Wrangling Rogues: A Case Study on Managing Experimental
Post-Moore Architectures

Will Powell

Jason Riedy
will.powell@cc.gatech.edu
jason.riedy@cc.gatech.edu

School of Computational Science and Engineering
Georgia Institute of Technology
Atlanta, Georgia

Abstract

The Rogues Gallery is a new experimental testbed that is focused
on tackling rogue architectures for the post-Moore era of computing.
While some of these devices have roots in the embedded and high-
performance computing spaces, managing current and emerging
technologies provides a challenge for system administration that
are not always foreseen in traditional data center environments.

We present an overview of the motivations and design of the
initial Rogues Gallery testbed and cover some of the unique chal-
lenges that we have seen and foresee with upcoming hardware
prototypes for future post-Moore research. Specifically, we cover
networking, identity management, scheduling of resources, and
tools and sensor access aspects of the Rogues Gallery along with
techniques we have developed to manage these new platforms. We
argue that current tools like the Slurm scheduler can support new
rogues without major infrastructure changes.

CCS Concepts

« Social and professional topics — Management of com-
puting and information systems; - Hardware — Emerging
technologies; « Computer systems organization — Architec-
tures.

ACM Reference Format:

Will Powell, Jason Riedy, Jeffrey S. Young, and Thomas M. Conte. 2019.
Wrangling Rogues: A Case Study on Managing Experimental Post-Moore
Architectures . In Practice and Experience in Advanced Research Computing
(PEARC ’19), July 28-August 1, 2019, Chicago, IL, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3332186.3332223

1 Challenges for Post-Moore Testbeds

As we look to the end of easy and cost-effective transistor scal-
ing, we enter the post-Moore era[33] and reach a turning point in
computer system design and usage. Accelerators like GPUs have
created a pronounced shift in the high-performance computing and
machine learning application spaces, but there is a wide variety
of possible architectural choices for the post-Moore era, including

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC 19, July 28-August 1, 2019, Chicago, IL, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7227-5/19/07...$15.00
https://doi.org/10.1145/3332186.3332223

Jeffrey S. Young

Thomas M. Conte

jyoung9@gatech.edu
conte@gatech.edu
School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia

memory-centric, neuromorphic, quantum, and reversible comput-
ing. These revolutionary research fields combined with alternative
materials-based approaches to silicon-based hardware have given
us a bewildering array of options and rogue devices for the post-
Moore era. However, there currently is limited guidance on how to
evaluate this novel hardware for tomorrow’s application needs.

Creating one-off testbeds for each new post-Moore technology
increases the cost of evaluating these new technologies. We present
an in-progress case study of a cohesive user environment that en-
ables researchers to perform experiments across different novel
architectures that may be in different stages of acceptance by the
wider computing community. The Rogues Gallery is a new exper-
imental testbed focusing on opening access to rogue architectures
that may play a larger role in the Post-Moore era of computing.
While some of these devices have roots in the embedded and high-
performance computing spaces, managing current and emerging
technologies provides a challenge for system administration that
are not always foreseen in traditional data center environments.
Our Rogues Gallery of novel technologies has produced research
results and is being used in classes both at Georgia Tech as well as
at other institutions.

The key lessons from this testbed (so far) are the following:

e Invest in rogues, but realize some technology may be
short-lived. We cannot invest too much time in configuring
and integrating a novel architecture when tools and software
stacks may be in an unstable state of development. Rogues
may be short-lived; they may not achieve their goals. Find-
ing their limits is an important aspect of the Rogues Gallery.
Early users of these platforms are technically sophisticated
and relatively friendly, so not all components of the support-
ing infrastructure need be user friendly.

o Physical hardware resources not dedicated to rogues
should be kept to a minimum. As we explain in Section 4,
most functionality should be satisfied by VMs and containers
rather than dedicating a physical server to manage each
rogue piece of hardware.

e Collaboration and commiseration is key. Rogues need a
community to succeed. If they cannot establish a community
(users, vendors interested in providing updates, manageabil-
ity from an IT perspective), they will disappear. We promote
community with our testbed through a documentation wiki,
mailing lists, and other communication channels for users
as well as close contact with vendors, where appropriate.



e Licensing and appropriate identity management are
tough but necessary challenges. Managing access to pro-
totypes and licensed software are tricky for academic institu-
tions, but we must work with collaborators like start-ups to
provide a secure environment with appropriate separation of
privileges to protect IP as necessary. Many software-defined
network (SDN) environments assume endpoint implementa-
tions that may not be possible on first-generation hardware.
Documentation restrictions present a particular challenge
while trying to build a community.

Here we describe the initial design of the testbed as well as the
high-level system management strategy that we use to maintain
and tie together novel architectures. We use existing tools as much
as possible; we need not re-invent the systems integration wheel
to support early novel architectures, which may be few in number
and specialized.

2 The Rogues Gallery

The Rogues Gallery was initiated by Georgia Tech’s Center for
Research into Novel Computing Hierarchies (CRNCH) in late 2017.
The Gallery’s focus is to acquire new and unique hardware (the
rogues) from vendors, research labs, and start-ups and make this
hardware widely available to students, faculty, and industry collab-
orators within a managed data center environment. By exposing
students and researchers to this set of unique hardware, we hope to
foster cross-cutting discussions about hardware designs that will
drive future performance improvements in computing long after
the Moore’s Law era of cheap transistors ends.

