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This is the first paper to approach the problem of bias in the output of a stochastic simulation due to us-
ing input distributions whose parameters were estimated from real-world data. We consider, in particular,
the bias in simulation-based estimators of the expected value (long-run average) of the real-world system
performance; this bias will be present even if one employs unbiased estimators of the input distribution
Keywords: parameters due to the (typically) nonlinear relationship between these parameters and the output re-
Simulation sponse. To date this bias has been assumed to be negligible because it decreases rapidly as the quantity
Bias of real-world input data increases. While true asymptotically, this property does not imply that the bias
Uncertainty is actually small when, as is always the case, data are finite. We present a delta-method approach to bias
Input modelling estimation that evaluates the nonlinearity of the expected-value performance surface as a function of the
input-model parameters. Since this response surface is unknown, we propose an innovative experimental
design to fit a response-surface model that facilitates a test for detecting a bias of a relevant size with
specified power. We evaluate the method using controlled experiments, and demonstrate it through a
realistic case study concerning a healthcare call centre.
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1. Introduction

In stochastic simulation the “stochastic” element of the simu-
lation comes from the input models that drive it. In this paper
we focus on parametric input models, probability distributions or
stochastic processes that are estimated from observations of the
real-world system of interest. Since we can only ever collect a fi-
nite number of observations, error, with respect to what the simu-
lation says about the real-world system performance, is inevitable.

In this paper ‘response’ means the expected value of a simu-
lated output performance measure. Error caused by input mod-
elling can be broken down as MSE = Variance + Bias?; that is,
the mean squared error (MSE) due to input modelling is made
up of the variability of the simulation response caused by input
modelling, known in the literature as input uncertainty variance
(IU variance), and the squared bias due to input modelling. Barton
(2012) explains that, even in very reasonable simulation scenarios,
analysis of the response of interest can be very different when er-
ror due to input modelling is included. Barton (2012) was refer-
ring to the IU variance, but the same idea holds for the bias due
to input modelling. In simulation models where a large number
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of replications of the simulation are completed, effectively driving
out the inherent simulation noise caused by random-variate gen-
eration, ignoring the input modelling uncertainty can lead to over-
confidence in the simulation results. Underestimating the error of
the simulation response is dangerous, especially when this out-
put may be used to guide important decisions about a real-world
system.

To date the main focus of research in this area has been on
IU variance quantification, while the bias caused by input mod-
elling has been virtually ignored. This was partially justified by the
knowledge that, as the number of real-world observations of the
input models increases, the bias due to input modelling decreases
faster than the input uncertainty: given m observations of an in-
put model, it is known that the IU variance is O(1/m), whereas the
bias squared due to input modelling is typically O(1/m?2) (Nelson,
2013). Despite this, the bias can still be substantial for finite m.
Since in reality we can never collect an infinite number of obser-
vations, bias should not be ignored.

To facilitate understanding, we consider the simulation of a
healthcare call centre. More specifically, we look at the UK Na-
tional Health Service (NHS) 111 system. The NHS 111 system was
designed to take some of the strain from other healthcare systems
in the UK, for example, emergency departments and doctors’ surg-
eries. Ringing NHS 111 allows a caller to talk to a healthcare pro-
fessional who can advise them on what care they need. The NHS
111 call centre can be represented as a stochastic queueing model
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with a non-stationary arrival process and a stationary service dis-
tribution. Since we have only a finite number of observations from
which to estimate these input models, they are not correct; this er-
ror propagates through the NHS 111 simulation model to the per-
formance measures of interest.

This paper presents a delta-method approach to estimating the
bias caused by input modelling in stochastic simulation. The delta-
method is based on a second-order Taylor series approximation
and therefore requires the quantification of the second-order par-
tial derivatives of the response surface. In simulation, the response
of interest is most often an unknown function of its input models
which means we cannot directly evaluate its derivatives. We there-
fore propose the use of an experimental design to fit a response
surface model from which the second-order partial derivatives can
be estimated.

As a key feature of this paper, we also present a bias detection
test with controlled power for detecting a bias due to input mod-
elling greater than a pre-chosen value, y, considered to be a bias
of a relevant size. In this way when the bias is small, and therefore
not of concern to us, we require less computational effort to con-
clude that the bias is not significantly different from zero than to
accurately estimate it. Also, when the bias is large, i.e., greater than
y, we have a high probability of detecting it. In Section 3.1 we de-
scribe a novel way in which we construct the experimental design
used to estimate the response surface, which allows a practitioner
to easily control the power of the bias detection test.

The bias detection test also hinges on our choice of a “bias of a
relevant size”. When there is no clear choice for y from the prob-
lem context, we propose using the estimated value of the IU vari-
ance as a benchmark: if the bias is a small fraction of the IU vari-
ance, then it contributes little to the overall MSE, while if it is a
large fraction of the IU variance then it should not be ignored. In
Section 4.2 the IU variance is used to guide the choice of the rele-
vant bias, y, for the NHS 111 system.

We begin this paper with a discussion of the current literature
in Section 2. In Section 3 we present our delta-method approach to
bias estimation and the diagnostic test along with an algorithm to
aid implementation. In Section 4.1 we complete a controlled exper-
iment to evaluate the diagnostic test for response functions with
different forms, under varying numbers of observations and repli-
cations; and in Section 4.2 a realistic application of the method in
the NHS 111 system is given. We conclude in Section 5. All proofs
are left to the appendix.

A preliminary proposal of the ideas presented here appeared
in Morgan, Titman, Worthington, and Nelson (2017), but it did not
contain the key supporting theory: the proof that asymptotically
the delta approximation of bias, scaled by the number of observa-
tions, converges to the scaled true bias; the proof that, under cer-
tain assumptions, the scaled estimate of the delta approximation
of bias converges to the scaled delta approximation of bias; or the
proof that, without significant simulation effort, the variability of
the jackknife estimator of bias can easily be obscured by simula-
tion noise.

2. Background

To date, estimating the IU variance has been the main focus of
research in quantifying error caused by input modelling. See Song,
Nelson, and Pegden (2014) for a careful definition and discussion
of IU variance quantification techniques. A number of methods
for quantifying the IU variance in simulation models exist cover-
ing both frequentist and Bayesian methodologies (Barton, 2012). Of
these, Cheng and Holland (1997) present a delta-method approach
for simulation models with time-homogeneous parametric input
distributions; this was extended by Morgan, Titman, Worthington,
and Nelson (2016) for simulation models with piecewise-constant

non-stationary Poisson arrival processes. In Section 4 these two
methods will be used to estimate the IU variance and thus guide
our choice of a relevant bias.

When one refers to quantifying the ‘bias’ it is typically the
bias of an estimator of a population parameter given a sample of
data, averaged over the distribution of possible samples. In our
computer-simulation context this bias is also averaged over the
natural noise due to generating samples of the stochastic inputs.
Stated differently, our estimator is a function of both real-world
and simulated sampling. Standard methods for bias quantification
are the jackknife and the bootstrap (Efron, 1982), with the jack-
knife often considered the go-to choice. However, for bias estima-
tion without simulation noise, Withers and Nadarajah (2014) found
both the jackknife and the bootstrap are inferior to the delta-
method in terms of computational efficiency in all but a few spe-
cial cases where it could be said the jackknife method was com-
parable. When there is also simulation noise, the number of sim-
ulation replications required to mitigate it for the jackknife grows
as O(m?2), meaning that the simulation effort could become pro-
hibitive or an estimate of the bias could be obscured by the
simulation noise when m is large; for a proof of this result see
Appendix A. For a review of the conditions under which the delta-
method approximation is accurate see Oehlert (1992).

The delta-method requires the second-order partial derivatives
of the expected value of the simulation response. Since the ex-
pected value of the simulation response is not known, we propose
using an experimental design to fit a response surface model of
it. To allow estimation of the derivatives of the response surface,
we assume a simple type of meta-model, namely, a second-order
polynomial. To estimate its second-order terms, we use a central
composite design (CCD), which includes a Resolution V, or higher,
experimental design; see Montgomery (2013).

