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We propose a new algorithm to improve the strong scalability of right-looking sparse LU factorization
on distributed memory systems. Our 3D algorithm for sparse LU uses a three-dimensional MPI
process grid, exploits elimination tree parallelism, and trades off increased memory for reduced
per-process communication. We also analyze the asymptotic improvements for planar graphs (e.g.,
those arising from 2D grid or mesh discretizations) and certain non-planar graphs (specifically for
3D grids and meshes). For a planar graph with n vertices, our algorithm reduces communication
volume asymptotically in n by a factor of © (./log n) and latency by a factor of © (logn). For non-
planar cases, our algorithm can reduce the per-process communication volume by 3x and latency
by © n3) times. In all cases, the memory needed to achieve these gains is a constant factor. We
implemented our algorithm by extending the 2D data structure used in SUPERLU_DIST. Our new 3D
code achieves empirical speedups up to 27 x for planar graphs and up to 3.3x for non-planar graphs
over the baseline 2D SUPERLU_DIST when run on 24,000 cores of a Cray XC30. We extend the 3D
algorithm for heterogeneous architectures by adding the Highly Asynchronous Lazy Offload (HALO)
algorithm for co-processor offload [44]. On 4096 nodes of a Cray XK7 with 32,768 CPU cores and 4096
Nvidia K20x GPUs, the 3D algorithm achieves empirical speedups up to 24x for planar graphs and
3.5x for non-planar graphs over the baseline 2D SUPERLU_DIST with co-processor acceleration.
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on the sparsity pattern of A. Compared to its dense matrix coun-
terpart, communication in a sparse solver can quickly dominate
at even relatively small core counts. While techniques like over-
lapping computation and communication can be effective, they
only work well when the computation and communication costs
are comparable. In the strong scaling regime, communication
eventually becomes relatively more expensive.
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Thus, we are motivated to redesign algorithms to reduce com-
munication, as the recent flurry of research on communication-
avoiding algorithms suggests. There, one critical strategy is to
shrink the amount of data transferred through redundant com-
putation, data replication, or both. There are several examples
for dense linear algebra [12,13,21], including some for dense LU
[24,46]. However, precisely how to apply communication-
avoiding methods to sparse LU has been open.

In this paper, we describe our design and implementation of
the first such method, which we refer to as a 3D sparse LU factor-
ization algorithm. It is so-named for two reasons, both inspired by
the 2.5D dense LU algorithm [46]. First, it uses a 3D logical process
grid, instead of the 2D process grid that is the state-of-the-art in
sparse LU. Second, it replicates data to reduce both the number
of messages and the volume of communication. In addition, all
sparse LU methods have an elimination tree structure, which our
method uses to efficiently map the problem to the 3D process
grid. As a result, our algorithm not only reduces communication
but also reduces the critical path of the factorization—a feature
that does not apply to the 2.5D dense LU case. For matrices
with planar graph structure (e.g., planar grids and meshes), our
3D sparse LU algorithm’s critical path is O (n/logn) whereas a
state-of-the-art 2D algorithm’s is O (n).

Briefly, here is how 3D sparse LU works. First, consider the
3D process grid as a collection of 2D grids. We divide the elim-
ination tree into independent subtrees and a common ancestor
tree of all the subtrees. Factoring each subtree is independent, but
each factorization updates the common ancestor tree. We map
the factorization of each subtree to a 2D grid and replicate the
common ancestor on all process grids. Each 2D grid factorizes its
subtree and uses its copy of the common ancestors to perform
the Schur-complement updates. We then reduce these copies
onto a single grid, where it is factorized in a 2D fashion. Because
of ancestor replication, this 3D scheme requires more memory
than a pure 2D algorithm; however, the independent 2D subgrids
of the 3D scheme operate on smaller subproblems, which can
reduce communication. In Section 4, we derive analytical perfor-
mance models for broad classes of sparsity patterns to explain
this trade-off more precisely.

We implement this scheme on top of SUPERLU_DIST, using a
hybrid MPI+OpenMP programming model. We measure perfor-
mance on a wide range of matrices in both 2D and 3D process
grid configurations. (The baseline is 2D SUPERLU_DIST.) In the
best case, we observe speedups of 27 x over the best 2D process
grid configuration using 1.7 x the memory. We observe that our
new algorithm can use up to 16 x more processors for the same
problem size with continued time reduction, which confirms its
potential to improve strong scaling.

We then extend the 3D algorithm for hybrid architecture
consisting of both multicore CPU and co-processors such as GPU
or Xeon-Phi. We augment the 3D algorithm with the HaLo algo-
rithm [44] for offloading the compute-intensive Schur-comple-
ment update computations to the co-processor. The HALO
algorithm, like the 3D factorization algorithm, uses data replica-
tion to reduce the communication between host multicore and
the co-processor. We evaluate the 3D algorithm augmented with
HaLo on the GPU accelerated Cray XK7 system. On smaller 2D
process grids, the GPU acceleration can improve the performance
by a 1.4-3.5x over the unaccelerated 3D sparse LU factoriza-
tion. Thus, by using the 3D algorithm, we can use larger node
counts where we attain meaningful performance gains due to
GPU acceleration.

We wish to clarify the novelty of this paper. It combines the
main ideas of two prior papers, one that introduces the CPU-only
distributed 3D algorithm [43] and one that considers manycore
co-processor acceleration for the distributed 2D algorithm [44].

Table 1
List of symbols used.

Symbol type  Symbol Description
P #MPI processes

P Py, Py, P, Process grid dimensions

rocess .

Py Py x P, # processes in xy plane
Py(k) (k mod Py)th process row

Matrix & A L U The input matrix A and LU factors

Indexing L(k), U(k) kth L and U panel
A(:, k), A(k, :) A(k :n, k) and A(k, k+1:n): kth A panels
G The graph associated with sparse matrix A
E Elimination tree of A

Graphs Ef Elimination tree-forest (Section 3.3)
S Top level separator of G
G, G Children etrees of S
n Dimension of the matrix A
nlevel Height of E © (logn)
1 log, P,

Misc. M Per-process memory
w Per-process communication
L Latency of factorization
T(v) Cost of factoring node v

Indeed, as noted in Section 5, the 3D algorithm generalizes the
HaLo technique; and all results for the combined method, which
appear in Section 6.7, are completely new. Relative to these
past efforts, the present one serves as the “definitive” refer-
ence for a distributed 3D algorithm with manycore co-processor
acceleration.

2. Background

This section briefly summarizes the relevant background on
sparse direct solvers needed to understand our new 3D algorithm.
The most important concepts include the elimination tree, which
guides parallelism, as well as the baseline 2D algorithm, which
underlies SUPERLU_DIST (see Table 1).

2.1. Introduction to sparse direct solvers

A sparse direct solver solves a system of linear equations Ax =
b in two steps. First, it factors the matrix A into the product
A = LU, where L is a unit lower triangular matrix and U is an
upper triangular matrix. It then solves two triangular systems,
Ly = b and Ux = y, by forward and backward substitution.
Calculating the L and U factors usually takes much more time
than substitution. When A is sparse, the factored matrices L and
U tend to fill in, meaning they have many more non-zeros than A.
Usually, before factorization, the A matrix is permuted to reduce
the amount of fill-in in L and U.

2.2. A sparse matrix, its associated graph, and separators

Any sparse matrix A of dimension n has a corresponding graph
G with n vertices. For any non-zero element g in A, there is a
directed edge in G from i to j. In Fig. 1a, we show a penta-diagonal
matrix, which might arise from a finite difference discretization
of a PDE on a 2D square grid, as shown in Fig. 1b.

