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ABSTRACT

We present a novel distributed memory algorithm to improve the
strong scalability of the solution of a sparse triangular system. This
operation appears in the solve phase of direct methods for solving
general sparse linear systems, Ax = b. Our 3D sparse triangular
solver employs several techniques, including a 3D MPI process grid,
elimination tree parallelism, and data replication, all of which re-
duce the per-process communication when combined. We present
analytical models to understand the communication cost of our
algorithm and show that our 3D sparse triangular solver can re-
duce the per-process communication volume asymptotically by a

factor of O(n1/4) and O(nl/(’) for problems arising from the fi-

nite element discretizations of 2D “planar” and 3D “non-planar”
PDEs, respectively. We implement our algorithm for use in Su-
perLU_DIST3D, using a hybrid MPI+OpenMP programming model.
Our 3D triangular solve algorithm, when run on 12k cores of Cray
XC30, outperforms the current state-of-the-art 2D algorithm by 7.2x
for planar and 2.7x for the non-planar sparse matrices, respectively.
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1 INTRODUCTION

This paper presents a new algorithm for solving a sparse triangular
system of linear equations, Tx = b, where T is either an upper- or
lower-triangular sparse matrix. A sparse triangular solver (SPTRs) is
an important sub-step during LU and Cholesky factorization, which
are direct methods for solving general linear systems. SPTRs also ap-
pears in preconditioners based on incomplete factorization, which
commonly appear in Krylov subspace-based iterative methods.

In the context of distributed memory sparse direct methods
for solving Ax = b, where A is any general matrix, consider the
example of sparse LU factorization. It first decomposes A into the
product A = LU, where L and U are lower- and upper-triangular
matrices, respectively. Then, one may solve for x by a pair of SPTRs
operations, Ly = b and Ux = y. In this setting, the factorization
step (determining L and U) usually dominates the pair of SPTRs
operations. However, a common use-case for sparse direct solvers
is using many right-hand sides for a fixed matrix (pattern). This
scenario occurs in time-stepping numerical ODE solvers, where b
changes at each time step. Similarly, in the case of a sparse iterative
solver, we might factor the system once upfront and then invoke
SpTRs with a new right-hand side during each iteration. Thus, the
scalability of SPTRs can also become a bottleneck.

In our previous work, we developed a communication-avoiding
algorithm for LU factorization [21]. The idea underlying this Su-
PERLU_Di1sT3D method is to organize the MPI processes logically
into a three-dimensional grid, rather than a traditional 2D one, and
then exploit the structure of the elimination tree—an abstraction
that captures the data dependencies in sparse LU factorization—to
replicate data judiciously. This combination of techniques prov-
ably reduce communication asymptotically in the problem size
in common cases. In this work, we leverage the 3D sparse LU
data structure of SUPERLU_D1sT3D to develop a communication-
avoiding SPTRs, which yields asymptotic reductions in the latency
and communication-volume costs of a conventional SPTRs.

Briefly, our new 3D SPTRs works as follows. Consider the 3D
process grid as a collection of 2D MPI process grids. The prior
technique of SUPERLU_D1sT3D mapped independent subtrees of
the elimination tree to each 2D process grid and replicated the
common ancestors. Our 3D triangular solver exploits this same 3D
organization. It first solves independent subtrees on different 2D
process grids, and then performs a reduction before solving the
subproblem in the common ancestor tree on a single 2D grid.

To analyze the communication and latency costs of our new
method, we consider prototypical matrices arising from the dis-
cretization of “planar” and “non-planar” partial differential equa-
tions (PDEs). By planar, we mean the physical geometry of the
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input domain, when discretized, is flat or nearly so; we use the term
planar instead of 2D to distinguish the problem geometry from that
of the logical MPI process grid. Our analysis shows that the 3D
SpTRs changes the communication and latency costs by a factor of

O(‘/%) over a purely 2D algorithm, where p, is the number of 2D

process grids. This advantage comes at the cost of a small amount
of additional memory needed to replicate the right-hand side.

We present empirical scalability results for our 3D SPTRS on up
to 24k cores of a Cray XC30 machine. For a single right-hand side,
our 3D SpTRs achieves a 4.6X and 1.8x speedup over the baseline
2D algorithm for planar and non-planar matrices, respectively. For
multiple right-hand sides, our 3D SpTRs achieves 7.2X and 2.7x
speed-up over the baseline 2D algorithm for planar and non-planar
matrices, respectively. While our context is triangular solves for
in direct methods, without loss of generality, our methods can be
extended to general cases as well. Moreover, an important conse-
quence is that SPTRs can actually improve the direct solver itself
(see Section 7).

2 BACKGROUND

To understand the new algorithm (Section 3) and its analysis (Sec-
tion 4), this section starts by explaining how triangular systems
arise in sparse direct solvers and summarizes a baseline parallel
algorithm. It then briefly reviews our previous 3D sparse LU data
structure [21], upon which our new SPTRs also depends.

Terminology. In numerical linear algebra software, a triangular
solver for a single right-hand side is also known as XTRsv, and for
multiple right-hand sides, XTRsm. Typically, these are optimized
differently in the single-node case. However, the focus of this paper
is on distributed memory scalability, where such distinctions are
less important, and we use the term SPTRs to denote either case.
The important distinction is between the baseline sparse triangular
solver algorithm, denoted SPTRS2D, which uses a 2D process grid,
and our new 3D algorithm, SPTrS3D.

2.1 Structure of a Sparse Direct Solver

A sparse direct solver for Ax = b has three main steps: preprocessing,
numerical factorization, and the solve step.

