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Abstract

Pain is a complex multidimensional experience encompassing sensory-discriminative,

affective-motivational and cognitive-emotional components mediated by different neural

mechanisms. Investigations of neurophysiological signals from simultaneous recordings of

two or more cortical circuits may reveal important circuit mechanisms on cortical pain

processing. The anterior cingulate cortex (ACC) and primary somatosensory cortex (S1)

represent two most important cortical circuits related to sensory and affective processing

of pain. Here, we recorded in vivo extracellular activity of the ACC and S1 simultaneously

from male adult Sprague-Dale rats (n = 5), while repetitive noxious laser stimulations were

delivered to animals hindpaw during pain experiments. We identified spontaneous pain-like

events based on stereotyped pain behaviors in rats. We further conducted systematic analy-

ses of spike and local field potential (LFP) recordings from both ACC and S1 during evoked

and spontaneous pain episodes. From LFP recordings, we found stronger phase-amplitude

coupling (theta phase vs. gamma amplitude) in the S1 than the ACC (n = 10 sessions),

in both evoked (p = 0.058) and spontaneous pain-like behaviors (p = 0.017, paired signed

rank test). In addition, pain-modulated ACC and S1 neuronal firing correlated with the

amplitude of stimulus-induced event-related potentials (ERPs) during evoked pain episodes.

We further designed statistical and machine learning methods to detect pain signals by in-

tegrating ACC and S1 ensemble spikes and LFPs. Together, these results reveal differential

coding roles between the ACC and S1 in cortical pain processing, as well as point to distinct

neural mechanisms between evoked and putative spontaneous pain at both LFP and cellular

levels.

Keywords: evoked pain, spontaneous pain, anterior cingulate cortex (ACC), primary

somatosensory cortex (S1), phase-amplitude coupling (PAC)
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Introduction

Pain is a complex sensory experience involving multidimensional components, encoded by dis-

tributed cortical pain circuits. For example, the primary somatosensory cortex (S1) is known

to represent the sensory-discriminative component of pain (Vierck et al., 2013), whereas the

anterior cingulate cortex (ACC) is known to represent the affective-motivational component of

pain (Bushnell et al., 2013). Human neuroimaging experiments have suggested that many other

neocortical regions, such as the insular, secondary somatosensory cortex, prefrontal cortex, and

orbitofrontal cortex, also play important roles in pain processing (Davis et al., 2017). With

regards to the duration of pain experiences, pain is often classified as acute and chronic pain.

Stimulus-evoked pain is induced by a noxious stimulus, whereas spontaneous pain is detached

from an overt external stimulus. It is known that repeated noxious stimulations can elicit spon-

taneous pain behaviors (Bennett, 2012); however, identification of spontaneous pain remains

challenging in animal studies (Tappe-Theodor and Kuner, 2014).

At the single cell level, ACC neurons are known to encode the affective component of pain

experiences, and chronic pain may enhance the aversive responses of ACC neurons (Zhang et al.,

2017). At the mesoscopic and macroscopic levels, intracortical local field potential (LFP) signals

provide important physiological signatures for characterizing pain at a fine timescale comparable

to that of single neuronal activity (Ploner et al., 2017; Ploner and May, 2018; Peng et al.,

2018). The EEG-based phase-locked event-related potentials (ERPs) have been suggested for

identifying biomarkers for pain (Pinheiro et al., 2016). The ERP amplitude reflects the degree of

synchrony within local neuronal populations. A power increase or decrease is referred to as non-

phase-locked event-related synchronization or desynchronization (ERS or ERD), respectively

(Bressler, 2002). ERPs are referred to as “evoked potentials” when occurring soon after a

stimulus, and spontaneous in the period without any stimulus presentation. If ERPs are not

directly evoked by overt stimuli, they are sometimes called as “induced potentials”. While ERP

was primarily used in EEG analyses, here we adapted this concept for LFP recordings. In pain

experiments, ERPs are often temporally associated with stereotyped pain behaviors (such as

the paw withdrawal and licking in rodents) (Cheppudira, 2006; Kawasaki et al., 2012; Whittaker

and Howarth, 2014; Murai et al., 2016). Since identifying spontaneous pain in rodent studies is
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difficult due to the lack of pain report, ERPs may be viewed as a proxy measure of pain (Davis

et al., 2017). Throughout the paper, we use the term ERP interchangeably for both evoked

pain and spontaneous pain-like episodes, which are referred to as pain-evoked potentials and

pain-induced potentials, respectively.

In this report, we focused the investigation on simultaneous ACC and S1 recordings, and

examined the differences between evoked pain and spontaneous pain-like episodes. We combined

animal behavior, neurophysiology (spikes and LFP), and machine learning to examine the neural

codes during identified pain episodes in freely behaving rats. While single neuronal spikes

present precise timing information related to sensory coding or representation, it imposes a

technical challenge to obtain stable ensembles in chronic recordings over days. In contrast,

LFPs represent the aggregate sub threshold activity of neurons in a local localized area, and

are relatively stable over time, thereby providing a reliable macroscopic read out from local

microcircuits related to pain processing.

Materials and Methods

Animals and Protocols All experimental studies were performed in accordance with the National

Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals to ensure minimal animal

use and discomfort, and were approved by the New York University School of Medicine (NYUSOM)

Institutional Animal Care and Use Committee (IACUC). Male adult Sprague-Dale rats (250-300 g,

Taconic Farms, Albany, NY) were used in our current study and kept at the new Science Building at

NYUSOM, with controlled humidity, temperature and 12-hr (6:30 AM–6:30 PM) light-dark cycle. Food

and water were available ad libitum. Animals were given on average 10 days to adjust to the new

environment before the initiation of experiments.

