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Abstract— Digital pathology is a relatively new field that 
stands to gain from modern big data and machine learning 
techniques. In the United States alone, millions of pathology 
slides are created and interpreted by a human expert each 
year, suggesting that there is ample data available to 
support machine learning research. However, the relevant 
corpora that currently exist contain only hundreds of 
images, not enough to develop sophisticated deep learning 
models. This lack of publicly accessible data also hinders the 
advancement of clinical science. Our digital pathology 
corpus is an effort to place a large amount of clinical 
pathology images collected at Temple University Hospital 
into the public domain to support the development of 
automatic interpretation technology. The goal of this 
ambitious project is to create a corpus of 1M images. We 
have already released 10,000 images from 600 clinical cases. 
In this paper, we describe the corpus under development 
and discuss some of the underlying technology that was 
developed to support this project. 

I. INTRODUCTION 

Pathology is a subset of medical science related to the 
cause, origin, and nature of disease [1]. A typical 
pathology laboratory workflow begins with a technician 
preparing the slide. This involves placing a tissue 
specimen on a glass slide, such as the specimen shown in 
Figure 1, and staining the slide for observation [2]. A 
board-certified pathologist views the stained specimen 
through an analog microscope to determine a diagnosis. 
The glass slides are then sorted by their respective tissue 
type and stored long-term often at an off-site location. 

Digital pathology is the process of digitizing an analog 
image, so that images can be processed by a computer. 
Digitizing slides into whole slide images (WSI) provides 
both short-term and long-term benefits. Pathologists may 
provide real-time, remote analysis of the specimen and 
examine the sample with multiple pathologists 
simultaneously. Additionally, pathologists may retrieve 
existing digital WSIs through keyword searches and have 
access to the corresponding electronic medical records. 
Long-term advantages include the prevention of physical 
slide decay (i.e. stain discoloration, tissue degradation) 
over time [3]. 

WSIs are scanned using a digital slide scanner (DSS) and 
electronically stored. A typical scanned image is shown 
in Figure 2. With the advent of inexpensive digital 
storage, low-cost compute clusters, and cloud data 
storage, it is a cost-effective endeavor to maintain digital 
image archives of pathology slides. The ability to process 
slides digitally at a healthcare provider in real-time by 
using a DSS represents a transformative capability for 
clinical workflows.  

Estimates indicate that approximately 10M pathology 
slides are observed each year in the United States. 
However, despite the existing volume of data, no 
comprehensive public WSI corpus exists. Currently, 
available resources such as the Cancer Genome Atlas 
(TCGA) Cancer Digital Slide Archive (CDSA) consists 
of WSIs on the scale of hundreds of slides per cancer 
type [4]. A study by Barker et al. [5] utilized the TCGA 
corpus and claimed machine performance that exceeded 
human performance. The dataset contained 604 WSIs of 

 
Figure 1. Example of a tissue biopsy specimen [2][3]  

 

 
Figure 2. Sample of a breast cancer case using H&E staining 



two types of brain cancer: 364 glioblastoma multiforme 
and 240 lower grade glioma.  

While access to public datasets is limited to hundreds of 
WSIs, private corpora, such as Philips and LabPON, 
contain WSIs on the scale of hundreds of thousands [6]. 
However, these private corpora are built and maintained 
to develop and deliver proprietary software to the end 
user. Access to any such proprietary corpus, if possible, 
often requires highly restrictive data licensing terms in 
addition to payment for distribution costs (which can be 
high in a clinical setting). Furthermore, distribution terms 
lead to long delays in acquiring and accessing the data. 

Deep learning systems rely heavily on big data resources. 
Current public corpora, as previously outlined, are not 
adequate for supporting such technology development 
due to their small sample size. Therefore, the intent of 
this paper is to outline the implementation, impact, and 
goals of an NSF-funded Major Instrumentation Grant 
(NSF-MRI) [7] to develop a large, open source corpus of 
pathology images than can support state of the art 
machine learning research. Practicing clinicians will 
have unencumbered access to annotated WSI samples for 
educational purposes. Additionally, industry and 
research facilities will have big data resources for the 
development of deep learning algorithms and systems. 
We are collaborating with the Department of Pathology 
at Temple University Hospital (TUH) with a goal of 
scanning 1M slides from their vast archive of clinical 
data. This corpus, known as the TUH Digital Pathology 
Corpus (TUDP), will be released into the public domain 
over the next two years. 

