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Abstract— Digital pathology is a relatively new field that
stands to gain from modern big data and machine learning
techniques. In the United States alone, millions of pathology
slides are created and interpreted by a human expert each
year, suggesting that there is ample data available to
support machine learning research. However, the relevant
corpora that currently exist contain only hundreds of
images, not enough to develop sophisticated deep learning
models. This lack of publicly accessible data also hinders the
advancement of clinical science. Our digital pathology
corpus is an effort to place a large amount of clinical
pathology images collected at Temple University Hospital
into the public domain to support the development of
automatic interpretation technology. The goal of this
ambitious project is to create a corpus of 1M images. We
have already released 10,000 images from 600 clinical cases.
In this paper, we describe the corpus under development
and discuss some of the underlying technology that was
developed to support this project.

1. INTRODUCTION

Pathology is a subset of medical science related to the
cause, origin, and nature of disease [1]. A typical
pathology laboratory workflow begins with a technician
preparing the slide. This involves placing a tissue
specimen on a glass slide, such as the specimen shown in
Figure 1, and staining the slide for observation [2]. A
board-certified pathologist views the stained specimen
through an analog microscope to determine a diagnosis.
The glass slides are then sorted by their respective tissue
type and stored long-term often at an off-site location.

Figure 1. Example of a tissue biopsy specimen [2][3]

Digital pathology is the process of digitizing an analog
image, so that images can be processed by a computer.
Digitizing slides into whole slide images (WSI) provides
both short-term and long-term benefits. Pathologists may
provide real-time, remote analysis of the specimen and
examine the sample with multiple pathologists
simultaneously. Additionally, pathologists may retrieve
existing digital WSIs through keyword searches and have
access to the corresponding electronic medical records.
Long-term advantages include the prevention of physical
slide decay (i.e. stain discoloration, tissue degradation)
over time [3].

WSIs are scanned using a digital slide scanner (DSS) and
electronically stored. A typical scanned image is shown
in Figure 2. With the advent of inexpensive digital
storage, low-cost compute clusters, and cloud data
storage, it is a cost-effective endeavor to maintain digital
image archives of pathology slides. The ability to process
slides digitally at a healthcare provider in real-time by
using a DSS represents a transformative capability for
clinical workflows.

Estimates indicate that approximately 10M pathology
slides are observed each year in the United States.
However, despite the existing volume of data, no
comprehensive public WSI corpus exists. Currently,
available resources such as the Cancer Genome Atlas
(TCGA) Cancer Digital Slide Archive (CDSA) consists
of WSIs on the scale of hundreds of slides per cancer
type [4]. A study by Barker et al. [5] utilized the TCGA
corpus and claimed machine performance that exceeded
human performance. The dataset contained 604 WSIs of
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Figure 2. Sample of a breast cancer case using H&E staining



two types of brain cancer: 364 glioblastoma multiforme
and 240 lower grade glioma.

While access to public datasets is limited to hundreds of
WSIs, private corpora, such as Philips and LabPON,
contain WSIs on the scale of hundreds of thousands [6].
However, these private corpora are built and maintained
to develop and deliver proprietary software to the end
user. Access to any such proprietary corpus, if possible,
often requires highly restrictive data licensing terms in
addition to payment for distribution costs (which can be
high in a clinical setting). Furthermore, distribution terms
lead to long delays in acquiring and accessing the data.

Deep learning systems rely heavily on big data resources.
Current public corpora, as previously outlined, are not
adequate for supporting such technology development
due to their small sample size. Therefore, the intent of
this paper is to outline the implementation, impact, and
goals of an NSF-funded Major Instrumentation Grant
(NSF-MRI) [7] to develop a large, open source corpus of
pathology images than can support state of the art
machine learning research. Practicing clinicians will
have unencumbered access to annotated WSI samples for
educational purposes. Additionally, industry and
research facilities will have big data resources for the
development of deep learning algorithms and systems.
We are collaborating with the Department of Pathology
at Temple University Hospital (TUH) with a goal of
scanning 1M slides from their vast archive of clinical
data. This corpus, known as the TUH Digital Pathology
Corpus (TUDP), will be released into the public domain
over the next two years.

