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In this work, we formulate a minimum-time optimal control problem to steer a FWMAV dynamical 
system from a hovering condition to forward flight with a prescribed forward speed using time-periodic 
and averaged dynamics formulations. For the averaged dynamics representation, we optimize the back 
and forth flapping angle and the up and down-stroke angles of attack of the wing. We represent the 
flapping angle via a generic periodic function with some parameters that determine the waveform of the 
flapping angle over the cycle. We formulate the optimal control problem such that the cost functional 
is the final time, and the slowly time-varying parameters of the flapping angle wave form and the up 
and down-stroke angles of attack are considered inputs to the averaged dynamics. On the other hand, 
the instantaneous the flapping speed and wing pitching angle are considered direct inputs to the time 
periodic system. The problem is then to steer the averaged dynamics from the hovering fixed point 
(origin) to a prescribed average forward speed, and the time periodic dynamics from the hovering 
periodic orbit to the orbit of the forward flight condition. We show that the averaging is not suitable 
for the steering between hovering and forward flight and that time-periodic dynamics are required for 
the controller to achieve proper transition. Also, we investigated the effect of using the time-averaged 
stability derivatives obtained using a computational fluid dynamics simulation versus using the time-
varying hovering derivatives.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

Unlike conventional airplanes, flapping-wing micro-air-vehicles 
(FWMAVs) move their wings continuously with respect to the 
body. These new degrees of freedom for the wings pose questions 
about the best wing kinematics for optimal aerodynamic perfor-
mance at specific equilibrium positions or configurations, and/or
maximum maneuverability for transition between these positions. 
This optimization objective is necessary because of the stringent 
weight, size, and power constraints imposed on the design of these 
miniature vehicles.

To date, most investigations regarding aerodynamic-optimum 
wing kinematics have aimed to optimize hovering or forward 
flight capabilities. Berman and Wang [1], Kurdi et al. [2], and 

* Corresponding author.
E-mail address: amonem@vt.edu (A.A. Hussein).

1 AIAA Student Member.
https://doi.org/10.1016/j.ast.2019.04.043
1270-9638/© 2019 Elsevier Masson SAS. All rights reserved.
Taha et al. [3] formulated optimization problems to determine 
the optimal time variations of the Euler angles, describing flap-
ping kinematics, for hovering with minimum aerodynamic power. 
Stanford and Beran [4] and Ghommem et al. [5] solved similar 
problems for optimum aerodynamic performance in forward flight. 
Still the open literature lacks constructive techniques to determine 
maneuverability- or control-optimum kinematics. The common ap-
proach has been to assume the shape of the kinematic functions 
from the outset and adapt such a shape to ensure controllabil-
ity for the FWMAV, see Schenato et al. [6], Doman et al. [7], and 
Oppenheimer et al. [8]. That is, the kinematic functions are not 
derived.

Taha et al. [9] proposed a constructive approach for maneuver-
ability-optimum kinematics. They used calculus of variations and 
optimal control to determine the optimum waveform for the back 
and forth flapping angle in a horizontal stroke plane and constant 
angle of attack that results in the maximum cycle-averaged for-
ward acceleration from a hovering position. Since they considered 
the initial acceleration from a hovering equilibrium, they neglected 
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Nomenclature

α Angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
c̄ Mean chord length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
r̄ Radius of section having mean chord length
�x̂ Normalized chordwise distance between the center of 

pressure and the hinge location
η Pitching angle of the wing . . . . . . . . . . . . . . . . . . . . . . . . . rad
x̂0 Normalized position of the pitch axis
� Amplitude of the flapping motion . . . . . . . . . . . . . . . . . rad
ρ Air density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρb Average density of the body . . . . . . . . . . . . . . . . . . . . kg/m3

θ Pitching angle of the body . . . . . . . . . . . . . . . . . . . . . . . . . rad
ϕ Back and forth flapping angle . . . . . . . . . . . . . . . . . . . . . . rad
c Chord length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
Db Drag force on the body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

g Gravitational acceleration. . . . . . . . . . . . . . . . . . . . . . . . . m/s2

I y Body moment of inertia about the yb axis . . . . . g/cm2

Lb Length of the body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
M Aerodynamic moment about yb axis . . . . . . . . . . . . . N.m
mb Body mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mg
r Distance along the wing span
R Wing radius (Length) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
S Area of one wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cm2

Sb Average area of one body . . . . . . . . . . . . . . . . . . . . . . . . . cm2

t Time variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec
T , f Flapping period and frequency . . . . . . . . . . . . . . . . . sec, Hz
X Aerodynamic force along xb axis . . . . . . . . . . . . . . . . . . . . N
Z Aerodynamic force along zb axis . . . . . . . . . . . . . . . . . . . . N
the body dynamics and, as such, the problem was simplified to a 
one-degree-of-freedom kinematic optimization problem.

In this work, we formulate a minimum-time optimal control 
problem to determine the evolution of the optimum wing kinemat-
ics which steers the FWMAV dynamical system from a hovering 
to a forward flight condition with a prescribed averaged forward 
speed. The steering problem is investigated using averaging and 
time-periodic representations of the dynamics of the FWMAV. In 
the averaged dynamics formulation [10,11], we rely on the large 
separation between the FWMAV system’s two time scales, namely 
a fast time scale associated with flapping and a slow time scale 
associated with body motion dynamics, to justify the use of the 
averaging theorem to convert the time-periodic flapping flight dy-
namics into a time-invariant system. As such, the periodic orbits 
representing equilibria of the original time-periodic system are 
reduced to fixed points. The flapping periodic waveform is pa-
rameterized with inputs to the averaged dynamics. The parame-
terization proposed by Berman and Wang [1,12], which is capable 
of representing both square and sine functions, is used here. The 
wing pitching angle η is assumed to be passively controlled with 
the back and forth flapping angle ϕ to maintain a constant an-
gle of attack throughout each half stroke. In fact, this piecewise 
constant variation of the pitching angle (angle of attack) has been 
extensively used in the literature of hovering FWMAVs [6–8,13,3]
as an approach to comply with minimum actuation requirements 
in FWMAVs. This representation of the pitching angle is stressed 
as the main reason for the successful flapping flight of the Har-
vard Robofly [14]. For the time-periodic dynamics, the inputs are 
the flapping speed φ̇ and the wing pitching angle η with no pe-
riodicity constraint on the flapping angle. We applied the optimal 
control formulation for the case of hummingbird using both av-
eraged and time-periodic dynamics. In addition, we investigated 
the effect stability derivatives on the time-periodic optimal con-
trol problem using the computational fluid dynamics (CFD) data 
from Ref. [15] for bumblebee. The layout of the paper is as fol-
lows. In Section 2, the flight dynamical model is briefly discussed. 
In Section 3, the procedure for finding the periodic orbits for hov-
ering and forward flight is discussed (the details of the method 
used to find these orbits and assessing their stability are detailed 
in Appendix A.2, Appendix B.) The optimal control problem for-
mulation for both averaged and time periodic dynamics is setup in 
Section 4 (the average theory is discussed in Appendix A. Results 
for transitioning between hovering and forward flights with three 
different speeds for both averaged and time-periodic dynamics are 
presented and discussed in Section 5. In Section 6, we examined 
the effect of using the stability derivatives using the CFD from 
Ref. [15] on the optimal transition using time-periodic dynamics. 
The last Section 7 presents the summary and conclusions.