II. IMAGE DIGITIZATION 
We use a Leica Biosystems Aperio AT2 high volume 
scanner [8], as shown in Figure 3, to scan our slides. 
Aperio’s Scanscope Console software is used to scan 
images and eSlideManager (eSM) Error! Reference 
source not found. to database the images and manage 
metadata. This scanner is an industry-leading unit that 
includes a 40x scanning resolution and a z-stacking 

feature (up to 25 layers). A typical single specimen slide 
requires approximately 200 Mbytes of storage, though 
more complex images can increase in size to 1 Gbyte for 
multiple specimen slides (and up to 5 Gbytes for z-
stacked images). The AT2 scanner can hold a total of 400 
slides arranged in 40 carousels of 10 slides each. A period 
of approximately seven hours is required to scan 400 
slides. This operation is run overnight, and the slides are 
organized using eSM the following day. 

The scanning process is not as automated as one might 
expect. Before the scanner is set to conduct full scans 
overnight, pre-scan snapshots are taken of each slide. The 
duration of this process is approximately two hours per 
400 slides. The snapshots are completed to allow for 
focus points to be placed on each snapshot and to specify 
the area of the slide that should be scanned. Fortunately, 
the software identifies focus points automatically, 
allowing the user to complete a quick review of the 
snapshot prior to processing. 

In some cases, the software cannot locate enough focus 
points, and focus point data must be manually input. This 
event tends to occur with slides that are lightly stained, 
or slides that have a relatively high percentage of white 
space between tissue samples. Manual placement of 
focus points on the image is labor intensive; so, if many 
images require focus point placement, a considerable 
amount of labor is required. If the image does not contain 
sufficient focus points, the scanner will fail to process the 
image correctly and will not scan the slide. Of the 400 
slides regularly set to scan overnight, approximately five 
slides, or about 2%, fail to scan. However, this number 
fluctuates depending on the quality of the slide stains. 
The slides that fail are reviewed and scanned again the 
following morning.  

The Aperio AT2 scans the slide and creates a digital 
image stored in a proprietary file format known as a .svs 
file [10]. This file contains the raw image data and some 
metadata captured during the scanning process. A .svs 
file is a layered TIFF which uses JPEG 2000 compression 
to compress the actual image. The .svs file contains a 
thumbnail, which is a low-quality image of the slide, and 
the label image which is a low-resolution picture of the 
slide’s label. Both are viewable when the slide is opened 
in Aperio ImageScope software [11]. Other information 
stored includes downsample and offset information. 

Fortunately, open source software tools such as [12] exist 
that allow these files to be viewed and manipulated. 
Though the WSIs could be converted to standard JPEG 
image files (.jpg), because the scanner scans at such a 
high resolution, the dimensions of a full-slide image 
exceed the limits of the JPEG format. Therefore, we are 
using .svs files as the primary filetype for the corpus 
because it is efficient and handles full resolution images.  

 
Figure 3. The Leica Aperio AT2 digital slide scanner  

 



III. DATA ANONYMIZATION 
Once the scanner has finished digitizing the slides, the 
images are sorted into the corpus using the patient and 
sample number as descriptors. Under the Health 
Insurance Portability and Accountability Act (HIPAA) 
[13], patient identity must be kept entirely anonymous. 
To aid in this process, Protocol No. 24943 was approved 
by Temple’s Institutional Review Board (IRB) [14]. This 
protocol ensures that all necessary measures are taken to 
protect research subject information. Because of this, the 
scanner resides at Temple University Hospital. The slides 
never physically leave the hospital for obvious reasons. 
The digital images are stored on a secure HIPAA network 
and remain on this network until the data is anonymized. 

