes

f + g

F

g

x(0) = z(0) = x0

y(0) = z(t)

x(t)

Fig. 3 The flow along f + g is equivalent to the flow along the
vector fields F and then g

and the first-order averaged dynamics of the entire sys-
tem would be obtained by averaging F.

To apply the VOC formula to system (53) with
f(x, t) = (x2,Ωx1)T and g(x, t) = (0,−(B/ε)

cos(t/ε)x1)T , we first obtain the flow of g

φ
g
t (z) =

(
z1

z2 − B sin
( t

ε

)
z1

)

=
[

1 0
−B sin( t

ε
) 1

](
z1
z2

)

then

f ◦ (φ
g
t )(z) =

(
z2 − B sin( t

ε
)z1

Ωz1

)

,

and since
[
∂φ

g
t

∂z

]−1

=
[

1 0
B sin( t

ε
) 1

]

,

we determine the pullback vector field F as

F(z, t) =
[

1 0
B sin( t

ε
) 1

](
z1

z2 − B sin( t
ε
)z1

)

=
(

z2 − B sin( t
ε
)z1(

Ω − B2 sin2( t
ε
)
)
z1 + B sin( t

ε
)z2

)

.

(56)

Finally, we perform the scaling τ = ωt to system (56),
to render it in the averaging-canonical form (weakly
forced system with f analytic in ε).

z′ = εF(z, τ )

= ε

(
z2 − B sin(τ )z1(

Ω − B2 sin2(τ )
)
z1 + B sin(τ )z2

)

,
(57)

where z′ = dz/dτ .
We apply higher-order averaging to system (57). In

order to assess the accuracy of the higher-order averag-
ing approximations, we compare the obtained results
with the Floquet stability map, obtained by numer-
ical application of the Floquet theorem to the LTP
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Fig. 4 Stability map for the
Kapitza pendulum. The
shaded region represents the
Floquet stable region. The
colored curves represent the
higher-order stroboscopic
averaging approximations
(with VOC formula) of the
lower stability boundary
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system (53). The approximations are computed up to
fifth order using the algorithm described in Sect. 2.1,
and by choosing the stroboscopic averaging, namely
in Algorithm 1, we set Ck = 0 for k = 1, 2, 3, 4.
Hence, the two averaging techniques will lead to iden-
tical results due to the proved equivalence in this case
of ∂F/∂ε = 0. Figure 4 illustrates the stability map
of the Kapitza pendulum in a similar fashion to the
work of Berg and Wickramasinghe [20]: The plotted
quantities are defined as α = −Ω/ω2 and β = B/ω,
and the region colored in yellow represents the Floquet
stable region. In addition, the figure shows the approx-
imations of the lower stability boundary obtained via
higher-order averaging. Although only the lower sta-
bility boundary is captured, it is evident that the accu-
racy of the approximations increases with the averag-
ing order. That is, the higher-order averaging stabil-
ity boundary converges asymptotically to the Floquet
boundary as the averaging order increases.

Figure 5 shows the percent error between theFloquet
lower stability boundary and the higher-order averag-
ing approximations as the forcing frequency ω is var-
ied. Two important conclusions can be drawn from this
figure. First, for a fixed ω, the error decreases as the
averaging order is increased, which matches the intu-
ition behind the asymptotically convergent series as
more terms are taken [15]. Second, the error associated
with all the averaging order approximations decreases

as the frequency is increased, which matches the intu-
ition behind averaging. These two conclusions indi-
cate that, for a required level of accuracy, the thresh-
old frequency decreases with the averaging order. That
is, higher-order averaging allows stabilization at fre-
quencies lower than that demanded by direct averaging,
hence making vibrational control more feasible.

Figure 6 shows the angular displacement and veloc-
ity (θ , θ̇) of the Kapitza pendulum with initial con-
ditions θ0 = 30◦ and θ̇0 = 0◦/s and for Ω = 2,
B = 3, and ω = 20 rad/s. The three curves repre-
sent the integration of the complete LTP dynamics (57),
the first-order and third-order averaged dynamics. The
solutions of the averaged dynamics have been trans-
formed according to Eq. (23). While both the averaged
solutions correctly capture the stability of the origi-
nal system, the third-order approximation is practically
indistinguishable from the solution of the full LTP sys-
tem.