The primary goal of the Rogues Gallery is to make first-generation
start-up or research lab prototypes available to a wide audience
of researchers and developers as soon as it is moderately stable
for testing, application development, and benchmarking. Examples
of such cutting-edge hardware include Emu Technology’s Chick,
FPGA-based memory-centric platforms, field programmable analog
devices (FPAAs), and others. This mirrors how companies like Intel
and IBM are investigating novel hardware, Loihi and TrueNorth
respectively, but the Rogues Gallery adds student and collaborator
access.

The Rogues Gallery provides a coherent, managed environment
for exposing new hardware and supporting software and tools to
students, researchers, and collaborators. This environment allows
users to perform critical architecture, systems, and HPC research,
and enables them to train with new technologies so they can be
more competitive in today’s rapidly changing job market. As part
of this goal, CRNCH and Georgia Tech are committed to partner-
ing with vendors to define a flexible access management model
that allows for a functional and distinctive research experience for
both Georgia Tech and external users, while protecting sensitive
intellectual property and technologies.

Not all rogues become long-term products. Some fade away
within a few years (or are acquired by companies that fail to pro-
ductize the technology). The overall infrastructure of a testbed
focused on rogues must minimize up-front investment to limit the
cost of “just trying out” new technology. As these early-access and
prototype platforms change, the infrastructure must also adapt.

And even if the technology is fantastic, rogues that do not de-
velop communities do not last. In our opinion, initial communities

grow by easing use and access. Some systems, like the Emu Chick,
require substantial thought around restructuring algorithms and
data structures. Easing access permits eager users (e.g., students)
to play with ideas. Georgia Tech has a history of providing such
early access through efforts such as the Sony-Toshiba-IBM Center
of Competence for the Cell Broadband Engine Processor[2], the
NSF Keeneland GPU system[34], and work with early high core
count Intel-based platforms[24].

3 Initial Rogues

Our initial Rogues Gallery shown in Figure 1 consists of vari-
ous field programmable gate arrays (FPGAs), an Emu Chick, and a
field-programmable analog array (FPAA). The gallery also currently
includes power monitoring infrastructure for embedded-style sys-
tems (NVIDIA Tegra), but we will not go into depth on that more
typical infrastructure.

FPGAs for Memory System Exploration Reconfigurable devices
like FPGAs are not novel in themselves, but the gallery includes
FPGAs for prototyping near-memory and in-network computing.
Currently the Rogues Gallery includes

o two Nallatech 385 PCle cards with mid-grade Intel Arria 10
FPGAs and 8 GiB of memory;
e a Nallatech 520N PCle card with a Intel Stratix 10, 32 GiB of
memory, and multiple 100 GBps network ports; and
o an end-of-lifed Micron AC-510 card that pairs an Xilinx Ul-
trascale 060 with a 4 GiB Hybrid Memory Cube (HMC).
While now reaching the end of official support, the HMC-based
system has many local users and provided results for several recent
publications [10, 11] focused on characterization and utilization
of the 3D stacked memory component. All platforms are used for
exploring new FPGA programming paradigms like OpenCL and
domain-specific languages. Related projects like SuperStrider and
MetaStrider also are exploring accelerating sparse and graph com-
putations by pushing compute primitives to memory[29].

Emu Chick The Emu architecture (our Emu Chick box is shown
in Figure 1) focuses on improved random-access bandwidth scalabil-
ity by migrating lightweight Gossamer threads to data and empha-
sizing fine-grained memory access. A general Emu system consists
of the following processing elements, as illustrated in Figure 3:

e A common stationary processor runs the operating system
(Linux) and manages storage and network devices.

o Nodelets combine narrowly banked memory with several
highly multi-threaded, cache-less Gossamer cores to provide
a memory-centric environment for migrating threads.

These elements are combined into nodes that are connected by a
RapidIO fabric. The current generation of Emu systems include one
stationary processor for each of the eight nodelets contained within
a node. A more detailed description of the Emu architecture is
available elsewhere [6, 13]. The Emu Chick provides an interesting
use case as an intermediate level rogue in that it has a basic Linux-
based OS on the stationary cores, but that OS cannot be modified
(at time of writing). Also, development users need administrative
access to reset or reconfigure portions of the Chick. Integrating
the Chick into a sufficiently secure infrastructure requires some
creativity.



Figure 1: Initial rogues: FPGAs, the Emu Chick, and the field programmable analog array (FPAA)

Benchmarks and Data Sets for
Irregular and ML applications

-
(
>’ Tools and Resources

Portability APIs — Kokkos, GraphBLAS,
Neuromorphic APIs

Rogues Gallery
|/ Hosted Hardware

Neuromorphic ~~ .
Accelerators

=

FPAA (GT) Others..