2. Flight dynamic model

We use a flight dynamic model that was developed in a pre-
vious work by Taha et al. [16,17] and is based on a quasi-steady 
formulation that accounts for the dominant leading edge vortex 
contribution as well as rotational effects. A schematic diagram 
of the FWMAV performing a horizontal stroke plane is shown in 
Fig. 1. The time periodic dynamical model perturbed around hov-
ering conditions is written as

⎛
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where �u is the disturbance in the forward velocity component 
along the body x axis, �w is the disturbance in normal veloc-
ity component along the body z axis, and �θ and �q are the 
disturbances in pitching angle and angular velocity of the body, 
respectively. In Eq. (1), X0, Z0 and M0 are respectively the aerody-
namic forces and pitching moment due to flapping that are given 
by:

X0(t) = −2K21ϕ̇(t)|ϕ̇(t)| cosϕ(t) sin2 η − 1

2
ρ̄b SbCDb V�u

Z0(t) = −K21ϕ̇(t)|ϕ̇(t)| sin2η − 1

2
ρ̄b SbCDb V�w

M0(t) = 2ϕ̇(t)|ϕ̇(t)| sinη(K22�x̂ cosϕ(t) + K21xh cosη

+ K31 sinϕ(t) cosη

(2)

where Kmn = 1/2ρAImn , Imn = 2 
∫ R
0 rmcn(r)dr, Sb = πDbLb and 

Db/Lb = (4mb/(πρbL
3
b)
)0.5

. A is the aspect ratio correction defined 
by

A = π AR

2

(
1+

√
(π AR

ao )2 + 1

) (3)
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Fig. 1. Schematic diagram showing the back-and-forth flapping angle ϕ and the pitching angle of the wing η of the FWMAV.
The stability derivatives Xu , Xw , Xq , Zu , Zw , Zq , Mu , Mw and 
Mq represent the aerodynamic loads due to body motion variables. 
They are given by

Xu(t) = −4
K11

m
|ϕ̇(t)| cos2 ϕ(t) sin2 η

Xw(t) = − K11

m
|ϕ̇(t)| cosϕ(t) sin2η

Xq(t) = K21

m
|ϕ̇(t)| sinϕ(t) cosϕ(t) sin2η − xh.Xw(t)

Zu(t) = 2Xw(t)

Zw(t) = −2
K11

m
|ϕ̇(t)| cos2 η

Zq(t) = 2
K21

m
|ϕ̇(t)| sinϕ(t) cos2 η − Krot12

m
ϕ̇(t) cosϕ(t)

− xh Zw(t)

Mu(t) = 4
K12�x̂

I y
|ϕ̇(t)| cos2 ϕ(t) sinη + m

I y
(2Xq − xh Zu(t))

Mw(t) = 2
K12�x̂
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|ϕ̇(t)| cosϕ(t) cosη

+ 2
K21
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|ϕ̇(t)| sinϕ(t) cos2 η − m.xh
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|ϕ̇(t)| cosϕ(t) cosη(K12xh + K22 sinϕ(t))
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ϕ̇(t) cosϕ(t)(Krot13�x̂ cosϕ(t) cosη+Krot22 sinϕ(t))

− 2

I y
|ϕ̇(t)| cos2 η sinϕ(t)(K21xh + K31 sinϕ(t))

− Kvμ1 f

I y
cos2 ϕ(t) − mxh

I y
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where Krotmn = πρ(1/2 − �x̂)Imn and Kv = π/16ρ I04. In Ref. [15], 
the stability derivatives were obtained by performing a computa-
tional fluid dynamics study for a bumblebee.

System (1) can be written in an abstract form as

ẋ = f (x) + g(x,ϕ(t),η(t)) (4)

where the state vector x = [u, w, q, θ]T , f represents the inertial 
and gravitational forces, and g represents the time-periodic aero-
dynamic loads that are written affine in the state variables. The �
is dropped through out the paper for brevity.
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System equilibrium representations

Because FWMAVs are continuously subjected to oscillatory 
rces, their equilibrium states are described by periodic orbits 
ther than fixed points. In this work, we use the optimized shoot-
g method proposed by Botha and Dednam [18] to capture the 
fferent periodic solutions of the system (4). The method is de-
ribed in detail in Appendix A. The resulting periodic states, 
ertial velocities and trajectories are respectively shown in Figs. 2
d 3. The periodic orbits for hovering and forward flight are rep-
sented in the state space (u, w, q) in Fig. 4, and the red dots are 
e initial conditions presented in Table 1. The Floquet theorem is 
ed to assess the stability of the obtained periodic orbits is dis-
ssed in Appendix B and applied to the cases in this work. On 
e other hand, a very convenient way of transforming the non-
ear time-periodic (NLTP) system in Eq. (1) to a representative 
e-invariant system is the averaging approach. This approach is 