We also present in Figs. 7 and 8 the results for a non-
stroboscopic averaging case. In particular, the integra-
tion constantsCk are computed using Eq. (20). Similar
conclusions to the stroboscopic case can be drawn.

4.1.2 Higher-order averaging without VOC

As shown above, vibrational control systems are typ-
ically forced by high-amplitude periodic inputs and
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Fig. 5 Percent error in the
lower stability boundary for
Ω = 2 for the Kapitza
pendulum using
higher-order stroboscopic
averaging with the VOC
formula
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Fig. 6 Integration of the full LTPdynamics, first- and third-order
averaged dynamics of the Kapitza pendulum, after applying the
VOC formula. The simulations are obtained for Ω = 2, B = 3,
ω = 20 rad/s, and initial conditions θ0 = 30◦ and θ̇0 = 0◦/s

therefore are not in the averaging-canonical form; the
VOC formula is necessary to ensure a rigorous appli-
cation of the averaging theorem. However, as shown
above, theVOC requires computing the flowmap along

the time-periodic terms, which may not be analytically
tractable for many systems. Here we show that higher-
order averaging alone (without the VOC) may capture
some of the dynamical features that are lost by disre-
garding the VOC. In order to demonstrate this point,
consider again the system in Eq. (53) after the transfor-
mation τ = ωt = t/ε
(
x ′
1
x ′
2

)

= ε

(
x2

(Ω − ωB cos(τ ))x1

)

, (58)

Figure 9 shows the percent error in the stability
boundaries obtained by applying higher-order averag-
ing directly (withoutVOC) to system (58). Similar con-
clusions to those of Fig. 5 (with the VOC formula) can
be drawn: The accuracy increases as ω increases (i.e.,
ε decreases) and/or the averaging order is increased.
However, in comparison with the higher-order averag-
ing with VOC, the accuracy of the approximations in
Fig. 9 is noticeably lower; a significantly higher-order
averaging may be required to attain an acceptable level
of accuracy. Finally, Fig. 10 shows the angular displace-
ment and velocity of the Kapitza pendulum with initial
conditions θ0 = 30◦ and θ̇0 = 0◦/s and for Ω = 2,
B = 3, and ω = 20 rad/s. The four curves represent
the integration of the complete LTP dynamics (58), the
first-order, third-order and fifth-order averaged dynam-
ics. The solutions of the averaged dynamics have been
adjusted according to Eq. (23). In this case, the solution
of the first-order averaged dynamics provides wrong
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Fig. 7 Stability map for the
Kapitza pendulum. The
shaded region represents the
Floquet stable region. The
colored curves represent the
higher-order
non-stroboscopic averaging
approximations (with VOC
formula) of the lower
stability boundary
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Fig. 8 Percent error in the
lower stability boundary for
Ω = 2 for the Kapitza
pendulum using
higher-order
non-stroboscopic averaging
with the VOC formula
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information about the stability of the original system,
while the stability characteristics are correctly captured
by the higher-order averaged dynamics. As expected,
when the VOC formula is not applied, a higher aver-
aging order (fifth order versus third order for the VOC
case) may be required to obtain a close approximation
of the solution of the original LTP system.

In conclusion, higher-order averaging might be ben-
eficial to the stability analysis of complex systems even

when the application of the VOC formula is not possi-
ble, such as in the modern example shown below.

4.2 Hovering flight of insects and flapping-wing
micro-air-vehicles (FWMAVs)

Flapping flight dynamics is a very rich dynamical sys-
tem because it is typically represented by a multi-body,
nonlinear, time-varying model. To simplify the analy-

123



M. Maggia et al.

Fig. 9 Percent error in the
lower stability boundary for
Ω = 2 for the Kapitza
pendulum using
higher-order averaging
without the VOC formula
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Fig. 10 Integration of the full LTP dynamics, first-, third- and
fifth-order averaged dynamics of the Kapitza pendulum, without
applying the VOC formula. The simulations are obtained for
Ω = 2, B = 3, ω = 20 rad/s, and initial conditions θ0 = 30◦
and θ̇0 = 0◦/s

sis of such a complicated system, it may be reasonable
to neglect the wing flexibility and inertial effects, even
though it is a controversial assumption among the flap-
ping flight dynamics community [6,48]. Doing so, the

flapping flight dynamics in the longitudinal plane (x−z
plane in Fig. 11) will be governed by the exact same
set of equations governing conventional airplanes [49]