In preprocessing, the matrix A is permuted to improve the numer-
ical stability and to reduce the fill-ins in L and U factors. This step
also involves a symbolic factorization, which computes the fill-in
structure and sparse meta-data for the numerical factorization.

Numerical factorization computes the unit lower triangular L
and the upper triangular U factors so that A = LU.

The solve step calculates y for the lower triangular system Ly = b
for y followed by solving the upper triangular system Ux = y to
find the final solution x.

When there is only one right-hand side b, then numerical factor-
ization is generally the most expensive step. Consequently, sparse
data structures are “tuned” for this step, and SpTrs is designed to
use that data structure. Our prior work to improve numerical factor-
ization introduced a new 3D data structure [21], leading naturally
to the new algorithm of this paper.
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2.2 Triangular Systems

To better understand SPTRs, we begin with the simpler case of a
dense system.

2.2.1 Dense triangular solver. A triangular system can be solved
immediately due to its structure. Consider, a lower triangular matrix
Lx = b for solving xi,-- - ,xp, first one computes x; = b1/l11,
substitute the computed x; into the second equation and solve for
xo. This process of solve-and-substitute is carried out sequentially
until all x;’s, Vi € [1, n] are found, as shown in Algorithm 1. When
the matrix is upper triangular, the process of solve-and-substitute
is carried out in reverse order, i.e., x, is solved first and x; in the
last, where n denotes the dimension of the system. The process of
solving lower and upper triangular systems are also called forward-
substitution and backward-substitution, respectively.

Algorithm 1 Forward substitution algorithm for solving lower
triangular system of equation Ly = b

1: function LSoLvE(L,b):

2:  n«dim(L)

3: fori={1, 2...,n}do:

& i < 7 (bi X li,-y,-)

5:  returny

2.2.2  Triangular systems in sparse direct solvers. Triangular sys-
tems that arise from sparse direct solvers have a recursive block-
arrowhead structure. Figure 1 illustrates a 3 x 3 block sparse matrix
A, and its final L and U factors.

Figure 1: A 3 x 3 block sparse “arrowhead” matrix, its L and U factors and
its block-elimination tree.

Consider a triangular system Ly = b, where L is the 3 X 3 lower
triangular matrix shown in Fig. 1. The Ly; block is zero; therefore,
Li1y1 = by and Laayz = by can be solved concurrently. Following
that, Lssys = b3 — L31y1 — Laay2 can be solved for y3. This depen-
dency in solution of block 3 X 3 lower triangular system is shown as
a directed-acyclic graph (DAG) in Fig. 1. The dependency in solving
L is the same as the dependency in elimination of nodes in the
numerical factorization step, and the dependency DAG structure is
also referred to as the elimination tree, or etree.
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(a) A 25%25 sparse matrix
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Figure 2: A sparse matrix (Fig. 2a), its associated graph (Fig. 2b), and a separator (highlighted in yellow); and the re-ordered matrix (Fig. 2c) using nested
dissection (ND) ordering. The ND orders the variables so that the variables corresponding to the separator are numbered last.

2.3 Dependencies in a Sparse Triangular Solver

The block sparse matrix shown in Fig. 1 comes from the so-called
nested-dissection (ND) ordering of the input matrix [6]. Such an
ordering heuristically reduces nonzero fill-ins in the L and U ma-
trices. It also exposes parallelism in sparse LU factorization and
triangular solve.

Briefly, an ND ordering works as follows. Any sparse matrix A
has an associated graph G, which has the same number of vertex as
the dimension of A; and, for any non-zero entry a;; in A, there is an
edge in G from vertex v; to v;. For instance, in Fig. 2a, we show a
25X 25 sparse matrix that arises from finite difference discretization
of a 5% 5 grid is shown in Fig. 2b. The ND ordering partitions in the
graph G into three disjoint vertex set {C1, S, C2} such there are
no edges from any vertex in C to any vertex in Cy. The vertex set
S is called separator. Using this partition, we reorder A so that the
vertices in S are numbered last. In Fig. 2b, we highlight the separator
and in Fig. 2c, we show the reordered matrix. The Fig. 1a shows
a simplified block representation of the reordered matrix Fig. 2¢
where Aj1, Az, and As3 correspond to Cy, Co, and S respectively,
with remaining submatrices representing the edges that connect
these partitions. The partition C; and Cy are recursively dissected to
get more disjoint subgraphs till each subgraph is sufficiently small.
Graph partitioning tools such as METIs [15] or PT-ScoTcH [18] can
be used for calculating such a partition.

As shown in Fig. 3, an ND ordering leads to a multi-level de-
pendency tree, also known as an elimination tree or etree. Etree
describes the order of elimination in the numerical factorization pro-
cess. LSOLVE has the same dependency as numerical factorization,
so the etree also describes the dependency in LSOLVE.