ainly based on the assumption that, due to the very fast flapping 
quency relative to the body dynamics, the body only feels the 
erage values of the aerodynamic loads. It should be noted that 
e ratio of the flapping frequency to the body natural frequency 
r the one of the slowest flapping insects (Hawkmoth) is about 30 
7]. For a man made FWMAVs (e.g., Harvard Robofly), this ratio 
ay be as high as 120. In fact, the averaging approach is mathe-
atically justified through the averaging theorem in Appendix A. 
is averaging approach greatly simplifies the trim (equilibrium) 
oblem as the equilibrium periodic orbit is reduced to a fixed 
int for the averaged dynamics. Therefore, instead of finding a 
riodic solution, χ(t), that satisfies the differential equation (1)
ch that it satisfies certain conditions (e.g., the mean velocities 
e zeros at hover), one has to solve an algebraic equation for the 
rresponding fixed point of the averaged dynamics.
With the CG position aligned with the hinge location, symmet-
 flapping (αd = αu and a0 = b1 = 0), ensures trim of the forward 
) force and pitching moment at hover with θ̄ = 0 [8,19], as 
own in Fig. 2 and Table 1. We also infer that the forward thrust 
rce needed to propel the FWMAV forward to overcome the body 
ag can be achieved by two mechanisms: (i) asymmetric-drag 
d < αu) [9] and (ii) forward body pitching similar to helicopters 
< 0). To transition from hovering to a small-speed forward flight 
 minimum time, the second approach might not be the best 
cause of the time taken to pitch inertia of the whole body; 
ymmetric drag is sufficient in this case and would achieve the 
sire forward speed faster. Therefore, the numerical shooting al-
rithm yielded the first mechanism at smaller forward speeds 
.g., V̄ x = 2 m/s). However, because this mechanism would not 
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Fig. 2. Time history of body variables for hovering and forward periodic orbits. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)
Table 1
Initial conditions for the hovering periodic orbit shown in Fig. 2.
State Hover, V̄ x = 0 m/s V̄ x = 2 m/s V̄ x = 3 m/s V̄ x = 4 m/s

u (m/s) −0.042092 1.9675 2.9184 3.8869
w (m/s) 0.001099 −0.13828 −0.46076 −0.66775
q (rad/s) 0.81749 1.4119 0.0361 3.6231
θ (deg) −2.5361 −3.4133 −8.1791 −9.3161
ao (deg) 0 1.4525 1.1571 2.3124
a1 (deg) 62.3206 78.3393 70.8202 86.0717
b1 (deg) 0 0 −40.1817 −50.2671
αu (deg) 26.6941 31.3225 68.3635 72.6631
αd (deg) 26.6941 12.3487 15.9856 10.8691

be sufficient at larger forward speeds (e.g., V̄ x = 3, 4 m/s), the nu-
merical shooting algorithm would opt for the second mechanism 
at these speeds.

To asses the stability of the periodic orbit, we solved the sys-
tem of equations defined in Eqs. (4) and (B.8). The eigenvalues of 
the state transition matrix, �(T ), at t = T , are the Floquet multipli-
ers z. They are tabulated in Table 2 for hovering and three different 
cases of forward flight.

Looking at the Floquet multipliers, it is found that the periodic 
orbits for hovering and forward flight are unstable, consistent with 
previous studies on flapping flight stability [20]. To make it clearer, 
the Floquet multipliers are plotted with the unit circle in the com-
plex plane in Fig. 5. It is shown that each case has a Floquet 
multiplier outside the unit circle. However, because the system is 
nonlinear, a desired equilibrium (e.g., hovering) may have different 
solutions to the system (4), possibly with different stability charac-
teristics. Fig. 6a shows four different hovering periodic orbits along 
with their Floquet multipliers. Although the four orbits are close to 
each other, they possess qualitatively different stability characteris-
tics; three are stable and one is unstable. The values of the Floquet 
multipliers are shown in Table 3.

4. Optimal control formulation

In this section we introduce the optimal control problem for-
mulation for both averaged and time-periodic dynamics.

4.1. Averaged dynamics

The averaged dynamics are not affected by the full variation 
of the flapping angle over the cycle but some integrals of such a 
waveform ϕ . We used a parameterization for the flapping angle 
defined by Bhatia et al. [12]. This function was first introduced by 
Berman and Wang [1] for the symmetric flapping during hover-
ing and was later modified by Doman et al. [21] to account for 
asymmetric flapping and continuity between cycles. We adopt the 
function of Bhatia et al. [12], which differs from Doman et al. [21]
in how the continuity criteria is defined. The flapping angle can be 
defined as follows:
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Fig. 3. Inertial velocities and trajectories for hovering and forward periodic orbits.
ϕ(τ ) =

⎧⎪⎨
⎪⎩

φm(1 + Aφ)
sin−1{Kφ sin[(ω−δ)τ+π/2]}

sin−1Kφ
+ φ0, 0� τ � π

ω−δ

φm
sin−1{Kφ sin[ω̃τ+ζ̃+π/2]}

sin−1Kφ
+ φ0,

π
ω−δ

� τ � 2π
ω

(5)

where ω̃ = ω(ω−δ)
ω−2δ , ζ̃ = −2πδ

ω−2δ , and τ is the fast time scale. δ is 
the reduction in wing-stroke frequency during first half of stroke-
cycle, and ζ̃ is the phase shift with frequency ω̃ during second half 
of stroke cycle. To ensure continuity between flapping cycles, the 
parameter Aφ is chosen as follows:

Aφ = φm,old + φ0,old − φ0

φm
− 1 (6)

where old refers to the previous cycle. As we will see later, no 
feasible solution is obtained when we tried to enforce Eq. (6) to 
achieve continuous flapping angle. Equation (5) allows for more 
choices for the resulting shape of the flapping angle using only 
four inputs. The input that controls the shape of the waveform is 
Kφ . The value of Kφ = 1 represents a triangular function while the 
case of Kφ � 1 represents a sinusoidal function. In addition, the 
wing pitching angle η is defined as

η(τ ) =
⎧⎨
⎩

αd ϕ̇(τ ) > 0

π − α , ϕ̇(τ ) < 0
(7)
u

where αu and αd are the up and down-stroke angles of attack of 
the wing. If we substitute for ϕ from Eq. (5) and Eq. (7) into the 
aerodynamic loads (e.g., X0-M0 and stability derivatives) and then 
integrate the outcomes to obtain the corresponding cycle-averaged 
quantities (e.g., X̄0-M̄0 and cycle-averaged stability derivatives), 
the averaged dynamics (A.5) is written as

˙̄x(t) = F (x̄(t),U (t)) (8)

where U = [δ, φ0, φm, Kφ, αu, αd] contains the coefficients of the 
flapping angle ϕ that are slowly time-varying for a varying wave-
form during a maneuver execution and angles of attack during 
the upstroke and down stroke respectively. That is, the parameters 
U = [δ, φ0, φm, Kφ, αu, αd] are seen as virtual inputs to the aver-
aged dynamics. The steering takes place between two fixed points, 
the origin and the final forward conditions. The minimum-time 
optimal control problem for the averaged dynamics is defined as 
follows:

min
U (.)