A separator S of the graph G is a subgraph which partitions
G into three disjoint subgraphs (C;, S, () so that C; and G,
are disconnected. Informally, a good separator is small and yields
partitions C; and C, that are balanced, meaning approximately
equal in size. In Fig. 1b, we highlight one such separator in yellow.
Using this partition, we order the sparse matrix A so that vertices
in C; and G, come first, followed by the vertices in S. For instance,
Fig. 1c shows one such ordering for the matrix shown in Fig. 1a.
Fig. 2a shows a simplified block representation of the reordered
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Fig. 1. A sparse matrix (Fig. 1a), its associated graph (Fig. 1b), and a separator (highlighted in yellow); and the re-ordered matrix (Fig. 1c) using nested dissection
(ND) ordering. The ND orders the variables so that the variables corresponding to the separator are numbered last.

matrix Fig. 1c where Aq1, A2, and As3 correspond to Cq, G5, and S
respectively, with remaining submatrices representing the edges
that connect these partitions. Then, C; and C, can be recursively
partitioned to get more disjoint subgraphs of A, a process known
as nested dissection (ND). Graph partitioning tools like METIS and
SCOTCH can compute ND partitions [10,28,41].

2.3. Sequential sparse LU factorization

Consider the LU factorization of the 3 x 3 block sparse matrix
shown in Fig. 2a. Conceptually, one can compute the factors L and
U by iterating along the diagonal of A, where at each iteration i
one carries out the following three steps:

1. Diagonal factorization: A; — L;Uj
2. Panel updates: Uy = L;;'A; and L = AU,
3. Schur-complement update: Ay = Ajx — LUy

2.4. Dependency tree in sparse LU factorization

Factoring the diagonal blocks would proceed sequentially in
the case of a dense A, but not so in the sparse case. In the 3 x 3
block sparse matrix example, block 1 (A1) and block 2 (Ay)
may be factorized independently and so in any order. But the
factorization of blocks 1 and 2 requires updates to the same block
3 (Ass). Thus, factorization of block 3 must follow that of 1 and 2.
This dependency structure is represented by the elimination tree,
or etree for short, as shown in Fig. 2c. An etree will have multiple
levels since blocks 1 and 2 are also recursively partitioned. In Figs.
3a and 3b, we show a larger sparse matrix and its etree.

2.5. A distributed algorithm: SUPERLU_DIST

We build our new algorithm on top of SUPERLU_DIST’s data
structure. SUPERLU_DIST is a widely used sparse direct solver li-
brary which uses a right-looking scheme and static pivoting [35].
In contrast to partial pivoting, static pivoting allows a priori
determination of the non-zero structure of factored L and U
matrix, that makes SUPERLU_DIST more scalable. It uses the su-
pernodal approach to find and exploit dense substructures in
the sparse LU factorization. SUPERLU_DIST uses MPI for inter-
process parallelism and OpenMP for intra-process parallelism. We
also recently demonstrated GPU and Xeon-Phi acceleration for
SUPERLU_DIST [44,45].

2.5.1. Data structure

SUPERLU_DIST arranges MPI processes in a 2D logical grid. In
this grid, the sparse matrix is distributed in a block-cyclic fashion.
In Fig. 3a, we show a sparse matrix distributed using a 2 x 2
process grid.

2.5.2. Factorization algorithm

SUPERLU_DIST factorizes supernodes following a bottom-up
order of the etree. We divide the factorization of a supernode into
two steps: panel-factorization and Schur-complement update.

The panel-factorization step computes L and U panels of the
current supernode and broadcasts them to all the processes to
perform the Schur-complement update. It involves the following
kernels:

1. Diagonal factorization: The process Py, which owns block
Ak, factorizes it into Ly Uyy.

2. Diagonal broadcast: The process Py, broadcasts Ly across its
process row Py(k) and Uy across its process column Py (k).

3. Panel Solve: Each process in the P,(k), which owns any
block of A, performs triangular solves to get the cor-
responding block of Uy.. Similarly, each process in Py(k),
which owns any block of A.,, performs triangular solves to
get the corresponding block of L.

4, Panel broadcast: Each process in Py(k) broadcasts blocks of
Ui to its process column, and each process in the P,(k)
broadcasts blocks of L. to its process row.

Qualitatively, the panel-factorization step is the main communi-
cation phase of the factorization. Panel-factorization involves data
transfers and synchronizations, and it usually incurs a relatively
small fraction of the total floating-point operations.

Following panel-factorization, each process updates its part of
the trailing matrix, a step also known as the Schur-complement
update. If a process owns Ay in the trailing matrix, then it updates
it using the received L and U panels by

Aj = Ay — LyUy.

The blocks Ly and Uy; are sparse. Therefore, to perform the above
update, we first pack Ly and Uj; into a dense BLAS-compliant
format. Then, we use dense Level 3-BLAS routines to compute the
product V = —LyUy. Finally we compute the mapping from V
back to A; and update A; element-wise.

The Schur-complement update is the main computational step
in the factorization. It accounts for most of the floating point
operations in the factorization. It also involves a lot of local
indirect memory accesses.
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(a) A 3x3 block sparse matrix

(b) The L and U factors

(c¢) The elimina-
tion tree

Fig. 2. In Fig. 2a, we show the block sparse matrix A obtained from nested dissection ordering (e.g. the 25 x 25 sparse matrix shown in Fig. 1). The L and U factors
overwrite A after the factorization, as shown in Fig. 2b. The elimination tree (Fig. 2c) captures the dependencies between the factorization of A1y, Ay, and Ass.
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Fig. 3. A distributed sparse matrix and its elimination tree. Suppose the block sparse matrix of Fig. 3a is distributed in block-cyclic manner over a 2 x 2 process
grid. Each circle represents a non-zero block and the number denotes the process-id that owns the block. Fig. 3b shows the etree.

In Fig. 4a, we show the regions of the matrix that participate
in the different steps when we factorize the first supernode.
Interested readers can find detailed pseudocode and descriptions
of the inner workings of the algorithm elsewhere [11,34,36,37,44,
49].

2.6. Task scheduling and the elimination tree

SUPERLU_DIST uses the etree’s parallelism to overlap compu-
tation and communication. It concurrently performs the Schur-
complement update of a supernode and panel factorization of
nodes in a so-called lookahead window [49]. In the bottom-up
ordering of factorization of the etree, leaf nodes are factored first.
Thus, the panel-factorization of the next several nodes do not
depend on the panel-factorization or Schur-complement update
of the current node. As such, SUPERLU_DIST performs the panel
factorization of the supernodes ahead of their Schur-complement
update. But the Schur-complement update of the nodes in the
lookahead window cannot be performed in parallel, because the
Schur-complements of the leaf nodes may share common blocks
of the matrix A. Therefore, SUPERLU_DIST performs the Schur-
complement update of each supernode sequentially.

Furthermore, the larger the lookahead window, the more in-
flight messages and incoming buffer space is required. Therefore,
the lookahead window is fixed to lie in the range of 8-20 steps.

2.7. Limitations of 2D sparse LU

The 2D algorithm scales well up to a certain point, beyond
which the cost of data transfer starts to dominate the cost of
computation. Moreover, at a large number of processes, the effect
of load imbalance becomes more prominent. In practice, after a
certain number of processes, adding more processes can cause
a slowdown in the factorization time. Fundamentally, the 2D
algorithm suffers from the following two major limitations.

Sequential schur-complement update. For a given block, only one
process can perform the Schur-complement update in the 2D
algorithm. So despite abundant tree-level parallelism, the 2D
algorithm must perform all Schur-complement updates sequen-
tially.

Fixed latency cost. Almost all processes participate in the factor-
ization of all the supernodes. Therefore, the latency of various
communication kernels cannot decrease with increasing numbers
of processors.