Thermal pain stimuli were used for rats freely exploring in a plastic chamber of size 38×20×25 cm3

on top of a mesh table. A blue (473 nm diode-pumped solid-state) laser with varying laser intensities

was delivered to the animal’s hindpaw (Figure 1a). The laser stimulation was delivered in repeated trials

(25-40) during 30-45 minutes. During experiments, two video cameras (120 frame per second) were used

to continuously monitor the animal’s behavior. The rat’s evoked pain behavior was characterized by its

latency to paw withdrawal (Cheppudira, 2006; Deuis et al., 2017).
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Identification of Spontaneous Pain-Like Events Based on Stereotyped Behaviors

Repeated noxious stimulus stimulations to the rat hindpaw could induce spontaneous pain-like behaviors.

Between the inter-trial intervals of laser stimulations, we examined the animal’s behavior to search for

putative spontaneous pain episodes. Specifically, we categorized the spontaneous pain-like behavior

into several subtypes: (i) twitch—short and sudden jerking movement that was not associated with

locomotion or a pain stimulus; (ii) lifting/flicking—-the lift of the foot would not involve movement of

the whole leg or bending of the knee; (iii) paw withdrawal and paw licking—taking the foot up and into

the body with bending of the knee, which is often accompanied by shaking the foot. Lick is characterized

as lifting the foot off of the grating and licking it. The licks mirrored the licking involved immediately

after a pain stimulus. None of these behaviors were associated with locomotion or a pain stimulus.

Due to the lack of ground truth, we referred to those events as spontaneous pain-like episodes. Such

behaviors could also indicate pain anticipation due to repeated stimulations (Barrot, 2012; Urien et al.,

2018).

Electrode Implant and Electrophysiology We used silicon probes (Buzsaki32, NeuroNexus)

with 3D printed drive to record multi-channel (up to 64 channels) neural activities from the rat ACC and

S1 areas simultaneously, at the contralateral side of the paw that received noxious laser stimulation. For

surgery, rats were anesthetized with isoflurane (1.5%-2%). The skull was exposed and a 3 mm-diameter

hole was drilled above the target region. The coordinates for the ACC and S1 implants were: ACC: AP

2.7, ML 1.4-2.0, DV 2.0, with an angle of 20 degrees towards the middle line; S1: AP −1.5, ML 2.5-3.2,

DV 1.5. The drive as secured to the skull screws with dental cement.

Using a Plexon (Dallas, TX) data acquisition system, we recorded in vivo neurophysiological signals

at a 40 kHz sampling rate, and band-pass filtered (0.3 Hz-7.5 kHz). Spikes were thresholded from the

high-passed (>300 Hz) raw signals, and the subsequent band-pass filtered (1-100 Hz) signals produced

LFPs. Detected spikes were further sorted offline using commercial software (Offline Sorter, Plexon).

A total of 15 animals were used in the current study: 10 naive rats were used for behavioral analysis

only, and another 5 naive rats were used for both behavioral and physiological analyses (Table 1). In rats

#11-13, we recorded LFP signals from the ACC and S1 simultaneously using silicon probes (Figure 1b).

In rats #14-15, we obtained both LFP recordings and well-isolated units from the ACC and S1. In total,

we have analyzed 81 ACC units and 41 S1 units from these two rats.

Identification of Pain-Modulated Units Triggered on the stimulus onset, we computed the

peri-stimulus time histogram (PSTH) of each neuron (50 ms bin size). From the PSTH, we identified

the positively (or negatively) pain-modulated units from the S1 and ACC (Chen et al., 2017; Zhang et
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al., 2017), which showed significantly increased (or decreased) firing rates compared to the baseline (5 s

window before the stimulus onset).

At a finer timescale, we also computed the ERP peak-triggered PSTH for each neuron using a 10

ms bin size. The PSTH was further smoothed using a Gaussian kernel with a bandwidth of 20 ms.

Identification of ERPs A cortical ERP reflects the coordinated behavior of a large number of

neurons in relation to an external or internal event. Traditional ERP analysis is based on trial averaging

(Garcia et al., 2002). In contrast, all studies reported here were based on single-trial analyses. From

LFP recordings, we identified the induced ERPs during evoked and spontaneous pain episodes. Since the

ERP was associated with low-frequency activity, to remove the high-frequency noise, we further applied

band-pass filtering (2-15 Hz) to the multi-channel LFP traces, followed by principal component analysis

(PCA). We extracted the dominant principal component that produced an ERP waveform associated

with the largest variance, which was used in the subsequent ERP analysis. The duration of the ERP

waveform was 200-250 ms, and the signal-to-noise ratio (SNR) varied in each evoked pain or spontaneous

pain-like episode. We used a conservative SNR criterion for the ERPs, and sought ERPs around the

pain-like behaviors (within a window of [−5, 5] s centered at the event onset).

Spectrum and Time-Frequency Analyses The coherence measures the amplitude-amplitude

coupling between two random signals across a wide range of frequencies. The spike-field coherence

(SFC) measures phase synchronization between the LFP and spike times as a function of frequency. The

coherence and SFC is scaled between 0 and 1. We assumed trial stationarity and derived trial-averaged

coherence and SFC, as well as their jackknife error bars. In single-trial analyses, we computed the

spectrogram or SFC in the time-frequency representation by using a moving window.

