From ‘Use’ to ‘Choose’: Scaffolding CT Curricula and Exploring
Student Choices while Programming (Practical Report)

Nicholas Lytle Amy Isvik Eric Wiebe
Veronica Catete Danielle Boulden Tiffany Barnes
nalytle@ncsu.edu Yihuan Dong wiebe@ncsu.edu

vmcatete@ncsu.edu
North Carolina State University
Raleigh, North Carolina

ABSTRACT

As computing skills become necessary for 21st-century students,
infused computational thinking (CT) lessons must be created for
core courses to truly provide computing education for all. This will
bring challenges as students will have widely varying experience
and programming ability. Additionally, STEM teachers might have
little experience teaching CT and instructing using unfamiliar tech-
nology might create discomfort. We present a design pattern for
infused CT assignments that scaffold students and teachers into
block-based programming environments. Beginning with existing
code, students and teachers work together ‘Using’ and comprehend-
ing code before ‘Modifying’ it together to fix their programs. The
activity ends with students ‘Choosing’ their own extensions from
a pre-set list. We present a comparison of two implementations
of a simulation activity, one ending with student choosing how to
extend their models and one having all students create the same
option. Through triangulating data from classroom observations,
student feedback, teacher interviews, and programming interaction
logs, we present support for student and teacher preference of the
‘Student-Choice’ model. We end with recommended strategies for
developing curricula that follow our design model.

CCS CONCEPTS

« Social and professional topics — Computational thinking;
K-12 education;

KEYWORDS
Use-Modify-Create, Lesson Design, Student Choice

ACM Reference Format:

Nicholas Lytle, Veronica Catete, Amy Isvik, Danielle Boulden, Yihuan Dong,
Eric Wiebe, and Tiffany Barnes. 2019. From ‘Use’ to ‘Choose’: Scaffolding
CT Curricula and Exploring Student Choices while Programming (Practical
Report). In Workshop in Primary and Secondary Computing Education (WiP-
SCE ’19), October 23-25, 2019, Glasgow, Scotland Uk. ACM, New York, NY,
USA, Article , 6 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WiPSCE ’19, October 23-25, 2019, Glasgow, Scotland Uk

© 2019 Association for Computing Machinery.

ACM ISBN XXX...$15.00

DOI: 10.1145/3361721.3362110

North Carolina State University
Raleigh, North Carolina

tmbarnes@ncsu.edu
North Carolina State University
Raleigh, North Carolina

1 INTRODUCTION

It is becoming increasingly necessary for every child to have ex-
perience with 21st-century Computational Thinking (CT) skills
[28]. However, these skills have typically been taught within elec-
tive Computer Science classes or outside of school activities [17].
To reach all students, CT must be integrated into required K-12
courses. This type of CT integration poses several challenges. First,
lessons must not only focus on key CT concepts but must also inte-
grate domain knowledge. Further, these activities must be designed
with the understanding that they may be the first introduction to
programming for many students. Successful integration depends
on equipped and capable teachers, though many do not feel they
have the prerequisite background required to teach computing [6].
Professional development gives teachers much needed experience
with CT skills [22], however, to reach all students, we must develop
solutions that can be readily adopted by both experienced and
inexperienced teachers while keeping students actively engaged.
This report investigates the iterative design of a 4-day computing-
infused curricula developed for a grade 6 middle-school science
classroom. Through multiple iterations of content refinement, we
have identified the need for integrating student-choice through
differentiated options in our curricula. This allows students with
varying levels of prior programming experience to complete the
assignment to a level of their own choosing, focusing on the as-
pects that interest them, thus fostering their interest in STEM and
computing. This design also balances the teachers need to have a
sense of control/comfort over the classroom in order to continue the
adoption of CT and computing into their core content classroom.
This paper reviews related initiatives and our prior work and
findings on developing computing infused curriculum for science
classrooms. The paper then describes our latest curriculum feature
on adding student choice, investigating both student programming
behavior and teacher affect. Our data is triangulated using a combi-
nation of code traces, exit tickets, and classroom observations [16].
We further support our findings with post-hoc teacher interviews.