-
,~ Near-memory Computation
and Data Rearrangement

—

Memoy . P
>

High-bandwidth Memory

\

Programmable
Interconnection
Networks

Traditional Computation
and Prototype Accelerator:

RISC-V

Future Devices

RQL Devices ] .' 1

: Quantum ‘

Metastrider | K

FPGA

Figure 2: High-level overview of the CRNCH Rogues Gallery

ﬁ S

—y I

1 nodelet

- T
'8 nodelets 64 nodelets
per node  per Chick

Figure 3: Emu architecture: The system consists of stationary pro-
cessors for running the operating system and up to four Gossamer
processors per nodelet tightly coupled to memory.

FPAA: Field Programmable Analog Array The Field Programmable
Analog Array (FPAA)[9], developed at Georgia Tech by Dr. Jennifer
Hasler’s group, is a combined analog and digital board that can
implement many analog and neuromorphic architectures[12, 27].
The FPAA combines a driving 16-bit MSP430 microprocessor with
a 2D array of ultra-low power processors consisting of floating-
gate analog plus digital blocks. The exploration and development

i 1] B
User i emu-dev |—)|» emu-chick I
Resources . }

[}
[}
login/ L ——t
n(?tebook

vidia-tegra-1 I

nvidia-tegra-N

Scheduling, T Kev:

Tools, and | 1g-adm 1| toolbox ey:

Admin ! Slurm Ctl ! (NFS) Schedulable Resource
S========2 Physical Resource ()
1 rg-db E WM 220
i Slurm DBD; USB device o
N o 7

Figure 4: Overview of Rogues Gallery resources and manage-
ment / network structure

platform is a USB-attached board with multiple analog input ports
(Figure 1). All of the development tools for the FPAA and MSP430
are free software based on Scilab and XCos and are distributed
in an Ubuntu-based virtual machine image. The FPAA’s 2D array
combines floating-gate analog units with programmable digital
units along with its routing structure. Even manufactured with
350nm CMOS, the FPAA uses 23 yW to recognize the word “dark”
in the TIMIT database[12]. Similarly, classifying acoustic signals
from a knee joint requires 15.29 pW/[27]. Both of these types of
computations are performed in real time, so these power savings
translate directly to energy savings and justify further research in
mixed analog and digital hardware for multiple applications. As the
development platform for FPAA is a remote USB device, it provides
some challenges in terms of how to monitor, schedule, and maintain
it in the Rogues Gallery.
4 Management Issues

Figure 4 shows the management and networking outline of the
Rogues gallery. Here we discuss different components of the testbed
from the identity management, scheduling, tools support, and net-
working viewpoints. As demonstrated in the figure, many of the
tools and development platforms are hosted on virtual machines
while tools are made available via containers where available, as is



the case with the Emu Chick simulator and toolchain as well as the
FPAA development VM.

Management of hardware may be complicated because many of
the rogues might be temporary additions to the testbed, especially if
they fail to build a local userbase or if a company decides to discon-
tinue tool and compiler support. Currently, we plan to reevaluate
the hardware composition of the testbed each year and confer with
users and industry and national lab colleagues to ensure sysadmin
resources are focused on an keeping an up-to-date set of rogues
and associated software stacks.

We emphasize using existing tools although sometimes through
an extra level of indirection. For example, we cannot fully integrate
the Emu Chick into the resource manager, Slurm?, at the time of
writing since each Chick node’s OS image is immutable, but we can
manage queue-based access to a VM used to access the Chick.

4.1 Software Support

Early hardware often is bound to a specific operating system
and release. Tight dependencies make developing and supporting
software difficult. For example, we need compatible versions of
Slurm for managing resources, but a specific OS version may not
have a compatible version available as a vendor package. Addition-
ally, some platforms are best used for running code rather than
compiling it, like the Chick’s stationary cores. Maintaining many
cross-compilation systems for many possible users would defeat
our goal of lowering up-front work.

While we may have to support at least two versions of Slurm
packages (Redhat and Ubuntu in our case), we find that Singularity,
a lightweight user-level container system, provides a convenient
way to wrap and deploy compilation environments. For example,
we can maintain a single version of tools like the Emu compilers
across multiple Ubuntu, Red Hat, etc. flavors without overloading
the different VMs by sharing minimal development environment
containers from a shared tools fileshare across the cluster. The com-
pilation occurs inside the container as if in the target environment.
With simple wrappers we also can permit use of the images without
distributing them if necessary.

We provide Jupyter notebooks for external demonstrations and
tutorials. We are working towards leveraging Kata containers? for
limited untrusted / anonymous demonstration users. Data orches-
tration into and out of the rogues is our primary barrier.

4.2 Networking Structure

The networking structure is designed to protect sensitive intel-
lectual property and licenses as well as provide general security.
Networked devices are attached to firewalling switches that control
host and port accesses. Generally inbound access is allowed in the
directions of the arrows in Figure 4 and only for ssh. Outbound
access generally is not restricted to allow fetching public data sets
from online sources. The IT administrative systems (not shown)
can access everything directly.

One convenient aspect of completely unusual architectures un-
der heavy development, like the Emu Chick, is that they do not
present serious attack targets. Even if someone illicitly accessed the

!https://slurm.schedmd.com/
https://katacontainers.io/

Chick, they would not find many tools to do damage. However, ac-
cess is managed to prevent leaking system specifics to inappropriate
parties.