The CCD is easy to understand and meets the design resolution
requirement, but does suffer in terms of scalability, requiring an
exponentially increasing number of design points as the number of
input parameters increases. Fractional factorial designs are one way
of reducing the number of design points required to fit a response
surface. However, few efficient generators exist for creating Reso-
lution V fractional factorial designs with a large number of inputs.
An exception is the method of Sanchez and Sanchez (2005) which
we use to reduce the number of design points needed to sup-
port the quadratic response surface. This method can generate de-
signs with over 120 inputs. Methods for generating Resolution V
fractional designs are also discussed by Montgomery (2013) and
Box, Hunter, and Hunter (1978) but the allowable number of in-
puts within these design generators is limited.

Neither quantification nor detection of the bias due to input
modelling have previously been considered. In the following sec-
tion we present the methodology behind our delta-method esti-
mate of the bias due to input modelling and our bias detection
test.

3. Detecting bias of a relevant size

Let there be L parametric input distributions that drive the sim-
ulation with, k> L, true input parameters, 8¢ = {0f, 65, ..., 6f}. For
any set of parameters 6 = {01, 65, ..., 6;}, we denote the output of
the jth replication of the simulation as Y;(@) = n(@) +¢;, where
n(@) is the expected value of the simulation output of interest;
this could be, for example, the expected fraction of callers that
have to wait more than 1 minute to be served.

Let r denote the total number of replications; here we assume
€j, for j=1,2,...,r, are iid. random variables, with mean zero
and variance o2, that represent the stochastic estimation error
arising within each replication of the simulation, €; ~1i.i.d. (0, o?).



LE. Morgan, B.L. Nelson and A.C. Titman et al./European Journal of Operational Research 279 (2019) 869-881 871

In this contribution we assume that €; is unaffected by the
choice of 6, i.e. the simulation noise is homogeneous. In reality
this is likely to be false, but note that the Hessian estimator in-
troduced later to estimate and detect the bias remains valid even
given a failure of this assumption. A lower variance estimator could
be achieved by taking into account the heterogeneous simulation
noise in the experiment design, but this would add significant ad-
ditional complexity to the method. Also note that the experiment
design is used to construct a local (not global) response surface
model. We therefore expect the mean response surface and the
output variance around it to vary less as the experimental design
gets tighter around @™,

For each of the [=1,2,...,L input distributions we have
m; real-world observations from which we find the maximum
likelihood estimators (MLEs) of the input parameters, ™e =
{ojnle gimle __ gmie} By averaging over the r replications of the
simulation, driven by 8™ we gain an estimate of the output per-
formance measure of interest. We call this the nominal experiment.
We can reduce the stochastic estimation error about our response
of interest through further replications of the simulation, but this
has no effect on the error due to input modelling which is only
affected by my, my, ..., my.

For the NHS 111 system let 8¢ be the unknown parameters de-
scribing the true arrival process and service distribution, and @™!e
be the MLEs of these parameters. The MLEs are estimated from
service time and arrival count observations. In total there are m
arrivals, and assuming a service time is recorded for each arrival,
m service time observations. For any set of parameters 6, the per-
formance measure of interest in the NHS 111 system, 7(@), is the
expected waiting time of callers. For each replication Y;(8) is the
average of the waiting times observed in that replication.

The bias due to input modelling arises because we only have a
finite number of observations of the real-world system from which
to estimate 6°. This type of bias describes how far, on average, our
simulation response is from the real-world performance given the
error that arises from estimating the input models. Specifically

b=E[n@™)] - n(6°) (M

where the expectation is with respect to the sampling distribution
of @™e. When the simulation response is non-linear in @, as is usu-
ally the case, this bias will always arise; we now approximate it
using the delta-method in an innovative way.

Assuming the expected simulation response, n(-), is at least
twice continuously differentiable about 8¢ it can be expanded as
a Taylor series to second-order

1O™) ~ 0(6%) +d@™)TVN() + 5 d(O™)T HE)AO™),
)

where d(@™e) = (@™ —9°) is the difference between the MLEs
and the true parameters, V7(0°) is the (kx 1) gradient vector
and H(#°) is the (kx k) Hessian matrix of the response func-
tion. Note that the Hessian matrix, H(0¢), is composed of the
second-order partial derivatives with respect to the k input pa-
rameters, and approximates the curvature of the response sur-
face. To ease explanation, let m be the common number of ob-
servations collected from each of the L input models. The follow-
ing results hold in slightly modified form for m;#my #---#my,
provided m;/ Z?:] m; — ¢; > 0 for some fixed value ¢; as m— oo.
Taking the expectation of (2), whilst noting that, under mild
conditions, E[d(@™¢)] = E[(@™¢ —0°)] — 0 as m — oo, we get the
delta-method approximation of bias,

b~ % ]E[d(emle)T H(OC)d(emle)] — popprox.

After some matrix manipulation, this simplifies to
1
pepProX — 5 tr(2 H@@)) (3)

where tr() denotes the trace of a matrix and Q = Var(@™e) de-
notes the variance-covariance matrix of the MLEs. For a proof
of the asymptotic equivalence of b and b%P™* as m— oo see
Appendix B.

As previously noted ¢ is unknown; if it were known then there
would be no error due to input modelling. In simulation studies
it is also most often the case that the systems we simulate are
complex, and thus no tractable form of our response of interest
exists; we will therefore also treat the response function, n(-), as
unknown. This means the delta approximation of bias, b%P™*  can-
not be evaluated directly; we therefore estimate it by

b= %tr(ﬁ H(@™e)). (4)

Evaluation of b requires estimates of both the variance-covariance
matrix of the input parameters and the Hessian matrix of second-
order partial derivatives. In practice we estimate €2 using Q=
Iop(@™e)~1/m the inverse Fisher information evaluated at @™e,
From this point on, Q will refer to this plug-in estimate for
Var(Gm’e).yotice that using €2 rather that €2 introduces additional
error into b, but this error was insignificant in the experiment re-
ported in Morgan et al. (2017).

In brief, Morgan et al. (2017) found that in controlled experi-
ments with a truly quadratic n(-) and homogeneous variance, the
relative error of b to b using $2 was shown to be less than 1%.

Estimating the Hessian is more difficult. For this we choose a
response surface modelling approach, quantifying the non-linearity
of the response surface by investigating the behaviour of () close
to @™Mle, our estimate of ¢, see Section 3.1.

Based on our estimate of the bias, we present a bias detec-
tion test with high power when |b|>y. In Section 3.2 we illus-
trate the use of an experimental design for estimating the Hessian,
and therefore the bias. We also present a novel way to construct
this experimental design that allows a practitioner to control the
power of the bias detection test.

3.1. Estimating the Hessian

To estimate the Hessian we make the further assumption that
our response surface is locally quadratic; that is, if we are near
enough to ¢

nO)=po+0"B+ %GTBG, (5)

where B is the vector of coefficients belonging to the linear terms,
B is the (k x k) matrix of coefficients belonging to the interaction
and quadratic terms and € is any vector of input parameter values
near 6°¢. Note that, if n(-) is twice continuously differentiable at 6°¢,
as assumed in (2), then this is approximately true using Taylor se-
ries. In Section 3.3 we suggest a test for lack-of-fit of the quadratic
response surface; then in Section 4.1 we evaluate this assumption
by considering responses with different functional forms. For now
we will assume (5) holds.