Patient data related to their identity must be removed 
through a process often referred to as deidentification or 
anonymization. A similar process to deidentify patient 
information was implemented by the Temple University 
Hospital EEG Seizure Corpus (TUSZ) [15]. TUH assigns 
patients a unique 8-digit Medical Record Number 
(MRN). A new randomized 8-digit key that maps to this 
MRN is created and used to anonymize the patient’s 
identity. The mapping file information remains on the 
hospital’s secure HIPAA network. 

Each clinical case is accompanied by a report which 
provides information about the case. The first page of a 
typical anonymized report is shown in Figure 4. 
Information such as patient name, sex, age, MRN, and 
the date of the sample is located on the front page of the 
report. More specific details are found below, such as the 

clinical history of the patient, a gross description of the 
sampled tissue, and a medical diagnosis completed by a 
pathologist. TUH stores all the reports on their own 
database known as EPIC. Unfortunately, access to EPIC 
was restricted so each report is printed directly from the 
database for use in the TUH Digital Pathology Corpus 
and is scanned into PDF format. The reports are then 
converted to a Microsoft Word Document (.docx) and 
any patient data is removed. The anonymized patient 
report is then placed into the corpus that will be publicly 
released.  

The .svs files also contain a snapshot of the glass slide 
label. Figure 5 shows an open .svs file in the Aperio 
ImageScope software. The label usually contains the 
patient name as well as the sample number. To protect 
patient information, this layer has been removed in the 
public releases, leaving only the image itself in the file 
and various metadata created by the scanner. The 
metadata in the .svs files contains information that was 
recorded automatically, such as the scanner id and 
information about the image unrelated to the patient. This 
information can be obtained using Openslide. 

IV. DATA ORGANIZATION 
Aperio’s eSM comes with three options for organizing 
data, each one designed for a different purpose: Research, 
Educational, and Clinical. The Research option was 
chosen as the initial method of data organization due to 
its structure. The top level of the research category 
contains broad tissue type categories called Cases. These 
include Breast, Prostate, Gastrointestinal, Head/Neck, 
Pulmonary, and Endocrine. Inside each of these cases are 
more specific specimens. Each specimen is characterized 
by a specific clinical case. Specimens contain all the 
image files associated with the case as well as the clinical 
report in the form of a word document. A screenshot of 
the slide level organization is shown in Figure 6.   

When the Aperio AT2 scanner is configured to scan 
images directly to the eSM database, all images are stored 

 

Figure 4. An excerpt from a typical anonymized report 

 

 

Figure 5. A typical scanned image before being anonymized 

 



in single directory on the HIPAA secured server. Each 
image is given a sequential name starting at one. This is 
far from a working naming convention for a public 
release, so a separate corpus was created for easy 
distribution. The top level of the corpus describes the 
broad tissue type of the cases underneath. The tissue 
types are the same as used in eSM. Under the tissue types, 
the cases are then sorted by the patients unique MRN. 
This additional level of organization allows for 
individual cases to be associated with specific patient 
information, which has proven to be valuable for age and 
sex-based studies.  

Below the MRN level, the cases are separated by their 
respective case number, with the slide images and report 
in this case number directory. An image name is created 
by using the case number and other identifiers from the 
slide, such as the tissue site and code signifying the type 
of cut that was used. Samples are numbered 
chronologically starting with the year the sample was 
obtained, and then, the sample number. For instance, the 
first sample of 2002 is labeled s02_00001. These sample 
numbers will also be randomized in the public release to 
further protect the patient’s private information.  

Below is an example full filename for a typical image in 
the public corpus: 
/breast/12345678/0s02_00001/0s02_00001_0a001_lvl0001_s00.svs 

The first directory describes the type of tissue followed 
by the 8-digit patient MRN. The next fields are the 
clinical case name and the actual filename. The image 
name begins with a repeat of the case name, followed by 
the site code, 0a001, which is the specific area of the 
original biopsy. Following this is the type and number of 
the cut, lvl0001. This is done to ensure that each image 
has a unique filename. 