4.3 Identity Management

The Rogues Gallery has two types of identity management that
are tied in with its notion of scheduling unique devices. At a high-
level, new users request access to the testbed via a publicly available
webform tied to the local administrative mailing list. Once approved,
users are set up with a new username and given access to specific
subsets of resources. For example, we currently have groups for
neuromorphic computing, reconfigurable devices, and the Emu
Chick. Each has sub-groups for normal users and admins (with sudo
access to related physical devices and VMs). This setup integrates
with Georgia Tech’s campus authentication system (CAS) as well
as our robust in-house role (GRS) and entitlement system (GTED).
We leverage Georgia Tech’s campus identity system. Currently the
benefits of requiring users to have Georgia Tech logins outweighs
the effort in setting up those identities, primarily for access control
by POSIX groups and file system permissions.

More challenging is identity management for systems that have
a limited idea of what a user might be. For example, while the
Emu Chick currently has a basic Yocto-generated Linux OS[25]
that runs on the controller node and compute nodes, it does not
currently support the subset of packages needed to integrate with
our LDAP-based authentication system for users. When the Emu
Chick initially arrived, it only supported root access. At writing,
the Chick still cannot be integrated into an LDAP environment.
This is not uncommon for early hardware. Likewise, embedded
style devices like standalone FPGA boards (such as the Arria 10
devkit) typically run a micro-kernel and have a limited concept
of simultaneous user access or limited access to the FPGA fabric.
These devices need to be accessible only through a fully featured
front-end that can manage user identity. In the case of different
FPGAs in the same system, this needs coupled to OS-level isolation
like Linux control groups. For machines like the Chick, network
firewall rules permit access only from a front-end VM.

4.4 Scheduling and Management of Resources

Currently, access to several of the Rogues Gallery resources are
maintained using soft scheduling via the group’s mailing list and
other communication channels. Some similar external sites use
calendaring systems. Resource slots are represented as conference
rooms to be scheduled. These work well for small numbers of
users and resources and require essentially no setup. The looser
mechanisms do require a small, friendly user community.

As our user base grows, we are bringing the resources under
control of the Slurm resource manager. Slurm already supports gen-
eralized resources (GRES) to handle licenses and device allocation.
We use a single Slurm controller for all the devices and rely on
features and Slurm’s support for heterogeneous jobs®. Currently
with a small number of each type of hardware, we have not needed
to worry about careful queue controls or complex solutions for
co-scheduling heterogeneous resources.

Some systems are relatively easy to bring under Slurm control.
The FPGA development and hardware systems are a somewhat
typical case of allocating licenses and accelerator nodes. Our only

Shttps://slurm.schedmd.com/heterogeneous_jobs.html



complication is separating the development machines from the
hardware machines; users may need one category or both. Many
researchers start up needing only the compilation and develop-
ment tools. Others have their generated FPGA bitstreams and only
need the hardware for experiments. And some will need both for
rapid final development turn-around. The resources need to be
scheduled both separately and together, again a use already sup-
ported by Slurm. The pam_slurm_adopt module can clean up cross-
connections for mutual allocations. This helps optimize usage for
FPGAs and the FPGA development tools.

Other systems like the Emu Chick are more complicated. While
Slurm cannot run on the Emu Chick directly, it can manage allo-
cating the Chick’s nodes via generic resources (GRES) on the Emu
development node. Slurm controls access to the front-end VM. This
still requires cooperation between users; we cannot control access
to individual nodes without more effort than it is worth. Also, users
need root access to the control node to reboot individual nodes.
Ideally, Slurm could reconfigure the Chick between the eight single
nodes and one eight-node configurations, but that is not stable
enough to automate. But we can manage multi-tenant access to
the Chick, one user per node, along side single-user access to the
entire Chick through different Slurm partitions. This is similar to
sharing a multi-core server while still permitting whole-node jobs.
These are issues with many first-generation hardware platforms.
The risks are worth the benefits in an academic environment.

And then there are USB-connected devices like the FPAAs (Sec-
tion 3), which pose challenges for sharing and scheduling. Our plan
is to manage access to the FPAA host (a Raspberry Pi) as with other
accelerated systems. The current tools assume a direct USB connec-
tion, and we are experimenting with tunneling USB/IP* from the Pi
to the tools running in a VM on the user’s machine. Conveniently,
the Pi also supports remote USB power toggling via uhubct1® for
hard FPAA resets and provides analog FPAA inputs via a USB digital
to analog converter (DAC) of moderate resolution.

4.5 Tool support

VMs for tools and users are currently provisioned viaa RHEV 4.2
cluster of 16 host nodes, with 4 hosts specifically serving research
VMs like those used by the Rogues Gallery. The standard image for
most of our testbed research is Ubuntu 18.04.5 LTS with one or two
CentOS VMs as needed for specific toolsets.

Early hardware may require its own, specific OS and dependency
stack. New hardware companies rarely can invest in wide software
support. Virtual machines and light-weight containers come to
the rescue. We use Singularity[19] to package the Emu toolset and
VirtualBox[4] for the FPAA tools.

Singularity wraps the Emu compiler and simulator in a man-
ner convenient for command-line build systems. We can offload
compilation and simulation to laptops and other platforms that are
less resource-constrained than the VMs. Only users with access to
the Emu development node have access to the Singularity image.
Because of Emu’s rapid development, we do not worry about old
versions in the wild after students graduate; they provide no useful
information outside of what is publicly available.