When the input matrix A is symmetric, USOLVE follows the re-
verse order that of LSOLVE, i.e., LSOLVE traverses the etree in a
post-order or bottom-up order, whereas USOLVE traverses the etree
in top-down order. For unsymmetric matrices, USOLVE may tra-
verse a slightly different tree than etree in top-down order. For
simplicity, let us assume that in the unsymmetric case the etree is
obtained by applying ND on the symmetric matrix A + AT. Hence,
the dependency tree for USOLVE is reverse that of LSOLVE.
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Table 1: List of symbols used

Symbol type ~ Symbol Description
P #MPI processes
Py, Py, P,  Process grid dimensions
Pyy Py X Py # processes in xy plane
Px, Py, Pz  Process coordinates

Process Pr(k)y (k mod Py )-th process row
P.(k) (k mod P,)-th process column
Prr Process that owns A block (Pxr = P,-(k) N P.(k))
E Elimination tree of A
S Top level separator of E

Graphs C1, C; Children etrees of E
Desc(k) Descendants of node k in E
Anc(k) Ancestors of node k in E
n Dimension of the matrix A
1 log, P>
w Communication cost

Misc. 14 Per-process communication volume
o Cost of initiating a data transfer
p Cost of transferring a unit data
y Number of right hand sides

2.4 Parallel Sparse Triangular Solve

2.4.1 SuperLU_Dist Data Structure. Our algorithm is built on
top of SuPERLU_D1sT, which is an open-source sparse-direct solver
library for general sparse matrices that uses right-looking sched-
uling and static pivoting. The baseline SUPERLU_DIsT uses a two-
dimensional logical process arrangement. In the two dimensional
process-grid, it distributes the input matrix A into 2D block-cyclic
fashion. After the factorization, A matrix is overwritten by L and U
factors. Hence, L and U matrix are also distributed in a block-cyclic
fashion. The right hand side b vector is distributed among the di-
agonal processes, so that by is owned by Py . Table 1 summarizes
the notation used in this section.

24.2  Distributed LSoLvE. The LSoLVE performs following oper-
ation to calculate k-th segment of solution yy:
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(@)

Figure 3: An 18 x 18 sparse matrix and its elimination tree obtained by ND
ordering (Section 2.3). Here light yellow squares represent zero entries, blue
entries represent non-zero entries in A, and red squares represent non-zero
entries due to fill-in during the factorization.

yi — Ly [ br - Z Lijyj (1)

jeDesc(k)
This operation is performed in 2D process grid using following op-
erations. Any process Py ; € Pr(k), keeps a vector s to accumulate
the local update —Lg ;y;.

e Local Solve: Pj; solves Ljjy; = b; for yj;.

e Broadcast: P;j; broadcasts the computed y; across its process
column P, (j)

Local Update: Any process Py; € Pc(j) that owns a non-
empty block L receives yj, and performs the local update:

Sk < Sk — Lgjyj

e Reduction: When all processes in P, (k) have finished all
the updates on s, the vector s is reduced across P(k), to
accumulate all the updates to Py

where si is the ;. from the i-th process in Py (k). Pj updates
by « by — s so that

b « by — Z Li;jyj,
jeDesc(k)

and Py performs k-th local-solve.

In LSOLVE, yj are computed in a bottom-up order of the etree.

2.4.3 Limitations of 2D LSoLVE. In the distributed LSOLVE algo-
rithm, local-update is the main computation step, whereas broadcast
and reduction are the two main communication substeps. Assuming
the computation is load balanced, the local-update can exploit all
the available P processors concurrently. However, each process par-

ticipates in O( ﬁ) broadcasts and O( ﬁ) reductions. Therefore,

the broadcast and reduction steps only scale as 1/VP. Hence, the
communication in LSOLVE does not scale as well as the computation.
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Figure 4: Three-dimensional data distribution in SUPERLU_D1s13D [21]. In
Fig. 4a we show the global elimination tree. Nodes 0 to 2 are ancestor-subtrees
and nodes 3 to 6 are leaf subtrees. In Fig. 4b, we show how the ancestor and
leaf subtrees are mapped to four 2D process grids.

2.5 3D Sparse LU factorization

Recall that our prior work developed a communication-avoiding
extension of SUPERLU_DI1sT’s numerical factorization step [21]. It
uses a three-dimensional data distribution instead of a 2D one. Our
new algorithm SPTRS3D exploits this 3D distribution.

2.5.1 3D Data Distribution. The 3D sparse LU algorithm uses
the etree to guide the data distribution for a 3D process grid. In
particular, consider the 3D process grid as a collection of P, 2D grids,
where each 2D grid is of size Pyxy. In the 3D algorithm, the etree
is partitioned into independent subtrees, and each independent
subtree, or leaf subtree, is assigned to a 2D grid. Each 2D grid also
keeps a copy of the ancestors-subtree of the leaf subtree to perform
the so-called Schur-complement update. For instance, Fig. 4a shows a
two-level partition of the etree, and Fig. 4b shows how this partition
is mapped to four 2D process grids. The root of the etree node-0, is
replicated on all process nodes. On the other hand, node-1, and 2,
are replicated on grid-0 and 1; and grid-2 and 3 respectively. In the
last level, node 3 to 6 corresponds to an entire subtree of the etree,
and are assigned to only one one of the 2D grid.

2.5.2 3D Factorization Algorithm. In the 3D factorization algo-
rithm, each grid factors its leaf subtree and performs update on its
copy of the ancestor subtrees. Before factoring an ancestor subtree,
updates on all the copies of subtree is reduced to one process grid
and then factored in 2D fashion.

At the end of the factorization, all the LU factors are gathered
into a 2D grid to perform the solve step. Doing so has the following
drawbacks, which this paper addresses:



A communication-avoiding 3D sparse triangular solver

o Before one can perform the solve step, all the L and U factors
need to be gathered in a single 2D grid, which requires extra
communication and synchronization overhead.

e The solve step can only use Py, processors, and the remain-
ing processes are idle.

e As we see in Section 4, a 2D solve algorithm has higher
communication costs, thus scales poorly.

3 3D TRIANGULAR SOLVER

Our new 3D sparse triangular solver algorithm may be understood
more easily by first considering a concrete example (Section 3.1,
which illustrates solution of a 3 X 3 block sparse matrix on P, = 2
2D process grids) before presenting a more general case (P, = 2/,
Section 3.2).