The most common codes for the type of cut are level (lvl), 
deep (dep), and recut (rct). Level is a standard code for 
the site, given to slides to separate them from samples of 
the same tissue site. Deep slides are created if the initial 
sample is not sufficiently clear and a deeper tissue sample 
is taken. Recuts are completed only if the deeper tissue 
still has not given the required level of information 

prescribed. The last three characters of the image 
filename, s00, are used to separate images that have the 
same exact information, which is not common. 

Most of the slides scanned from each case are stained 
with hematoxylin and eosin (H&E), which is the most 
common staining procedure currently used in pathology. 
A few immunochemically stained slides are included in 
the corpus, but many of these slides are not present in the 
cases we receive at TUH. There are plans in place to 
begin scanning more immunochemically stained slides in 
the future, but as of now they are difficult to catalog. The 
wide variety of staining types in these slides is difficult 
to characterize using the current naming convention. 

V. COMPUTING INFRASTRUCTURE 
To support the long-term goals of this project and digitize 
the contents of all the digital pathology slides, it is nec-
essary to implement a storage architecture that extends 
far beyond the demands of ordinary computing. It is a 
consequence of the extremely high resolution at which 
digital pathology images are scanned. Acquiring the raw 
storage to support the corpus becomes non-trivial. Cloud 
storage is enticing technology for many problem spaces 
but is not without its drawbacks. In addition to virtualiza-
tion overhead, the cost of cloud storage at scale can be 
prohibitive. For example, Amazon’s S3 storage pricing is 
$0.021/GB-month (using their U.S. East coast pricing) 
[16], which at 1.5 petabytes becomes $34,500/month. It 
is primarily for this reason that alternatives to cloud stor-
age were considered for this purpose. 

For this type of corpus, which could find uses in both 
research and clinical settings, storage must be highly 
available, so that operations performed on the data (e.g. 
research, annotations, diagnosis) do not suffer from high 
latency or low throughput, which would cause 
application performance to suffer, or even render an 
application utilizing the corpus unusable. Another 
requirement, especially in a clinical setting, is robustness 
with respect to physical hardware failure.  
For diagnostic or clinical purposes, the data stored would 
be HIPAA-protected data, meaning that any disk or 
hardware failure resulting in data loss could be 
catastrophic.  For this reason, the system needs to be able 
to withstand multiple distributed hardware failure events 
and maintain data integrity. 
Respecting the constraints given by this application 
domain, we have developed the large fileserver 
architecture shown in Figure 7. Since the storage is 
distributed among a network of machines, it is both 
extensible and fault-tolerant, since each machine can be 
assigned an identical backup machine so that should an 
entire machine fail completely, data is recoverable from 
the backup. At the filesystem level, a ZFS filesystem [17] 
was used. ZFS uses its own RAID implementation that 

 
Figure 6. A screenshot of a databased image 

 



allows for a certain number of disks (depending on the 
configuration) to fail without losing data. 

At the highest level of abstraction is the GlusterFS 
filesystem [18], which is a network-aware meta-
filesystem capable of taking existing filesystems on 
multiple machines and combining them.  It is at this level 
that machines could be configured to exist in mirrored 
pairs, so that any data written to one machine is 
automatically replicated on its mirror. The physical 
implementation of this system is shown in Figure 8.  The 
two petabyte machines and the server hosting eSM are 
connected on a VLAN separate from our HPC cluster. 

VI. ANNOTATION 
Currently, the TUDP Corpus contains over 11,000 slides 
from 597 unique patients and 651 different cases. Most 
of the slides are composed of urology/prostate, breast and 
gastrointestinal cases. The remaining slides fall under 
smaller categories, such as pulmonary, head/neck and en-
docrine. These statistics are compiled in Figure 9. The 
slides included in the “miscellaneous” category do not 
belong to any of the broader categories due to a lack of 
information about the sample.  

The integration of the corpus into the workflow at TUH 
relies on Aperio’s eSM software Error! Reference 
source not found.. Cases are assigned to an individual 
pathologist for viewing. Pathologists can quickly analyze 
and annotate clinical slides that require review. eSM is a 
browser-based tool, so no additional software needs to be 

installed on a client’s computer – a major consideration 
when interfacing with hospital IT organizations. The tool 
is essentially a GUI front-end that connects to a back-end 
SQL database. This database contains manually entered 
patient and case information as well as the paths to the 
images, allowing for easy access and storage of the data 
on a large scale.   