Multitapered spectral analyses for LFP spectrogram, LFP coherence and SFC were performed using

the Chronux toolbox (chronux.org). Specifically, we chose a half-bandwidth parameter W such that the

windowing functions were maximally concentrated within [−W,W ]. We chose W > 1/T (where T

denotes the duration) such that the Slepian taper functions were well concentrated in frequency and had

bias reducing characteristics. In terms of Chronux function setup, we used the tapers setup [TW,N ],

where TW is the time-bandwidth product, and N = 2 × TW − 1 is the number of tapers. Since the

taper functions are mutually orthogonal, they give independent spectral estimates. In all time-frequency

analyses, we used a moving window length of 0.5-1 s and a step size of 1 ms. In the LFP coherence and

SFC analyses, a 2 s window was used across all pain episodes. We used TW = 5 for LFP spectrogram

and coherence, and TW = 3 for SFC. From the spectrogram, we computed the Z-scored spectrogram,

where the baseline was defined as the 5-s period before the noxious stimulus presentation.
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Cross-Frequency Phase-Amplitude Coupling PAC was used to characterize the coupling

between the low-frequency (theta) phase and and high-frequency (gamma) amplitude of EEG recordings

during nociception (Wang et al., 2011). We adapted the PAC analysis to LFP recordings during pain

episodes. Specifically, we band-pass filtered LFP signals into proper frequency (theta or gamma) band

and computed their Hilbert transform. From the derived complex-valued signals, we extracted the in-

stantaneous theta phase and gamma amplitude (envelope), and further constructed the phase-amplitude

histogram (18 bins within 0-360◦). In light of the phase-amplitude distribution, we ran a parametric

test based on the generalized linear model (GLM) to assess the PAC. A quantitative scalar statistic

r = max{|1− As./A0|} (where As and A0 denote the predicted amplitude vectors defined at the phase

vector [0, 2π] using the spline model and the null model, respectively; ./ denotes the dot division operator

in MATLAB) along with its confidence intervals was reported (Kramer and Eden, 2013).

Detection of the Onset of Pain Signals We have previously developed model-based methods

for detecting the onset of acute pain signals based on the ACC and/or S1 neural ensemble spike activity

(Chen et al., 2017; Hu et al., 2018; Xiao et al., 2018). Assuming that subjective pain signal was latent

and evolved dynamically in time, we proposed a Poisson linear dynamical system (PLDS) to link the

pain stimulus to neural spiking activity of a population of C Poisson-spiking neurons, as follows:

zt = azt−1 + εt (1)

yt ∼ Poisson
(

exp(czt + d)∆
)

(2)

where yt = [y1,t, . . . , yC,t]
> denotes a C-dimensional population vector, with each element consisting

of the neuronal spike count within the time interval ((t − 1)∆, t∆] (bin size ∆); the univariate (latent)

variable zt represents the latent common input that drives the neuronal population firing rate. The

dynamics of the latent variable is governed by a first-order autoregressive (AR) model (0 < |a| < 1)

driven by a zero-mean Gaussian noise process εt ∈ N (0, σ2
ε ). The parameters c and d are unconstrained.

During evoked pain episodes, we used an expectation-maximization (EM) algorithm to estimate the

unknown state variables z1:T and all unknown parameters {a, c,d, σε} from the spike count observations

y1:T in a single trial.

During spontaneous pain episodes, we assumed that the model parameters were identical to those

derived from a previous evoked pain episode, and ran a recursive (forward) filtering algorithm to estimate
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thelatentstatevariableẑt|t(Huetal.,2018)

ẑt|t−1 = âzt−1|t−1

Qt|t−1 = a2Qt−1|t−1+σ
2

ŷt|t−1 = exp(ĉzt|t−1+d)∆

Q−1t|t = Q−1t|t−1+cdiag(̂yt|t−1)c

ẑt|t = ẑt|t−1+Qt|tc(yt−ŷt|t−1)

whereQt|t=Var[̂zt|t]denotesthefilteredstatevariance.Furthermore,wecomputedtheZ-scorewith

respecttothepre-stimulusbaseline:Z-score=ẑt−meanof zbaselineSDofzbaseline
andconvertedittoprobability:

P(Z-score>θ0)=1−
θ0

−∞

1
√
2π
e

u2

2 du (3)

ThecriterionofZ-scorechangewasdeterminedbyastatisticalthresholdθ0dependingonthesignificance

level. Weusedθ0=1.65,whichisassociatedwithaP-valueof0.05.Finally,weidentifiedtheonsetof

painsignalwhentheZ-scorecrossedthesignificancethreshold(Chenetal.,2017).

LFP-BasedClassificationofSpontaneousPain-LikeEvents Foreachspontaneouspain-

likeepisode,weconstructedawindowof[−5,5]scenteredaroundthebehavioronset. Basedonthe

simultaneousLFPrecordingsfromtheratACCandS1,wecomputedtheLFPpowerfeaturesatfive

differentfrequencybands:theta(4-8Hz),alpha(8-12Hz),beta(13-30Hz),lowergamma(30-50Hz),

highgamma(50-80Hz),forbothpre-behavior([−5,0]s)andpost-behavior([0,5]s)periodsseparately.

Intotal,weused5×2×2=20powerfeatures.Eachpowerfeaturewaspreprocessedwithzeromean

andunitvariance. Ateachrecordingsession,wealsoselectedthepain-freecontrolbaselinepriorto

thefirstpainstimuluspresentation.Intotal,weconstructed252spontaneouspainepisodes(positive

examples)and252negativecontrolexamplesfortrainingandtesting(rats#12-15,n=10sessions).