J =
t∗f∫
0

1dt = t∗f (9)

subjected to the control constraint

U l ≤ U (t) ≤ U u (10)
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Fig. 4. Periodic orbits for hovering and forward flight for three different cases.
Table 2
Floquet multipliers z for hovering and forward flight of the state transition matrix 
�(T ) at t = T .

V̄ x = 0 V̄ x = 2 m/s V̄ x = 3 m/s V̄ x = 4 m/s⎧⎪⎪⎨
⎪⎪⎩

1.0920
0.8416
0.8229
0.6501

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

1.1301
0.8370
0.6922
0.4834

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

1.0884 + 0.0000i
0.8278+ 0.0000i
0.6249 + 0.0755i
0.6249 − 0.0755i

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

1.0649 + 0.0000i
0.8363 + 0.0000i
0.5589+ 0.1285i
0.5589− 0.1285i

⎫⎪⎪⎬
⎪⎪⎭

that satisfies the differential equation (8) subject to end constraints

V̄ x(t
∗
f ) = V f

V̄ z(t
∗
f ) = 0, q̄(t∗f ) = 0

(11)

and path constraint

ϕl ≤ ϕ(τ ) ≤ ϕu (12)

to ensure a realistic flapping angle. The optimal control problem 
is defined according to the definitions in Ref. [22]. (For instance, 
see Chapter 10, Section 1, Page 341 in Ref. [22]. The end constraint 
˙̄x(t∗f ) = 0 is introduced to ensure equilibrium of the averaged dy-
namics at the final conditions. The final time is unknown and 
should be obtained along with the solution of the optimal con-
trol problem.
Fig. 5. Floquet multipliers for hovering and forward flight periodic orbits in the com-
plex plane with respect to the unit circle.

4.2. Time-periodic dynamics

Since the optimal control theory allows piecewise variation of 
the control input to achieve realistic flapping, the flapping speed ϕ̇
and pitching angle of the wing η are considered as the inputs to 
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Fig. 6. Floquet multipliers and trajectory for hovering orbit for different cases of initial conditions.
Table 3
Floquet Multipliers z for Hovering flight for a different initial conditions.⎧⎪⎪⎨
⎪⎪⎩

1.09249
0.65006
0.82217
0.84149

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

0.71354
0.96467 + 0.0922i
0.96467 − 0.0922i

0.88227

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

0.69802
0.98383+ 0.17439i
0.98383− 0.17439i

0.915428

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

0.70002
0.98246+ 0.16988i
0.98246− 0.16988i

0.91272

⎫⎪⎪⎬
⎪⎪⎭

the time-periodic dynamics. As such, the flapping angle is treated 
as one of the dynamics states. Recalling Eq. (1), the nonlinear time-
periodic system (4) is rewritten as

d

dt

[
x
ϕ

]
=
[
f (x) + g(x, ˙ϕ(t),η(t))

ϕ̇

]
(13)

where ϕ̇ is the input flapping velocity, and η is the input flapping 
angle. Eq. (13) can be reduced to the form

χ̇(t) = F (χ(t),U (t)) (14)

where χ = [u, w, q, θ, ϕ]T , and U = [φ̇, η]T . It should be noted 
that the definition of the pitching angle η in Eq. (7) still holds 
in this case. The only difference is that η can now change at every 
time step and not assumed piecewise constant over the flapping 
cycle. The steering from hovering to forward flight now takes place 
between two periodic orbits rather than two fixed points as in the 
last subsection. The optimal control problem is to find a piecewise 
continuous control U (.) : [0, t∗f ] → � (admissible control set), that 
steers the system (14) from the hovering orbit to the forward pe-
riodic orbit in a minimum time. The assumed initial conditions for 
the hovering and forward periodic orbits for different average for-
ward speeds are presented in Table 1. The optimal control problem 
for the time periodic dynamics can be defined as follows:

min
U (.)

J =
t∗f∫
0

1dt = t∗f (15)

that satisfies the differential equation (13) subject to the initial and 
final constraints

χ(to) = [uo, wo, qo, θo, ϕo]
χ (t∗f ) = [u f , w f , q f , θ f , ϕ f ]

(16)

subjected to the control constraint

�l ≤ U (t) ≤ �u (17)
Table 4
Input and State Bounds.
Variable Lower Bound Upper Bound

ϕ (rad) −π/2 π/2
ϕ̇ (rad/s) −π2 f π2 f
η(αu , αd) (rad) −π/2 π/2

and path constraints

ϕl ≤ ϕ(t) ≤ ϕu (18)

The end points at to and t∗f are the initial conditions of the hover-
ing and forward orbits respectively, i.e. the red dots in Fig. 4. The 
bounds on the states and input are given in Table 4.

5. Solution of the optimal control problem

The optimal control problem for time-periodic and averaged 
dynamics defined in the previous section is then solved using
ICLOCS2 software. The ICLOCS software transform the optimal con-
trol problem to a static optimization problem by direct multiple 
shooting/direct collocation methods. The direct multiple shoot-
ing/direct collocation formulations discretize the system dynam-
ics using implicit Runge-Kutta formulae. Once the optimal control 
problem has been transcribed it can be solved with a selection 
of nonlinear constrained optimization algorithms using IPOPT3 or
MATLAB’s own functions like fmincon. The derivatives of the ODE 
right-hand side, cost and constraint functions are estimated nu-
merically since they are required for the optimization problem. 
The discretized dynamical system of the optimal control problem 
is solved initially for a guess of the final time. The IPOPT solver 
continues to solve the discretized problem until it reaches the min-
imum value of the final time then it terminates. This time would 
represent the minimum/optimal time at which the transition be-
tween hovering and forward flight takes place. The constrained 
optimization problem is very similar to the technique used to ob-
tain the periodic orbit (see Appendix A.2 for more details) except 
that optimized shooting method is used with no constraints. In 
this section, we adopted hawkmoth morphological parameters pre-
sented in Table 5.