By fitting model (5) we can estimate the Hessian matrix of
second-order partial derivatives, allowing the evaluation of b. It is
clear that taking the second-order partial derivatives of (5) with re-
spect to 6 is equivalent to estimating B. As 8¢ is unknown, we will
use a central composite design (CCD), centred at §™¢, to fit this
model. The CCD is well known and has at least Resolution V, al-
lowing the estimation of quadratic and interaction effects without
confounding. Fig. 1 illustrates a CCD design in k =2 dimensions;
factorial (purple) and axial (yellow) design points are positioned
relative to @™ the central (red) design point.
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Fig. 1. A CCD design with dimension k = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To fit model (5), we complete r replications of the simulation
model at each design point. Let np denote the number of facto-
rial design points and n, the number of axial design points. As
suggested by Montgomery (2013), we will carry out more replica-
tions of the experiment at the centre point allowing more infor-
mation collection at ™, the point at which we wish to estimate
the Hessian. We let this number be a multiple of r, which allows
us to treat the multiple replications at centre point as multiple de-
sign points, nc> 1. The total number of design points n is there-
fore n = np 4+ ny + nc = 2K + 2k + n¢, and depends on the number
of input parameters, k. The total number of simulation replications
isnxr.

Clearly, the total number of design points, n, grows exponen-
tially with the number of input parameters, k. For k = 10, the num-
ber of factorial design points is np = 210 = 1024, even without con-
sidering the axial and centre points of the design. To reduce the
size of the design, we therefore propose the use of fractional fac-
torial designs, with the addition of axial and centre points. The key
to this is to select a Resolution V, or higher, fractional factorial de-
sign to ensure no main effects or two-factor interactions are con-
founded (Montgomery, 2013).

Sanchez and Sanchez (2005) provide an efficient algorithm for
generating Resolution V CCDs with a greatly reduced number of
design points using discrete-valued Hadamard-Walsh functions to
describe and generate the design. Their method focuses on spec-
ifying highly-fractionated Resolution V fractional factorial designs.
After the fractional-factorial design has been generated the centre
and axial points can then be added just as in the full CCD. When
k =10, Sanchez and Sanchez (2005) recommend ng = 128 facto-
rial design points, resulting in n = 148 + nc design points in total

without specifying n¢. This is computationally much cheaper than
the np = 1024 factorial design points, in total n = 1044 + n¢ points,
needed in the full CCD experiment. In Section 4.2 we implement
these reduced designs alongside the full-factorial CCDs in the NHS
111 setting for comparison.

In Fig. 1, we position the factorial and axial points relative to
the centre point, ™€, Let A; be the distance to a factorial point
from the centre point in the ith direction, i =1, 2, ..., k, and simi-
larly let 7; be the distance to the axial points. Experimental designs
are often used to investigate the operational range of systems. It is
therefore common to work with standardised variables, transform-
ing the original quantitative factors to the values +1 and -1, rep-
resenting the high and low levels of each factor at the edge of the
operational space. We use experimental design quite differently.
We are not interested in looking at the behaviour of 7(-) over the
entire range of each input variable. Instead, we are interested in
assessing the Hessian of the response surface at the unknown 6°¢.
\/ Var(omie) for i=
1,2,...,k, to scale the experimental design in each direction, we
have a reasonable chance of covering 8¢ without having to spread
our design points so wide that we risk violating the quadratic as-
sumption over our design space. Note that, based on similar rea-
soning we might have chosen to use the variance-covariance ma-
trix of the MLEs, Var(@™€), to scale the design. This would take
into account dependencies among the input parameters, but would
have introduced substantial additional complexity to the method.
Given that we cannot prove that either method leads to the opti-
mal design scaling we opt for the simpler option. That is, we set

Aj=a,/Var(f™¢) and 17; = wA; = aw,/Var(6e) where a is the

By using the standard deviation of the MLEs,
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number of standard deviations the factorial points are from the
centre point in the it" direction. Here w is the scaled distance from
the centre to the axial points; we set w = ,/(\/ngn — ng)/2 as sug-
gested by Dean and Voss (1999) for creating orthogonal designs,
although we note here that due to the assumed quadratic nature
of the response surface, orthogonality does not hold.

At the ith design point we run r replications of the simula-
tion returning the averaged output of the simulation, Y(@;) for
i=1,2,..., n. Given the averaged outputs we use least-squares re-
gression to fit the response surface model and therefore evaluate
the Hessian,

2A§11 B;lZ .. By
. By 2By
A (emle) —

By 2By

Given € and A(@™), we can now estimate the bias, using B, as in
Eq. (4).

We can also estimate Var(b) Conditional on the value of Q, the
plug-in estimate of Var(g™'e), Var(b) is

Var(b) —Var[] tr(Q ﬁ(emle))]

1 k R k k
=ZVar 2 B Z Z
i=1 j=li=1i
k k k k
=33 VarBpQ2+2 Y. > Cov(By. Bpg) 2

i=1 i<j i<j p=q,ij<pq

This requires the calculation of Var(ﬁ), the variance-covariance
matrix of regression coefficients belonging to the interaction and
quadratic terms. R

Given we estimated B by least-squares regression an estimator
of Var(B) is easily obtained under the assumption of normally dis-
tributed residuals with homogeneous variance, using standard re-
gression analysis. Note that the assumption of normally distributed
residuals is reasonable here since the output at each design point
is the average of a large number of replications r. We derived that
Var(B) has special form

- 2 - 2
Var(B;) = LAS, Var(B;;) = GA fA and
ra4 Qﬁ ra4 Qiinj
~ o~ o‘zg
Cov(B;, Bjj) = — =&
e ra4Q,»,~S2jj

where, s, f and g are constants independent of the scaling factor a
and Q. We exploit the common ra* scaling in Section 3.2 when it
comes to manipulating the CCD width to control the power of our
hypothesis test.

Application of our method will always follow a nominal exper-
iment run at ™e; we therefore have a natural estimator of the
simulation noise o'2; we denote this by 2. In practice we use G2
as a plug-in estimator in the expressions for Var(ﬁﬁ),Var(BU) and
COV(B,’,‘, B“)

We derived that when using a CCD, Cov(ﬁij,ﬁzm) =0 when i#j
or [#£m, therefore after some simplification our estimate of Var(B)
has the form

G fz.z_

o~ 2
Var(b)=%4 sk+fzz

i=1 j>i i jj

+gk(k—1) |. (6)

At this point we have presented a method for estimating the
bias of the simulation response caused by input modelling and
have also provided a variance estimate associated with it. How-
ever, in some cases the bias will be small and therefore hard to

accurately estimate. When the bias is small, we are not interested
in getting a precise estimate of b. A bias detection test could there-
fore save us computational effort since we do not require as much
precision to be able to reject a hypothesis as we would perhaps
want to use b as a point estimate of the error about our perfor-
mance measure. Let y denote the size of the smallest bias due to
input modelling that would concern us. We will now present our
key idea, a diagnostic test for detecting the bias with controlled
power of rejecting the null when [b| > y.

3.2. A bias detection test

We begin by considering the hypothesis test Hy : b= 0vs. Hy :

b # 0 with test statistic T =B/ \Ta\r(lA)). Let the size of the test be
denoted by «; and the power by 1 — ;. We shall assume that

b—b
V/Var(b)
which is a reasonable approximation since b is a linear combina-
tion of asymptotically normally distributed least-squares regression
estimators, and we expect Var(b) to be a good estimate of Var(b)
since we have many observations. The key to this test is in con-
trolling the power at a pre-specified level 1 -, so that, when
the absolute bias is truly greater than or equal to y, we have a
high probability of rejecting the null hypothesis. We therefore re-

quire an experimental design where the following significance and
power constraints hold given y,

Pl|T| > Zi_g,2 | b=0]=0 (8)

~N(0,1) =2, (7)

PLITI>Ziay2 | Bl 2y 121~ (9)

Let the true IU variance of the response of interest be denoted
by k = Var(n(@™e¢)). Using IU variance quantification techniques
we can estimate « by k. We propose that, when the practitioner
does not have an obvious value in mind for y, ¥ can be used to
guide this choice. This is a natural suggestion as it looks at the
bias within the context of the total MSE due to input modelling. If
the bias is very small compared to k¥ it may not be worth taking
into account. On the other hand if the bias is large compared to k¥
it would be important, and using ¥ to guide our choice of y will
give us high power of rejecting the null.