3.1 3 X3 block sparse case

Consider the 3 X 3 block sparse L and U matrix distributed over
two 2D process grids as shown in Fig. 1. Sparse block matrices
L11, L31 and Uyq, Uss reside on grid-0; and Lgg, L3z and Uy, Uz
reside on grid-1. The factored block L33 and Uss reside only on
grid-0. The right-hand side by and b, reside on grid-0 and grid-1,
respectively, whereas b3 is replicated on both the process grids
and initialized with zeros on grid-1. Figure 5 shows the timeline of
SPTRS3D involving the L and USOLVE substeps.

3.1.1 LSorVE. Inthe LSOLVE, both grid-0 and grid-1 solves L11y1 =
b1 and Lapys = by in parallel, and update corresponding bz blocks
as

b = b) - Ly1ys

on grid-0, and

b} = —Lay;
on grid-1. After the update, grid-1 sends the b; to grid-0, which
accumulates the updates on b3 from both grids as follows:

b = bY + by = bY — L1y1 — Laays.

Thus, the updated bg contains updates from both process grids,
and then grid-0 solves L33ys = b3 for the final ys.

3.1.2  uSoLVE. The USOLVE can start after grid-0 has computed
y3. First, grid-0 solves Us3x3 = y3 for x3 and sends x3 to grid-1. Now,
using x3, both grid-0 and grid-1 can update the y; = y; — Usxs
and yy = yp — Upsxs respectively. Lastly, grid-0 and grid-1 solve
Ui1x1 = y1 and Upexy = y2 for x1 and x3 respectively. So, at the end
of Land U solve, the final solution x1 and x; reside in grid-0 and grid-
1, and x3 is replicated in both process grids. The communication
pattern in USOLVE is reverse of LSOLVE.

3.2 A more general case

The 3D sparse LU factorization algorithm uses P, = 2! 2D grids [21].
The triangular solve can be extended for P, = 2! in a similar fashion.
In subsequent discussion, we focus on LSOLVE since, qualitatively,
U- and LSOLVEs have same structure, albeit in a reverse order.

In the LSOLVE, each two grid performs the LSoLVE for its leaf-
subtree and accumulates update on by ’s, for each supernode k in its
ancestor subtrees. Before performing LSOLVE for ancestor subtree,
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Figure 5: Timeline (from left to right) of SPTRS3D for P, = 2L I = 2 two-
dimensional process grids. Here each node with label Lk or Uk denotes a 2D
triangular solve, Lixyr = b or Uggxr = yk. A red arrow denotes communi-
cation and direction between two process grids.

updates on by from different subtrees are reduced to a 2D grid, and
the 2D performs the LSOLVE in the 2D fashion.

For instance, in Fig. 4, the etree is partitioned for P, = 22 2D
grids numbered 0 to 3. In the first step, each of the 2D grids performs
LSOLVE on the leaf subtrees (node-3 to 6) and performs the updates
on respective ancestor subtrees. In the second step, grids 0 and 1
reduce the update on node-1 to grid-0, and grid-0 performs the
LSOLVE for node-1; and grids 2 and 3 reduce the update on node-2
to grid-2, and grid-2 performs the LSOLVE for node-2. Both grids 0
and 2 perform the updates on node-0, the root of the tree. In the
final step, updates on node-0 from all the grids are reduced to grid-0
and grid-0 performs the LSOLVE in 2D fashion.

The USOLVE starts right after grid-0 has finished LSoLvE for node-
0, and then grid-0 performs USOLVE for node-0 and broadcasts it to
all the grids so each process can perform the local-update. In the
second step, grid-0 and grid-2 performs the uSoLvE for node-1 and
2, respectively, followed by broadcasting it to grid-1 and 3. Finally,
each grid performs the USOLVE for their respective leaf subtrees.

The 3D LSOLVE is shown in Algorithm 2. Figure 5 illustrates the
timeline for SPTRS3D when there are P, = 4 2D grids.

4 COMMUNICATION ANALYSIS

We analyze the communication costs and volume of the SPTRS3D for
triangular matrices that occur in solving PDEs with two- and three-
dimensional geometries. We assess three communication metrics:

o Communication cost, W, which is the number of words sent
along the critical path of the computation.

o Average per-process communication volume, V¢, which is the
average data sent among all the processes.

e Maximum per-process communication volume, V™, which is
the maximum number of data sent by any process.

The difference between communication cost and volume can
be better understood with the following example. Consider a ring
broadcast of data of length y units between P processes, i.e., po
sends a message of length y to p;, which then relays it to p, and so
on, until all the P processes have received the message. The time
to finish the broadcast (T¢omm) Will be (@ + By)(P — 1), where « is
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Algorithm 2 3D Sparse Lower Triangular Solve Algorithm

Require: Factored L and U matrices, b: right hand side; Process coor-
dinates {px, Dy pz}; Ef: grid-local etree; p, = 2! for some integer
1
LSOLVE: y « L7'b

1: forlvlin ! : 0 do: > Bottom-up traversal of E¢

2 if p, = k2™, k € Z then:
3 o « Eg[lv] > o is the index of subtree
4 Yo < LSOLVE2D(Ls, by)
5 bi « bi - Yicanc(o) LiYo > Local-update
6: if lvl > 0 then:
7 if k mod 2 = 0 then: > Note p, = k2!™M
8 dest = p,
9: ste = p, + 20V
10: else:
11: src = pz
12: dest = p, — 2!~
13: forl,inlvl-1: 0do:
14: for s € E¢[l;] do:
15: if p, = src then:
16: Send b to dest
17: else:
18: Receive b3’ from src
19: bgest — bgest + b:rc
return y

the cost of initiating a message transmission, and f is the cost of
sending a unit data. The communication cost W is the coefficient
of f in the expression for Teomm, ie. W = (P—l)yl. On the other
hand, in this example V*® will be y(P — 1)/P and V™ = y.