Wetrainedthesefeatureswithatwo-classsupportvectormachine(SVM)classifier(Scholkopfand

Smola,2001).TheSVMisadiscriminativesupervisedlearningmodelthatconstructstheclassification

boundarybyaseparatinghyperplanewithmaximummargin.Specifically,theSVMmapstheinputx

intoahigh-dimensionalfeaturespaceandmaximizesthemarginfromthehyperplanetotheorigin.The

nonlineardecisionfunctioncanbewrittenasfollows

y(xi)=
n

i=1

αiK(x,xi)+b
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where yi ∈ {−1,+1} denote the class label for the training sample xi (some of which associated with

nonzero αi are called support vectors), b denotes the bias, and K(·, ·) denotes the kernel function.

We used a polynomial kernel and trained the nonlinear SVM with a sequential minimal optimization

algorithm (MATLAB Machine Learning Toolbox: ‘fitcsvm’ function). The decoding accuracy was

assessed by 5-fold cross-validation. The chance level of classification accuracy is 50%. We also assessed

the sensitivity and specificity of SVM classifier by reporting the AUROC (area under the curve of receiver

operating characteristic). The chance level of AUROC is 0.5.

We have tested both linear and Gaussian kernels in SVM. The nonlinear SVM produced a slightly

better classification accuracy, but the feature weights derived from the linear SVM would yield informa-

tive assessment or interpretation of each feature.

Statistical Tests We conducted a paired or unpaired t-test provided that the data normality was

satisfied; otherwise, we used a nonparametric signed-rank test or rank-sum test.

Results

Frequency of Spontaneous Pain-Like Behaviors

In animal studies, pain cannot be measured directly; therefore, pain can only be inferred from stereo-

typed “pain-like” behaviors (Deuis et al., 2017). Evoked pain episodes are uniquely associated with the

noxious stimulus presentation and quantitative pain behaviors (e.g. paw withdrawal or lifting) (Chep-

pudira, 2006); whereas spontaneous pain-like behaviors often involve frequent aberrant movement such

as flinching, shaking, paw lifting and paw licking (Kawasaki et al., 2012; Whittaker and Howarth, 2014;

Murai et al., 2016).

When splitting the time of each recording session in half, the total spontaneous pain-like behaviors

occurred in a similar frequency (per minute) in time during the course of a recording session (Figure 1c).

As a control, we also examined naive rats (rats #1-5) in a completely pain-free condition (Day 1,

without presenting any noxious stimulus) based on the same behavior criterion. The number of identified

spontaneous pain-like behaviors was zero in the control condition.

In addition, we computed the number and latency statistics of identified spontaneous pain-like

events. The median number of spontaneous pain-like events between two evoked pain episodes was 1

(min: 0; max: 5); and the median latency from the previous evoked pain episode was 26.9 s (min: 5.1 s;

max: 4.5 min).
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ERPs during Evoked and Spontaneous Pain-Like Behaviors

During evoked pain episodes ([0, 5] s from the stimulus onset 0), ERPs occurred either in the ACC or S1

separately, or in both regions simultaneously; in the latter case, their ERP latencies differed (Figure 2a).

The mean±SEM latency from the ERP peak amplitude to the laser stimulus onset was 0.875±0.050 s in

the ACC and 0.640±0.038 s in the S1 (Figure 2h, p = 0.0002, rank-sum test). During spontaneous pain-

like episodes ([−5, 5] s centered around the behavior onset), ERPs did not always occur synchronously

(Figure 2b and Fig. S1; ratio: 367/638 in ACC and 367/497 in S1), and they occurred more frequently in

the ACC than in the S1 (63.8±8.36 per session and a total of 638 within 10 sessions in ACC; 49.7±8.17

per session and a total of 497 within 10 sessions in S1; Fig. S1c,d). In the spectrogram, pain-evoked

ERPs were accompanied with an increased theta band (4-8 Hz) power—known as the theta-

ERS (Figure 2a,b). The ERS was also visible in the gamma band (30-80 Hz). The gamma-ERS

was mostly separated in the slow (30-50 Hz) and fast (>50 Hz) gamma bands.

During spontaneous pain-like episodes, ERPs tended not to occur together in the ACC

and S1, and the gamma-ERS was more pronounced in the S1. In either of the two regions, we

often observed the theta-ERS followed by the gamma-ERS (Figure 2b and Fig. S1a,b,e,f). At

the trial-average level, there was enhanced coherence in the theta band between the ACC and

S1 during evoked pain episodes (Figure 2c), but not in spontaneous pain-like episodes (peak

coherence evoked: 0.26± 0.08 vs mean coherence spontaneous: 0.13± 0.08).

During evoked pain episodes, the cross-correlation of LFPs between the ACC and S1 varied

between single trials—for instance, having a high peak at zero time lag in one trial, or having a

rhythmic theta cycle in another trial (e.g., see Figure 2d). When ERPs occurred simultaneously

in both the ACC and S1 regions, the S1 had shorter ERP latencies to the stimulus onset than

the ACC (Figure 2e; p = 0.0113, paired t-test, rat #12), but had comparable ERP amplitudes

(Figure 2f; p > 0.05, paired t-test). See Fig. S2 for population statistics. As pain behavior was

characterized by the paw withdrawal latency (to the stimulus onset at time 0), we correlated

the paw withdrawal latency with the evoked ERP latency (Fig. S3a) and the ERP amplitude

(Fig. S3b), respectively. We found strong positive (or negative) correlations (p < 10−4) between

the paw withdrawal latency and ERP latency (or amplitude).

Furthermore, we compared the ERP peak amplitude between evoked pain and spontaneous



11

pain-like episodes (Figure 2g). There was no statistical difference in evoked ERP amplitude

between the ACC and S1 (p > 0.05, unpaired t-test). However, the ERP amplitude was

significantly greater in evoked pain than spontaneous pain-like episodes, in both the ACC and

S1 (p < 0.0001).