⎛

⎜
⎜
⎝

u̇
ẇ

q̇
θ̇

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−qw − g sin θ

qu + g cos θ

0
q

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎜
⎜
⎝

1
m X (x, t)
1
m Z(x, t)
1
Iy
M(x, t)

0

⎞

⎟
⎟
⎟
⎟
⎠

, (59)

where Iy and m are the pitch inertia and the body
mass, respectively, and g is the gravitational accel-
eration. Figure 11 illustrates a flapping-wing micro-
air-vehicle (FWMAV) in the longitudinal plane (x − z
plane)where the state vector x includes the forward and
normal velocity components u,w, the pitching angular
velocity q, and the pitching angle θ . In Eq. (59), X , Z
are the forward andnormal aerodynamic forces, respec-
tively, and M is the aerodynamic pitching moment.

Details of the aerodynamic model (dependence of
the aerodynamic forces X , Z and M on the state vari-
ables u, w and q) are taken from Ref. [50] and given in
“Appendix A.”

The main distinction between conventional air-
planes and FWMAVs or insect flight is that the aero-
dynamic forces (X , Z and M) are essentially time-
varying in the latter case, which renders system (59)
time-varying nature. That is, system (59) can be writ-
ten as
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Fig. 11 Longitudinal view of a hovering FWMAV

ẋ = f(x) + ga(x, t), (60)

where the autonomous vector field f represents the iner-
tial and gravitational loads and the non-autonomous
vector field ga represents the aerodynamic loads. In
conclusion, unlike conventional airplanes, flapping
flight dynamics (i.e., (59) and (60)) is represented by
a nonlinear, time-periodic (NLTP) system whose sta-
bility can be studied using one of the two approaches
shown in Fig. 1.

Hovering is mostly associated with relatively higher
flapping frequencies in comparisonwith forward flight.
Theflapping frequencies of hovering insects are usually
in the 20–1000 Hz range [51]. Therefore, the dynam-
ics of hovering insects exhibit two timescales. The fast
timescale is associated with the flapping motion and
the aerodynamic loads, while the slow one is associ-
atedwith the aggregatemotionof the body.The contrast
between the fast and slow timescales can be clearly seen
if one tries to observe a flying insect: A bare human eye
can track the trajectory of an insect body in the space,
but can hardly track the motion of its wings, which
move much faster. Therefore, we definitely have two
timescales. A natural question is to ask about the ratio
between these two timescales. One of the slowest flap-
ping insects, the hawkmoth, has its flapping frequency
(i.e., forcing frequency) about 30 times its natural fre-
quency of flight dynamics (specifically the short-period
flight dynamics) [50,51]. This large separation between
the two timescales invokes averaging; the body of an
insect hovering over a flower seems to oscillate in all
directions. Yet, on average, the insect is hovering over
the flower. Therefore, averaging seems a very intuitive
tool to analyze flapping flight dynamics.

Over the last two decades, direct (crude) averaging
has been the standard analysis technique of the flap-

ping flight dynamics of insects and micro-air-vehicles
[52–61]. Using the crude averaging approach, it was
shown that the pitch dynamics of hovering insects and
FWMAVs are unstable due to lack of pitching stiffness
[54–59]. However, we recall the expressive quote from
Sanders and Verhulst book [17] presented in Introduc-
tion section stressing that averaginghas to be rigorously
justified. In fact, the flapping flight dynamical system
as a high-amplitude periodically forced system is not
directly amenable to the averaging theorem. Moreover,
its dynamics are too complicated to allow analytical
application of the VOC. Therefore, there is a need for
higher-order averaging [44].

Prof. Nayfeh had a long career studying energy
transfer between high-frequency modes and low-
frequency modes [62–67]. It is noteworthy to mention
that Prof. Nayfeh opposed direct (crude) averaging of
flapping flight dynamics despite the seemingly large
separation between the system’s two timescales that
intuitively invokes averaging. Hence, this whole line
of research of higher-order averaging of insect flight
dynamics was initiated. In an earlier work [68], the
third author and Nayfeh utilized the multiple scales
method [15,32] to analyze the hovering flight dynamics
of insects and FWMAVs up to second-order accuracy;
they indeed highlighted the shortcomings of crude aver-
aging and showed that the parametric excitation due to
the oscillatory aerodynamic loads may naturally (with-
out feedback) stabilize the insect flight dynamics.