We know that Eq. (8) is guaranteed by (7). Constraint (9) holds
when

JVar(h) < z% (10)

1-oy Za] /2

This says that the estimate of the variance of our bias estimator,
\7a\r(5), can be used to control the power of our test. From Eq. (6) it
can be seen that, of the components that make up Var(b), only the
width of the CCD, controlled via a, and the number of replications
at each design point, controlled via r, can be influenced by the
practitioner. In many simulation scenarios we are constrained by
some fixed simulation budget. When this is the case, and we have
a set total simulation budget n x r that we are willing to spend, we
can set a, the scaling parameter of the experimental design, to be
the smallest value such that

+gk(k-1) , (11)

IN

=22 Q.z.

sk—i—fzz

i=1 j>i Qi fj

Q

>U
_T2

where t =Z;_y, —Zy, 2, the difference of the critical values given
our size and power requirements. Alternatively, we may wish to
choose a just large enough so that we can be confident that ¢ has
been covered within the CCD design space and set r appropriate
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to it; recall that a was defined in units of the standard deviation
of the MLEs. Notice that we can easily rewrite (11) to yield the
number of replications as a function of a. Some caution is advised
as r = 0(1/a*), which means that a small decrease in the width
of the design leads to a great increase in the number of replica-
tions required at each design point to estimate the change in the
response surface in the smaller region.

Due to the limitations on how far we can spread our design
before the quadratic assumption breaks down, we propose fixing
an appropriately large r and letting (11) guide our choice of a. In
Section 3.3 we describe a lack-of-fit test that can be used to test
the quadratic assumption.

Given a and r that satisfy (11), we are able to set up the CCD
to ensure that the power holds at the pre-set level, 1 — o, within
the hypothesis test. We can now carry out the bias detection test
knowing that if the bias is truly greater than or equal to y we have
a high probability of rejecting the null hypothesis, Hy.

On completion of the test, even if we reject Hy, we cannot say
anything about the size of the bias. We have sufficient evidence to
suggest that the bias is non-zero at the (% level, and therefore is
worth considering, but we cannot be sure that it is greater than or
equal to our relevant value of bias, y. At this point the practitioner
may wish to collect further observations of the real system to re-
duce the error due to input modelling. Another option might be to
spend further simulation effort on improving the precision of the
estimate b so it can be included in a summary of the total error of
the response. Whichever choice is made we have presented a novel
method for detecting the bias due to input modelling, a source of
error that, before this contribution, had been virtually ignored.

An algorithm for the bias test is summarised below.

1. Preliminary Step. From the real-world input data estimate 6°¢
and Q by #™e and . From the nominal experiment estimate
o? by 2. Set y, a bias we wish to detect, o7 the size, and
1 — ay the power, of the test.

2. To ensure the power holds: initially let a = 1, noting that any

positive value will suffice; create the (n X (1 +2k+ k“‘%”))

design matrix X, centred at (0,0,...,0) with A;=a Var(@{"’e)
and 17, = wA;, fori=1,2,...,k Given X, evaluate s, f and g as
follows

_ Ty\—1 4
S= (X X)[(k+1)2(k+2) (k+1)2(k+2)]Akv

T -1 2 2
g= (X X)[(k+1)2(k+z>_1_(k+1)2(k+2)]Ak—1 Ak

Tyy—1 2 A2
f=X X)[k+2,k+2]A1 Aj,

where the subscript [i, j] denotes the element in the ith row
and jth column of a matrix. Now use (11) to set a and r, to
ensure the power holds.

3. Re-build the design matrix X, centred at (9]¢, onle, .. gmle),
given a.

4, For each design point i=1,2,...,n, run r replications of the
simulation at 6;, corresponding to row i of the design matrix;
average over the r replications to find Y (8;).

5. Using the simulation output from each design point Y(8;),
for i=1,2,...,n,_ estimate the regression coefficients
(Bo. 1. B - Br- B, Bra, - By By = XTX)"1XTY (0).
giving B11, B1z, ..., Be_ 1)k Brk L R

6. Evaluate ﬁ(emIE); thus, estimate b and Var(b) by b and \7a\r(b).

7. Calculate the test statistic, T =E/V\7§r(b). If |T| = Z1_q, 2 reject
the null hypothesis.

3.3. Validating the bias test

Up to this point we have made the assumption that our re-
sponse surface, n(-), is truly quadratic near 8¢. In reality we know

that this does not hold in all cases. Take for example a single-
server Markovian queue with capacity, C. For this system the ex-
pected number of customers in the system in steady state, 7(-),
can be expressed in closed form

6, (C+1pc
—0, 92C+1 — 9]C+1 ’

n(@) = %

where 6, is the arrival rate and 6, the service rate. This global
(not local) response function is clearly not quadratic. Detection of
the bias due to input modelling in this system was empirically ex-
plored by Morgan et al. (2017). They found that when the traffic
intensity 61/0, was close to 1, centring the CCD close to 8¢ was of
great importance to ensure power held at 1 — a, when y was set
to equal the true bias, b. This was particularly evident in models
with high capacity, C, where 5(-) was sensitive to changes in 64
and 6,.

Although the expected response surface is unlikely to be truly
quadratic, as long as the quadratic assumption holds locally within
our CCD, we will get a good approximation of the non-linearity of
the response surface at @™, We therefore propose using a lack-
of-fit test to check the quadratic assumption on the response. The
“classical” lack-of-fit test, as described by Myers, Montgomery, and
Anderson-Cook (1995), compares the error caused by lack-of-fit to
the pure error estimated from replications made at the centre of
the experiment design. This test assumes homogeneous variance
across the design space; Kleijnen (1983) provides a lack-of-fit test
based on cross validation if this assumption does not hold.

The “classical” lack-of-fit test comes with certain advantages.
Firstly, no additional simulation effort is required to incorporate
the lack-of-fit test within the bias detection method since we repli-
cate the centre point in the experimental design, nc> 1; this al-
lows the calculation of the pure error. Also, we do not have to as-
sume any functional form for our response surface; we could have
compared the quadratic model to a cubic model for example but
there is no guarantee that the cubic part of the model would be
the problem in all cases.

Running the lack-of-fit test prior to our bias detection test en-
ables us to examine the quadratic assumption. Of course, a hypoth-
esis is just an assessment of evidence: accepting the null hypoth-
esis does not prove that the approximation of a quadratic surface
near 8™¢ is good enough to provide a trustworthy estimate of bias.
However, rejecting the quadratic fit is a useful warning that the
resulting bias estimate might not be trustworthy. By the nature
of Taylor series approximation, a smaller-width CCD will tend to
imply better conformance to a quadratic approximation. Therefore,
one way to react to a significant lack of fit, as long as there is addi-
tional computer budget, is to increase r, the number of replications
at each design point; this leads to a smaller value of a, the width
scaling parameter of the design, whilst preserving the power of the
bias test at 1 — a, (see Section 3.2 and in particular Eq. (11)).

That said, repeated application of the lack-of-fit test with dif-
ferent sample sizes, the unknown effect of the experiment design
used to fit the quadratic model, and the power of the lack-of-fit
test all muddy the overall inference. Thus, while we recommend
the lack-of-fit test its conclusions are at best advisory, and standard
regression diagnostics applied to the quadratic model will also be
helpful.

4. Empirical evaluation

In this section we evaluate the bias detection test presented in
Section 3. In Section 4.1 we complete a controlled study consider-
ing four tractable response surfaces with different functional forms
whilst controlling the number of input observations, m, and the
number of simulation replications at each design point, r. We then
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Fig. 2. The true response surfaces plotted over the CCD design space. Top left: lin-
ear, Eq. (12); top right: quadratic, Eq. (13); bottom left: cubic, Eq. (14); and bottom
right: cubic, Eq. (15). The point(ff,65) is marked in blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

demonstrate the use of the bias detection test in the NHS 111 call
centre setting in Section 4.2.

4.1. Monte Carlo evaluation of the method

Recall that the bias due to input modelling is caused when the
error in the estimation of the input models that drive the simula-
tion is passed through a non-linear response function. We there-
fore evaluate how well our bias detection test works when there
is no bias due to input modelling i.e., the response is linear; when
the response surface is truly quadratic; and finally when the un-
derlying quadratic assumption does not hold.