II. IMAGE DIGITIZATION

We use a Leica Biosystems Aperio AT2 high volume
scanner [8], as shown in Figure 3, to scan our slides.
Aperio’s Scanscope Console software is used to scan
images and eSlideManager (eSM) Error! Reference
source not found. to database the images and manage
metadata. This scanner is an industry-leading unit that
includes a 40x scanning resolution and a z-stacking
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Figure 3. The Leica Aperio AT2 digital slide scanner

feature (up to 25 layers). A typical single specimen slide
requires approximately 200 Mbytes of storage, though
more complex images can increase in size to 1 Gbyte for
multiple specimen slides (and up to 5 Gbytes for z-
stacked images). The AT2 scanner can hold a total of 400
slides arranged in 40 carousels of 10 slides each. A period
of approximately seven hours is required to scan 400
slides. This operation is run overnight, and the slides are
organized using eSM the following day.

The scanning process is not as automated as one might
expect. Before the scanner is set to conduct full scans
overnight, pre-scan snapshots are taken of each slide. The
duration of this process is approximately two hours per
400 slides. The snapshots are completed to allow for
focus points to be placed on each snapshot and to specify
the area of the slide that should be scanned. Fortunately,
the software identifies focus points automatically,
allowing the user to complete a quick review of the
snapshot prior to processing.

In some cases, the software cannot locate enough focus
points, and focus point data must be manually input. This
event tends to occur with slides that are lightly stained,
or slides that have a relatively high percentage of white
space between tissue samples. Manual placement of
focus points on the image is labor intensive; so, if many
images require focus point placement, a considerable
amount of labor is required. If the image does not contain
sufficient focus points, the scanner will fail to process the
image correctly and will not scan the slide. Of the 400
slides regularly set to scan overnight, approximately five
slides, or about 2%, fail to scan. However, this number
fluctuates depending on the quality of the slide stains.
The slides that fail are reviewed and scanned again the
following morning.

The Aperio AT2 scans the slide and creates a digital
image stored in a proprietary file format known as a .svs
file [10]. This file contains the raw image data and some
metadata captured during the scanning process. A .svs
file is a layered TIFF which uses JPEG 2000 compression
to compress the actual image. The .svs file contains a
thumbnail, which is a low-quality image of the slide, and
the label image which is a low-resolution picture of the
slide’s label. Both are viewable when the slide is opened
in Aperio ImageScope software [11]. Other information
stored includes downsample and offset information.

Fortunately, open source software tools such as [12] exist
that allow these files to be viewed and manipulated.
Though the WSIs could be converted to standard JPEG
image files (.jpg), because the scanner scans at such a
high resolution, the dimensions of a full-slide image
exceed the limits of the JPEG format. Therefore, we are
using .svs files as the primary filetype for the corpus
because it is efficient and handles full resolution images.



III. DATA ANONYMIZATION

Once the scanner has finished digitizing the slides, the
images are sorted into the corpus using the patient and
sample number as descriptors. Under the Health
Insurance Portability and Accountability Act (HIPAA)
[13], patient identity must be kept entirely anonymous.
To aid in this process, Protocol No. 24943 was approved
by Temple’s Institutional Review Board (IRB) [14]. This
protocol ensures that all necessary measures are taken to
protect research subject information. Because of this, the
scanner resides at Temple University Hospital. The slides
never physically leave the hospital for obvious reasons.
The digital images are stored on a secure HIPAA network
and remain on this network until the data is anonymized.

Patient data related to their identity must be removed
through a process often referred to as deidentification or
anonymization. A similar process to deidentify patient
information was implemented by the Temple University
Hospital EEG Seizure Corpus (TUSZ) [15]. TUH assigns
patients a unique 8-digit Medical Record Number
(MRN). A new randomized 8-digit key that maps to this
MRN is created and used to anonymize the patient’s
identity. The mapping file information remains on the
hospital’s secure HIPAA network.