In this subsection, we present how high-order aver-
aging captures this important dynamical feature in the
hovering flight dynamics of insects and FWMAVs [44].
In this demonstration, we adopt the flight dynamic
model (i.e., model for the aerodynamic vector field ga
in terms of the state variables) developed earlier in [50].

Strictly speaking, system (60) (equivalently (59)) is
not in the averaging-canonical form because the time-
periodic aerodynamic vector field ga(x, t) includes
high-amplitude terms. Therefore, a rigorous applica-
tion of the averaging theorem necessitates application
of the VOC formula before averaging. However, it is
not possible to analytically compute the flow along
the NLTP vector field ga . This precludes application
of direct averaging, which is not clear until a care-
ful scaling is assigned to each term in ga . Yet, direct
(crude) averaging has been ubiquitously applied to ana-
lyze flapping flight dynamics over the past two decades,
relying on the seemingly large separation between the
two timescales [52–61].
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Table 2 Ratios of flapping frequency to natural frequency ω/ωn and eigenvalues assessing stability (using first- and second-order
averaging) for five insects

Insect ω
ωn

λ1st λ2nd

Hawkmoth 28.78 [−11.89, − 3.30, 0.19 ± 5.74i] [−10.40, − 3.09, − 0.66 ± 3.72i]
Crane fly 50.62 [−47.71, − 17.31, − 1.13 ± 5.53i] [−45.76, − 16.26, − 13.16, 7.90]
Bumblebee 144.46 [−11.63, − 4.39, 1.58 ± 6.55i] [−11.26, − 4.37, 1.38 ± 6.17i]
Dragonfly 145.50 [−13.11, − 7.03, 1.34 ± 6.65i] [−12.56, − 6.98, 1.04 ± 5.99i]
Hoverfly 113.98 [−14.01, − 7.27, 2.13 ± 8.56i] [−13.37, − 7.24, 1.79 ± 7.92i]

As explained by Khan and Agrawal [60], the time
variable inEq. (60) is scaled as τ = ω

ωn
t ,whereωn is the

natural frequency of the body flight dynamics (short-
period mode) andω is the flapping (forcing) frequency.
When ω

ωn
is large enough and assuming that all the

terms in f and ga are equally scaled (which is not true in
general), the dynamics expressed in terms of τ are in the
averaging-canonical form with ε = ωn

ω
. It is important

to note that, for hovering insects with relatively low
flapping frequencies (e.g., for the hawkmoth, ω

ωn
≈ 30)

the ratio ω
ωn

has usually been considered high enough to
justify direct averaging (see, for example, [50,52,55]).

The averaged dynamics of Eq. (60) are written (see
[50]) as

ẋ = f(x) + ga(x) (61)

where x is the averaged state vector and ga(x) repre-
sents thega(x, t) averaged aerodynamic loads:ga(x) =
1
T

∫ T
0 ga(x, τ ) dτ .
After applying second-order averaging to system

(60), we obtain a significant change in the stability
characteristics in comparison with crude averaging.
Table 2 shows the ratios ω

ωn
for five different insects and

the eigenvalues λ1st and λ2nd, computed after apply-
ing first- and second-order averaging, respectively. The
eigenvalues are used to assess stability.

Some important observations can be made about
the results in Table 2. First, for very-high-frequency
cases, first-order (direct averaging) and second-order
averaging give the same information about the aver-
aged system and its stability such as in the cases of the
bumblebee, the dragonfly and the hoverfly. In fact, for
these insects the ratio ω

ωn
is very large (larger than 100).