3. A 3D sparse LU factorization algorithm

Since the 2D algorithm uses an owner-computes update pol-
icy, the Schur-complement update on a given block A; must
proceed sequentially. This motivates our approach of replicating
some blocks of A on different processes. Doing so allows the
Schur-complement updates on those blocks to proceed in parallel.
But how do we choose such blocks and processes to replicate?
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Fig. 5. How 3D sparse LU works. Consider the 3D process grid as a collection of 2D subgrids (Fig. 5a). We show the working of the 3D sparse LU for a block sparse
matrix A (Fig. 2a) using 2 process grids in Fig. 5b. The sparse blocks 1 and 2, and their panels, reside on grid 0 and grid 1, respectively. Block 3 is replicated in both
grids and is initialized with As; and 0 on grid 0 and grid 1, respectively (the initial state). The two grids factor their respective blocks and Schur-update their copies
of the block 3. Then, we reduce the 3rd block from both grids onto grid 0, which is then factored on grid 1. Lastly, the L and U factors are distributed among the

two process grids (final state).

3.1. The 3 x 3 block sparse case

One way is to use the structure of the etree to help decide
how to replicate data. Consider the 3 x 3 block sparse matrix
shown in Fig. 2a and its etree. After factoring blocks 1 and 2, from
its initial value Ag3, the updated block A33 must accumulate from
both blocks 1 and 2 according to

Asy = A%3 — L31Us3 — LypUns.

Suppose we replicate As;, keeping two copies. The first copy
accumulates A%;3 — L3,U;3 from the factorization of block 1; the
second copy accumulates —L3, U3 from block 2. We then sum the
two copies to get final form of A33 before factorizing it. Thus, the
replication of As3 allows the parallel Schur-complement update
of block Ass. Fig. 5 shows the timeline of this process.

Formally, we carry out this process as follows. Let E be the
etree of the matrix A. We partition E into two independent
subtrees, C; and C;, and a common parent S (Fig. 6a). We partition
Ainto A° = A(C;) | JA(S) and A! = A(G;) | JA(S) (Figs. 6¢ and 6e).
We factorize A' and A? in two 2D process grids, grid-0 and grid-1.
In grid-1, we initialize the blocks of A(S) with zeros. Grid-0 and
grid-1 factorize C; and C, in parallel and update their copy of

A(S). After the factorization, they synchronize, and grid-1 sends
its copy of A(S) to grid-0:

A%S) = A%(S) + A'(S)

Then the grid-0 factorizes the updated copy of A(S).

The two process grids only need to communicate once. In Sec-
tion 4, we show that this communication accounts for a small
fraction of the total. Furthermore, now each process factorizes
a smaller number of supernodes, thereby potentially reducing
latency.

3.2. General Case

Suppose we want to use four 2D grids, instead of two. We can
divide the etree by one more level. For instance, in Fig. 7, we have
a two-level etree that we divide into four partial etrees. The root
(node-0) of the etree is replicated in all the grids? At the first
level, we replicate node 1 on grids 0 and 1, and node 2 on grids
2 and 3. At the second level, all the nodes lie on only one grid.

Process grids 0 and 1 synchronize after they have factorized
nodes 3 and 4, respectively. Then process grids 0 and 1, reduce

2 Note that we index subtrees in the etree in the top-down order (Fig. 7). That
is, the root subtree has an index zero and leaf subtrees have the largest indices.
This is different from the indices of the blocks of the sparse matrix (e.g. Figs. 2
and 3 and 4b), where the indices correspond to an order of factorization.
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Fig. 6. Data distribution in 3D sparse LU algorithm. The elimination tree of the block sparse matrix in Fig. 3a is divided into common ancestor S and subtrees C;
and C, as shown in Fig. 6a. The C; and C, subtree reside and are factored in process grid-0 and grid-1 respectively, whereas S is replicated in both the 2D grids.
Figs. 6b and 6c show the local elimination tree and the data distributed in grid-0, respectively; and Figs. 6d and 6e show the same for grid-1.
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all the common ancestor nodes, namely nodes 1 and O on grid-
0. Similarly, process grids 2 and 3 synchronize after they have
factorized nodes 5 and 6 respectively. Then process grids 2 and 3
reduce all the common ancestor nodes, namely nodes 2 and 0 on
grid-2.

In the second step, only grid-O and grid-2 are active. They
factorize nodes 1 and 2, and they reduce the updates on node
0 to grid-0. And in the last step, grid-0 factors node 1. We can
generalize this process for any P, = 2!, which is Algorithm 1.

3.3. Inter-grid load balancing

When the sub-trees at the top level are unbalanced, we may
further divide the subtrees to another level to get better balance.
For instance, consider the etree in Fig. 8. Suppose the cost of
factorization of each node is known. Observe that this tree is
unbalanced at the top level. The ND ordering (shown in Fig. 8
on the left) to partition the etree is sub-optimal. We show a
better partition of the etree, obtained by dividing the subtrees
another level, on the right of Fig. 8. This partition has a shorter
critical path of cost 75 units versus the ND partition that gives
a critical path of length 95 units. In some cases, we may need
to divide one of the subtrees even further to obtain the desired
balance. We use a greedy heuristic to find a partition so that
T(S) + max{T(C;), T(C;)} is minimized, where T(C) is the cost
of factoring nodes in the subtree C.

One issue is that we do not know the exact cost of fac-
torizing each node in the distributed fashion—partly due to its
dependence on the process grid dimension, network parame-
ters, sparsity pattern of the matrix, and distribution of block
sizes, all of which can be difficult to estimate efficiently during
runtime. Instead, we heuristically use the number of floating-
point operations needed to factorize a given node for cost model
T(C), calculating which requires the dimension of the node and

number of non-zero rows and columns in the node’s L and U
panel respectively. This estimation of the number of floating point
operation in the factorization of a node does not take the parallel
distribution of L and U panels, load balance, and sparsity into
account, so it may not be very accurate in all cases, but performs
well in most of the test matrices we tried.

Elimination tree-forest E;: Our greedy heuristic gives a par-
tition of the etree E that can have multiple disjoint subtrees as
a node. For instance, in the right partition of Fig. 8, the second
child G, consists of two unconnected components. So the final
partition of the etree is a tree of forests, which we call elimination
tree-forest E. The E; obeys the same dependency rules as E. The
previous discussions of etree partitioning and mapping to grids
remains the same for Ef as well.

The elimination tree-forest has I = log,P, levels. Each grid
only stores the local elimination tree-forest. The local elimination
tree-forest stores the forests for each level of E;. For example,
for the partition shown in the right on Fig. 8, local E; for grid-0
and 1 is [S, C;] and [S, C;], respectively. Each forest is stored as
a list of nodes in bottom-up order. So S = [1, 0], C; = [4] and
G, =13,5,6,2].

3.4. The pseudocode of the 3D sparse LU factorization algorithm

The pseudocode of the 3D sparse LU factorization appears in
Algorithm 1. The parameter P, = 2! is the number of 2D process
grids, i.e., P, is the number of 2D subgrids in the “z-dimension”
of the 3D process grid. And E; is the etree-forest, the output
of our load-balance heuristic. Each process subgrid only stores
forests that reside on the grid, and each forest is stored as a list
of nodes. The factorization progresses from leaves vl = [ to the
root lvl = 0. The two main subroutines invoked at any level are
dSparseLU2D and Ancestor-Reduction.
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Algorithm 1 3D Sparse LU factorization algorithm

1 function dSparseLU3D(A, Ey):

2 # All process grids ezecute this function in parallel. P,

—~ P,—2'. Each process-grid has a unique p,€{0,...
— tree-forest (Section 3.3).