“4http://usbip.sourceforge.net/
Shttps://github.com/mvp/uhubctl

The Georgia Tech FPAA tools[3] currently consist of a graphical
environment using Scilab and Xcos. These need USB access to the
FPAA, so an environment like VirtualBox is more appropriate to
encompass the GUI, compiler tools, simulation, and example code.
As mentioned in Section 4.4, we are experimenting with methods
for remote USB access. Here a major unsolved aspect is providing
appropriate physical test inputs to an FPAA device as has been done
in previous work focused on acoustic classifiers [27]. While we can
replay existing audio samples into the FPAA via a DAC converter,
we would like to eventually enable an experimental station where
students can work with real-world inputs such as environmental
sounds.

We manage FPGA and other licensed tools on a mid-range, dual-
socket Intel Xeon system (IBM System x3650 M4) with 192GiB
of RAM, a 250GB NVMe drive, and a 500GB ZFS raidz-1 volume.
Resources remotely NFS mount the specific tools using autofs. This
does require administrative support for deploying new tools, but
managing a single shared host is simpler than managing tools on
each individual resource. Currently tool versioning is provided by a
top-level symbolic link in each resource’s top-level directory while
keeping older versions accessible when useful (e.g., /usr/local/emu
points to the current Emu compiler toolchain).

4.6 Monitoring the Rogues Gallery

An instance of OpenNMS monitors the Rogues Gallery. Alerts are
sent to support personnel regarding any change in the availability
of systems in case something unexpected/unscheduled occurs. We
also use monitored power distribution units for reports/trends as
well as alerts if power usage gets dangerously high (intentionally
or not).

However, things are complicated with some of the more novel
systems in the Rogues Gallery. For example, with the Emu Chick,
we would like to monitor the system management board but not
be notified every time a user resets an internal node unless there
is an issue. We are investigating how to use tools like ssh-ping to
supplement OpenNMS queries for the management node without
interfering with other system uses. The FPAA provides a similar
challenge in that it is a USB device attached to a related physical
host. We would like to check the USB device’s online status with-
out interfering with any active activity and also communicate the
availability of the resource to our Slurm scheduler. Our current
target for performing this type of monitoring is to extend LBNL’s
Node Health Check [17] script for Slurm to support monitoring
(and possibly restarting) specific USB devices.

Monitoring individual FPGA resources without disturbing run-
ning experiments similarly is complicated. Currently these devices
must be managed as either USB or PCle devices using node-health
scripts. Platforms with an embedded ARM core like Xilinx’s Zync
board or the Intel Arrial0 DevKit provide a basic Linux-enabled
core, butitis not clear that these on-board processors can host mean-
ingful monitoring and/or perform communication with a global
monitor or scheduler.

5 Reproducibility and Replicability

Many major research venues push for reproducible, or at least
replicable, experiments. In general this is a wonderful direction. For
early, novel platforms, this may not be easily achievable. Some of our
platforms, like the Emu Chick, fix show-stopping bugs with frequent



software and firmware releases. Reverting to earlier versions to
reproduce experiments requires system-wide pain and in many
cases is just not feasible.

Other Emu Chick installations have used GT-developed bench-
marks and test codes like Emu-STREAM and pointer chasing bench-
marks®, and this has helped Emu Technology identify hardware
and software issues. Other test codes that have been developed for
the Rogues Gallery are not generally available do to their one-off
nature for a specific hardware, firmware, and experimental setup
that has changed drastically during the hardware’s deployment.
With the Emu, the platform’s software interface and usage API is
changing as well, in part due to research undertaken over the past
year using the Rogues Gallery and due to vendor upgrades.

The high-initial-effort “Review of Computational Results Arti-
facts” option in [15] still is possible and worthwhile. Instilling these
ideas in students will pay off over the long run but does require
more initial effort than is generally allowed for with academic exper-
imentation and publication cycles. This balancing act for replicating
results and meeting deadlines with constantly evolving hardware
is an open issue for further research.

6 Education, Outreach, and Collaboration

One benefit to hosting the Rogues Gallery at a university is in-
tegrating the Gallery into education. Our initial undergraduate re-
search class, part of the Vertically Integrated Projects program[28],
provides novel architecture access for early computing and engi-
neering students’. The students are engaged and self-organized
into groups focused on the FPAA, the Emu Chick, and integrating
quantum simulators like Qiskit[1]. These are students with little
initial knowledge of parallel computing, but we hope the experience
with novel architectures will prepare them for a wider, post-Moore
computing landscape.

As stated previously, no rogue can survive without a community.
People need to learn about the platforms and kick the platforms’
tires. One mechanism is through organized tutorials. In April 2018
we held a neuromorphic workshop combining invited speakers
with hands-on FPAA demonstrations. In April 2019, we presented
a tutorial at ASPLOS[22] focused on optimizing for the Emu Chick.
And in July 2019, we presented a similar tutorial at PEARC[23]. We
also organize sessions at scientific computing conferences that bring
together potential users, the Rogues Gallery, and other test beds.
Tutorial and presentation materials are made available through
our external site https://crnch-rg.gitlab.io and official center site
https://crnch.gatech.edu.