During spontaneous pain-like episodes, when ERPs occurred together (within a window of

±3 s) in two areas, the S1-ERP tended to appear earlier than the ACC-ERP. The averaged lag

was 0.080±0.054 s (n = 367, rats #12-15), which shared a similar latency trend as in evoked

pain.

Put together, these results suggest that pain-induced ERPs correlate well with pain-like

behaviors and can serve as a neural signature readout of evoked pain and spontaneous pain-

like episodes. During evoked pain episodes, the ERPs in the ACC and S1 were comparable in

latency and amplitude; whereas during spontaneous pain-like episodes, ERPs did not always

appear together in the ACC and S1, and appeared more frequently in the ACC.

Phase-Amplitude Coupling

Phase-amplitude coupling (PAC) is useful to characterize nonlinear interactions between two

different frequency oscillations (Tort et al., 2010; Canolty and Knight, 2010). Specifically, phase

(theta) and amplitude (gamma) coupling has been reported in rat EEG recordings during acute

pain experiments (Wang et al., 2011). We extended this analysis to the rat LFP recordings

in ACC and S1 areas (Figure 3a). We found significant PAC in both ACC and S1 areas,

and the strength of coupling was stronger in evoked pain than spontaneous pain-like episodes

(Table 2; Figure 3b,c). In addition, the gamma power showed a significant increase from

baseline to evoked pain in both areas; however, during spontaneous pain-like episodes, there

was an increase of gamma power in the S1, but not in the ACC (Figure 3b,c). This finding

supports the notion that the S1 gamma-ERS is indicative of pain perception. In addition, the

strength of PAC coupling was different between the ACC and S1, and varied between sub-

gamma bands (Fig. S4). The preferred phases of the ACC and S1 might differ between evoked

pain and spontaneous pain-like episodes (Fig. S5a), whereas the ACC and S1 also had different

preferred theta phases (Fig. S5b).

These PAC results were consistent across all rats (Figure 3d,e, Table 2). Overall, the
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strength of PAC in evoked pain was stronger than in baseline (p = 0.0013, paired signed-rank

test; Figure 3d), and showed an increasing trend compared to spontaneous pain-like episodes

(p = 0.079, Figure 3e). Combining all tested rats, we found a stronger coupling strength in the

S1 than ACC, during both evoked pain (p = 0.058, paired signed-rank test) and spontaneous

pain-like episodes (p = 0.017; Figure 3f).

LFP Power

We computed the trial-averaged LFP power at the theta (4-8 Hz), alpha (8-12 Hz), beta (13-

30 Hz), low-gamma (30-50 Hz) and high-gamma (50-80 Hz) frequency bands. There was an

increase in high-gamma power from baseline ([−5, 0] s) to evoked pain ([0, 5] s, with 0 being the

stimulus onset) in both the ACC and S1 (Figure 4a,b). During spontaneous pain-like episodes,

we extracted the LFP signals within a window of [−5, 5] s centered around the event onset, and

found a reduction in alpha and beta power for both regions. In contrast, gamma power reduced

in the ACC but increased in the S1 during spontaneous pain-like episodes (Figure 4c).

Spike-LFP Modulation

We further investigated the relationship between the pain-modulated ACC or S1 unit activity

and the LFP amplitude. To do so, we varied the intensity of noxious stimulation across trials

to produce a wider range of firing rate changes.

We observed a sharp change in the ERP peak-aligned ACC or S1 neuronal spike activity

(Figure 5a,g), and this abrupt change became less pronounced when neuronal spike trains were

aligned with the stimulus onset (Fig. S6). Notably, these pain-modulated units showed a sharp

reduction in firing rates around the ERP peaks. A close examination of the unit’s PSTH

revealed striking theta oscillations in spike activity (Fig. S7a-c). During evoked pain episodes,

we also observed enhanced trial-averaged SFC in the theta frequency band (Figure 5b; see

Fig. S7d for a single-trial analysis). In addition, these pain-modulated ACC or S1 units showed

a strong correlation with the evoked ERP amplitude, regardless of their response properties

(Figure 5c,i).

During spontaneous pain-like episodes, pain-modulated ACC and S1 units showed reduced
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firing rate modulations (Figure 5d,j) and reduced modulations in relation to the ERP amplitudes

(Figure 5f,l). However, the rhythmic theta spiking was still preserved (Fig. S11e-g). Overall,

the Z-score firing rates of pain-modulated ACC and S1 units and their modulation degree to

ERP amplitudes were greater in evoked pain than spontaneous pain-like episodes (Figure 5m,n).

Detection of Evoked Pain and Spontaneous Pain-Like Events

During stimulus-evoked pain episodes, the spike activities of pain-modulated ACC and S1 units

were temporally coordinated (by increasing or decreasing firing rates synchronously) to signal

the pain onset (Figure 6a). Using an unsupervised population decoding algorithm (Methods),

we identified the onset of evoked pain signals based on the ACC and S1 ensemble spike activity

in single trials (Figure 6b). Among those successfully detected trials, the onset of detected acute

pain signals matched or correlated closely with the ERP peak latency (Figure 6c, success ratio:

24/32 trials in session 3 from rat #15). In contrast, the change level in neuronal population

spiking during spontaneous pain-like events was consistently lower, and the ERP peak amplitude

was also considerably smaller (Figure 2g). Together, this posed a greater challenge for detecting

the onset of spontaneous pain signals (Figure 6d,e).