Also, this result is consistent with that obtained by the
methodofmultiple scales [68].On the other hand,when
the ratio ω

ωn
is relatively lower, such as in the case of

the crane fly and of the hawkmoth, the stability char-
acteristics of the first-order and second-order averaged

systems are qualitatively different. Moreover, we can
even identify the vibrational stabilization mechanism
comparing the matrices of the linearized direct (first-
order) and second-order averaged systems for one of
the insects (e.g., hawkmoth)

D(εΛ1)(0) =

⎡

⎢
⎢
⎣

−3.59 0 0 −9.81
0 −3.30 0 0

39.95 0 −7.92 0
0 0 1 0

⎤

⎥
⎥
⎦ ,

D(εΛ1 + ε2Λ2)(0) =

⎡

⎢
⎢
⎣

−3.58 0 0 −9.81
0 −3.09 0 0

29.98 0 −8.13 −28.45
−2.90 0 0.96 0

⎤

⎥
⎥
⎦ .

As can be seen, the element (3, 4), which corresponds
to pitching acceleration (or pitching moment) due to
a pitching angle, is changed from 0, in the crude-
averaged system, to −28.45 in the second-order aver-
aged system.That is, a significant pitch stiffness (whose
lack was the main reason behind the claimed instabil-
ity) is created due to high-frequency, high-amplitude,
zero-mean terms in ga which is a typical vibrational
stabilization behavior. Figure 12 shows a simulation
of the hawkmoth dynamics for an initial θ disturbance
of 30◦. The curves represent the simulation of the full
NLTP system, the first-order averaged dynamics and
the second-order averaged dynamics. The solution of
the second-order averaged dynamics greatly improves
the approximation obtained by applying direct averag-
ing only.

This example shows the power of higher-order aver-
aging in capturing hidden stabilization mechanisms in
dynamically rich systems in an analytic manner that
allows deep study of the underpinning physics. This
scrutiny of the physics behind vibrational stabilization
in flapping flight and its experimental validation using
motion data from a real hawkmoth is presented in [69].
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Fig. 12 Integration of the fullNLTPdynamics, first- and second-
order averaged dynamics for the hawkmoth. The simulations are
obtained for an initial disturbance of θ0 = 30◦

5 Concluding remarks

In this paper, we review the two main techniques to
analyze nonlinear time-periodic systems: the numer-
ical approach using Floquet theorem and the analyt-
ical approach using the averaging theorem with par-
ticular focus on the second approach. We discuss the
technical issues with the classical averaging theorem:
the requirement of a weakly forced system and/or a
large separation between the system’s two timescales.
These requirements confine the applicability of the neat
averaging approach to a small class of systems that
excludes vibrational control systems, which are typi-
cally high-amplitude periodically forced systems. We
present higher-order averaging as a remedy for these
issues. It is found that higher-order averaging captures
more dynamical features than direct (first-order) aver-
aging. In particular, we find that the error in the stabil-
ity boundary decreases asymptotically as the averaging
order increases. We demonstrate this behavior on the
classical example of the Kapitza pendulum: inverted
pendulumwhose pivot is subject to vertical oscillation.
We also present a modern example with richer dynam-
ics: flapping flight dynamics of insects and micro-air-
vehicles. Over the past two decades, direct averaging
has led to the conclusion that insects are unstable at
hover. In contrast, we show that higher-order averaging
indicates vibrational stabilization in the form of a pitch
stiffness. That is, the high-frequency, zero-mean forces,
which are typically neglected by direct averaging, lead

to a natural stabilizing actionwithout feedback. In addi-
tion to these applications which demonstrate the power
of higher-order averaging, we show the equivalence
between two higher-order averaging approaches that
were developed independently in the literature within
two different communities and using different analysis
tools: the classical averaging approach using pertur-
bation theory and a more modern averaging approach
using chronological calculus. We show how the use of
chronological calculus and Lie algebraic tools leads to
extension of the Floquet theorem to nonlinear systems,
equivalently extending the averaging theorem to arbi-
trarily high orders. We prove equivalence between the
two averaging approaches mathematically up to fourth
order and also show that the two approaches are con-
ceptually equivalent for all orders: Both rely on the
fact that the flows of the averaged system and the time-
periodic system match after a complete cycle. Based
on this equivalence, we conclude that the full series
solution of the classical averaging approach represents
complete averaging in the sense that its exponential sta-
bility implies exponential stability for the original time-
periodic system for all values of the “small” parame-
ter (i.e., no large separation between the timescales is
needed). Such a result was not developed in the classi-
cal averaging literature.On the other hand, the recursive
formula developed in the classical averaging literature
can be directly used to determine higher-order aver-
aging terms in the chronological calculus approach,
whichwas not presented in its respective literature. This
article is considered as a comprehensive introductory
reference on the analysis of time-periodic systems that
reviews and unifies the classical averaging theorem, the
Floquet theorem, the higher-order averaging technique
using perturbation theory, and that uses chronological
calculus and Lie algebraic tools.We show connections,
equivalence, similarity and differences between these
approaches.
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Appendix A