3 for Ivl in 7:0 :

4 if p,=k2""M for some integer k:

15 the number of 2D grids

P,-1}. E;f is the local elimination

5 #4t \lul-th level the only grids that participate are those numbered as a multiple of

ol-Ivl

The following call factors all supernodes of this level Ef[lvll in the 2D grid,

—~ and performs the Schur-complement update on their copy of ancestor blocks.

6 dSparseLU2D(A, E ¢[1v1])

7 if Ivl>0:

8 if k& mod 2=0: # Note p,=k2l"M
9 dest=p,

10 src=p, +2/"M

11 else:

12 src=p,

13 dest=p, —2!-M

14 for I, in lvl-1:0:

15 # Any supernode s in Eylly] consists of blocks Ag

{Ass UAs s+1lin UAerl 70 s}

. If any process

— with co-ordinate (py,py,src) owns any block of As;, then it will send that block to

—~ the process with coordinate (py,p,,dest),

which then reduce the two copies.

16 for seEyll,]:
17 if p, =src:
18 Send A to dest
19 else :
20 Receive Af™ from src
21 Adest Adest +Asrc
10 S 10
3
20 \ 60 /10 20 ‘o 0
,7,7 _d
C C
1 Cost—95 2 1 Cost=75 2

Fig. 8. Inter-grid load balancing: an unbalanced elimination tree with 2 ways of
mapping, nested dissection and a greedy heuristic, and the cost of factorization
in the critical path (T(E) = T(S) + max{T(Cy), T(C,)}). The cost of factorization
of each node is shown in red. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

1. dSparseLU2D(A, nlList): My process grid performs the 2D
factorization of nodes in the nList on my copy of the matrix
A. The forest Ef [tr] is passed on to dSparseLU2D as a list
of supernodes. Since we use SUPERLU_DIST as the baseline
data structure, in our implementation dSparseLU2D is a call
to the modified factorization routine of SUPERLU_DIST.

2. Ancestor-Reduction: After the factorization of level-i, we
reduce the nodes of the ancestor matrix before factorizing
the next level. In the ith level’s reduction, the receiver is the
k2!=*1th process grid and the sender is the (2k + 1)2/~ith
process grid, for some integer k. The process in the 2D
grid which owns a block A;; has the same (x, y) coordinate
in both sender and receiver grids. So communication in
the ancestor-reduction step is point-to-point pair-wise and
takes places along the z-axis in the 3D process grid.

Aside from these two steps in Algorithm 1, the rest concern index
calculations.

4. Analysis of memory and communication costs

How well Algorithm 1 performs relative to the baseline de-
pends on the sparsity pattern of the matrix. However, we can
derive the analytical expressions of performance on certain model
problems, and thereby gain some insight into the algorithm’s
behavior, including a precise characterization of the memory-
communication tradeoff.

Our analysis considers two types of input matrices. The first
is associated with planar graphs, such as those arising from dis-
cretizing partial differential equations (PDEs) on 2D domains. The
second type is associated with those from 3D PDEs, which have
a “well-shaped” geometry but are non-planar.

Below, we derive the expressions specifically for memory use,
communication volume, and number of messages (message la-
tency) for the baseline SUPERLU_DIST algorithm when using a
2D process grid, given a general matrix. Then, we give the ex-
pressions for both the 2D and 3D algorithms, specifically for
the planar (2D geometry) and non-planar (3D geometry) model
problems.

To help distinguish the 2D and 3D algorithms, which use 2D
and 3D process grids, from the 2D and 3D model problems, which
have 2D or 3D geometries, we will use “planar” and “non-planar”
to refer to the model problems’ geometries and try to reserve
“2D” and “3D” for referencing the logical organization of pro-
cesses in the algorithms.

4.1. 2d sparse LU with a generic sparse matrix
Consider the factorization of a sparse matrix A of dimension n

and its etree E. For simplicity, assume that E is balanced at each
level. Also assume that the levels in E are indexed from top to
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bottom. Thus, the root of the tree has level or index 0, and the
later levels are indexed from 1 to nlevel, where nlevel + 1 is the
number of levels in E. Let the supernodes in the level-i have the
dimension n;. The ith level has 2! nodes.

4.1.1. Per-process memory

In sparse LU factorization, typically the LU factors of separator
nodes, which are usually dense, account for most of the storage.
Thus, each node in level-i requires a memory of niz. Further sup-
pose that SUPERLU_DIST, which uses a 2D block cyclic scheme for
distributing the LU factors, distributes the factors evenly across P
processors. So, the per-process memory, M, required to store all
the LU factors is

nlevel

M~722 (1)

4.1.2. Per-process communication volume

The per-process communication volume in the factorization
for a dense matrix of size n in a 2D process grid, without any
data replication, is given by O nz/«/l3 [46].2

To estimate the communication involved in the sparse fac-
torization, we only consider the factorization of the separator
nodes. Then the per-process communication of sparse LU on a 2D
process grid is

=0 (ﬁM) ) (2)

4.1.3. Latency

In the 2D sparse LU algorithm, each process participates in
the factorization of every supernode of the sparse matrix. Thus,
the number of steps for factorization is ¢(n), and the latency L
(number of messages in the critical path) must also scale that
way, i.e.,

L=0M). (3)
4.2. Planar input graphs

For a planar graph with n vertices, we can find a separator of
size O (v/n) in O (n) time [38]. This result also holds for other
classes of graphs, like graphs with bounded genus and graphs
with excluded minors [4,16].

The separator divides the graph into two almost equal halves
with n/2 vertices each. These subgraphs can further be divided
into two almost equal halves with a separator of size y/n/2. So
the separator in the first level is of size /n/2 and subsequently,
the size of separator in ith level is \/n/2i. This approximation is
good when n/2' > 1. The number of levels in the elimination
tree is ~ logn.

4.2.1. Per-process memory
2d algorithm. We calculate per-process memory using Eq. (1). For
a planar graph, n; = \/n/2i, so the per-process memory required

is
logn logn 2 n
2} = 2! =_1 4
~p =3y (f7) - e g

3 The network topology and the underlying MPI implementation may increase
the asymptotic complexity if, for instance, communication increases with some
function of P.

3d algorithm. We assume P = Py, x P,, where P, is the number
of 2D grids of size Py, = Py x P, and P, = = 2! for some integer I;
thus, | = logP,.

The root node has a size v/n x /0, and it is replicated on all the
P, = 2! process layers. Thus it requires n - 2! memory. Similarly,
if i < I, level-i will be replicated on 2!~ grids and will require
(/n/2iy . 21 .21 = n . 2= words. If instead i > I, there will
be no replication as each subtree resides in only a single 2D grid.
Therefore, for i > [, the LU factors will require n memory at each
level. Altogether, per-process memory required can be written as:

logn
Msp(n, P, P,) = - (Z 24y )
i=1+1
~ 2nP, +nlo (5)
P ‘ ng ’
4.2.2. Per-process communication

2d algorithm. From Egs. (2) and (4), the per-process communica-
tion volume of the 2D algorithm on planar graphs is

(6)

3d algorithm. We separately calculate the communication in the
SuperLU_DIST2D step, denoted as W3, and the communication in
the Ancestor-Reduction step, denoted as W3, in Algorithm 1. 4
Per-process communication in factorization ( ny +): For the fac-
torization of supernodes in the etree level i > l each process
grid works on 1/2 fraction of the submatrix of level-i. Thus, the

per-process communication at level-i is % However, in level
xy

i < I only 2 process grids participate. Thus, the per-process
.2 s n L
communication at level-i is T for the processes participating

in this level.’ Thus, the total communication across the critical
path is given by:

-1
1 n
Wipn, P, P) =3 =

7+ZLL
=2V T 2’\/P7y

We can substitute 2! = P, and Py = 5. Then, assuming that
logn > | = log P,, this expression 51mp11f1es to

n logn
W;%(n, P, Pz)%ﬁ<2 PZ+F). (7)
z

Eq. (7) is per-process communication for any general 3D pro-
cess grid. W37 has a minimum at

logn

1
= — logn. 8
5 logn (8)