Each clinical case is accompanied by a report which
provides information about the case. The first page of a
typical anonymized report is shown in Figure 4.
Information such as patient name, sex, age, MRN, and
the date of the sample is located on the front page of the
report. More specific details are found below, such as the

Name:
Age/sex:  67/F DQ:5: 04/03/51
: Location: IRAD

& Received: 06/20/18-1554  gpopug: VER  Coll Date/Time: 06/20/18-143
Spec’ Type: LIVER BX Subm Dr: NIMAN, DMITRY
Tissues: A LIVER, NOS (LIVER CORE XS)
Procedures: IRON STAIN, GOMORI'STRICHRO, CEA, STAT BIOPSIES, SURG.PATH. V, CK7,
RECUT/11, MISC IEC, CK19, HEPPAR

ADDENDUM NOTICE

SxEk R RS ADDENDUMH +4 + 5554
SEE ADDENDUM DATA SECTION

OL0GY

GROSS/RESIDENT ASSIGNED: CHAKRA
MICRO/PATHOLOGIST ASSIGNED:JHALA

CLINICAL HISTORY

History of cholangiocarcinoma.

GROSS TISSUE DESCRIPTION

SITE A: Designated as "liver core biopsy”, labeled with the patient's name and received
in formalin, are 5 cores and fraguents of soft brownish-red tissue measuring 0.05 cm in
diameter and ranging from 0.4-1.5 cn in length. The specimen is entirely submitted in
cassette Al.

Dictated by: GONSALVES, MARIO

MICROSCOPIC DIAGNOSIS
SITE A:  Liver; biopsy:

Positive for tumor, see note.

Note: Additional work wp of the tumor is requested and will be reported as anaddendum.

Figure 4. An excerpt from a typical anonymized report

clinical history of the patient, a gross description of the
sampled tissue, and a medical diagnosis completed by a
pathologist. TUH stores all the reports on their own
database known as EPIC. Unfortunately, access to EPIC
was restricted so each report is printed directly from the
database for use in the TUH Digital Pathology Corpus
and is scanned into PDF format. The reports are then
converted to a Microsoft Word Document (.docx) and
any patient data is removed. The anonymized patient
report is then placed into the corpus that will be publicly
released.

The .svs files also contain a snapshot of the glass slide
label. Figure 5 shows an open .svs file in the Aperio
ImageScope software. The label usually contains the
patient name as well as the sample number. To protect
patient information, this layer has been removed in the
public releases, leaving only the image itself in the file
and various metadata created by the scanner. The
metadata in the .svs files contains information that was
recorded automatically, such as the scanner id and
information about the image unrelated to the patient. This
information can be obtained using Openslide.

IV. DATA ORGANIZATION

Aperio’s eSM comes with three options for organizing
data, each one designed for a different purpose: Research,
Educational, and Clinical. The Research option was
chosen as the initial method of data organization due to
its structure. The top level of the research category
contains broad tissue type categories called Cases. These
include Breast, Prostate, Gastrointestinal, Head/Neck,
Pulmonary, and Endocrine. Inside each of these cases are
more specific specimens. Each specimen is characterized
by a specific clinical case. Specimens contain all the
image files associated with the case as well as the clinical
report in the form of a word document. A screenshot of
the slide level organization is shown in Figure 6.

When the Aperio AT2 scanner is configured to scan
images directly to the eSM database, all images are stored

Figure 5. A typical scanned image before being anonymized
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Figure 6. A screenshot of a databased image

in single directory on the HIPAA secured server. Each
image is given a sequential name starting at one. This is
far from a working naming convention for a public
release, so a separate corpus was created for easy
distribution. The top level of the corpus describes the
broad tissue type of the cases underneath. The tissue
types are the same as used in eSM. Under the tissue types,
the cases are then sorted by the patients unique MRN.
This additional level of organization allows for
individual cases to be associated with specific patient
information, which has proven to be valuable for age and
sex-based studies.

Below the MRN level, the cases are separated by their
respective case number, with the slide images and report
in this case number directory. An image name is created
by using the case number and other identifiers from the
slide, such as the tissue site and code signifying the type
of cut that was used. Samples are numbered
chronologically starting with the year the sample was
obtained, and then, the sample number. For instance, the
first sample of 2002 is labeled s02_00001. These sample
numbers will also be randomized in the public release to
further protect the patient’s private information.

Below is an example full filename for a typical image in
the public corpus:

/breast/12345678/0s02_00001/0s02_00001_0a001_1v10001_s00.svs

The first directory describes the type of tissue followed
by the 8-digit patient MRN. The next fields are the
clinical case name and the actual filename. The image
name begins with a repeat of the case name, followed by
the site code, 0a001, which is the specific area of the
original biopsy. Following this is the type and number of
the cut, Ivl0001. This is done to ensure that each image
has a unique filename.