We consider a stochastic simulation model with two unknown
input parameters, 8¢ = {0f, 65} = {3,2}. These input parameters
are the means of two independent exponentially distributed ran-
dom variables, Wy ~ Exp(1/67), W, ~ Exp(1/65).

Within this setting we consider the following functional forms
for the response surface 1(@): linear, Eq. (12); quadratic, Eq. (13);
and two cubic functions, Eqs. (14) and (15), as displayed in Fig. 2,

n(0) =3 — 100, + 46, (12)
1n(0) =3 — 106, + 46, + 86,6, + 2.507 — 2.503 (13)

1n(0) =3 — 100 + 46, + 86,6, + 2.507 — 2.565 + 0.40; — 0.86;
(14)

1n(0) =3 — 100 + 46, + 86,6, + 2.50} — 2.507 + 0.8 — 365.
(15)

In this carefully constructed experiment the input parameters
and the response functions are known. We also chose our input
distributions so that the third moment of the MLE could be cal-
culated exactly and we were therefore able to quantify, b, the bias
due to input modelling from each function as well as the delta ap-
proximation of bias, b9%P™*; see Table 1. We set the size of the bias

Table 1

Bias test results varying the form of n(-), the amount of input data, m, and
number of replications, r. Here p and LOF are the fraction out of G = 1000
macroreplications that the bias test and lack-of-fit test, respectively, rejected
their null hypothesis, and b is the average bias estimate.

m r b bepprox P LOF

Linear (12)
10 50 0.00 0.00 -0.01 0.06 0.04
100 50 0.00 0.00 0.00 0.05 0.05
1000 50 0.00 0.00 0.00 0.04 0.06
10 500 0.00 0.00 0.00 0.05  0.05
100 500 0.00 0.00 0.00 005 0.05
1000 500 0.00 0.00 0.00 0.04 005

Quadratic (13)
10 50 1.25 1.25 136 0.64 0.05
100 50 0.13 0.13 0.13 0.71 0.06
1000 50 0.01 0.01 0.01 0.80  0.05
10 500 125 1.25 142 0.63  0.06
100 500 0.13 0.13 0.13 0.72  0.05
1000 500 0.01 0.01 0.01 0.80 0.06

Cubic 1 (14)
10 50 266 257 3.01 0.70  0.06
100 50 026 0.26 0.26 0.65 0.06
1000 50 0.03 0.03 0.03 0.75  0.05
10 500 266 257 333 069  0.06
100 500 023 026 0.27 0.70  0.06
1000 500 0.03 0.03 0.03 0.78  0.06

Cubic 2 (15)

10 50 048 053 0.08 096  0.62
100 50 0.05 0.05 0.05 092 0.22
1000 50 0.01 0.01 0.01 0.74  0.09
10 500 048 053 0.90 097 036
100 500 005 0.05 0.06 092 010
1000 500 0.01 0.01 0.01 0.78  0.07

detection test to oy = 0.05 and the power to 1 — oy = 0.8; the size
for the lack-of-fit test is also 0.05.

To evaluate the bias detection test the value of the relevant bias
y is set equal to the delta approximation of bias b%P™* in both the
quadratic and cubic scenarios. In choosing y = b?PP™® we expect
the power to hold at the pre-set value 1 — o. In the linear ex-
periment b = b%PPTX =, so we use k, the estimate of IU variance,
found using the method of Cheng and Holland (1997), to guide the
choice of y where y = v0.3k.

Since the true bias, b, is known in these examples we set o2/r
to be 5 times larger than b in the quadratic and cubic experiments,
implying that there is still significant simulation noise in the eval-
uation of each design point. In all of the linear experiments o2
was set to 0.1. Given o2 and the response functions, we simulated
by adding normally distributed noise, N(0, o), to Egs. (12)-(15).
From here on we assume the response functions are unknown and
require estimation for the bias detection test.

We complete G = 1000 macro-replications of the bias detec-
tion test. To do this we collect m observations from each input
distribution by generating observations, {wq;, w1y, ..., Wi} and
{wa1,Woy, ..., Wy} from the true input distributions. This is our
“real-world” data from which we estimate the input parameters
using maximum likelihood. Given these estimates we run the nom-
inal experiment, and in the linear case estimate the IU variance in
the model. We then apply the bias detection test.

To quantify how well the bias detection test performs we esti-
mate the power of the test by recording the empirical power, the
proportion of times we reject the null hypotheses over G = 1000
macro-replications; we call this estimate p. We then observe how
close the empirical estimate p gets to the nominal power, 1 — oy =
0.8, for y = b?PPr%%  given the functional form of n(-), m and r. We
also record the average of the estimates of the bias due to input
modelling, b, over the G replications, b, for comparison with the
true bias, b. The results are presented in Table 1.
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In the linear system, Eq. (12), there is no bias. In Table 1 it can
be seen that we reject the null hypothesis of no bias and the lack-
of-fit test in approximately 5% of all the linear cases corresponding
to the pre-set size of the tests, 0.05, as required.

In the quadratic system, Eq. (13), the delta approximation of
bias is exact, so bPP'* = p_and centering the CCD at ™€ rather
the 08¢ does not matter since the response is globally quadratic. We
would therefore expect the power hold at 1 — &, plus or minus
sampling error. In Table 1 we see this for m = 1000 and it is close
for m = 100 where the error in p is roughly +0.04. When m = 10
however, we see a lower power than expected and a discrepancy
between b = ba%PPrx and b. When the quantity of real-world input
data is so exceptionally small, use of the plug-in estimate 2 with-
out accounting for its variance is likely the cause.

Two cubic functions were also considered. When the response
surface is cubic the locally quadratic assumption of our response
surface not strictly correct, but it may be reasonable depending
on the cubic function. Here b, the true bias due to input mod-
elling, contains the third moment of the MLEs of the input distri-
butions, E[(@™¢)3]; these can be calculated using the skewness of
the MLEs: Skew(Qim’e) =2/y/m, for i =1,2. The delta approxima-
tion of the bias due to input modelling, b%PT% is a second-order
approximation and therefore does not take the higher moments
into account. However, in results Table 1 it can be seen that as
m increases b%Pr% _ b since 2//m — 0 as m — oo.

The first cubic function, Eq. (14), was selected such that the
quadratic approximation was reasonable over the space covered by
the CCD design. In Table 1 we see that, when the smallest values
of m and r were used, the lack-of-fit test is passed approximately
the same proportion of times as the quadratic function, and we see
similar results to the quadratic experiment. As m and r increase we
see the power get increasingly close to 0.8 and the delta approxi-
mation, b%P™* converges to b. Overall our method works well for
this example.

The second cubic function, Eq. (15), was chosen so that the
quadratic assumption was a poor approximation over the CCD
space for the smallest values of m and r considered. When m = 10
and r = 50 the lack-of-fit test rejected the the quadratic model in
approximately 60% of the G = 1000 macro replications; this was
the best case, but overall this test was not very sensitive to the
lack of fit. In Table 1 we see that the power of the bias test is often
higher than our nominal value of 0.8 for small values of m and r
even when the average estimated bias, b, differs substantially from
b and b9PP™*; this is good, but we should not expect it to be a gen-
eral phenomenon. Increasing m or r has the effect of shrinking the
width of the CCD making the quadratic assumption over our CCD
space a better approximation.

This experiment shows the importance of the locally quadratic
assumption over the CCD space. When the quadratic assumption
does not hold our estimate of the bias, b, can be quite different
from b when m is small. Using the lack-of-fit test to validate the
quadratic assumption is therefore advised, but is not a panacea;
recall this requires no additional simulation effort. Another prob-
lem is that, for small m, the distance between ™ and ¢ may be
quite large, implying that we estimate the Hessian of the response
surface at the wrong point which could impact both the estimate
of the bias and the power of the test.