Another way to build community is through collaboration with
existing high-performance computing and data analysis groups.
There are active projects to explore both Kokkos[7] and the Graph-
BLAS[18] on the Emu Chick. The Emu PGAS model is sufficiently
unusual that these are not direct ports but re-working of imple-
mentation layers to match the architecture. The FPAA and other
neuromorphic-capable platforms present programming challenges
that are being addressed by collaborators, such as researchers at
UT Knoxville working on the TENNLab framework[20]. We also
anticipate a growing collaboration between other Department of

Chttps://github.com/ehein6/emu-microbench
Thttp://www.vip.gatech.edu/teams/rogues-gallery

Energy (DoE) architecture test beds including CENATE[31] at Pa-
cific Northwest National Lab, ExCL8 at Oak Ridge National Lab, and
Sandia HAAPS®. With a limited amount of personnel and funding
resources to tackle post-Moore computing hardware and research,
we believe that each of these centers can help to fulfill different but
overlapping research agendas and can coordinate commonalities
within academic, industry, and government userbases.

7 Future Plans

Clear future plans include extending the infrastructure and mak-
ing new system integration easier. Collaborating with other rogue-
like centers, including CENATE and ExCL could expose abstractions
useful across all such efforts including common scheduling and
user management techniques that can also preserve security and
data protections. Additionally, solutions to the monitoring issues
in Section 4.6 are crucial for enabling research for a primarily re-
mote userbase. Finally, we must collaborate to establish community
standards about reproducibility for changing (and possibly disap-
pearing) novel computing platforms.

We are currently looking to adopt new platforms and combine
them with upcoming technology like large-scale nonvolatile mem-
ory (e.g. Intel Octane DC[16]) and programmable networking, as
shown in Figure 2. A recent NSF award at Georgia Tech for a general-
purpose CPU and GPU cluster with XSEDE[32] integration opens
more pathways for exposing the Rogues Gallery infrastructure to a
wider community through common user authentication and adver-
tising the Rogues Gallery as a community resources. Integrating
the Globus tools with the rogue architectures will be an interest-
ing challenge but will permit larger scaling and data movement to
the host VMs and shared storage that support tools and front-end
testing.

Handling of Sensitive Data Sets Many interesting applications for
these novel platforms involve sensitive data in areas like corporate
networks[26] and health care[5] A secure infrastructure to pipe
sensitive data through our testbed would benefit both application
and hardware / software designers. In this environment, application
designers can learn what upcoming hardware could be useful while
hardware and software designers would discover which of their
assumptions apply to specific, real-world application areas.

Current VLAN, VXLAN, and overlay network methods combined
with some assurance for wiping data may suffice for non-regulated
industry applications. Per-VM memory and storage encryption
combined with the Science DMZ design[8] could assist with data
transfer. However, for some levels of certification, particularly in
health care, this may not be feasible. Identifying specific roadblocks
could help new platform developers engineer around them and pos-
sibly provide regulatory agencies guidance otherwise unavailable.

Future Post-Moore Hardware We also have not discussed the de-
ployment of far-off devices like those in the quantum computing
space in our current testbed. There are upcoming devices in the
Noisy Intermediate-Scale Quantum (NISQ) [21] category which we
are investigating. Many existing quantum devices require extensive
physical hosting requirements that are out of reach for nearly all
facilities. However, we envision hosting common sets of quantum
tools like those provided by the ProjectQ team [30] and engaging

8https://excl.ornl.gov/
“https://www.sandia.gov/asc/computational_systems/HAAPS.html



with smaller quantum start-ups to provide remote access for re-
searchers, perhaps allowing our testbed to become a gateway for
this hardware or even a Rogues Grid.

8 Summary

The CRNCH Rogues Gallery at Georgia Tech lets researchers
experiment with new and novel architectures in a managed but
evolving testbed environment. Reducing the intellectual cost of
trying new systems enables new and sometimes unexpected appli-
cations that can be mapped onto a post-Moore platform. This low
barrier to experimentation is supplemented by a growing commu-
nity that can help with prototyping and porting software and that
can help to give vendors feedback on developing new post-Moore
hardware.

Although there are multiple vectors for growth and improved
infrastructure with the Rogues Gallery, the testbed has already led
to some early successes. These positive outcomes include several
published academic papers [10, 11, 14, 29, 35], support for PhD
thesis research, ongoing collaborations with external academic, in-
dustry, and government users, and a job offer from one of the rogue
startups for at least one of our PhD students at Georgia Tech. We
look forward to new infrastructure developments, student-focused
activities like the Rogues Gallery VIP class, and further collabora-
tions with other post-Moore architecture and system evaluation
labs to help drive the next phase of the Rogues Gallery’s evolution.

Acknowledgments

This work is supported in part by Micron’s and Intel’s hardware
donations, the NSF XScala (ACI-1339745) and SuperSTARLU (OAC-
1710371) projects, and IARPA. Sandia National Laboratory provides
student support for the Rogues Gallery VIP undergraduate research
class. Thanks also to colleagues at GTRI including David Ediger and
Jason Poovey and users like Vipin Sachdeva for ideas and assistance
with scheduling and FPGA support using Slurm. In addition, thanks
to Eric Hein, Janice McMahon and the rest of the team at Emu for
their assistance in setting up and supporting the Emu Chick system
for our users. We thank reviewers for their attentive comments.