The most common codes for the type of cut are level (Ivl),
deep (dep), and recut (rct). Level is a standard code for
the site, given to slides to separate them from samples of
the same tissue site. Deep slides are created if the initial
sample is not sufficiently clear and a deeper tissue sample
is taken. Recuts are completed only if the deeper tissue
still has not given the required level of information

prescribed. The last three characters of the image
filename, s00, are used to separate images that have the
same exact information, which is not common.

Most of the slides scanned from each case are stained
with hematoxylin and eosin (H&E), which is the most
common staining procedure currently used in pathology.
A few immunochemically stained slides are included in
the corpus, but many of these slides are not present in the
cases we receive at TUH. There are plans in place to
begin scanning more immunochemically stained slides in
the future, but as of now they are difficult to catalog. The
wide variety of staining types in these slides is difficult
to characterize using the current naming convention.

V. COMPUTING INFRASTRUCTURE

To support the long-term goals of this project and digitize
the contents of all the digital pathology slides, it is nec-
essary to implement a storage architecture that extends
far beyond the demands of ordinary computing. It is a
consequence of the extremely high resolution at which
digital pathology images are scanned. Acquiring the raw
storage to support the corpus becomes non-trivial. Cloud
storage is enticing technology for many problem spaces
but is not without its drawbacks. In addition to virtualiza-
tion overhead, the cost of cloud storage at scale can be
prohibitive. For example, Amazon’s S3 storage pricing is
$0.021/GB-month (using their U.S. East coast pricing)
[16], which at 1.5 petabytes becomes $34,500/month. It
is primarily for this reason that alternatives to cloud stor-
age were considered for this purpose.

For this type of corpus, which could find uses in both
research and clinical settings, storage must be highly
available, so that operations performed on the data (e.g.
research, annotations, diagnosis) do not suffer from high
latency or low throughput, which would cause
application performance to suffer, or even render an
application utilizing the corpus unusable. Another
requirement, especially in a clinical setting, is robustness
with respect to physical hardware failure.

For diagnostic or clinical purposes, the data stored would
be HIPAA-protected data, meaning that any disk or
hardware failure resulting in data loss could be
catastrophic. For this reason, the system needs to be able
to withstand multiple distributed hardware failure events
and maintain data integrity.

Respecting the constraints given by this application
domain, we have developed the large fileserver
architecture shown in Figure 7. Since the storage is
distributed among a network of machines, it is both
extensible and fault-tolerant, since each machine can be
assigned an identical backup machine so that should an
entire machine fail completely, data is recoverable from
the backup. At the filesystem level, a ZFS filesystem [17]
was used. ZFS uses its own RAID implementation that
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Figure 7. A large fileserver architecture

allows for a certain number of disks (depending on the
configuration) to fail without losing data.

At the highest level of abstraction is the GlusterFS
filesystem [18], which is a network-aware meta-
filesystem capable of taking existing filesystems on
multiple machines and combining them. It is at this level
that machines could be configured to exist in mirrored
pairs, so that any data written to one machine is
automatically replicated on its mirror. The physical
implementation of this system is shown in Figure 8. The
two petabyte machines and the server hosting eSM are
connected on a VLAN separate from our HPC cluster.

VI. ANNOTATION

Currently, the TUDP Corpus contains over 11,000 slides
from 597 unique patients and 651 different cases. Most
of the slides are composed of urology/prostate, breast and
gastrointestinal cases. The remaining slides fall under
smaller categories, such as pulmonary, head/neck and en-
docrine. These statistics are compiled in Figure 9. The
slides included in the “miscellaneous” category do not
belong to any of the broader categories due to a lack of
information about the sample.

The integration of the corpus into the workflow at TUH
relies on Aperio’s eSM software Error! Reference
source not found.. Cases are assigned to an individual
pathologist for viewing. Pathologists can quickly analyze
and annotate clinical slides that require review. eSM is a
browser-based tool, so no additional software needs to be
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Figure 8. A HIPAA-compliant network architecture

installed on a client’s computer — a major consideration
when interfacing with hospital IT organizations. The tool
is essentially a GUI front-end that connects to a back-end
SQL database. This database contains manually entered
patient and case information as well as the paths to the
images, allowing for easy access and storage of the data
on a large scale.