Informally, the communication cost W correlates to the time
to completion when an application is communication-bound. The
average per-process communication volume V*¢ is a measure of
energy spent in the communication and network load due to the
computation; and V™ in an indicator of communication imbal-
ance and possible network contention. In a dynamic asynchronous
computation such as SpTRrs, its difficult to precisely measure W,
whereas V*® and V™ can be measured readily, which is helpful
in validating the analytical models that we develop in this section.
Further, if a computation is entirely communication bound, then
the following holds:

Ve VTS WL

Thus, one can estimate a lower bound on W by using V™. Hence
V*& and V™ provide an important insight into communication
characteristics of any application.

4.1 Dense Triangular Solve on 2D Process Grid

Consider a dense lower triangular system Ly = b distributed on
a square 2D process grid of dimension VP x VP as shown in the
Fig. 6. For sake of simplicity, we assume that blocking parameter
for 2D block cyclic data distribution is one and number of right
hand side is one i.e. b € R™.

!We use #words as the unit for communication cost instead of time. This choice also
facilitates direct comparison of communication cost and volume
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— Ly > Ly L,k>0; Vk>i ==Lyl V=5 i4,j>0

and k < # of blocks = Critical Path

Figure 6: Communication pattern in dense LSOLVE in 2D grid

4.1.1 Communication Cost W. The critical path for the L solve
is shown in Fig. 6. In the k-step of dense L solve, process Py
computes the y; and broadcast it across the process column P (k).
The process Pj1,j computes by1—=I;,1 Yk and sends it to the
process Pyq k41, Which then computes yj ;. Thus the total number
of messages sent in the critical path of L-solve is 2(n — 1), and
each message has length y. So in the case of dense L solve total
communication cost in the critical path is given by:

Wpense(n, P) = O(n). 2

From Eq. (2), the communication cost in the dense L-solve in 2D
process grid does not scale with the number of processors.

4.1.2  Communication Volume V. In the dense L solve, each pro-

V

communication volume, in this case, is given by:

cess only sends and receives O( ) words. So the per-process

yuE

Dense

VDense(n, P) = (n,P) = ng(nse(n’ P) = 0(%) O
4.2 Planar Sparse Matrices

4.2.1 2D Sparse Triangular Solve. In the case of planar sparse
matrices, the top level separator is a dense matrix of dimensions
O(+/n). So the cost solving the top separator will be Wpepse (V) =
O(+/n). In the first level, we have two separators of dimension

O(\/n/ 2). Since solving the two separators in this level is inde-
pendent, and is done in parallel, therefore communication costs

will be Wpense(\/n/2) = O(\/n/z). The 2D triangular solve can

exploit the parallelism of degree up to VP. So for the triangular
solve of any level-i such that 2l < \/1_3 the communication cost will

be Wpense(\n/2%) = O(\/n/zi). Let [vly be the first level where

VIS VP, ie.,
[vly = min {i |28 >VP, ie Z} = [logz\/ﬁ-‘. 4)

So lvly =~ 1/2log P. We can write the total communication cost of
triangular solve from level-0 to level-(lvly — 1) as:

lvly—1
Wicro (1 P)= ) \/gzo(ﬁ)

i=0

©)
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For levels > [vly, the 2D algorithm can exploit the VP parallelism.
The total number of variables in levels > o]y is n — VnP'/4 = O(n).
Hence the total communication cost in solving levels>[vlj is

n — \/nP/4 _0( n )
VP VP
From Egs. (5) and (6), the total communication cost for the 2D
algorithm for the planar problems is given by:

Wi 101, (1, P) = (6)

Wap(n, P) = O(i+\/r_1) . (7)

VP

Communication Volume. To calculate the communication volume

of the 2D algorithm, the sparse triangular system can be considered

as a sequence of dense triangular systems of supernodes of dimen-

sion n; so that }; n; = n. Since in the case of dense triangular solve

in 2D process grid V¢ = V™ (from Eq. (3)), it will be the same in

this case as well. So the communication volume can be written as
follows:

Van(n,P) = " Vpense(ni, P) = (8)

5o
v O\\R)

4.2.2 3D Sparse Triangular Solve. For the 3D algorithm, we have
P = P,Pyy, where P, is the number of 2D grids each with Py,
processes. The 3D algorithm uses P; is a power of two, P, = 2l=,
In our analysis, we assume that the 2D grid is a square grid of
dimension \/}Ty X \/}Ty

We consider the communication costs of any process in grid-0,
since it lies in the critical path of the triangular solve. The leaf
subtree in grid-0 has dimension ~ n/P,. The leaf-subtreee is solved
by the 2D algorithm on a process grid of size Py . From Eq. (7), the
communication costs of solving the leaf-subtree is:

n
WSD—leaf =Wap (}Tsty) =
z

n n
O(Pzw?y ’ p:) ¥

0( ;P+\/Pj”z). (10)

— 1, the grid-0 solves a dense trian-

In each level-i, from 0 to I,
gular system of size y/n/2!, which has a communication cost of

Wpense(¥n/2%, Pxy) = y/n/2!. Thus the total communication cost
in solving from level-0 to I, — 1 is given by:

;-1
W3p- Anc(” P)— Z \/7

Lastly, before solving any level-i from 0 to I, — 1, grid-0 reduces
the contribution from the other grids. In the i-th level, it receives