2 RELATED WORK

CT and the use of computational tools has been shown to enable
deeper learning of STEM content areas for students [5] as well as
increase student retention and learning performance in computing
courses and outreach programs [4, 9]. Middle grades has been iden-
tified as a critical age range to study the potential for developing
CT. In this age-range, block-based programming curricula [11], and

https://doi.org/XXX
https://doi.org/XXX

visual programming environments have been shown to improve
student performance and affect[21].
Many introductory activities are motivated at the pedagogical

and psychological level by constructionism [19], and self-determination

theory [7]. Many popular computing education tools today like
Scratch [24] use “Wide-Wall" learning environments motivated by
constructionist philosophy to give students an environment that
enables them to create anything. These environments have been
shown to increase student engagement in their learning [12], which
can be further explained by Self-Determination Theory, specifically
the three needs of autonomy, competency, and relatedness required
for developing intrinsic motivation in students [7]. Freedom of
choice in constructionist learning environments allows for greater
development of autonomy and competency, and sharing of personal
artifacts in the social setting of the classroom can help develop re-
latedness. While popular and motivated, these fully open-ended
create environments may be hard to implement in practice [23].

Although, infusing CT directly into a STEM course improves
the teacher’s mastery of their disciplinary concepts with new in-
structional approaches [27], in courses where students solve open-
ended problems, teachers lose much of the control they traditionally
have over the learning process and may become uncomfortable
[5]. Teacher’s self-efficacy and discomfort are important factors to
consider when helping core subject teachers add computing into
their classes. According to Pajares, efficacy beliefs help determine
how much effort people will spend on an activity, how long they
will persevere when confronting obstacles, and how resilient they
will prove in the face of adverse situations - the higher the sense
of efficacy, the greater the effort, persistence, and resilience [18].
Research has shown that a teacher’s self-efficacy is closely linked to
their level of adventurousness in teaching. As research by Frykholm
suggests, a teachers self-efficacy in combination with tolerance for
discomfort will affect their willingness to adopt new materials and
curricula [8]. In order to better support teachers, they not only
need ‘more training’ but also curricular resources that promote and
scaffold their ability to adopt new teaching practices.

One promising avenue to improved support resources for teach-
ers is curricular materials that follow a scaffolded intensity of in-
teraction. Research by Lee et al. suggests that using a Use-Modify-
Create (UMC) learning progression can promote the acquisition and
development of CT while also limiting the anxiety from activities
that teachers may have previously perceived to be “too hard" for
students [13]. Sentance et al. takes this a step further by specifying
learning practices to engage in at the Use level. Their new model,
Predict, Run, Investigate, Modify, Make (PRIMM) “incorporates ac-
tivities that scaffold learning for students and provides a structure
for lessons" [25]. By dedicating a portion of the lesson on reading
and planning before modifying code, students can develop a sense
of what the code is doing. As Lister shows, a student’s ability to
accurately follow code is highly correlated with student confidence
to independently write code [14]. The next step, modify is used
by both Sentance and Lee and is a scaffolded way to encourage
small code changes, or focus on recognizing misconceptions be-
tween code logic and world logic [10]. The Create step of these two
frameworks is still open-ended and can leave stress for teachers.
Teachers often find it difficult to facilitate the potentially limitless
possibilities students may choose and students also find difficulty

reasonably scoping a project within their level of possible ability
[23]. In order to alleviate both students lack of direction and teach-
ers inability to support all extensions, our prior findings suggest
implementing a more limiting Choose phase to the curricula. The
sections below describe our intervention.

3 CONTEXT
3.1 Background

In our prior work developing infused computing curricula for STEM
courses, we found that the largest differentiator in both teacher and
student engagement in our integrated science-CT curricula was the
degree to which teachers embraced a learner and facilitator role [3].
Teachers who became comfortable with open-ended assignments
with diverse solutions were able to promote student engagement
in the curricula. Having these open-ended assignments initially
also created challenges as lower-skilled students struggled without
having some support on how to use the environment. Conversely,
higher-performing students needed differentiated challenges as
finishing their tasks early lead many to engage in ‘off-task’ behavior.

Based on these results, we set two primary goals for our next
years implementation. One was to create lesson designs that better
eased novice students and teachers into programming environ-
ments. The second was to create lesson designs that promoted
student self-guided exploration, differentiated challenges, and scaf-
folded teachers adopting a facilitator role.

In follow-up work, we adapted the “Use-Modify-Create" (UMC)
model [13] to create an assignment design that scaffolded students
into developing simulations. Teachers lead students in 4 days of
an infused lesson in which they first do an unplugged activity [2],
then use code, modify it, and finally create their own code. In an
experimental study, teachers and students found the UMC version
to be more engaging and less difficult than students who created
code all three days[15]. While successful at scaffolding students,
we found having all students program the same thing did not afford
the goal of having open project-based learning. We describe the
original curriculum below then detail our changes in section 4.1.