Fig. 7 shows the resulting optimal control inputs in terms of the 
flapping waveform and angles of attack during the upstroke and 

2 Imperial College London Optimal Control Software.
3 Interior Point Optimizer Software.
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Table 5
Hawkmoth parameters.

Constant Value Constant Value

r̄1 0.44 mb 1.648 (mg)
r̄2 0.508 I y 2.08 (g.cm2)
a0 2π f 26.3 (Hz)
Sw 947.8 (cm2) �x̂ 0.05
R 51.9 (mm) � 60.5◦
c̄ 18.3 (mm) CDb 0.7
Db/Lb 0.81 ρb 1100 (Kg/m3)

down stroke for the averaged dynamics with relaxing the assump-
tion of continuous flapping angle between different cycles. Fig. 7a 
shows a discontinuity in the flapping angle between the first two 
and last three cycles. It should be noted that no feasible solution 
that satisfies all the boundary and equilibrium constraints was ob-
tained when imposing a continuity constraint defined in Eq. (6). 
Furthermore, although the two side limits of the flapping speed 
at the end of the fourth cycle are equal (zero), the derivative (ϕ̇) 
does not exist at this point because the function ϕ is not continu-
ous. Fig. 8 shows a comparison between the averaged-formulation 
minimum time transition between hovering and forward flight for 
V̄ x = 2 m/s and the simulation of the time periodic system (4)
using the obtained optimal flapping parameters. The discrepancy 
between the two results point out that averaging is not suitable 
for designing the steering controller. Because the transition occurs 
on a short time-scale (over few cycles), a fast variation (within the 
flapping cycle) in control inputs may be needed.

Fig. 9 depicts the time histories of the body states and trajec-
tories using the time periodic dynamics obtained for three cases 
of average forward speed. As noted from Fig. 9, the FWMAV needs 
more time to achieve the transition form hovering to forward flight 
as the average forward speed increases. As seen from Fig. 9(b,d), 
the FWMAV chooses the same thrust mechanism discussed ear-
lier during the transition between hovering and forward flight. In 
other words, the more forward speed, the more energy taken from 
pitching down the body similar to helicopters.

Fig. 10 shows the inertial velocities and trajectories for transi-
tion from hovering to three cases of forward speeds. In Figs. 10b, it 
is seen that the optimizer chooses to gain the energy to move FW-
MAV with an average speed of V̄ x = 2 m/s, 3 m/s, 4 m/s through 
kinetic and potential energy by performing descending and climb-
ing. At the end, the FWMAV returns to the horizontal level it 
started from. Fig. 11 shows the time history of the input ϕ̇ and 
η to the time periodic dynamics. The flapping angle ϕ is obtained 
by integrating the input ϕ̇ . Since the formulation of the problem 
is a minimum time control problem with upper and lower bounds 
on the controllers. We can observe the bang-bang nature of the 
input signals. The frequency of the flapping angle ϕ is allowed to 
increase as long as the flapping speed does not exceed its bounds.
Fig. 7. Time history of flapping angle and speed during transition from hovering to forward flight of V̄ x = 2 m/s using the average dynamics in Eq. (8).



254 A.A. Hussein et al. / Aerospace Science and Technology 90 (2019) 246–263
Fig. 8. Time history of inertial velocities, and trajectories during transition from hovering to forward flight of V̄ x = 2 m/s using the average dynamics in Eq. (8).
Figs. 12, 13, 14 show the inertial velocities, the flapping angle 
and speed starting from the hovering cycle through the transition 
to the forward flight of average speed of 2 m/s, 3 m/s, and 4 m/s 
respectively. The variation in the inertial velocity in X direction in 
Fig. 12a, 13a, 14a shows a periodic oscillation around the nom-
inal values in hover and forward flight, i.e. 0, 2, 3, 4 m/s, with a 
ramp change in between. In addition, the variation in the flap-
ping angle, ϕ , in Fig. 12c, 13c, 14c show a sinusoidal nature for 
the hovering and forward cycles with a sawtooth nature in the 
transition phase. As noted from Figs. 12c, 13c, 14c, the continuity 
issue between the flapping cycles in transition is no longer noticed. 
However, the MAV needs to flap at much higher frequencies than 
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Fig. 9. Time history of body variables during transition from hovering to three different cases of forward flight using the time periodic dynamics in Eq. (4).

Fig. 10. Time history of inertial velocities, and trajectories during transition from hovering to three different cases of forward flight using the time periodic dynamics in 
Eq. (4).
in hover or forward flight. This can be seen from the time his-
tory of the flapping angles in Figs. 12c, 13c, 14c. For the forward 
periodic orbits, a feedback controller is needed to stabilize the ve-
hicle in case of any disturbance. This is not necessary in hovering 
as we noticed in Section 4.2 that different equilibrium orbits ex-
ist which some of them are stable as shown in Fig. 6 and listed in 
Table 3.

In Fig. 15, the trajectory of the FWMAV from hovering through 
transition to forward flight, is shown for a three cases of the flight 
speeds. The hovering orbit is seen as point relative to the transi-
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Fig. 11. Time history of flapping angle, flapping speed, and angle of attack during transition from hovering to three different cases of forward flight using the time periodic 
dynamics in Eq. (4).
tion phase and forward one. The mechanism of gaining the thrust 
required to achieve the forward speed is highlighted in this Figure 
and the oscillation around the horizontal position is clearly seen at 
the end of the transition period.

6. Effect of derivatives on the optimal response of FWMAV

In this section, we investigated the effect of using the time-
averaged aerodynamics and stability derivatives obtained from the 
CFD study by Xiong and Sun [15] for a Bumblebee. The bumble-
bee case is used due to the lack of similar data in the literature 
for the hummingbird [23,24]. The bumblebee parameters are given 
in Table 6, and the time-averaged derivatives are listed in Table 7. 
During transition, the data in Table 7 are used to interpolate to get 
the derivatives at any other speed.