4.2. A realistic example - NHS 111 healthcare call centre

We now illustrate our bias detection diagnostic on the sim-
ulation of a real-world system with a non-stationary input pro-
cess. The nominal experiment is based on observations of arrival
counts over 96, 15-minute intervals, from an NHS 111 healthcare
call centre in the UK. As previously described, the NHS 111 system
was designed to remove some of the strain from other healthcare

services, for example emergency departments, by advising callers
on which service they should access. Of the 6 months of data we
had we decided to consider Wednesdays only as UK public holi-
days mid-week are rare and therefore we would expect no outliers
in the arrival rates.

After checking the Poisson assumptions were satisfied by the
arrival data, this system was simulated as an M(t)/G/S(t) queue-
ing model with a non-stationary Poisson arrival process having
a piecewise-constant rate. Based on data from the NHS 111 sys-
tem we conducted two experiments with different levels of input
data. Let s denote the number of days of observations of the ar-
rival process. Figs. 3a and 3 b show the average rates over s =10
and s =26 days of arrival count data, respectively. In both scenar-
ios change-point analysis for Poisson data, as discussed in Chen
and Gupta (2011), was used to distinguish between intervals with
significantly different arrival counts. This pre-processing technique
was used because the IU variance in each small interval may be
large, especially in intervals with low arrival rates where we would
not expect to observe many arrivals. The change-point analysis re-
duced the arrival rate process to 7 and 8 intervals of varied length
for the two scenarios; see the blue intervals in Figs. 3a and 3 b. Us-
ing the methods discussed by Morgan et al. (2016) we were then
able to estimate the total IU variance, k, of the expected waiting
time of callers, E(WTime), in both cases.

From two months of service-time data the mean service time
was 8.00 minutes and the standard deviation was 4.33 minutes. A
moment matching approach was used to fit a Gamma distribution
with shape parameter ¢; = 3.408 and scale parameter ¢, = 2.347.
Since we wanted to mimic having observed a service time for each
arrival, we created a synthetic “observed” data set of service-time
observations of size m, corresponding to the expected number of
arrivals in each scenario, and treated this as the real-world service
time data.

To generate a realistic scenario we used approximately propor-
tional staffing to meet the NHS target level of service, P(WTime >
1 minute) < 0.05. This corresponded to server utilisation of 62% in
the model with s =10 days of arrival data and 65% in the sys-
tem with s =26 days of arrival data. In the nominal experiment
estimates of the expected waiting time of callers were found to
be E(WTime) = 0.0756 minutes and E(WTime) = 0.0674 minutes,
respectively; this is our performance measure of interest.

For both systems we carry out the bias diagnostic test, as de-
scribed in Section 3, and within this we run the lack-of-fit diag-
nostic test to investigate our quadratic approximation. An estimate
k of IU variance is used to guide our choice of the relevant bias,
y. Note that, y will therefore reduce with m, the amount of input
data, because IU variance is also reduced. We want a high power of
rejecting the null if the true bias is larger than y = +/u x k¥ where
0 < v < 1. This gives us a threshold of the bias deemed to have an
important effect on the MSE. Estimates of 8¢ and 2 were obtained
from the input data, and o2 from the nominal experiment.

The desired power of the bias detection test was set equal to
1—ay =0.8 and the size to oy = 0.05; the size for the lack-of-fit
test is also 0.05. For these experiments the relevant bias, y, was
set using v = 0.3, meaning we consider bias squared higher than
30% of the value of IU variance to be relevant.

For the two scenarios the number of input parameters driving
the simulations are k = 9 and k = 10, respectively. This comes from
the piecewise-constant arrival rate process having 7 or 8 distinct
intervals, which are treated as independent input distributions; the
final two parameters describe the service-time distribution. We
conducted experiments employing both the full-factorial CCD and
the reduced fraction CCD design proposed by Sanchez and Sanchez
(2005). The latter design reduced the number of factorial points
in both experiments to ng = 128 from ng = 512 and ng = 1024, re-
spectively. Note that in all experiments we repeat the centre point



LE. Morgan, B.L. Nelson and A.C. Titman et al./European Journal of Operational Research 279 (2019) 869-881 877

Arrival Counts
30 40
1

20
1

10

Time, (t)
(a) The arrival count function given s = 10 days of

observations.

50
e

Arrival Counts
20 30
1 L

10
1

Time, (t)
(b) The arrival count function given s = 26 days of

observations.

Fig. 3. The average arrival counts over 96, 15 minutes, intervals given s days of arrival data. Intervals post pre-processing of the data using change-point analysis are shown
in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2

The bias detection test in a NHS 111 system considering the expected waiting time of callers, E(WTime),
with s =10 and s = 26 days of arrival data. Results for both the bias and the lack-of-fit tests are pre-

sented.

Design  Exp s m n r y a b Bias LOF

Full 1 10 20068 550 500 0.0035 0577 0.0014  Accept  Reject
550 1000 0.0035 0485 0.0019  Accept Accept

Frac 2 10 20068 166 500 0.0035 0.603 0.0013  Accept  Reject
166 1000 0.0035 0.507 0.0005 Accept Accept

Full 3 26 52711 1064 500 0.0024 0.699  0.015 Reject Reject
1064 1000 0.0024 0.583  0.011 Reject Reject

Frac 4 26 52711 168 500 0.0024 0.737  0.005 Reject Accept

nc = 20 times. The results of the bias detection test are displayed
in Table 2.

Before we analyse the results of our bias detection test note
that in Table 2 for experiments 1, 2 and 3 the result of the lack-of-
fit test in the initial experiment with r = 500 replications at each
design point was to reject the quadratic model. For this reason
we repeated these experiments, increasing the number of replica-
tions at each design point from r = 500 to r = 1000. This did not
change the conclusion of the bias detection test, but did result in
experiments 1 and 2 passing the lack-of-fit test. Thus, in these two
experiments with r = 1000 we have no strong evidence that our
quadratic approximation is inadequate. In experiment 3, even with
r =1000, the lack-of-fit test rejects the null, suggesting a more
complicated model is required to describe the response surface.
Note that, although we doubled the number of replications at each
design point the scaling factor of the design, a, only decreased by
a small amount. Acquiring a scaling factor small enough for the
quadratic approximation to hold may take a much larger number
of replications; recall that r = 0(1/a%).

In experiments 1 and 3 we use the full-factorial CCD and in ex-
periments 2 and 4 we use the reduced fractional CCD by Sanchez
and Sanchez (2005). In Table 2 we see that the conclusion of the
bias detection test given the full CCD agrees with the conclusion
when the reduced fractional design is used for both levels of ar-
rival data. The scalability of our method was an issue of concern to
us. Here we see a great reduction in the number of design points,
n, and thus computational effort, required to estimate the bias due
to input modelling when using the reduced experimental design,
yet we are still able to gain an estimate b reasonably close to the
estimate from the full CCD and make the same conclusion using
the bias detection test.

In Table 2 we also see that, given a larger number of days of
observations of the NHS 111 system y, our relevant value of the
bias, decreases from y = 0.0034 to y = 0.0024. This is because we
used [U variance to guide our value of y and the estimate of IU
variance, «, is smaller in the system with more days of input data.
Our bias detection test is set up so that when |b| >y we have high
power of detecting the bias. Since y is higher in experiments 1 and
2 with s =10 days of observations we require a larger departure
from Hy than we do in the experiments where s =26 to have a
high probability of rejecting the null. Further, given a large amount
of input data the variability of the MLE’s will be small. With our
method this causes a smaller variance about the bias due to input
modelling, Var(b), which in turn increases the power of our bias
detection test.

Turning our attention to the conclusions of the bias detection
tests in Table 2, we see that in experiments 1 and 2, with s =10
days of arrival data, we accept the null hypothesis, so there is in-
sufficient evidence to suggest b0 in these experiments. Since we
set our threshold for relevant b? to 30% of the input uncertainty
variance, and controlled the power to detect a bias larger than this
size, our conclusion is more practically stated as the bias is making
a small contribution to overall MSE due to input modelling.