Thus, the minimum amount of communication is
Wy(n, P)~ w2 L \/logn (9)

Per-process communication in Ancestor-Reduction (W%,): We
calculate W7, for grid-0 as it is the only grid that participates in
all the levels. Grid-0 receives the root node, distributed among
all P, processes, in each iteration of Algorlthm 1. The combined
per-process data it receives just for the root is - ThlS expression

(1 i)n

for the ith level is . We sum this expressmn over all i to get

4 Al communications in the SuperLU_DIST2D occur in the xy plane.

5 Note that the average per-process communication across all the processes
will still be ; "__ but we are more interested in total communication on the
2l /Py

critical path of the factorization.
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Table 2
Asymptotic memory, communication, and latency costs for 2D and 3D Sparse LU algorithm.
Parameter 2D PDE
dSparseLU2D dSparseLU3D dSparseLU3D P, = © (logn)
Memory n n n n
per process (M) o (% logn) o (F(log(g) + PZ)> o (% logn)
Communication 0 n logny | 2P, long> (L /—)a
per process (W)° © (ﬁ log n) © (ﬁ(2‘/P7+ )+ © VP logn
Latency o (n) O(% +ﬁ) O(%)
?When P > logn.
b0n the critical path of factorization. The average per-process communication is © <P”li\/1)l> For P, = O (logn),
N
both are asymptotically the same and equal to © (f) =0 ([./log n)
per-process communication in the ancestor-reduction step along logn 2fni2
the critical path of 3D sparse LU, which is 2 = Z P and (14)
i=0
-1 .
n(l —1) n 1 -1 5 logn ,;
Wip(n, P, P)=) ———~ —(2l--) (10) : 2in:
i=0 2Py Pyy 4 M3p = Z 'y + Z p’ (15)
=0 izl
2nl P, log P, : :
~ =2 (11) 2/3 . .
Py P where n; = ( & is the size of separator at the i-the level and

Total per-process communication on the critical path: The total
per-process communication is Wsp = W%, + W3}, From Egs. (7)

and (11),
n logn P, logP,
Wsp(n, P, P,) = — | 2/P, + +n
3D( z) \/13< z \/E) P

When we choose P, by Eq. (8), this becomes

N lognlogl
Wap(n, P, P,) = o(" ogn | ,08n108 Og"). (12)
VP P

For any practical n, P > logn even for modest values of P.
Thus, for fixed n the first term of Eq. (12) dominates.

4.2.3. Latency

Latency for the 2D algorithm is O (n). Since the elimination
of a single node amounts to a O (1) latency cost, hence the total
latency cost of the 3D algorithm is the total number of nodes in
the critical path of the factorization. When | < log n, each subtree
contains approximately % nodes. On the other hand, any subtree

at i < [ level will have % nodes. Therefore, the total latency

cost of the factorization using the 3D algorithm will be:

Lsp (n, Pz)_—+2\/; ( n). (13)

The second term of expression in Eq. (13) follows from 25;(]) z

21
<> 5= V(2 + +/2). When P, = O (logn), Lsp is a logn

factor smaller than L,p.
4.3. Non-planar input graphs

For non-planar sparse matrices, we give the expressions for
memory, communication, and latency in Table 3. These expres-
sions are derived from simplifying Eqs. (14) to (17), (20) and (21)
using a symbolic-algebra package SymPy [40].

4.3.1. Per-process memory
The memory for the 2D and the 3D algorithm for the non-
planar case is given by the following expressions:

I = log P,. We give the final simplified forms for M,p and M3p in
Table 3. The dimension of the top -level separator is ny = n?/3,
and it requires storage of size n0 = n*3. Asymptotically, the size
of all the LU factors of the matrix is also © (n*?). Since the top
level separator is replicated on all process grids, the asymptotic
storage requirement for the 3D algorithm increases linearly with
p,.

4.3.2. Per-process communication
Similarly, communication in the factorization of the top-level
separator is asymptotically equal to the communication for the
total LU factorization. So the 3D algorithm cannot reduce the
asymptotic complexity of the algorithm. The total communication
Wsp is the sum of communication in the xy grid W3}, and the
communication along the z-dimension W%,
Wip + W3,

Wsp = (16)

The expression for W5} is given by:

logn

2i~In?

VPy '
\23

%) . The first term in the expression for W3}
denotes the communication in the non-leaf subtrees i.e., from
level 0 to I — 1; and the second term denotes the communication
in a leaf subtree.

The expression for W2,

-1 j
wip = ZZ,’}—

j=0 i=0 Xy

(17)

Zm

where n; =

is given by:
(18)

We combined and simplified Egs. (1
following expression for Wsp:

6)-(18) and arrived at the

(19)

1—« P, log P,
Wsp = Wyp <K1P21/2 + e ) + Wap (Kliz Z) )

JP

where xy = 241, where o = 21/%,

Consider the expression for W), which is the dominant term

in Wsp at large P. To find the P, that minimizes W3,J$, we should

w3y . -
72 = 0. This occurs for P, = (M) A 2.4. Hence,
z 1
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Table 3
Asymptotic memory, communication, and latency costs for 2D and 3D Sparse LU algorithm.
Parameter 3D PDE
dSparseLU2D dSparseLU3D
Memory . .
per process (M) o (7 O Mzp | P2 + P
Communication nt3 1-x; PrlogP: \\ a
per process (W) o ( ﬁ) o (Wzo (Kl\/ITZ+ PZS/G) + Wyp (/q N ))
Latency o (n) o (LZD (Kzn_1/3 + é)) b
2The first and second term in the expression for Wy denotes W3y and W2y, respectively. k7 = % where
a =213,
b «

in the case of non-planar graphs, the 3D algorithm can use O (1)
processes in the z-dimension and the reduction in per-process
communication volume is also © (1). In practice, we see that 3D
algorithm can reduce communication volume for up to P, = 16
(see Section 6.4).

4.3.3. Latency
The latency for the 2D and the 3D algorithm for the non-planar
case is given by the following expressions:

logn

Lyp = szn,-; and (20)
i=0

-1 logn
Lp=Y m+y 27'n. (21)
i=0 i=l

We give the final simplified forms for L,p and L3p in Table 3.
5. The 3D sparse LU factorization on hybrid clusters

To further improve single node performance, we consider
acceleration by manycore co-processors (e.g., GPUs), as we had
done in prior work to accelerate SUPERLU_DIST [44,45]. In par-
ticular, we had previously discussed how to accelerate sparse LU
factorization by offloading dense BLAS-3 calls to the GPU [45];
and, later, proposed a novel offload scheme called the HAaLO
algorithm [44], which went beyond BLAS-3 call offload to include
SCATTER computations. Here, we extend the 3D sparse LU fac-
torization algorithm of Section 3 for heterogeneous clusters by
combining it with HaLo.

Indeed, the original HALO algorithm may be regarded as an in-
stance of the 3D algorithm that uses data replication between the
host and co-processor, thereby reducing communication between
them. However, a critical difference is that the HALo algorithm
offloads only the Schur-complement update computation to the
co-processor. So the addition of co-processor offload using the
HALo algorithm improves the factorization performance when
the local Schur-complement update computation dominates the
factorization cost.