To distinguish spontaneous pain-like episodes from pain-free negative control, we further

trained a SVM classifier (Methods) using the combined LFP power features from the ACC and

S1. Using 5-fold cross-validation on a total of 252 spontaneous pain episodes (rats #12-15, 10

sessions), we obtained a mean classification accuracy of 75% and an AUROC (area under the

curve of receiver operating characteristic) of 0.85 (Figure 6f). By assessing the contribution of

individual LFP power features, we found that the low-gamma and high-gamma power features

from both the ACC and S1 were associated with more significant weights (Fig. S8).
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Discussion

To date, most human or animal pain research has focused on stimulus-evoked pain, whereas

spontaneous pain has not been fully investigated (Baliki et al., 2007; Bennett, 2012). In neuro-

pathic pain, spontaneous pain is thought to emerge as a consequence of ectopic activity in axons

in the injured nerve’s action potentials arising spontaneously from hyper excitable membranes;

but it remains unclear whether the source of this activity originates in injured neurons or in

neighboring intact ones, and in nociceptors or non-nociceptors (Djouhri et al., 2006; Woolf ,

2010). In contrast to human pain research (He et al., 2017), the lack of self-report has created

a great obstacle for studying spontaneous pain in animal models (Tappe-Theodor and Kuner,

2014). A strong limitation and potential critique of our study is the subjective criterion for

identifying spontaneous pain-like events. In the future, integrating behavioral with physiolog-

ical measures may further help refine pain assessment for rodents (Whittaker and Howarth,

2014; Mouraux and Iannetti, 2018).

Simultaneous recordings of neuronal spikes and LFPs from multiple cortical areas provide

a good opportunity to study differential neural mechanisms of evoked and spontaneous pain.

In contrast to scalp or intracranial EEG signals, intracortical LFPs provide a more accurate

readout from local microcircuits related to pain processing (Wang et al., 2015; Harris and Peng,

2016). Specifically, cortical ERP is a phase-locked signal generated by neuronal networks in

relation to an externally or internally generated, yet behaviorally significant event. During

evoked or spontaneous pain, ERPs are primarily contributed by the postsynaptic potentials of

a large population of simultaneously active pyramidal cells with the same or similar orientation

(Bressler, 2002). Our results show that ERPs from the ACC and S1 tend to synchronize during

evoked pain episodes, but are highly variable during spontaneous pain-like episodes. While the

ERP amplitudes are comparable between the ACC and S1, their amplitudes is greater during

evoked pain than during spontaneous condition. In the frequency domain, the pain-evoked

ERPs are directly linked to the low-frequency cortical oscillations (Peng et al., 2018; LeBlanc

et al., 2014, 2017; Taesler and Rose, 2016). The theta-ERS has been demonstrated during

evoked pain and spontaneous pain-like episodes, in either the ACC or S1, or both. Increased

theta oscillations are possibly due to thalamic dysfunction or a decreased inhibition of the
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thalamus that affects pain processing (Stern et al., 2006). Previous studies have shown that

increased theta power may represent a biomarker of chronic neuropathic pain (Ploner et al.,

2017; Pinheiro et al., 2016).

The ACC and S1 are the two most important cortical regions related to pain process-

ing. Neuroimaging studies in mice have shown that intra-regional remodeling within the S1

accelerates chronic pain behaviors by modulating the activity of ACC units (Eto et al., 2011).

Specifically, the ACC displays cross-frequency coupling and spike-phase locking during pain

perception in rats (Wang et al., 2011, 2015). Recent findings in rodent studies from our lab and

others have suggested that ACC units are necessary for the “aversiveness” of pain (Johansen

et al., 2001; Zhang et al., 2017). In addition, we have demonstrated that pairing auditory

tones with repeated noxious stimulation can teach ACC neurons to produce a pain anticipation

signal (Urien et al., 2018). Our rat LFP results of the ACC further support these previous

findings that the ACC is a key component of an internal aversive network for both evoked and

spontaneous pain. On the other hand, gamma oscillations in the human S1 have been shown

to correlate with pain perception (Gross et al., 2007; Zhang et al., 2012; Tu et al., 2016), but

these studies are limited to evoked pain. In the absence of overt noxious stimuli as in sponta-

neous pain episodes, the S1 may be involved in both the perception and modulation of various

somatosensory sensations (Bushnell et al., 1999; Vierck et al., 2013). A rat S1 lesion study has

implied a significant role of the S1 in pain affect without direct somatosensory processing, chal-

lenging the traditional view on the role of S1 in processing the sensory-discriminatory aspect

of pain (Uhelski et al., 2012). Our rat S1 results during spontaneous pain-like episodes seem to

support the lesion study. Nevertheless, a causal investigation (e.g., optogenetic S1 inactivation)

is still required to fully dissect the role of the S1 in spontaneous pain perception.