References

[1] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello,
Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernadez, Jorge Carballo-
Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Cércoles-
Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Sal-
vador De La Puente Gonzélez, Enrique De La Torre, Delton Ding, Eugene Du-
mitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Al-
bert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-
Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers,
Lukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali
Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang
Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martin-Fernandez, Dou-
glas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll,
Diego Moreda Rodriguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault,
Lee James O’Riordan, Hanhee Paik, Jesus Pérez, Anna Phan, Marco Pistoia, Viktor
Prutyanov, Max Reuter, Julia Rice, Abdén Rodriguez Davila, Raymond Harry Pu-
tra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia,
Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin,
Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour,
Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe
Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher
Wood, Stephen Wood, Stefan Wérner, Ismail Yunus Akhalwaya, and Christa
Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing.
https://doi.org/10.5281/zenodo.2562110

David A. Bader and Virat Agarwal. 2007. FFTC: Fastest Fourier Transform for the
IBM Cell Broadband Engine. Lecture Notes in Computer Science (2007), 172-184.
https://doi.org/10.1007/978-3-540-77220-0_19

~
o

[3] Michelle Collins, Jennifer Hasler, and Suma George. 2016. An Open-Source
Tool Set Enabling Analog-Digital-Software Co-Design. Journal of Low Power
Electronics and Applications 6, 1 (2016). https://doi.org/10.3390/jlpea6010003

[4] Pradyumna Dash. 2013. Getting started with Oracle VM VirtualBox.

[5] Jon Duke. 2018. Precision Medicine at Georgia Tech: Introduction to the Health
Data Analytics Platform. Center for Heath Analytics and Informatics Seminar
Series. Georgia Institute of Technology. http://hdlLhandle.net/1853/59350

[6] Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, and Richard Lethin.
2016. Highly scalable near memory processing with migrating threads on the
Emu system architecture. In Workshop on Irregular Applications: Architecture and
Algorithms (IA3). IEEE, 2-9.

[7] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling manycore performance portability through polymorphic memory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202 — 3216. https:
//doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[8] Dart Eli, Rotman Lauren, Tierney Brian, Hester Mary, and Zurawski Jason. 2014.
The Science DMZ: A network design pattern for data-intensive science. Scientific
Programming 22, 2 (2014), 173-185. https://doi.org/10.3233/SPR-140382

[9] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich, S. Nease,

and S. Ramakrishnan. 2016. A Programmable and Configurable Mixed-Mode

FPAA SoC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 6

(June 2016), 2253-2261. https://doi.org/10.1109/TVLSIL.2015.2504119

R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalamanchili, and H.

Kim. 2017. Demystifying the characteristics of 3D-stacked memories: A case study

for Hybrid Memory Cube. In 2017 IEEE International Symposium on Workload

Characterization (IISWC). 66-75. https://doi.org/10.1109/IISWC.2017.8167757

R. Hadidi, B. Asgari, J. Young, B. Ahmad Mudassar, K. Garg, T. Krishna, and

H. Kim. 2018. Performance Implications of NoCs on 3D-Stacked Memories:

Insights from the Hybrid Memory Cube. In 2018 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS). 99-108. https://doi.

org/10.1109/ISPASS.2018.00018

Jennifer Hasler and Harry Marr. 2013. Finding a roadmap to achieve large

neuromorphic hardware systems. Frontiers in Neuroscience 7 (2013), 118. https:

//doi.org/10.3389/fnins.2013.00118

[13] Eric Hein, Tom Conte, Jeffrey S. Young, Srinivas Eswar, Jiajia Li, Patrick Lavin,
Richard Vuduc, and Jason Riedy. 2018. An Initial Characterization of the Emu
Chick. In The Eighth International Workshop on Accelerators and Hybrid Exascale
Systems (AsHES).

[14] Eric Hein, Srinivas Eswar, Abdurrahman Yasar, Jiajia Li, Jeffrey S. Young,

Thomas M. Conte, Umit V. Catalyiirek, Rich Vuduc, Jason Riedy, and Bora Ugar.

2018. Programming Strategies for Irregular Algorithms on the Emu Chick. CoRR

(2018). arXiv:cs.DC/1901.02775 http://arxiv.org/abs/1901.02775v1

Michael A. Heroux. 2015. Editorial: ACM TOMS Replicated Computational

Results Initiative. ACM Trans. Math. Softw. 41, 3, Article 13 (June 2015), 5 pages.

https://doi.org/10.1145/2743015

[16] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen

Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel

Optane DC Persistent Memory Module. CoRR (2019). arXiv:cs.DC/1903.05714

http://arxiv.org/abs/1903.05714v2

Michael Jennings. 2018. Node Health Check. https://github.com/mej/nhc.

Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluc, Franz Franchetti, John

Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyer-

henke, Scott McMillan, Jose Moreira, John D. Owens, Carl Yang, Marcin Zalewski,

and Timothy Mattson. 2016. Mathematical Foundations of the Graphblas. CoRR

(2016). arXiv:cs.MS/1606.05790 http://arxiv.org/abs/1606.05790v2

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:

Scientific containers for mobility of compute. PLOS ONE 12, 5 (May 2017),

€0177459. https://doi.org/10.1371/journal.pone.0177459

[20] J.S. Plank, C. D. Schuman, G. Bruer, M. E. Dean, and G. S. Rose. 2018. The

TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the

Computer Society 1, 2 (July-Dec 2018), 17-20. https://doi.org/10.1109/LOCS.2018.

2885976

John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum

2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

E. Jason Riedy and Jeffrey S. Young. 2019. Programming Novel Architectures

in the Post-Moore Era with The Rogues Gallery. In 24th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). Providence, RI.

E. Jason Riedy and Jeffrey S. Young. 2019. Programming Novel Architectures

in the Post-Moore Era with The Rogues Gallery. In Practice and Experience in

Advanced Research Computing (PEARC). Chicago, IL.

[24] Jason Riedy, Henning Meyerhenke, David A. Bader, David Ediger, and Timothy G.
Mattson. 2012. Analysis of Streaming Social Networks and Graphs on Multicore
Architectures. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Kyoto, Japan. https://doi.org/10.1109/ICASSP.2012.6289126

[10

[11

[12

[15

[17
[18

[19

[21

[22

[23



[25] Otavio Salvador and Daiane Angolini. 2014. Embedded Linux Development with https://doi.org/10.1109/ICRC.2017.8123669

Yocto Project. Packt Publishing. [30] Damian S Steiger, Thomas Héner, and Matthias Troyer. 2018. ProjectQ: an open
[26] Ted E. Senator, Henry G. Goldberg, Alex Memory, William T. Young, Brad Rees, source software framework for quantum computing. Quantum 2 (2018), 49.
Robert Pierce, Daniel Huang, Matthew Reardon, David A. Bader, Edmond Chow, [31] Nathan R. Tallent, Kevin J. Barker, Roberto Gioiosa, Andres Marquez, Gokcen

Irfan Essa, Joshua Jones, Vinay Bettadapura, Duen Horng Chau, Oded Green,
Oguz Kaya, Anita Zakrzewska, Erica Briscoe, Rudolph IV L. Mappus, Robert
McColl, Lora Weiss, Thomas G. Dietterich, Alan Fern, Weng-Keen Wong, Shub-
homoy Das, Andrew Emmott, Jed Irvine, Jay-Yoon Lee, Danai Koutra, Christos
Faloutsos, Daniel Corkill, Lisa Friedland, Amanda Gentzel, and David Jensen.
2013. Detecting Insider Threats in a Real Corporate Database of Computer Usage
Activity. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’13). ACM, New York, NY, USA,
1393-1401. https://doi.org/10.1145/2487575.2488213

S. Shah, C. N. Teague, O. T. Inan, and J. Hasler. 2016. A proof-of-concept classifier
for acoustic signals from the knee joint on a FPAA. In 2016 IEEE SENSORS. 1-3.
https://doi.org/10.1109/ICSENS.2016.7808748

[28] J. Sonnenberg-Klein, Randal T. Abler, Edward J. Coyle, and Ha Hang Ai. 2017.

Multidisciplinary Vertically Integrated Teams: Social Network Analysis of Peer
Evaluations for Vertically Integrated Projects (VIP) Program Teams. In 2017
ASEE Annual Conference & Exposition. ASEE Conferences, Columbus, Ohio, 12.
https://peer.asee.org/28697

S. Srikanth, T. M. Conte, E. P. DeBenedictis, and J. Cook. 2017. The Superstrider
Architecture: Integrating Logic and Memory Towards Non-Von Neumann Com-
puting. In 2017 IEEE International Conference on Rebooting Computing (ICRC). 1-8.

Kestor, Leon Song, Antonino Tumeo, Darren J. Kerbyson, and Adolfy Hoisie.
2016. Assessing Advanced Technology in CENATE. 2016 IEEE International
Conference on Networking, Architecture and Storage (NAS) (Aug 2016). https:
//doi.org/10.1109/nas.2016.7549392

[32] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew

Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,
and et al. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science
& Engineering 16, 5 (Sept. 2014), 62-74. https://doi.org/10.1109/mcse.2014.80
Jeffrey S. Vetter, Erik P. DeBenedictis, and Thomas M. Conte. 2017. Architectures
for the Post-Moore Era. IEEE Micro 37, 4 (2017), 6-8. https://doi.org/10.1109/
mm.2017.3211127

Jeffrey S Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan, Bruce Loftis,
Stephen McNally, Jeremy Meredith, James Rogers, Philip Roth, Kyle Spafford, et al.
2011. Keeneland: Bringing heterogeneous GPU computing to the computational
science community. Computing in Science & Engineering 13, 5 (2011), 90-95.
Jeffrey Young, Eric Hein, Srinivas Eswar, Patrick Lavin, Jiajia Li, Jason Riedy,
Richard Vuduc, and Tom Conte. 2018. A Microbenchmark Characterization of the
Emu Chick. Technical Report. arXiv:cs.DC/arXiv:1809.07696 https://arxiv.org/
abs/1809.07696