5.1. Havo algorithm

We begin by briefly discussing the Schur-complement update
step and the HaLo algorithm for offloading the Schur-complement
update to the co-processors. Recall that in the kth Schur-comple-
ment update, each block A; is updated as by

A,'j < A,'j — Ll'kUkj,

where Ay, Ly and Uy, are sparse blocks. To perform the update,
we first pack Ly and Uy into dense BLAS-compliant format and
then call dense matrix-multiplication subroutine (matrix-matrix
multiply (GEMM)) to compute the product Vj; = LyU. We then

compute a map from the dense V; block back to the sparse
destination block Ay, performing an element-wise update referred
to as a SCATTER step. A SCATTER often involves a lot of index
arithmetic and indirect memory accesses. Typically, GEMM and
SCATTER can be both equally costly in their execution times.

We had previously proposed a scheme that only involved
offloading of GEMM to an attached GPU [45]. Such an approach
is a natural first step towards adding GPU acceleration to sparse
direct solver. Indeed, it mirrors much of the existing work, which
- until our GPU cluster work - considered only the single-node
case [15,31,39,48,50].

This approach had two main limitations. First, when GEMM
is offloaded to the GPU, the SCATTER computation becomes the
performance bottleneck. This fact results in a maximum perfor-
mance gain from GPU acceleration of about 2 x for many realistic
sparse matrices. The second limitation is that, in this approach,
we need to send a large dense matrix from GPU to the host CPU in
each iteration via Peripheral Component Interface Express (PCle).
We used software pipelining to hide such PCle transfer costs.
However, in newer architectures there is a larger bandwidth gap
between a host’'s DRAM and PCle, meaning it becomes harder to
hide a large PCle transfer cost.

To overcome these limitations, our HALo algorithm also of-
floads the SCATTER computation to the co-processor and, further-
more, significantly reduces the PCle transfer between the host
and the co-processor.

The HaLo scheme works as follows; for details, refer to the
original description thereof [44]. It maintains an independent
copy of the sparse matrix A on the co-processor. Denote this
copy by Ag. At the beginning of the factorization, Ay is initialized
with zeros. In each iteration k, we divide the Schur-complement
update computation between the host CPU and the co-processor.
To do so, we send the kth L and U panels from the host CPU
to the co-processor. We partition the Schur-complement update
computation between the CPU and the co-processor along U, as
shown in Fig. 9. The host and co-processor update their respective
parts of the Schur-complement matrix. Again, this behavior is
illustrated by Fig. 9.

In the HALoO algorithm, the host sends the L(k) and U(k) panels
to the co-processor in the kth iteration and receives (k + 1)st
A panels (Fig. 9). In the BLAS offload method, we need to send
the L(k) and U(k) panels to the co-processor like in the HALO
algorithm, but the co-processor sends a large product matrix V =
L(k)U(k) to the host. The V matrix is typically much bigger than
(k + 1)st A panels. Hence, the HaLo algorithm does significantly
less data transfer than the BLAS offload method.

We use a model-driven load balance heuristic to achieve a
good load balance between the host CPU and the co-processor.

5.2. Combining HALO algorithm with 3D sparse LU

Our HALo algorithm on top of the 3D works as follows.
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Fig. 9. HaLo: Schur-complement update in the kth iteration. The L(k) and U(k)
panels - calculated in the kth panel-factorization on the CPU - are sent to the
co-processor. The co-processor sends (k+ 1)st A-panels to the CPU. The CPU and
co-processor update parts of the kth Schur-complement, shown in yellow for the
CPU and in green for co-processor. The CPU merges the received co-processor’s
(k+ 1)st A-panels with its own (k+ 1)st A-panels, before (k+ 1)st iteration starts
. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Before factorization begins, we initialize to zero the sparse
data structure A, on the co-processor, corresponding to all the
local blocks of the 2D processes grid. If the co-processor does not
have enough memory to hold all the blocks, we keep only the
blocks corresponding to the top portion of the elimination tree-
forest Ef. In other words, we traverse E; in breadth-first fashion
starting from the root, and include in Ay all the top portion that
the co-processor can accommodate.

The copy of A, remains persistent throughout the factoriza-
tion. When factorizing a node, if the Schur-complement update
may offload some update computation to the co-processor, it
sends the corresponding L and U panels to the co-processor,
and the co-processor performs those updates on Ag4. Before panel
factorization of a node, if there are any updates accumulated in
Ay, the co-processor sends the corresponding blocks back to the
host CPU. Then we reduce the Ay and A, before performing
panel factorization on Agp,.

Finally, in the Ancestor-Reduction step, if a process is the
sender, it first collects all the ancestor blocks in Ay before sending
it to the receiving process.

6. Experimental results

We evaluate 3D sparse LU against the baseline 2D algorithm,
first for the CPU-only case (Sections 6.2 to 6.6) and then when
adding GPUs (Section 6.7). The main results show performance
gains from the 3D algorithm at both small and large core counts
on a variety of sparse matrices taken from real applications. In
addition, we estimate the scaling limits of the 3D algorithm.
Beyond measured performance, we quantify the effects of the 3D
algorithm on the communication volume and memory usage.

6.1. Setup

We use SUPERLU_DIST’s default parameters in our experi-
ments. For our CPU-only runs, we rely primarily on the “Edison”
cluster at NERSC.5 Each node of the Edison contains dual-socket
12-core Intel Ivy Bridge processors. We chose 4 OpenMP threads
per MPI process after trying various MPIx OpenMP configurations

6 http://www.nersc.gov/users/computational-systems/edison/.

Table 4

Test sparse matrices used in experiments.
Name Application n ang #Flop® Traet”
audikw_1 Structural 9.4e+5 82.0 1.17e+13 5.70
CoupCons3D Structural 4.2e+5 53.6 9.09e+11 1.10
dielFilterV3real FEM/EM 1.1e+6 81.0 2.00e+12 3.80
Idoor Structural 9.5e+5 44.6 1.69e+11 1.97
nlpkkt80 KKT matrices 1.1e+6 26.5 3.14e+13 10.48
G3_circuit Circuit Sim. 1.6e+6 4.8 1.21e+11 3.33
Ecology1 Ecology/Circuit 1.0e+6 5.0 4.49¢+10 1.36
K2D5pt4096 PDE 1.6e+7 5.0 3.26e+12 59.81
S2D9pt3072 PDE 9.4e+6 9.0 2.47e+12 26.02
Serena Structural 1.4e+6 46.1 5.97e+13 19.49

2# of floating point operations in the baseline SUPERLU_DIST (dSparseLU2D)
bFactorization time in seconds for the baseline on 16 nodes.

for different test matrices on 16 nodes. The code was compiled
with the Intel C compiler version 18.0.0 and linked with Intel
MKL version 2017.2.174 for BLAS operations. We use the same
parameters for 3D that we obtained by tuning the 2D code.

For our GPU experiments, we use the “Titan” Cray XK7 system
at OLCF.” Each node in our GPU-testbed consists of a 16-core
2.2 GHz AMD Opteron 6274 “Interlagos” processor (8 cores with
hyperthreading disabled) and a Nvidia K20X “Kepler” accelerator
connected via PCI express 2.0 interface. The host multicore has
32 GB of DDR3 memory divided into two NUMA nodes and the
K20X has 6 GB of DDR5 memory. On each node, we run 2 MPI
processes, one on each NUMA node, and each MPI process spawns
4 OpenMP threads. The two MPI processes on a node share the
on-node GPU.

6.1.1. Test matrices

We used four planar and six non-planar matrices, summarized
in Table 4. The planar matrices come from the discretization of
two-dimensional PDEs (k2D5pt4096, S2D9pt3072) and circuit analysis
(g3_circuit, ecology1). Five of the six non-planar matrices are from
the discretization of 3D PDEs and one, matrixX nipkktso, comes from
non-linear optimization. The factorization time of the test matri-
ces ranges from 10-55 s on 16 nodes when using the baseline 2D
SuPerLU_DIST.