The functional state of cortical circuits may be defined by the amplitude and phase of ongo-

ing frequency-specific oscillations of neuronal populations. LFP-based cross-frequency coupling

measures nonlinear functional interactions between neural oscillations at different frequencies

(Tort et al., 2010; Canolty and Knight, 2010). Complementary to amplitude-amplitude cou-

pling (i.e. coherence), PAC may provide plausible physiological mechanisms on functional

interactions—low-frequency phase reflects the local neuronal excitability, and high-frequency

amplitude reflects the change in population synaptic activity or selective activation of a subnet-
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work in the microcircuit. To date, human pain studies have shown LFP cross-frequency coupling

between the low-frequency phase (theta or alpha) and the gamma amplitude in the amygdala

and hippocampus (Liu et al., 2015)—both regions are associated with pain and negative moods

as a continuum of aversive behavioral learning (Baliki and Apkarian, 2015). Source-localized

human EEG recordings have also shown theta phase-gamma amplitude coupling in the dorsal

and subgenus ACC (Vanneste et al., 2018). One plausible interpretation of these findings is that

theta oscillations reflect negative symptoms, and gamma oscillations obversely reflect positive

symptoms. Theta oscillations may act as a traveling wave, communicating information across

a large-scale network responsible for declarative or emotional memories (Zhang and Jacobs,

2015). On the other hand, gamma oscillations modulate long-range communication between

distributed neuronal assemblies, which may subserve a wide range of cognitive functions in-

cluding multi-sensory integration (Fries, 2009). Gamma oscillations can be nested on the theta

wave for information transmission. While gamma oscillations may correlate with pain percep-

tion (Gross et al., 2007; Ploner et al., 2017), the high gamma activity can have a broader role in

sensory processing. In addition, mechanisms of gamma sub-bands may have different origins,

depending on differential distribution of cell types and cortical layers that receive thalamic or

cortical input (Buzsaki and Wang, 2012). Our results have indeed showed that the strengths

of PAC coupling vary across different gamma bands for the ACC and S1. A speculative neu-

ral coding role of PAC coupling is to segregate sensory (pain) responses into specific temporal

windows within different cortical regions. However, circuit mechanisms of pain-associated slow

and fast gamma oscillations are still incompletely understood.

Detection and identification of subjective pain signals for humans or animals has been an

active research topic (Brown et al., 2011; Huang et al., 2013; Vijayakumar et al., 2017). While

this problem has been well studied for evoked pain events in freely behaving rats (Chen et

al., 2017; Hu et al., 2018; Zhang et al., 2018; Xiao et al., 2018), the challenge for detecting

spontaneous pain events still remains. Our supervised learning results suggest that LFP power

features from multiple brain regions may help detect spontaneous pain-like events (Figure 6).

The future decoding strategy is to consider integrating the information from multi-regional LFP

and ensemble spike activity to detect pain signals.

The results derived from our rodent study have important clinical implications. First, the
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ERP and LFP phenomena observed at the ACC and S1 circuit levels may be examined from

human high-density EEG recordings combined with advanced source localization techniques.

This would further allow us to investigate both evoked and spontaneous pain episodes in human

subjects. Second, our algorithmic development and investigation on pain decoding also provide

insight into detecting evoked and spontaneous pain events based on human EEG recordings

(Huang et al., 2013).

In conclusion, our report has revealed differential coding roles between the S1 and ACC in

pain processing, as well as point to distinct neural mechanisms between evoked pain and putative

spontaneous pain at both LFP and cellular levels. These findings may suggest important circuit

mechanisms that induce distinct pain perception or behaviors.
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Figure 1. (a) Schematic diagrams of noxious stimulation and recording on naive rats.

(b) Histology of recording areas in the rat ACC and S1. (c) Comparison of the frequency

(per minute) of spontaneous pain-like episodes between the first and second half of recording

sessions. There was no statistical difference between the first and second half (p > 0.05, paired

t-test).
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Figure 2. Pain-induced ERPs of the rat ACC and S1. (a) Simultaneous recordings of

LFPs from the ACC and S1 induced by evoked pain and their Z-scored spectrograms. White

LFP traces were the dominant principal component extracted from multi-channel LFP signals.

Arrows indicate the identified ERPs. Time 0 indicates the stimulus onset. (b) Simultaneous

recordings of LFPs from the ACC and S1 induced by spontaneous pain and their Z-scored

spectrograms. Arrows indicate the identified ERPs. Using the ACC LFP as a reference, time 0

indicates the onset of identified ERP in the ACC. (c) LFP coherence between the ACC and S1

during evoked pain (red) and spontaneous pain-like (blue) episodes. Shaded area denotes the

confidence intervals. (d) Cross-correlation between the band-pass filtered LFP (4-80 Hz) ACC

and S1 from two representative single trials during evoked pain episodes (rat #15). Note that

the red trial had a peak at the zero lag, whereas the blue trial showed rhythmic activity at a

theta cycle (∼200 ms). (e) Latency of ERP peak to the stimulus onset in evoked pain: ACC

vs. S1 (n = 40 trials). (f) Peak-to-trough amplitude of ACC vs. S1 ERP in evoked pain. (g)

Comparison of ACC and ERP peak amplitudes between evoked and spontaneous pain in naive

rats. n.s., nonsignificant; ∗∗∗∗, p < 0.0001, unpaired t-test. (h) The latency from the ACC and

S1 ERP peak amplitude to the laser stimulus onset during evoked pain (rats #12-15). Error

bar shows SEM. ∗ ∗ ∗, p < 0.001, unpaired t-test.
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Figure 3. Illustration of coupling between the theta phase and gamma amplitude. (a)

Representative LFP traces from the rat ACC (red) and S1 (blue), which shows strong coupling

between the theta phase and gamma amplitude (rat #15). Two arrows indicate the identified

ERPs, and two overlaid grey traces indicate the bandpass filtered (4-11 Hz) LFP traces. (b,c)

Coupling of gamma amplitude and theta phase (0-720◦) in the ACC (b) and S1 (c): baseline