(11)

vector of size \/n/2!. However, only the diagonal processes partic-
ipate in this step. Hence the per-process communication cost for

i ; i ; n_ _ [nP;
the reduction step in the i-th level is /Tyzi =\ Tx

communication cost in the reduction step from all the level is:

1)

So the total

1,-1

W3(n, P, P;) = Z /P 5=
xy

(12)
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Combining Egs. (10) to (12), we obtain the following expression
for the communication cost of the 3D algorithm for planar matrices:

n nP,
+,/—+ + .
P, \ P)

5=, hence we can simplify Eq. (13)

Wsp(n,P,P;) = O(

Since y/n > |7 and \n >

to get the following expression:

Wsp(n, P, P;) = O( (14)

n
++n
VPP )
Communication Volume. To get the average communication cost
Ve, it is sufficient to assume that each grid is solving a triangular
solve of dimension n/P, by using the 2D algorithm. Hence,

Vp(n. P) = ‘“g( ny)=0( (15)

n
\/ﬁ) '
To calculate maximum per-process communication volume V™,
we consider the communication of any process in grid-0 since it
participates in the all the level of triangular solve. The commu-
nication volume for any process in grid-0 has two components
PP
subtree solve, which has the same asymptotic complexity as solv-
ing top-level separator of dimension vn in 2D grid of size Py,

a) leaf-subtree solve which amount to O( ); and b) ancestor-

: \nP, .
ie. Vpense(Vn, Pxy) = ‘/% = O( 3? ) Thus, we can write the

maximum per-process communication of the 3D algorithm as:

\/nT
75 )

To minimize V;75(n, P), we should have P, = n /2 in which
case V;75(n, P) = (%) Hence optimal V;}5(n, P) is smaller by a
factor of n!/4 to Vi(n, P).

Vis(n, P, P;) = ( (16)

4.3 Non-planar Sparse Matrices

In the case of non-planar sparse matrices, the top level separator

2/3

has dimension n“/°, and nodes in the i-th level have dimension

(n/21 13,

4.3.1 2D Sparse Triangular Solve. Similar to planar case, to cal-
culate the communication costs of the 2D algorithm, we calculate
Wi<1v1,(n, P) and W54, (n, P), where [vly is defined by Eq. (4).
The corresponding equation to Eq. (5) for non-planar case can be
written as:

lvly—1

n\2/3
Wicto,mP) = Y () =0(w?).  an)
i=0
and equation corresponding to Eq. (6) is
n — n?/3pl/4 n
Wiz z(n,P)=—=0(—)~ (18)
=l VP VP
So the total communication cost is given by:
Wap(n, P) = o(i + n2/3) (19)

Communication Volume. Eq. (8) also holds for non-planar input
problems.
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Table 2: Asymptotic communication cost and volume for Sp-
TrS2D and SPTRS3D, on planar (2D PDE) and non-planar
(3D-PDE) input problems

Problem type =~ Communication Param SPTRS2D SPTRS3D
Cost (W) 0(%“/5) 0(\/517;:* n)
Average Volume n n

Planar (Vave) O( ‘/ﬁ) O( VPzP )

(2D PDE) Max Volume n n VnP,
(vmax) O(W) 0( Pr @2)
Cost (W) 0(i+n2/3) 0( o +n2/3>

VP P, P

Average Volume n n

Non-Planar (V) o ( VP ) 0( PP )

(3D PDE) Max Volume n o 2/3 VPz
(vma) O(V_ﬁ) O( Bt R

4.3.2 3D Sparse Triangular Solve. Similar to planar case, we
calculate Wip_jeqf, Wsp—anc and W# for non-planar problems as
follows:

%D—leaf =Wsp (P_nZvay) :O(\/% +\/PZZ) (20)

-1 n\2/3 s
W3p—anc(n, P) = Z (2—1) = O(Tl ) (21)

i=0
I,-1 2/3 2/3
z _ n _ &

W?(n,P,P,) = ; (nyzi) —O(( 7 ) ) (22)
(23)

Combining Egs. (20) to (22), we get the following expression for
communication cost:

Wsp(n, P, P,) = 0( + n2/3) (24)

z

Communication Volume. The expression for V75 for planar input
problem Eq. (15) also hold for non planar problems. Using a similar
argument as for the case of planar problems, we arrive at following
expression for V;7 for non-planar problems

n VP,
Vr(n,P,P,) = O +n23 Z) 25
550007 = 0 s ¥ =
To minimize communication volume, we should have P, = nt/ 3
in which case V;75(n,P) = O(%). Hence optimal V;75(n, P) is

smaller by a factor of nl/ to Vi(n, P).

In Table 2, we summarize the asymptotic communication cost
and volume for SPTRS2D and SPTRS3D on planar and non-planar
input problems. In Section 5.4, we present some empirical result on
average and maximum per-process communication volume.

5 RESULTS

In this section, we present results from a series of numerical exper-
iment to understand the scalability of 3D sparse triangular solver
algorithm.
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Table 3: Test sparse matrices used in experiments

Name Application n nz
atmosmodd CFD 1.3e6 6.9
boneS10 Model reduction ~ 9.1e5 44.7
CurlCurl_4 Model Reduction  2.4e+6  10.9
dielFilterV3real FEM/EM l.le+6  81.0
Idoor Structural 9.5e+5  44.6
nlpkkt80 KKT matrices l.le+6  26.5
Ecology1 Ecology/Circuit 1.0e+6 5.0
S2D9pt3072 PDE 9.4e+6 9.0
Serena Structural 1l.4e+6  46.1
torso3 PDE 2.6e5 17.1

5.1 Experimental Set-up

5.1.1 Test Bed. We ran our experiments on a Cray XC30 ma-
chine “Edison” cluster at NERSC.? Each node of Edison contains
dual-socket 12-core Intel Ivy Bridge processors. We chose the Su-
PERLU_D1sT’s default parameters for running experiments, which
is tuned for factorization phase. We used 4 OpenMP threads per
MPI process with hyperthreading disabled. We compiled our code
with Intel C compiler version 18.0.0 and linked with Intel MKL
version 2017.2.174 for BLAS operations.