6.2. Results on 16 nodes

The 3D sparse LU configurations achieve 2-11.6x and 0.33-
49x speedup with respect to 2D SuPERLU_DIST for planar and
non-planar matrices, respectively. The results appear in Fig. 10,
which shows the factorization time normalized by the base-
line 2D SUPERLU_DIST for each matrix and process configura-
tion. Columns correspond to different 3D process configurations.
The leftmost column, P, = 1, is the 2D algorithm; subsequent
columns correspond to P, values of 2, 4, 8, and 16. The factor-
ization time is divided into two components, Ts, and Teomm. The
Tscy is the time spent in Schur-complement update on the critical
path of the 3D factorization, and Temm is the non-overlapped
communication and synchronization time.

Planar graphs achieve better performance when P, is large and
the 2D grid size is small. Planar matrices have already very high
communication cost at 16 nodes. We can see that T¢omny, decreases
as we increase P,. The profiling of k2dspt4096 for the 2D algorithm
shows severe load imbalance, which also has a cascading effect
on the synchronization time. The 3D algorithm at P, = 2 shows
less time spent at synchronization points as it has roughly half
the number of synchronization point as the 2D algorithm. Some
3D matrices also achieve better performance when P, is large

7 https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/.
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Fig. 11. Per-process communication volume (in bytes) for different process grid configurations on 16 and 64 nodes (or 96 and 384 MPI processes, respectively). Each
column in a group represents a Py, x P, process grid configuration, where P, € 1, 2, 4, 8, 16 from left to right (leftmost being a purely 2D configuration). Here,
Wy is the number of words sent during the local factorization along the 2D grid, whereas Wi.q is the number of words sent in the ancestor-reduction step along

the z-axis.

and 2D grid size is small. For instance, Idoor comes from finite
element discretization of a large door using a tetrahedral mesh. A
“large door” is a very thin, or nearly planar, 3D object, and thus
partitions like a 2D object.

We also see a slowdown by up to 4x at P, = 16 for extremely
non-planar matrices Serena and nipkktgo. For these matrices, com-
putation is still a large fraction of factorization time for the
baseline 2D algorithm at 384 cores. Most of those computations
are concentrated in the top few levels of the etree. So reducing
the 2D process grid size increases T, which masks any gains
from reduced communication.

6.3. Results on 64 nodes

On 64 nodes, the 3D sparse LU configurations achieve 2-
16.6x and 1.0-3.6x speedup with respect to 2D SUPERLU_DIST
for planar and non-planar matrices, respectively. On 64 nodes
the factorization time is qualitatively similar to the 16 nodes.
Except now for all the matrices Tcomm dominates the factorization
time for the baseline 2D algorithm. Therefore, even for extremely
non-planar matrices Serena and nipkktgo, 3D configurations achieve
speedup of 1.7 and 1.9x, respectively.

6.4. Effects on per-process communication

For the planar graphs, the 3D algorithm reduces per-process
communication by 3-4.6x on 16 nodes and by 4-4.7x on 64
nodes. For non-planar graphs, the 3D algorithm reduces per-
process communication by 2.5-3.2x on 16 nodes and by 2.9-
3.7x on 64 nodes. Fig. 11 shows the per-process communication
volume along the critical path of the 3D algorithm, for 16 and 64
nodes, and a planar and a non-planar matrix. We distinguish the
number of words sent during the 2D factorization step (W) and
that of ancestor reduction (W) of Algorithm 1.

The W™ decreases with increasing P,. Yet at large P,, W
can increase. For instance, W™l increases for nipkkigo at 16 nodes
when going from P, = 8 to 16. This is because W™ increases
almost linearly with P,. Yet for planar graphs, this increase is
not much as they have very small separators at the top level.
We estimate that for k2dsptaogs, W™ will increase with P, after
P, > 64 at 96 processes.

Nevertheless, W™ decreases as 1/Py, and W™t does decrease
as 1/,/Py, with increasing Py,. So for larger Py, the cross-over P,
will be even larger.

6.5. Memory overhead

The 3D algorithm needs 30% more memory for the planar
graph k2pspt4096 and 200% more for the non-planar graph nipkkiso,
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Fig. 12. The relative memory overhead of 3D sparse LU algorithm over 2D (in percent).

at P, = 16 (see Fig. 12). Memory overhead comes from replicating
the dense separator blocks on all the process grids. Since the
planar graphs have small separators, the memory overhead grows
slowly with increasing P,. Our model suggests that P, = O (logn)
before memory overhead becomes comparable to memory of the
LU factors. But non-planar graphs, like nipkktgo, do not have good
(small) separators. Therefore, the memory overhead increases
quickly. At P, = 16, nipkktgo already needs 200% more memory.
Overall at P, = 16, memory overhead ranged between 18% to
245% for all matrices we tried.

6.6. Performance at large numbers of cores

The best case speedup for a matrix is the speedup of the best
P,y x P, configuration relative to the best possible 2D process con-
figuration. The best case speedup is 5-27.4x for the planar graphs
and 2.1-3.3x for non-planar graphs. We show a heat-map of
performance for k2Dspt4096 and nipkktso in Fig. 13 for different com-
binations of Py, x P,. The performance is shown in Tera-floating
point operations per second (TFLOP/s).

Depending on their geometry and size, different matrices
achieve the best performance on a different Py, x P,. For a given
P = Py, x P,, planar graph k2Dspt4096 achieves best performance
along the line Py, = 24. Strongly non-planar graph nipkktso
achieves best performance along the line P, = Py,/24(,") for
a constant P = Py, x P,. All the other matrices achieved the
best performance between the two lines.® In the best case, we
achieved 27.4x speedup for graph k2pspt409e. And on average
the best 3D configuration was 6.5x faster than the best 2D
configuration among all the matrices.

6.7. Performance of GPU accelerated 3D sparse LU factorization

Lastly, we present the results of adding the HaLo-based co-
processor acceleration method to the 3D sparse LU factorization
algorithm.

6.7.1. Impact of GPU acceleration on the 3D configurations using 32
nodes of cray XK7

In Fig. 14, we show the performance of the 3D algorithm
for dielfiltervareal and nipkktso with and without GPU acceleration
on 32 nodes of Cray XK7. For this experiment, we omit the ex-
tremely planar cases such as k2Dspt4096, since Schur-complement
update is a very small fraction of the total factorization cost.

8 If we had a completely dense matrix the best performance would have
occurred along the line P, = 1.

This fact can be easily determined a priori, and for such matri-
ces, GPU acceleration will not yield any tangible performance
improvement.

In the case of matrix dielfilterv3real, the communication cost
dominates in the baseline 2D algorithm. Thus, adding GPU accel-
eration to the 2D algorithm results in only 1.1x improvement.
As we go towards the 3D configurations, time spent in commu-
nication decreases and thus overall time decreases and it makes
Tscy again dominant. When Ty, is dominant, adding GPU acceler-
ation improves the performance further. Thus, at P, = 16, GPU
acceleration improves the performance by an additional 1.5x.

In case of the matrix nipkktgo, GPU acceleration improves the
performance by 1.7 x for the baseline 2D algorithm. For 3D con-
figurations, the cost of Schur-complement update increases lin-
early with P,, thus eclipsing any benefit from reduced commu-
nication. Adding GPU acceleration reduces the relative cost of
Schur-complement update; thus, we see an improvement of 1.8 x
by using 3D configuration with GPU acceleration with respect to
the baseline 2D algorithm with GPU acceleration.

6.7.2. Strong scaling

In Fig. 15a, we show the performance (in TFLOP/s) of GPU
accelerated 3D sparse LU factorization algorithm for nipkktgo. The
GPU accelerated 3D algorithm achieves 2.6 x speedup over the
best case GPU accelerated 2D configuration. The variation of
performance of GPU accelerated 3D sparse LU follows a similar
pattern as for the unaccelerated case (Fig. 13).