The .svs files can be opened and viewed using free soft-
ware created by Aperio called ImageScope [11]. From 
within the ImageScope software, pathologists annotate 
regions of the image and add comments. After the anno-
tations are complete, the annotation information, which 
includes coordinate information defining the location of 
the region that was annotated, shape information describ-
ing the boundaries of the region, and text containing the 
specific comments made by the pathologist. 

The Aperio ImageScope software allows several shapes 
to be created to define the region of interest. The availa-
ble shapes include a rectangle, ellipse and a freehand pol-
ygon form. Pathologists often argue that rectangular and 
elliptical shapes are not useful to signify regions of inter-
est since diseased regions are usually irregular in shape. 
Because of this, the freehand annotations will be ex-
tremely important. Freehand annotations ensure that dis-
eased tissue is fully encompassed and there is no room 
for misinterpretation of the affected region. 

While 400 slides can be scanned every night by the Ape-
rio AT2 scanner, a single pathologist would not be able 
to annotate that volume of slides in a day. According the 
code of federal regulations, the maximum number of 
slides that a can be viewed in an 8-hour work day is 100 
slides (approximately 5 minutes per slide) Error! Refer-
ence source not found.. Therefore, the proposed 1M im-
age database would require over 80,000 hours of annota-
tion time, or 41 person-years. This is unacceptably high, 
so we are exploring ways to reduce this time, as we have 
done with other bioengineering applications. Not all 
slides require 5 minutes, however, and we are still early 

 
Figure 7. A large fileserver architecture 

 

 

 
Figure 8. A HIPAA-compliant network architecture 

 



in the annotation process, so these estimates are likely to 
change. 

VII. SUMMARY 
To share clinical cases with colleagues without WSI 
digitization, the glass slides must be physically 
transported to separate locations for review, which is 
highly time-consuming and not economical. The ability 
to scan slides into digital images and place them on a 
secure HIPPA network accessible to pathologists 
promotes remote accessibility and collaboration on 
patient cases. Pathology is a field where practitioners do 
routinely consult colleagues for second opinions, and 
WSI digitization is enhancing these collaborations. 
Educational practice also stands to gain from having 
access to a large, open source pathology corpus that can 
be easily searched using unstructured queries. 

The Clinical Laboratory Improvement Amendments [20] 
require that histology slides be kept for a minimum of ten 
years after the date of examination. This requires 
hospitals to maintain massive physical archives of these 
slides. Slides are often stored off site and are not 
accessible without transportation back to the hospital, 
creating an additional layer of inefficiency and increasing 
operating costs. WSI digitization greatly enhances the 
value of these archives for clinical practice, research and 
teaching. The physical storage required to manage such a 
large archive electronically is now affordable and can be 
implemented using the relatively simple architecture 
described in this paper. 

Our primary goal in this project, which began in October 
2017, is to scan and annotate 1M slides in three years. 
Each image will have an associated annotation file and 
clinical report. The clinical reports only provide 
information for the whole case, with little to no 
information given on individual WSIs. Therefore, the 
associated annotation file is vital to understand the 
location(s) of diseased regions on the image. Similarly, 
the precise pixel data within the annotation file will aid 
in machine learning applications by allowing algorithms 
to associate specific areas with disease. 

This corpus will enable the development of state-of-the-
art machine learning systems, which require vast 
amounts of training data, for pathology applications such 
as cancer identification. This will, in turn, enable the 
development of software systems to assist diagnosis and 
accelerate the diagnostic process. This will ease 
pathologist workloads, which is important since 
projections are that there will be a shortage of 
pathologists in the coming decade Error! Reference 
source not found.. 

Since this project is in its early stages, we welcome you 
to monitor our progress via the project web site, 
www.isip.piconepress.com/projects/nsf_dpath and 
provide feedback. The data and resources described in 
this paper will be available from this site. 
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