5.1.2  Test Matrices. We used a mix of planar and non-planar test
matrices coming from different real world applications to evaluate
the performance of 3D sparse triangular solver. The test matrices are
listed in Table 3. The planar matrices come from the discretization
of two-dimensional PDE s2D9pt2048) and circuit analysis (Ecology1).
Five of the six non-planar matrices are from the discretization of 3D
PDEs and one, matrix nlpkkt80, comes from non-linear optimization.
The solve time for 16 right hand sides ranges from .5-10 seconds
on 16 nodes when using the baseline 2D SuPERLU_D1sT.

5.2 Results on 16 nodes

On 16 nodes of the Edison cluster, the 3D sparse triangular solve
configurations achieve 1.3-4.3X and 0.9-2.9x speedup with respect
to 2D configuration for planar and non-planar matrices, respectively.
The results appear in Fig. 7, which shows the factorization time
normalized by the baseline 2D SuPERLU_D1sT for each matrix and
process configuration. Columns correspond to different 3D process
configurations. The leftmost column, P, = 1, is the 2D algorithm;
subsequent columns correspond to P, values of 2, 4, 8, and 16.
The factorization time is divided into two components, Tcomp and
Tcomm- The Teomyp is the time spent in local computation on the
critical path of the combined L and U solve, and Tcomm is the
non-overlapped communication and synchronization time.

5.3 Strong Scaling

We now analyze the performance of 3D sparse triangular solver for
different Pyy X P, combinations for different number of right hand
sides. For this experiment, we choose one planar matrix s2D9pt2048

Zhttp://www.nersc.gov/users/computational-systems/edison
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Figure 7: The Triangular Solve performance for 16 right hand sides for various P X P, X P, grids on 16 nodes (384 CPU cores) of the Edison system at NERSC.
For each matrix, each column represents a different value of P, = {1, 2, 4, 8, 16} from left to right. Thus, the leftmost column is the 2D algorithm, and when
moving right, the 2D grids become smaller as P, increases. For each data set, the time shown is normalized with respect to 2D SUPERLU_DI1sT on 16 nodes. Tcormp
represents the time spent in the local computation on the critical path, whereas T;,, is the non-overlapped time spent in communication and synchronization.

and a non-planar matrix nlpkkt80. Let y denotes the number of right
hand sides.

y = # Right hand sides.

We choose three different number of right hand sides y € {1, 16, 64}
for this experiment.

Strong scaling for s2D9pt2048. We show the results for s2D9pt2048
on Fig. 8. When y = 1, the best case 3D configuration is 4.7x
faster than best case 2D process configuration. When y = 1, each
message sent is short, thus the performance of across different
configuration is limited by the latency costs than the bandwidth
cost. For the 2D process configurations, the performance does not
scale well with increasing grid size. This reflects that despite enough
parallelism post-ordering, block-cyclic data distribution on non-
square grids may not distribute the load evenly. Therefore, the solve-
phase remains predominantly sequential. Since 3D configurations
do not suffer from these limitations, so solve-phase shows some
scalability with increasing P,.

For y = 16, the best case 3D configuration is 7x faster than best
case 2D process configuration. In this case, 2D process configura-
tions, the performance is limited by data transfer costs and scales as

O(l / \/ﬁ) Again in this case, for a small value of P, performance

scales linearly and after certain P, for a given 2D grid size, adding
more 2D grids do not result in any further performance gains.

The case y = 64 is similar to the case y = 16. In this case, the
3D configuration is again approximately 7x than the best case 2D
configuration. In this case, we can exploit efficient BLAS-3 calls
effectively for local computation. Moreover, in this case, the fraction
of computation is significantly more than either data transfer or
latency cost. Hence, we achieve higher performance in this case for
any process configuration.

Strong scaling for nlpkkt8o. We show the strong scaling results for
nlpkkt8o on Fig. 9 for y = 1, 16& 64.

When y = 1, the 3D configuration achieves a best case speed up
of 1.89x over 2D configurations. Similar to the case of s2D9pt2048
when y = 1 performance of nlpkkt80 is limited by latency costs.
However, since nlpkkt80 is a non-planar matrix, the latency costs
increase more quickly compared to the planar case. For y = 16 and
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y = 64, the best case 3D configuration achieves a best case speed-up
of 2.3% and 2.6X respectively.

In both cases, y = 16 and y = 64, we were able to scale to 24K
cores of Edison, with continued improvement in performance.

5.4 Communication Volume

In Figs. 10 and 11, we show average and maximum per-process
communication volume for s2d9pt2048 and nlpkkt80 on 96 and 384 MPI
processes for P, € {1, 2, 4, 8, 16} and y = 16. The communication
is divided into communication along xy-plane (shown in blue) and
communication along z dimension (shown in red).