The .svs files can be opened and viewed using free soft-
ware created by Aperio called ImageScope [11]. From
within the ImageScope software, pathologists annotate
regions of the image and add comments. After the anno-
tations are complete, the annotation information, which
includes coordinate information defining the location of
the region that was annotated, shape information describ-
ing the boundaries of the region, and text containing the
specific comments made by the pathologist.

The Aperio ImageScope software allows several shapes
to be created to define the region of interest. The availa-
ble shapes include a rectangle, ellipse and a freehand pol-
ygon form. Pathologists often argue that rectangular and
elliptical shapes are not useful to signify regions of inter-
est since diseased regions are usually irregular in shape.
Because of this, the freehand annotations will be ex-
tremely important. Freehand annotations ensure that dis-
eased tissue is fully encompassed and there is no room
for misinterpretation of the affected region.

While 400 slides can be scanned every night by the Ape-
rio AT2 scanner, a single pathologist would not be able
to annotate that volume of slides in a day. According the
code of federal regulations, the maximum number of
slides that a can be viewed in an 8-hour work day is 100
slides (approximately 5 minutes per slide) Error! Refer-
ence source not found.. Therefore, the proposed 1M im-
age database would require over 80,000 hours of annota-
tion time, or 41 person-years. This is unacceptably high,
so we are exploring ways to reduce this time, as we have
done with other bioengineering applications. Not all
slides require 5 minutes, however, and we are still early



Spec Type Number of Patients Number of cases Number of slides Avg number of slides per Patient
Breast 292 304 3,224 11.04
Endocrine 7 11 136 19.43
Gastrointestinal 109 109 1,966 18.04
Head, Neck 4 4 75 18.75
Pulmonary 4 4 55 13.75
Urology 180 194 5,083 28.24
Miscelleneous 8 25 684 85.50
Total 604 651 11,223 18.58

Figure 9. Some preliminary corpus statistics

in the annotation process, so these estimates are likely to
change.

VII. SUMMARY

To share clinical cases with colleagues without WSI
digitization, the glass slides must be physically
transported to separate locations for review, which is
highly time-consuming and not economical. The ability
to scan slides into digital images and place them on a
secure HIPPA network accessible to pathologists
promotes remote accessibility and collaboration on
patient cases. Pathology is a field where practitioners do
routinely consult colleagues for second opinions, and
WSI digitization is enhancing these collaborations.
Educational practice also stands to gain from having
access to a large, open source pathology corpus that can
be easily searched using unstructured queries.

The Clinical Laboratory Improvement Amendments [20]
require that histology slides be kept for a minimum of ten
years after the date of examination. This requires
hospitals to maintain massive physical archives of these
slides. Slides are often stored off site and are not
accessible without transportation back to the hospital,
creating an additional layer of inefficiency and increasing
operating costs. WSI digitization greatly enhances the
value of these archives for clinical practice, research and
teaching. The physical storage required to manage such a
large archive electronically is now affordable and can be
implemented using the relatively simple architecture
described in this paper.

Our primary goal in this project, which began in October
2017, is to scan and annotate 1M slides in three years.
Each image will have an associated annotation file and
clinical report. The clinical reports only provide
information for the whole case, with little to no
information given on individual WSIs. Therefore, the
associated annotation file is vital to understand the
location(s) of diseased regions on the image. Similarly,
the precise pixel data within the annotation file will aid
in machine learning applications by allowing algorithms
to associate specific areas with disease.

This corpus will enable the development of state-of-the-
art machine learning systems, which require vast
amounts of training data, for pathology applications such
as cancer identification. This will, in turn, enable the
development of software systems to assist diagnosis and
accelerate the diagnostic process. This will ease
pathologist workloads, which 1is important since
projections are that there will be a shortage of
pathologists in the coming decade Error! Reference
source not found..

Since this project is in its early stages, we welcome you
to monitor our progress via the project web site,
Www.isip.piconepress.com/projects/nsf _dpath and
provide feedback. The data and resources described in
this paper will be available from this site.
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