In experiments 3 and 4, with s =26 days of observations, we
reject the null hypothesis; that is, we have sufficient evidence to
suggest that b+#0. At this point we may wish to spend additional
computational effort on estimating b, to get a more precise esti-
mate of the bias due to input modelling about our performance
measure estimate. Alternatively, at this point the practitioner may
wish to reduce the bias to a level that does not concern them
by collecting more input data and repeating the bias detection
test.
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We have now illustrated our bias detection test on a realis-
tic example. This example had a non-stationary piecewise-constant
rate Poisson arrival process that we pre-processed using change-
point analysis. Note that the location of the change-points will
have had an effect on the bias due to input modelling. Change-
point analysis aids the choice of arrival intervals but does not guar-
antee an arrival function that represents the true arrival process
perfectly propagating minimal error due to input modelling to our
simulation output.

5. Conclusion

This paper presents a test with controlled power for detecting
a bias of a relevant size caused by input distributions with param-
eters estimated from real-world data. Previously this form of error
has been virtually ignored. The test is built on the assumption that
close to O°¢ the true response can be approximated by a quadratic
model. We fit the quadratic response surface using a CCD experi-
mental design, which is constructed in a novel way allowing the
practitioner to control the power of the bias detection test through
the scaling of CCD width or the number of replications at each de-
sign point.

We explored and evaluated the bias detection test using a con-
trolled experiment investigating the functional form of the re-
sponse surface, the amount of input data and the number of repli-
cations completed at each design point. This experiment high-
lighted the importance of the validity of our quadratic assumption
over the CCD space for our power to hold. We were also able to
show that by increasing the number of replications of the exper-
iment at each design point or the number of observations used
to estimate our input models we achieved our target power. Also
influential was the distance between the estimated input model
parameters, ™ and the true input model parameters, 8¢, which
was seen to affect both the estimate of the power and the esti-
mate of the bias. We also demonstrated the bias detection test in
a realistic NHS 111 system example. This included the use of the
IU variance to guide our choice of the relevant value of the bias.

From our exploration of quantifying and detecting the bias due
to input modelling there still remain open questions that may be of
interest. One of these is the study of other performance measures
beyond the mean response. In this contribution our focus was on
detecting the bias caused by input modelling in the expected value
of a performance measure of interest; in future this could be ex-
tended to other measures such as the variance or the quantiles.
Another question is how we might optimally set nc- the number of
centre points in our model. Currently n¢ is set in an ad hoc man-
ner dependent on the number of factorial and axial points in the
CCD. Also of interest is how we might optimally set r, the number
of replications of the simulation at each design point. Recall that r
controls a, the scaling factor for the width of the CCD.

We need r large enough to ensure our quadratic assumption
holds sufficiently closely but do not wish to waste unnecessary
simulation budget. In the experiments in this paper we chose r to
be suitably large to satisfy our quadratic assumption.

In the NHS 111 example we used change-point analysis to form
the arrival-process input model, which introduces its own error,
but more generally input model misspecification is a source of
model risk not captured here (e.g., if the arrival process is not ac-
tually Poisson). Similarly, we found that the lack-of-fit test was not
as strong an indicator as one might like of approximation error.
This could be due to the assumption of constant variances over
the CCD, or the assumption of normally distributed simulation re-
sponses. This is an important problem for future study.

Note that our method can be used alongside current IU vari-
ance quantification techniques, allowing us to express the total
error due to input modelling of our performance measures of

Bjk=(m—1)

interest. Current techniques allow IU variance quantification for
simulation models with time-homogeneous distributions and
piecewise-constant rate non-stationary Poisson processes. Estima-
tion and detection of error due to input modelling in simulation
with more complex arrival processes is something we leave for fu-
ture work.

In conclusion, this paper offers the first method for estimation
and detection of the bias due to input modelling. In doing so it
allows a practitioner to consider the total error due to input mod-
elling that may impact their performance measures of interest.
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Appendix A. Variability of the Jackknife estimator of bias

The jackknife method is an alternative to the delta-method that
can be used for bias estimation. Usually when quantifying the bias
we refer to the bias of a statistic of interest, for example a pop-
ulation parameter given a sample of data; in this case let us de-
note the jackknife estimator of bias bj. In stochastic simulation
the statistic we would like to examine is the expected value of the
simulation response, 7(-). However, we can only observe this in
the presence of simulation noise. In this appendix we investigate
the effect of simulation noise on the variability of the jackknife es-
timator of the bias.

As a simplification, consider a stochastic simulation model with
a single input parameter, 8¢ from a single input model. Let 9™
be the maximum likelihood estimator (MLE) of 8¢ based on m ob-
servations of the input distribution and 9"1.7)19 is the “reduced infor-
mation” MLE based on all but the ith observation. The jackknife
estimate of the bias is

Zn(e(r?)le

Since we cannot evaluate n(-) directly, the natural extension to
simulation output is,

n(gmle)

ij+nozse —(m - l)

1 r
§j E:Y Oe) — — > Vi (O™e 16
( (i) ) r — k( ) ( )

i=1 j=1

which requires r independent replications of the simulation at each
reduced information MLE, B(m)’", and independent of this r replica-
tions of the simulation at the MLE, ™€, Within (16) the output
of a replication of the simulation can be decomposed into the ex-

pected simulation response plus simulation noise

b 'JK+noise

—(m-1) Z%Z( O + €)1 S (6™ + )
i=1  j=1 k=1

~

1 m | 1< ’
P Zn(%e) - ;’;n(@””)

j=1i=1

-

r m

Zek : (17)
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where ¢€;~iid(0, 02) and €,~iid(0, o2). Here (17) can be
thought of as breaking bjk_noise into by, the jackknife estimator of
the bias without simulation noise, and b, the additional vari-

ability in the estimator of the bias caused by simulation noise.
The key to this investigation is the variance of b,

)

=(m-— 1)2|: o Z ZVar(e,j) + = ZVar(ek):|

.1 r m
fmZZGu -

j=1 i=1

Var(Bnoise) = Var((m - 1) |:T

j=1i=1
=(m-1)>? [2+21|
(m+1)o?
:(m—l)zT (18)

which is, for large m, approximately equal to m2c2/r. This says
that, in the presence of simulation noise, the number of simulation
replications per reduced information MLE, r, required to maintain a
constant level of error as m grows is r = 0(m?), and the total num-
ber of simulation replications to compute the jackknife with con-
stant error grows as O(m?3). For stochastic simulation models with
more than one input parameter this effect would be even greater.
Thus, it is clear that significant simulation effort may be required;
otherwise the jackknife estimate of this bias could be obscured by
the presence of simulation noise.

Appendix B. Asymptotics of b and haPProx

Using Taylor series we show that, under certain assumptions, as
m— oo the bias, b =E[n(@™e)] — n(@°), coincides with the delta
approximation of the bias, hPProx,

Assumption B.1. Let the expected simulation response, 1 : RK —
R,

1. Be three times continuously differentiable in a closed ball G
centred at 6°.

2. Have bounded above, third-order partial derivatives such that
in the closed ball G, there exists some M>0, for all seG,
39{?23% <Mfori,jp=1,2,...,k

Assumption B.2. Let the simulation be driven by L independent,
parametric input distributions, with k>L input parameters. As-
sume we have m observations for each of the L distributions. Now
let @™ ¢ R be the vector of MLEs given the m observations of
each input distribution. We assume the MLEs satisfy standard con-
ditions implying that

1. The MLEs converge in mean, E(Gim’e -
1,2,... k.

2. The MLEs are asymptotically normal,
MVN, (0, 15(85)"1) =Z

3. For some & >0, |9i’"’e —9f|3+£ are uniformly integrable for all
meN,andi=1,2,...,k

0f) - 0asm— oo fori=

Jm(@me -9y 2

Theorem B.1. Let Assumptions B.1 and B.2 hold. Then as m — oo the
scaled bias, mb, and the scaled delta approximation, mb®Pr*  both
converge to

Str(1o(6)'H(E)).