In Fig. 15a, we show the speedup of the GPU accelerated 3D
sparse LU over the CPU-only 3D sparse LU on the Cray XK7. Ob-
serve that when P, increases, the speedup obtained due to GPU-
acceleration decreases. At smaller 2D grids, the per iteration cost
of the Schur-complement update computation is relatively large;
thus we can offload a significant fraction of Schur-complement
update to the GPU. Therefore, at smaller 2D grids, we obtain a
speedup of up to 3.5x with GPU acceleration, and at the largest
2D grid size, we do not see any advantage from GPU acceleration.
The 3D algorithm allows us to use a large number of processes
while keeping the 2D grid size small. Therefore, the 3D algorithm
can use a relatively larger number of GPU accelerated nodes ef-
fectively. In short, GPU acceleration using the HALO algorithm and
the 3D algorithm behave synergistically, improving the perfor-
mance for a wider range of matrices with respect to the baseline
or when either is used standalone.

7. Related work

The idea of using data replication to reduce communication
in LU factorization goes back to Ashcraft, who described the first
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Fig. 15. Fig. 15a shows the TFLOP/s performance rate of GPU accelerated 3D sparse LU algorithm on the Titan Cray XK7 cluster for different P, x P, combinations.

The largest configuration uses 4096 XK7 nodes with total 32,768 cores and 40

96 Nvidia K20x GPUs. Fig. 15b shows the speedup of GPU accelerated 3D sparse LU

algorithm over the baseline CPU based 3D algorithm for different Py, x P, combinations .

dense LU factorization based on a three-dimensional logical parti-
tioning of the grid [5]. Ashcraft later presented the fan-both family
of Cholesky factorization algorithm [6], which is a generalization
of his 3D LU factorization algorithm. Later, Irony and Toledo [24]
and Solomonik and Demmel [46] also described LU factorization
algorithms using logical 3D partitionings of MPI processes.

The central idea of all work above and ours is the same,
i.e.,, using multiple copies of the matrix to perform multiple
Schur-complement updates in parallel. The total communication

volume of all the above algorithms is O (nzf/ﬁ), an asymp-

totic improvement over O (nz«/ﬁ> for 2D algorithms. However,

these algorithms also increase the latency costs. Solomonik and
Demmel showed that for such algorithms, communication costs
are inversely proportional to the latency costs. Thus, despite the
lower asymptotic communication complexity, the performance
gains of these algorithms are limited even on communication
bound problems. In contrast, our 3D algorithm reduces both
bandwidth and latency by using the elimination tree parallelism.
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It is possible to use these algorithms for factoring dense nodes at
the top levels of the etree. But we would like to avoid using them
at the lower levels because of the increased latency.

Hulbert and Zmijewski [23] presented a column-oriented dis-
tributed sparse Cholesky. It can be considered as a special case of
our 3D algorithm with P,, = 1. For planar graphs, the per process
communication volume in their case is O (nlogP), as opposed to

0 Q"V“’Pg”) in our case.” However, their approach can only use

O (log n) processes for planar problems as opposed to O (nlogn)
processes in our 3D sparse LU algorithm. For sparse matrices
with non-planar associated graph, P, = 1 will be extremely
inefficient.

Multifrontal methods also use additional data to improve the
locality and communication. A notable such example is from
Gupta et al. [19]. The per-process communication volume in
their multifrontal sparse Cholesky algorithm for planar graphs is

n
NG of our 3D
algorithm by a factor of 4/P, = +/logn (see Table 2). Yet, their al-
gorithm can use only O (n) processes in comparison to O (nlogn)
processes for our 3D algorithm. Consequently, for achieving same
parallel efficiency, the per-process memory requirement for their
algorithm increases with increasing n, whereas it remains con-
stant for the 3D sparse LU algorithm. It is worth noting that,
for achieving similar parallel efficiency among their and our
algorithm, their algorithm will use O (logn) more memory M
than our algorithm and reduce communication W by a factor of
(@] («/log n) to our algorithm. Thus, for such a scenario, the two

3/2
algorithms have the same WM'? = o "/Pﬂ . For matrix

multiplication-like dense linear algebra algorithms, it is known
that [9,25,27,46]

# Arithmetic Operations
W= .
VM

The number of arithmetic operations for sparse LU factoriza-
tion for the planar graph is © (n*?/P). Thus, if Eq. (22) holds
also for sparse matrices then our 3D algorithm and Gupta’s multi-
frontal method are not optimal by a factor of © (log n). However,
it is likely that Eq. (22) is not the same for sparse LU factorization
algorithm: dense computations perform O(n3) operations on
O (n?) data, whereas sparse LU factorization of planar graphs per-
forms © (n*?) operations on O (nlogn) data. Establishing similar
lower bounds for sparse LU factorization as Eq. (22) warrants fur-
ther investigation. In addition, the dynamic memory requirement
of the multifrontal method can be prohibitive and does not scale
well with increasing number of processors, i.e., per-process mem-
ory requirement may increase with increasing number of pro-
cessors. Therefore, significant effort has been on improving the
memory scalability [1,14]. So, such methods trade-off parallelism
and performance to reduce memory requirements.

Similar to the multifrontal method, our 3D algorithm also
uses elimination tree parallelism to reduce communication. Our
mapping of subtrees to process layers is very similar to tree-
based mapping algorithms for multifrontal methods. Also, our
3D LU factorization remains predominantly right-looking, which
algorithmically is very different from the multifrontal methods.
A comprehensive discussion on differences in right-looking and
multifrontal methods can be found elsewhere [20,42].

The use of the elimination tree parallelism to improve the
scalability of the right-looking direct solver has also been ex-
plored previously, albeit, with a focus on hiding communication
by pipelining and overlapping with the computation, and as such,
did not reduce communication volume [49].

asymptotically O (%) which is lower than O

(22)

9 we get the same expression if we substitute P = P, in Eq. (11).

Researchers have also proposed communication-avoiding piv-
oting strategies to make LU factorization more scalable [7,18,29].
Since SUPERLU_DIST uses static pivoting with iterative refine-
ment, these techniques are not needed.

Among sparse direct solvers, prior work has studied effi-
cient scheduling [2,3,17,26,30,33,49]. To improve the overlap
of communication and computation, efficient lookahead tech-
niques are part of state-of-practice for both dense and sparse
direct solvers [8,47,49]. Lacoste [32] and Hugo [22] have also
addressed memory and compute resource management for scal-
ing multifrontal sparse direct solvers. The baseline SUPERLU_DIST
incorporates similar techniques.

8. Conclusions and future work

Our new 3D algorithm shows precisely how communication-
avoiding techniques, namely the use of data replication to reduce
communication, can be extended from the dense case to sparse.
Our discussion was limited to right-looking LU factorization with
static pivoting. However, we believe these principles could be ap-
plied to other variants of sparse factorization, including Cholesky
or QR decomposition.

To improve the performance of the 3D algorithm for matri-
ces with large dense blocks, we can in principle use a dense
2.5D LU algorithm to factor the supernodes on levels where we
currently only use a subset of 2D grids. Alternatively, for those
levels, we could merge two 2D grids to make a larger 2D grid
for factoring denser blocks. However, doing so would require
significant changes to the current data structure implementation
in SUPERLU_DIST. Consequently, we have deferred this idea to
future work.

Perhaps one of the more interesting theoretical open prob-
lems is how to reason about lower bounds on communication
in the sparse case. They are likely to require different analysis
techniques from the dense case. The fundamental reasons stem
from the discussion in Section 7 with respect to Eq. (22), as
well as the intriguing fact that dense LU methods require trad-
ing higher latency for reduced communication, whereas certain
sparse patterns, like planar graphs, do not (Section 4).
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