The force derivatives in Table 7 are normalized with the dy-
namic pressure of value 0.5ρU2(2Sw), while the moment deriva-
tives are normalized with 0.5ρU2(2Sw)Cb . Where the density is 
ρ = 1.23 Kg/m3, and the velocity is U = 4.4 m/s. To get the time-
varying derivatives from the time-average values, we assume the 
following. For the X derivative w.r.t. forward speed u, the deriva-
tive at forward flight can be related to the hovering one as

(
Xu(t) − X̄u

) |Forward ≈ (Xu(t) − X̄u
) |Hover (19)
This assumption is based on the results in Fig. 2. The rest of deriva-
tives follow the same rule in Eq. (19). Hence the time-varying 
derivative at forward flight can be given as

Xu(t)|Forward ≈ (Xu(t) − X̄u
) |Hover + X̄u|Forward (20)

The average and time-varying values of the derivatives at hovering 
are given by the equations in Section 2 and the average values of 
the derivatives at forward flight are given in Table 7. The results 
using the expressions of time-varying derivatives at hovering and 
the forward derivatives obtained using the time-averaged CFD data 
from Ref. [15] are shown in Fig. 16. The difference between the in-
put flapping, and pitching angles and the inertial velocities show 
that the optimal inputs and trajectories depend on the deriva-
tives. However one should be careful before making a conclusion 
about the results since the time-varying forward flight derivatives 
are constructed from the cycle averaged values using the relaxed 
assumption in Eq. (19). For instance, this difference could be at-
tributed to the way of constructing the time-varying derivatives 
at forward flight from the time-averaged values. The unsteady 
aerodynamics associated with the fast flapping dynamics are ab-
sorbed through the averaging process [15] and constructing them 
through the relaxing assumption in Eq. (19)-(20) may not be (accu-
rate enough) in particular during the transition period. To validate 
these results, a CFD model could be integrated and applied to the 
optimal inputs of both cases. To avoid the expensive cost of hav-
ing CFD and having a good accuracy for time-varying derivatives, 
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Fig. 12. Time history of inertial velocities, flapping angles, and flapping velocities from hovering through transition to forward flight of Vx = 2 m/s.
we plan in the next work to use a reduced order model (ROM) to 
account for the unsteady aerodynamics. This ROM could be based 
on either numerical [25–35] or experimental data [36–39].

7. Conclusion

In this work, a simplified flight dynamic model for a flapping-
wing micro-air-vehicle performing a horizontal stroke plane is con-
sidered. An optimal control problem is formulated to determine 
the evolution of the optimum waveform for the flapping angle in 
the horizontal plane that results in minimum-time transition from 
hovering to forward flight. We investigated the optimal control 
problem using time periodic and averaged dynamics. The averaging 
theorem is used to transform the nonlinear, time-periodic flapping 
flight dynamics into a time-invariant system. The flapping angle 
and the up and down-stroke angles of attack of the wing are the 
input to the averaged dynamics. The flapping angle is represented 
using a generic periodic function. On the other hand, the instan-
taneous flapping speed and wing pitching angle are the inputs to 
the time periodic system. As such, the problem is formulated to 
determine the optimum evolution of the flapping angle and up 
and down-stroke angles of attack of the wing that steers the av-
eraged dynamics from a hovering equilibrium point to a forward 
flight equilibrium point, and the optimal evolution of the flapping 
speed and wing pitching angle that steers the time periodic dy-
namics from a hovering equilibrium orbit to a forward one. We 
applied the optimal control formulation using both averaged and 
time-varying dynamics for the case of hummingbird. The results 
for the averaged dynamics can be summarized as follows:

1- The simulation results of the time periodic system using the 
optimal flapping angle from the averaged dynamics optimiza-
tion shows that the averaging is not suitable for designing the 
steering controller as the major dynamics is lost through aver-
aging.

2- The discontinuity of the flapping angle during the transition 
maneuver makes it unreliable for practical implementation.

On the other hand, the transition results based on the time 
periodic dynamics shows that steering between the hovering and 
forward flight orbit is attainable. The results for the time periodic 
dynamics can be summarized as follows:

1- The time histories of the states for the forward flight periodic 
orbits showed that flight speeds between 0 and 4 m/s lie in 
the attainable space.

2- The more the forward flight speed, the more time the flapping 
wing micro air-vehicle (FWMAV) needs to perform the transi-
tion.

3- The more the forward flight speed, the more the FWMAV tends 
to choose the body pitching similar to helicopters to achieve 
the desired speed.

4- The flapping speed hits the upper and limit limits through 
the transition, i.e. Bang-Bang signal. This is expected due to 
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Fig. 13. Time history of inertial velocities, flapping angles, and flapping velocities from hovering through transition to forward flight of Vx = 3 m/s.
the formulation of the optimal control problem as a minimum 
time transition.

5- The continuity of the flapping angle between the hovering 
through the transition to the forward flight shows that the 
time periodic dynamics is more suitable than the averaged dy-
namics for modeling the optimal control problem

In addition, we investigated the effect of using the time-varying 
hovering derivatives versus the time-varying forward derivatives 
on the optimal control problem using time-varying dynamics. The 
time-varying forward flight derivatives are obtained by assum-
ing that the net time-varying derivatives at hovering are equiva-
lent to those at forward flight. This assumption is a relaxation to 
get an approximation for the time-varying derivatives at forward 
flight. The results show that the optimal inputs and trajectories us-
ing both cases of derivatives are different. However, these results 
should be verified against numerical simulation since the time-
varying dynamics of the forces/moments derivatives are absorbed 
through the averaging and constructing them through the relax-
ing assumption aforementioned may be not (accurate enough) due 
to the fast dynamics effect on unsteady aerodynamics of flapping 
flight.
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Appendix A. System equilibrium representations

A.1. Averaged dynamics

For a nonlinear, time-periodic system in the form

χ̇ = εY (χ, t, ε) (A.1)

where Y is T -periodic and ε is small enough, the averaged dy-
namics are defined by [40]

˙̄χ = εȲ (χ̄) = ε
1

T

T∫
0

Y (χ̄ , t).dt where ε � 1 (A.2)