Proof. Convergence of the MLEs implies that for m large enough
we will have 8™ ¢ G. Therefore, under Assumption B.1.1, the ex-
pected simulation response at ™€ ¢ G can be expanded via a Tay-
lor series as

n@™) = nO°) + Vn @) O™ -6
+ %(emle _ 0C)TH(0C)(91111€ _ 96) + T3 (emle)’ (19)

where Y3(0™e¢) is the remainder, made up of higher-order terms
of the Taylor series. For k>3 there exists p € G such that

T3(0™) = Z(Gm’@ 0 )38 ne)
i=1 '
+1Xk: Xk: (Gmle QC) (lee eC)a n(p)
2L 36,290,
1 k k k
MDD INCESGITE
i=1 j=1,j#i p=1,p#i, j

3*n(p)
_ ¢ mle _ gc
) G 9”)89,-89]-891,'

By taking the expectation of (19) we may write bias due to input
modelling as

b= E[n(gmle)] —n(@°) = VU(GC)TIE(Gmle 69
1

+ EE[(O"”E _ OC)TH(OC)(OYNIE _ 95)] TE[Ys (emle)].

Note that, the delta approximation of bias only takes into account
the second-order term in this expansion
papprox _ l

mie c c mile c 1 c
E[(6™ - 99)TH(O°) (0™ —6°)] = tr(QH©))

where © =Var(@™e), and under Assumption B.2.2,

Io(0°)~! the inverse Fisher information matrix. We can therefore
write b= baPProx 4 c(@™le); that is, the bias due to input mod-
elling is equal to the delta approximation of bias, b?Pr* plus a
function c(-) containing the expectation of the additional terms
of the Taylor expansion evaluated at @™e€, Clearly mbaPProx _,
tr(lp(@°)~"H(#°))/2; we will show that mc(@™e) — 0.

Consider the expectation of the first order term of the Taylor
series expansion. By Assumption B.2.1, E(@™€ —6¢) — 0 as m — oo
and therefore Vn(@°)E(@™e —0) — 0 as m — .

Next consider the expectation of the remainder term,
E[Y3(@™¢)]. Under Assumption B.1.2 the third-order par-
tial derivatives are bounded above at peG by M>0 for
i,j,p=1,2,...,k Thus by linearity of expectation we have,

lim mQ =
m—oo

1 k
E[T3 (emle)] < 6 ZE[(Himle _ 91_5)3] M
i=1
1 k k
+ j Z Z [(lee GiC)Z(Qjmle _ QJC)] M
i=1 j=1,j#i
1 k k k l
+5 > E[OM
i=1 j=1,j# p=1,p#i, j
-0f )(9’"’9 9]?)(93”9 -0, M. (20)

We will now show that m x (20) converges to 0 as m— oo and
thus, by sandwich rule, the scaled expectation of the remainder,
mE[Y3(@™¢)]. converges to 0. Here the behaviour of the RHS of
(20) depends on the behaviour of E[(6/"¢ — 491?)(0]',"’6 - 9]?)(9;}1’9 -
0p)] for i,j.p=1,2,... k. Taking the modulus of this expecta-
tion and applying Holder’s inequality, (Hardy, Littlewood, & Pélya,
1952), followed by the arithmetic mean - geometric mean inequal-
ity (Abramowitz & Stegun, 1964), we have
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[ELE™ ~ 66" — 6565 ~ 69)]
< B[O - 9) 116" - 61103 — 65)1]

= B[ 10 - 69)P16]" - 69) 2165 - 65) 1 |

] mie C 1 mile c
< §E[|(0, ! _01‘)|3]+§]E[|(9j1 _9]‘)|3]
+ SELE 6] 1)

By Assumption B.2.2 and B.2.3, vmE[|(@™e€ —0)|3] > E[|Z]?];
that is, the third absolute moment of the MLE converges to the
third absolute moment of the multivariate normally distributed
random variable Z (Osius, 1989). Thus,

3
2

mEElO 0P~ —=(210(0°);")
as m—oo for i=1.2,... k. (Winkelbauer, 2012). Here Ip(6);'
is the ith diagonal element of the Fisher information matrix of
the joint distribution of the k input parameters. This says that
as m— oo, mIE‘,[|(0i"”e —91.C)|3] — 0 fori=1,2,...,k and therefore
m x (21) converges to 0 as well.

By applying the sandwich rule we have m|E[(9i’"’e -
91.6)(9]?"’9 - 9;)(93”6 -09)]l >0 as m—oo for i.j.p=1.2,....k
Thus, mE[(O/"¢ — 9,?)(9}"’9 - 91?)(95""’ -05)]—0 as m—oo for
i,j,p=1,2,...,k Therefore m x (20) converges to 0 and thus the
scaled remainder mE[Y3(0™¢)] — 0 as m — co. All components of
mc(@™e) converge to 0 as m— oo as required. O

Appendix C. Asymptotics of b

Our delta approximation of the bias is b%PPT* — % tr(QH(0°)),
where H(@¢) is the Hessian matrix of the second-order par-
tial derivatives of n(-) evaluated at 8¢ and 2 = Var(@™e), the
variance-covariance matrix of the MLEs. Due to the unknowns
in baPPrOX we estimate it by b= %tr(Qﬁ(Gm’e)). We now show
that, under certain assumptions, mb converges to mb@PPTX —
3tr(Io(@©)"TH(69)).

Assumption C.1. The expected simulation response, n : RK — R, is
quadratic; i.e.,

n(O) =Py +6"B+07BH. (22)

Assumption C.2. Except for the point at which it is centered, the
CCD is fixed and sufficient to support Model (22) such that B;; € R,
the least squares estimator of By is a consistent estimator for i, j =

1,2,...,k.Thatis,§,»j—P>B,~j asr—oofori,j=1,2,... k.

Assumption C.3. Let the simulation be driven by L independent
parametric input distributions, with k>L input parameters. As-
sume we have m observations from each of the L distributions.
Now let §™e ¢ Rk be the vector of MLEs given the m observations
of each input distribution. We assume that

. The MLEs are consistent, 0{"’9 £ Of asm—oofori=1,2,....k

. The scaled variance of the MLEs m tends to the inverse
Fisher information at 6¢, I5(@°)~1, as m— co, mQ — Ip(@)~!
as m— oo.

3. The inverse Fisher information, I(-)~!, is continuous.

N —

Theorem C.1. Let Assumptions C.1, C2 and C3 hold. Then the scaled
estimate of the delta approximation of bias, mb, converges to the
scaled delta approximation of bias; that is, as m, r— oo

mb 5 %tr(lo(ec)’lH(Gc)).

Proof. First consider the Hessian. Under Assumption C.1 the ex-
pected simulation response is globally quadratic; therefore the
Hessian does not depend on where we evaluate it since

2B B1> ce B, k
By 2By

H@) =
By 2By

Thus b= 1tr(QH(@™¢)) and this proof is equivalent to showing

that mQH(@™e) 5 15(0°)-TH(@°).

Further, the least-squares estimators of the second-order terms
are unchanged by shifting the center point of the design. Thus,
under Assumption C.2, by completing r replications of the simu-
lation at each of the design points of the CCD we gain the con-

sistent estimators of the second-order partial derivatives, §,~j £ B;;
for i,j=1,2,...,k, such that H(®) £ H(@°) as r— oo for any 6.

Therefore, H(Gm’e)A—P> H(#°) as r— oo.
Now consider €2 = Var(@™e), In practice we use the plug in es-
timator Q = Ig(@™€)~!/m. Under Assumption C.3.1 and C.3.3, us-

ing continuous mapping theorem, Io(@™¢)~1 5 1,(0°)~1 as m— oo
thus mQ 5> [p(@)~1 as m— oo

Finally, by applying Slutsky’s theorem we have mQH(@™e) £
Io(@°)"TH(0¢) as m, r— oo as required. O

Remark 1. The results of Theorem B.1 and Theorem C.1 can be
extended to the case where mq # my #---# m; provided that
m;/ 2521 m; — ¢; > 0, for some fixed values c;.
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