3.2 Curriculum

We designed a 4-day, CT lesson about Food Webs - a scientific topic
for 6th grade students. In the food web curriculum, students learn
about how energy is transferred from producers to primary and
secondary consumers. They do this through developing a simulation
in a block-based environment, Cellular [1], an extension of the
block-based programming language Snap! [9]. We describe each
daily segment of the activity below.

Day 1 - The curriculum began with an “Unplugged” activity
[2] in which students reviewed definitions and components of a
Food Web (e.g. consumer types, energy transfer). This ended with
students completing a worksheet, lead by the instructor, describing
the behavior of agents in the model through pseudo-code. This
prepared students for developing these logic models within the
programming environment.

Day 2 - Focused on the “Plant" agent (producer), which grows
based on the solar energy given by the “Sun". Students had plant
and sun code provided and used and read through the working
code in order to become familiar with the different conditions. The

Figure 1: The Food Webs Cellular Stage with each animal
‘Choice’ present.

teacher led students in exploration by changing the initial input (the
solar energy intensity), the cutoff conditions (how much energy
is needed to transition) and the amount of energy lost through
transitioning. Students recorded how those changes affected the
speed in which flowers changed state on a worksheet.

Day 3 - Focused on the “Bunny" agent (primary consumer). Some
bunny code was provided at the outset, though the given bunny
behavior did not conform with their idea of the actual model (e.g.
bunnies never ate when they got low on energy). Teachers led the
students in modifying the existing code in order to make it conform
to the existing ideas they had discussed on Day 1.

Day 4 - Focused on Create in the UMC model. Teachers lead the
class through how to develop the “Fox" code, the model’s secondary
consumer, with students following along. The class ended with
students modifying the initial conditions, bunny and fox code at-
will in order to determine how it affected the final model.

This version of the curricula (further referred to as ‘Fox-Only’)
was successful at easing students and teachers into the program-
ming environment and into coding [15]. However, students on the
final day all code the same feature lead by the teacher. As this
moves us away from more project-based, student-guided learning,
we adapted this curricula to afford student-choice.

4 METHODS

4.1 Adding Student Choice

We modified the final day of the activity to promote student self-
guided exploration and move teachers towards acting as facilitators.
This curricula, further referred to as ‘Student Choice’ substituted
the activity where students changed variables in the simulation
on Day 4 with time for students to make extensions from a set
of options. Each student was given a piece of paper with a list
of possible extensions. The first two options were to extend the
functionality of the bunny or fox code to include the new feature
of reproduction. The third option was to extend the sun code such
that every couple of days, the weather changed. The final three

options were adding new agents to the Food Web: another herbivore
- mouse, another carnivore - eagle, or an omnivore -bear. These
animal options are shown in Figure 1.

We developed these extensions by taking into account prior
student requests for code extensions in previous implementations
of the curricula. We ensured that each choice had a meaningful
connection to the topic content and that each addition to the stu-
dent’s model would change the food web (new animals interacting
with each other/weather changing the plants etc.) in a manner to
promote scientific inquiry. Every new animal code had the same
programming tasks shown in Figure 2 as the Fox, differing only in
what type of food they ate based on their consumer type (feature
4). In this way, students could develop a complex simulation (with
different actors interacting) without having to learn many more
code blocks. In a manner similar to a Parson’s problem [20], we
listed the necessary blocks for completing the code for each option
to ease student cognitive load [26].

Our intent was to promote teachers acting as facilitators during
programming sessions. With this assignment design, students were
more likely to have widely varying code, meaning teachers could
not employ the standard teaching strategy of instructing at the
front, forcing them to act as facilitators. However, teachers were
supported in the fact that student options are limited to a pre-set
list. Each teacher would also be given a "Cheat-Sheet" showing
what each of the different animal codes should look like.

4.2 Implementation/Data Collection

1) Create and set a variable, "Energy". I

<_I_I2) Animal moves inside a forever loop. I

q_o—l 3) Animal loses energy when it moves. I

4) If low on energy, the animal eats:

Eat an Animal and Gain ﬁ Energy Herbivore:
| : a Flower n 3 Energy
]

[X (Energy <[
-

Omnivore:

(4 [[] days have Passed “ —I5) If it has no more energy, animal dies. I
]
_) |

1 6) Reproduce after set amount of time. I

s‘e=t Energy |to lE .

| move to empty nbr cell

[change Energy | by €D

Carnivore:

e

Figure 2: Final Fox Code with one extension choice (Repro-
duction). Teachers lead students in programming features 1
through 5. Every animal choice had similar code except for
Feature 4 where animals eat different things based on their
agent type (e.g. herbivores eat plants).