If the averaged system (A.2) has a hyperbolic fixed point, then the 
original NLTP system (A.1) will have a hyperbolic periodic orbit 
of the same stability type [40,41]. That is, the averaged dynam-
ics is representative of the time-periodic system as long as ε is 



A.A. Hussein et al. / Aerospace Science and Technology 90 (2019) 246–263 259
Fig. 14. Time history of inertial velocities, flapping angles, and flapping velocities from hovering through transition to forward flight of Vx = 4 m/s.
small enough. To write the abstract form of the flight dynamics 
represented by Eq. (4) in the form of (A.1), that is amenable to 
the averaging theorem, we introduce a new time variable τ = ωt , 
where ω is the flapping frequency. The system (4) is then written 
as

dχ

dτ
= 1

ω
( f (χ) + g(x,ϕ(τ )) (A.3)

which is in the form (A.1) with ε = 1
ω . That is, if flapping is 

performed with a high enough frequency that ε would be small 
enough to justify the application of the averaging theorem.

Averaging the system (A.3) and transforming it back to the orig-
inal time variable, we obtain

˙̄χ = f (χ̄ ) + ḡ(χ̄ ) (A.4)

where ḡ(χ) = 1
T

∫ T
0 g(χ , ϕ(t))dt represents the cycle-averaged 

aerodynamic loads. As such, the averaged dynamics of the system 
(1) is written as

⎛
⎜⎜⎝

˙̄u(t)
˙̄w(t)
˙̄q(t)
˙̄θ(t)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

−q̄(t)w̄(t) − g sin θ̄ (t)
q̄ū(t) + g cos θ̄ (t)

0
q̄(t)

⎞
⎟⎟⎠+

⎛
⎜⎜⎜⎝

1
m X̄o(t)
1
m Ȳo(t)
1
m Z̄o(t)

0

⎞
⎟⎟⎟⎠
+

⎛
⎜⎜⎝

X̄u(t) X̄w(t) X̄q(t) 0
Z̄u(t) ¯Zw(t) Z̄q(t) 0
M̄u(t) M̄w(t) M̄q(t) 0

0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ū(t)
w̄(t)
q̄(t)
θ̄(t)

⎞
⎟⎟⎠ (A.5)

where the over bar is used to denote an averaged quantity. It 
should be noted that although the variables in the averaged sys-
tem (A.5) are averaged over the flapping cycle (fast time-scale), 
they are still slowly time-varying, which allows for maneuvering 
of the FWMAV, e.g. transition from one equilibrium configuration 
to another.

A.2. Time varying-dynamics-periodic orbits

The periodic orbit for both hovering and forward flight is ob-
tained using the optimized shooting method proposed by Botha 
and Dednam [18] as an extension to the general shooting method 
to solve for periodic solutions of both autonomous and non-
autonomous nonlinear systems. It has been recently applied to the 
flapping tail of fish-locomotion [42]. This method is based on the 
Levenberg Marquart Algorithm (LMA), which is a non-linear least 
squares optimization scheme. The main idea of this method is the 
minimization of the residue vector, which is the difference be-
tween a point at a specific T + �τ and another one at �τ . We 
consider the nonlinear dynamical system

χ̇ = f (χ, t, ε) (A.6)
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Fig. 15. Trajectory from hovering through transitioning to froward flight for three different cases of forward flight.
Table 6
Bumblebee parameters.

Constant Value Constant Value

r̄1 0.495 mb 175 (mg)
r̄2 0.554 I y 4.8 (g.cm2)
a0 2π f 155 (Hz)
Sw 5300 (cm2) R 13.2 (mm)
� 58◦ c̄ 4.01 (mm)
ρb 1100 (Kg/m3)

where χ, f ∈ Rn . This system is a non-autonomous system be-
cause it depends explicitly on time.

For a periodic solution

χ(t) = χ(t + T ) ∀ t ≥ 0 (A.7)
where T > 0 is the period. LMA is a method for solving nonlin-
ear least squares problems [43]. Suppose that it is desired to fit 
a function ŷ(t; p) to a set of m data points (ti, yi), where the 
independent variable is t and p is a vector of n parameters. For 
this problem it is necessary to minimize the sum of the weighted 
squares of the errors between the measured data and the curve fit 
function

χ2(p) =
[

m∑
i=1

y(ti) − ŷ(ti;p)

wi

]2

= yT W y − 2yT W ŷ + ŷT W ŷ

(A.8)

where W is the diagonal weighting matrix. Based on the gradient 
descent method, the perturbation h that moves the parameters in 
Table 7
Aerodynamic derivatives for Bumblebee from Ref. [15].
ue Xu Zu Mu Xw Zw Mw Xq Zq Mq

0 −0.79 −0.03 2.39 0.05 −1.03 −0.19 −0.09 −0.03 −0.20
1 −1.00 −0.61 1.55 0.44 −2.11 0.30 −0.07 −0.10 −0.38
2.5 −1.43 −0.33 1.43 0.88 −2.99 −0.33 0.01 −0.15 −0.58
3.5 −1.90 −0.25 1.93 0.80 −3.12 −0.16 0.08 −0.09 −0.64
4.5 −2.00 −0.45 2.01 0.37 −3.32 0.68 0.14 0.01 −0.66
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Fig. 16. Time history of inertial velocities, flapping angle, and pitching angle for transition from hovering to forward flight Vx = 2 m/s for bumblebee.
the direction of steepest descent is,

hgd = α J T (y − ŷ) (A.9)

where J is the Jacobian matrix and α is the step size. In the same 
manner, it can be shown that the Gauss-Newton perturbation is 
given by

[ J T W J ]hgn = J T W (y − ŷ) (A.10)

Since LMA adaptively varies the parameter updates between Gradi-
ent Descent and Gauss Newton methods, the resulting perturbation 
is given by

[ J T W J + λI]hlm = J T W (y − ŷ) (A.11)

The optimized shooting method can be applied to any system that 
can be expressed in the form of Eq. (A.6). In the original work, 
Botha used the period of the system to normalize the system by 
letting τ = t/T which yielded

ẋ = T f (x,α, T τ ) (A.12)

The new variable τ allows for the simplification of the boundary 
conditions in Eq. (A.7) with τ = 1 implying a full cycle. The resid-
ual is then written as
R = T

1∫
0

f (x,α, τ t) (A.13)

Furthermore, the number of quantities to be optimized impact the 
residual. As such, we write

R = (x(1) − x(0), x(1 + �τ) − x(�τ), ...,

x(1 + (p − 1)�τ) − x((p − 1)�τ)) (A.14)

where �τ is the integration step size. The natural number p in 
the residual equation is a requirement of the LMA and has to be 
chosen so that the number of components of the residual is greater 
than or equal to the number of quantities to be optimized. The 
main goal now is to minimize the residue vector to get the right 
initial conditions that will put the system in periodic equilibrium.