For both the matrices, the average per-process communication

: 1

volume V (Figs. 10a and 11a) reduces as 7P

constant total number of processes P. Similarly, V decreases as \/Lﬁ

with increasing P and constant P,. Thus, we see a reduction of
roughly 2X in average per-process communication volume when
we go from P = 96 to P = 384. This agrees with our models for
communication volume described in Egs. (16) and (25). In all the
cases, communication volume along z-dimension is a tiny fraction
of total communication.

The maximum per-process communication volume for the 2D
algorithm (Figs. 10b and 11b) is 2.3x the average communication
volume, indicating some communication imbalance. The 3D con-
figurations, besides reducing average per-process communication,
also attenuate the communication imbalance, e.g. at 96 processors
P, = 2 maximum per-process communication is 1.4 and 1.42x
the average per-process communication for s2d9pt2048, and nlpkkt8o;
whereas for the 2D algorithm (P, = 1), the ratio of maximum versus
average per-process communication is 2.2 and 2.3X for s2d9pt2048,
and nlpkkt80, respectively.

6 RELATED WORK

Complementary to our approach of reducing communication by
employing a 3D process grid, researchers have looked into selective
inversion [11, 19, 22], re-ordering to adapt to structure [23], and
improving performance of collective operations [17]. Multifrontal
methods with the so-called subtree-to-subcube mapping [7] also
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Figure 8: The triangular solve performance (in Gigaflop/s) for different number of right hand sides (y) for different Py, X P. for planar matrix s2D9pt2048.
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Figure 9: The triangular solve performance (in Gigaflop/s) for different number of right hand sides (y) for different Py, X P for non-planar matrix nipkktso.
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Figure 10: Per-processs Communication Volume for s2d9pt2048: Fig. 10a
shows the average per-process communication volume for 96 (left) and 384
(right) MPI processes for different P.; Fig. 10b shows the maximum per-
process communication volume for 96 (left) and 384 (right) MPI processes
for different P,.

use elimination tree parallelism to improve locality and reduce com-
munication. One notable example is the method for Cholesky fac-
torization by Gupta et al. [9], which describes an efficient triangular
solver for such a mapping [14]. More comprehensive discussions
on differences between right-looking and multifrontal methods
appears elsewhere [10, 20].
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Figure 11: Per-processs Communication Volume for nlpkktso: Fig. 11a
shows the average per-process communication volume for 96 (left) and 384
(right) MPI processes for different P,; Fig. 11b shows the maximum per-
process communication volume for 96 (left) and 384 (right) MPI processes
for different P,.

For dense triangular solve, there also exist communication-avoiding
algorithms that use 3D process grids [13, 24].

Communication-avoiding methods have been proposed for con-
structing Krylov Subspace for iterative solver [4, 12]. In theory,
such techniques can be also applied for iterative solvers that use
triangular preconditioners. For stationary iterations, researchers
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have explored asynchronous iterations to reduce synchronization
costs [2, 3, 5].

Beyond the case of sparse linear solvers, machine learning algo-
rithms on large and sparse data have renewed interest in communi-
cation efficient algorithms for other sparse matrix operations, lead-
ing to methods for sparse-times-dense matrix multiplication [16]
and sparse-sparse matrix multiplication [1, 8, 25], to name a few.

7 CONCLUSION

This paper extends our 3D data structure for sparse LU factoriza-
tion [21] to sparse triangular solve. Our analysis shows that the
resulting SPTRs also becomes communication-avoiding.

A better SPTRs like ours can lead to a better overall direct solver.
At present, SUPERLU_Di1sT3D factors the matrix using a 3D process
grid of size Px X P, X P, and then gathers the LU factors into a
2D of dimension Py X Py to perform its SPTRs. By contrast, our
new 3D triangular solve eliminates the need for gathering the L
and U factors, enabling the use of all Py x Py X P, processors.
Besides mitigating such an inefficiency, the 3D SPTRrs improves on
the asymptotic communication costs of the 2D algorithm. Thus,
while this paper focuses on SPTRs, complete integration into the
full direct solver is an important next step.

Despite these improvements, the dense triangular solve that oc-
curs in the ancestor subtrees is not fully parallel, leading to O(vy/n)

and O(nz/ 3) terms in the communication costs for SPTRS3D on

2D and 3D problems. That does not scale with the number of pro-
cessors. Since the dimension of the ancestor subtrees is smaller
than the dimension of the problem by an order of magnitude, a
different strategy is needed. In particular, one ought to consider
computing the inverses of dense L and U factors of the ancestor-
subtrees and perform matrix-vector multiplication with L™ and
U~! instead of performing a triangular solve. These inverses can
be computed during the process of factorization without any ad-
ditional communication-overhead, and will increase computation
and memory at most by a factor of two. We plan to investigate the
feasibility of this approach in the future.

Prior to this work, much of the work in communication-avoiding
sparse and dense linear algebra was limited to BLAS Level-3 style
matrix-matrix type operations. This work presents what might be
one of the first cases of using communication-avoiding techniques
and 3D process grids for sparse matrix-vector operations, or BLAS
Level-2. However, sparse triangular matrices in the direct solver
have significantly more non-zeros per-row, e.g. O(log n), O(nl/ 3),
for 2D and 3D problems respectively, than general sparse matrices,
which typically have O(1) non-zeros per row. Nevertheless, the
idea of using nested-dissection-type 3D data distributions can in
principle be extended to other sparse BLAS Level-2 and Level-3 op-
erations, such as distributed sparse matrix time dense vector/matrix
multiplication, sparse-sparse matrix multiplication, sparse QR fac-
torization, and graph algorithms such as breadth-first search and all
pair shortest path. Determining the efficacy of combining nested-
dissection and 3D data distribution for other sparse problems is
another avenue for future investigation.
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