The higher-order dependence of the non-autonomous
aerodynamic vector field ga(x, t) (see Eqs. (59) and
(60)) on the state vector x can be neglected. Thus, we
retain only the linear terms and obtain
⎛

⎜
⎜
⎝

u̇
ẇ

q̇
θ̇

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−qw − g sin θ

qu + g cos θ

0
q

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎜
⎝

1
m X0(t)
1
m Z0(t)
1
Iy
M0(t)

0

⎞

⎟
⎟
⎟
⎠

+

⎡

⎢
⎢
⎣

Xu(t) Xw(t) Xq(t) 0
Zu(t) Zw(t) Zq(t) 0
Mu(t) Mw(t) Mq(t) 0
0 0 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

u
w

q
θ

⎞

⎟
⎟
⎠ .

Assuming a horizontal stroke plane, parameterized by
the “back-and-forth” flapping angle ϕ, and a piecewise
constant variation in thewing pitch angle η, one obtains
[50]: X0(t) = −2K21ϕ̇(t)|ϕ̇(t)| cosϕ(t) sin2 η, Z0(t)
= −K21ϕ̇(t)|ϕ̇(t)| sin 2η, M0(t) = 2ϕ̇(t)|ϕ̇(t)| sin η

[K22Δx̂ cosϕ(t)+K21xh cos η(t)+K31 sin ϕ(t) cos η],
where xh is the distance from the vehicle center of
mass to the root of the wing hinge line (i.e., the inter-
section of the hinge line with the xb-axis) and Δx̂
is the chord-wise distance from the center of pres-
sure to this same hinge location, normalized by the
chord length. Also, ρ is the air density, CLα is the
three-dimensional lift curve slope of the wing, c(r) is
the spanwise chord distribution, R is the wing radius,
Imn = 2

∫ R
0 rmcn(r) dr , and Kmn = 1

4ρCLα Imn . The
time-varying stability derivatives are written directly
in terms of the system parameters as in [50]: Xu =
−4 K11

m |ϕ̇| cos2 ϕ sin2 η, Xw = − K11
m |ϕ̇| cosϕ sin 2η,

Xq = K21
m |ϕ̇| sin ϕ cosϕ sin 2η − xh Xw, Zu = 2Xw,

Zw = −2 K11
m |ϕ̇| cos2 η, Zq = 2 K21

m |ϕ̇| sin ϕ cos2 η −
Krot12
m ϕ̇ cosϕ − xh Zw, Mu = 4 K12Δx

Iy
|ϕ̇| cos2 ϕ sin η +

m
Iy

(
2Xq − xh Zu

)
, Mw = 2 K12Δx

Iy
|ϕ̇| cosϕ cos η +

2 K21
Iy

|ϕ̇| sin ϕ cos2 η − mxh
Iy

Zw, and

Mq = −2Δx

Iy
|ϕ̇| cosϕ cos η (K12xh + K22 sin ϕ)

+ 1

Iy
ϕ̇ cosϕ

(
Krot13Δx cosϕ cos η + Krot22 sin ϕ

)

+ − 2

Iy
|ϕ̇| cos2 η sin ϕ (K21xh + K31 sin ϕ)

−Kvμ1 f

Iy
cos2 ϕ − mxh

Iy
Zq ,

where Krotmn = πρ( 12 − Δx̂)Imn and Kv = π
16ρ I04.

The hinge line is set at 30% c (Δx̂ = 0.05), and the
value of CLα is computed based on the aspect ratio of
thewing, utilizing the extended lifting theory [70]. This
flight dynamic model has been developed in Ref. [50],
and the resulting eigenvalues of the averaged, linearized
dynamics have been validated against numerical sim-
ulations of Navier–Stokes equations by Sun et al. [55]
and the experimental data of Cheng and Deng [59].
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