(left), evoked pain (middle), and spontaneous pain (right). In each panel, the r-statistic is

shown. (d) Scatter plot comparison of r-statistic (red: ACC, blue: S1) between evoked pain

and baseline (n = 10 sessions, rats #12-15). Paired signed-rank test, p = 0.0013. (e) Scatter

plot comparison of r-statistic (red: ACC, blue: S1) between evoked pain and spontaneous pain-

like episodes (n = 10 sessions). Paired signed-rank test, p = 0.079. (f) Comparison of r-statistic

in the S1 and ACC. Error bar denotes SEM (n = 10 sessions).
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Figure 4. (a) Comparison of the mean LFP power between evoked pain and baseline at

various frequency bands in the ACC (a) and S1 (b) (rats #12-15, n = 232 trials). Note that

the y-axis shows the negative value in dB. *, p < 0.05; **, p < 0.01, ****, p < 0.0001, paired

t-test. (c) Mean LFP power comparison between the evoked and spontaneous pain-like episodes

(ACC: red; S1: blue; rats #12-15, n = 10 sessions).
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Figure 5. Spike phase locking of one representative ACC units and one representative

S1 unit simultaneously recorded during evoked pain and spontaneous pain-like episodes (rat

#15). (a) Spike raster and ERP-triggered peri-stimulus time histogram (PSTH). Bin size:

10 ms. Time 0 represents the peak of ERP. Blue triangle at each row indicates the onset of

laser stimulation at each trial. Note that these two units decreased their firing rates around

time 0. (b) Spike-field coherence (SFC). Shaded areas denote the jackknife error bar. Note

that there was a peak in the theta frequency band. (c) Correlation between the Z-scored

firing rate (FR) of pain-modulated units and the ERP peak-to-trough amplitude (p = 0.002,

Pearson’s correlation). (d-f) Similar to a-c, the same ACC unit during spontaneous pain-like

episodes. (g-l) Similar to a-f, except for the S1 unit. In panels f,i,l, the P -values of Pearson’s

correlation are 0.307, 0.023 and 0.142, respectively. (m) Population statistics of Z-scored mean

FR (in absolute value) of pain-modulated ACC and S1 units (n = 32) during evoked pain

and spontaneous pain-like episodes. (n) Population statistics of R2 values (for regressing the

Z-scored FR and the ERP amplitude). ∗∗, p < 0.01, ∗ ∗ ∗∗, p < 0.0001, unpaired t-test.
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Figure 6. Illustration of detecting acute and spontaneous pain-like events. (a) The simul-

taneous ACC and S1 ensemble spike activity during a laser-evoked pain episode. Dark pixel

represents high spike count. Time 0 denotes the onset of 250 mW laser stimulation. The ACC

(red) and S1 (blue) LFPs were overlaid in the spike raster. Pain-induced ERPs are marked by

arrows. In this example, the S1 ERP peak occurred 30 ms earlier than the ACC ERP peak.

(b) The evoked pain event was detected based on our previously developed algorithm (Meth-

ods). Shaded periods of [−4,−1] s denote the baseline for computing the Z-score (ACC: red;

S1: blue). When the upper or lower confidence interval of the Z-score was below or above the

significance threshold (horizontal dash lines), the onset of pain signal was detected as a change

point. In this example, the detected acute pain onset in the S1 was earlier than the onset in

the ACC, whereas the S1 ERP peak latency was also earlier than the ACC ERP peak latency.

(c) During evoked pain episodes, the ensemble spike-based acute pain detection latency to the

stimulus onset positively correlated with the ERP peak latency (n = 24 trials; p = 0.0156,

Pearson’s correlation). (d,e) Similar to respective panels a,b, except for a spontaneous pain-

like episode. Time 0 denotes the onset of paw withdrawal. (f) Receiver operating characteristic

(ROC) curves of 5-fold cross-validated SVM classification for spontaneous pain. The AUROC

and accuracy statistics (mean±SEM) are shown in the inset.
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Table 1: Summary of experimental data.

Animal Stimulus Behavior LFP # Unit analysis # Sessions
analysis analysis (ACC+S1) per rat

naive rats #1-5 None Yes n/a n/a 1
naive rats #6-10 blue laser Yes n/a n/a 1
naive rat #11 blue laser Yes Yes 0+0 2
naive rat #12 blue laser Yes Yes 0+0 2
naive rat #13 blue laser Yes Yes 0+0 3
naive rat #14 blue laser Yes Yes 33+5 2
naive rat #15 blue laser Yes Yes 48+36 3
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Figure S1: Examples of pain-induced ERPs and associated Z-scored spectrograms from the
ACC and S1 during six spontaneous pain-like episodes. The power was Z-scored related to
baseline (a,b) ERPs occurred nearly synchronously in the ACC and S1. (c,d) ERPs occurred
in the ACC, but not in the S1. (e) ERPs occurred in the S1, but not in the ACC. (f) ERPs
appeared first in the S1 then in the ACC.
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Figure S6: (a) Spike raster and PSTHs of one ACC unit and one S1 unit triggered on the
stimulus onset (same spike train data as in Figure 5a and Figure 5g, respectively, but each trial
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Figure S7: (a) Spike raster of a representative ACC unit during evoked pain episodes (same
data as Figure 5a, but with a zoom-in view). Blue triangle at each row indicates the onset
of noxious stimulus presentation at each trial. Time 0 represents the peak of ERP. (b) ERP-
triggered PSTH (bin size: 10 ms). Note that “theta” oscillations were present in the single-unit
spike activity. (c) Fourier transform (FT) magnitude of the PSTH in panel b. (d) SFC in
a single-trial time-frequency representation (trial #11). Red trace represents the theta-band
(4-8 Hz) filtered LFP signal in the ACC. Black ticks represents the ACC neuronal spike trains.
Warm color represents high coherence. Starting around time 0, there was a strong SFC at the
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Figure S8: Feature weights associated with the LFP power features derived from the linear
SVM classifier.