To capture a periodic orbit that ensures hovering or forward 
flight, the averaged inertial velocities should be set to zero or the 
required averaged forward speed, i.e. V̄ x = 0, 2 m/s. This can be 
achieved in several ways. In previous work [44], it was done by in-
troducing new states Vz = wcos(θ) − usin(θ) and Vx = ucos(θ) +
wsin(θ), where Vx and Vz are the inertial forward and vertical 
speeds. This will require the integration of these two states to the 
differential equations, which means a 2p more elements in the re-
side vector. This will increase the time required to minimize the 
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residue. To reduce the computation time, we will require the aver-
age inertial velocities in the X and Z directions to be prescribed, 
i.e. for hover V̄ x = 0, V̄ z = 0, for forward, V̄ x = V f , V̄ z = 0. This 
can be done by adding these two entires to the residue vector.

The system is subjected to a harmonic variation of the flapping 
angle

ϕ(t) = ao + a1cos(2π f t) + b1sin(2π f t) (A.15)

with a variation of the wing pitching angle

η(τ ) =
{

αd ϕ̇(τ ) ≥ 0
π − αu ϕ̇(τ ) ≤ 0

(A.16)

The objective of the optimization algorithm is to minimize the dif-
ference between the averaged inertial velocities and the desired 
ones along with other elements of the residue vector. For example, 
if three elements are chosen for each state, i.e. p = 3, the residue 
vector will be as follows

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(1) − u(0)
u(1+ �τ) − u(�τ)

u(1 + 2�τ) − u(2�τ)

w(1) − w(0)
w(1 + �τ) − w(�τ)

w(1 + 2�τ) − w(2�τ)

q(1) − q(0)
q(1+ �τ) − q(�τ)

q(1+ 2�τ) − q(2�τ)

θ(1) − θ(0)
θ(1+ �τ) − θ(�τ)

θ(1 + 2�τ) − θ(2�τ)

V̄ x − V̄ xd
V̄ z − V̄ zd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.17)

where V̄ x,z = 1
T

∫ T
0 Vx,z(τ )dτ . The residual is minimized using 

the nonlinear square function in Matlab, lsqnonlin, with the
Levenberg-Marquardt algorithm. �τ was set equal to 10−2. The 
output of the minimization process are the initial conditions that 
put the system in periodic equilibrium and are given in Table 1. 
The equations of motion (1) are integrated using ODE45 with the 
initial conditions in Table 1.

Appendix B. Stability of periodic orbits

Stability of Linear Time Periodic (LTP) systems can be assessed 
using Floquet Theory [45]. Looking at Floquet multipliers of small 
systems of ODEs. These multipliers are the eigenvalues of the mon-
odromy matrix which is the solution at t = T for the variational 
equation

d�(t)

dt
= ∂ F

∂x

∣∣∣∣
x(t)

�(t) (B.1)

where

�(t) =

⎛
⎜⎜⎝
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞
⎟⎟⎠ (B.2)

where �(t) is the state transition matrix and �(0) is the iden-
tity matrix. The initial conditions are the result of the optimization 
problem in subsection A.2. Using this initial condition will ensure 
that the system is in the periodic orbit and the values of Floquet 
multipliers will not change. The asymptotic stability of the solution 
can be assessed by checking whether the other Floquet multipliers 
are less than one. The periodic orbit is said to be asymptotically 
unstable if at least one of the Floquet multipliers lie outside the 
unit circle in the complex plane. Recall the system in Eq. (4), cal-
culating its Jacobian

∂ F

∂χ
= ∂ f (χ)

∂χ
+ ∂ ga(χ, t)

∂χ
(B.3)

where

∂ f (χ)

∂χ
=

⎛
⎜⎜⎝

0 −q −w −g cos(θ)

q 0 u −g sin(θ)

0 0 0 0
0 0 1 0

⎞
⎟⎟⎠ (B.4)

and

∂ ga
∂χ

=

⎛
⎜⎜⎝

Xu(t) Xw(t) Xq(t) 0
Zu(t) Zw(t) Zq(t) 0
Mu(t) Mw(t) Mq(t) 0

0 0 0 0

⎞
⎟⎟⎠ (B.5)

Now Eq. (B.1) becomes

d�(t)

dt
=

⎡
⎢⎢⎣
⎛
⎜⎜⎝

0 −q −w −g cos(θ)

q 0 u −g sin(θ)

0 0 0 0
0 0 1 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

Xu(t) Xw(t) Xq(t) 0
Zu(t) Zw(t) Zq(t) 0
Mu(t) Mw(t) Mq(t) 0

0 0 0 0

⎞
⎟⎟⎠
⎤
⎥⎥⎦�(t) (B.6)

Equation (B.1) is solved for the monodromy matrix �(t). The new 
system states of � is added to the state vector χ . The simulation 
is carried out using the results of the optimization problem and 
the identity matrix for Floquet multipliers as follows

�i(0) =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (B.7)

The 16 new linearized states are added to the old states (u,w,q,θ). 
The new system to be solved contains 20 states. The new states 
added to the system of equations are

d�(t)

dt
=

⎛
⎜⎜⎝

˙m11 ˙m12 ˙m13 ˙m14
˙m21 ˙m22 ˙m23 ˙m24
˙m31 ˙m32 ˙m33 ˙m34
˙m41 ˙m42 ˙m43 ˙m44

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

Xu(t) Xw(t) − q Xq(t) − w −g cos(θ)

Zu(t) + q Zw(t) Zq(t) + u −g sin(θ)

Mu(t) Mw(t) Mw(t) 0
0 0 1 0

⎞
⎟⎟⎠�(t)

(B.8)
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