In order to evaluate the differences between our original Fox-
Only and new Student-Choice versions, we tested both versions in
a quasi-experimental design. Two 6th-grade science teachers from
the same school were recruited to teach both the Food Webs curricu-
lum. Neither had prior experience teaching the activity. Teachers
were trained on each curricula prior to implementation. In the
Winter, both teachers taught one class each using the Fox-Only

model. 3 months later, in the Spring, they each taught one class
using the Student-Choice model. Each classroom contained around
25 students, though we only have consenting information from 13
and 15 from Spring (28 total) and 17 and 21 from Winter (38 total)
respectively. Teachers instructed the curricula while researchers
observed, but the research team made themselves available if teach-
ers or students needed programming help. All class periods were
the exact same length: 50 minutes.

The initiatives were evaluated through a triangulation of multi-
ple data sets including student programming traces, student exit-
tickets, observations, and semi-structured interviews with teachers
[16]. For every period, at least one research team member was
present taking observation notes, focusing on the students’ inter-
actions within the environment as well as how the teacher was
teaching the lesson. After the conclusion of each day’s activity, stu-
dents took an end-of-activity “Exit Ticket" in which they answered
a series of questions about the activity. As we were focused on
difficulty perceptions between curricula, we focus only on student
responses to the question, “Please use the following scale to rate
how difficult or easy the lesson was today." Responses were on a 1-5
Likert scale ranging from Very Easy to Very Difficult. After both
implementations concluded, we interviewed teachers in a group
semi-structured interview asking about their experience teaching
both versions of the curricula.

In addition, every consenting student’s interaction data within
the programming environment was recorded. From this, we were
able to collect a series of code ‘snapshots’ for each student, what
student programs looked like at any given point in time during the
activity. The series of snapshots in order produces a student’s code
trace for the assignment. We focus primarily on student code traces
for the fourth day as this is where the assignments differed. For
each of the requirements for the Fox code as well as for all of the
possible choice options on Day 4, we developed auto-grading code
to determine if a given student snapshot had completed a task or
not. We then ran this auto-grader on each snapshot in each student
code trace to determine what choices students made in developing
their simulations and when they finished each choice option.

5 RESULTS
5.1 Classroom Observations

In all 4 classrooms, teachers spent the initial half of the classroom
leading students in the creation of the Fox. There were instances
during each session of teachers forgetting a step, but this did not
greatly impede leading the classroom and all teachers were able
to correct. After walking the students through each of the steps of
the Fox code, the teachers then walked around the room helping
individual students with the respective next part of the assignment.
For the Fox-Only condition, this involved debugging some students’
code and answering questions about different run conditions. For
Student-Choice, teachers walked around the room helping individ-
ual students. Teachers did not seem to have difficulty handling the
variety of student choices. Both, in fact, elected to not use their
cheat sheet, instead just memorizing the differences each animal
choice had with the Fox code they already knew how to do.
Similar to our previous studies, researchers observed many stu-
dents who finished early in the Fox-Only condition engaging in

off-task behaviors. This would happen for upwards of 20 minutes
as students who finished the Fox tended to do so with plenty of
time remaining. This ‘off-task behavior’ was rarely seen in the
Student-Choice classrooms. Researchers observed many instances
of students trying to get other students, their teachers, or even
the researchers to see what progress they had made in their envi-
ronment. As no students had finished all the features, both classes
doing the ’Student-Choice’ condition asked their teachers if they
could continue working on this the following day.

5.2 Student Programming Data

Total Students:
28

€«
]

Figure 3: The code trace of how students choose to imple-
ment each extension option.

We analyzed 66 student traces - 38 from those who did Fox-
Only and 28 from those who had the Student-Choice version. As
both had to complete the Fox code before their conditions differed,
we examined their Fox code completion rate. The students in the
Choice condition had a higher rate of completing the Fox code
(15/28) than the Fox-Only Condition (15/38) though a Chi-Square
with Yates correction does not find this to be significant (p = .38).

We then turn to the programming patterns of the 28 students
in the Student-Choice condition beginning with the 10 who made
no extension. In stepping through the code trace data, 4 of these
students did complete the fox code and finished with much time
to spare (20 minutes left in the class on average). However, these
students elected to instead tweak Fox code, switch the number
of foxes in the world, and try different run-time conditions for
testing out their simulations. The other 6 spent the entire time
attempting, but not completing, the Fox code. Most of these students
had difficulty completing tasks relating to the “Energy" variable
including setting it in the beginning, and using it to check if the
animal should eat or die.

We found 30 extensions developed by 18 students who made at
least one. All of these were animals (no one chose the weather task).
7 students extended Bunny Code from Day 3, 10 students elected
to make Eagles, 8 worked on Mice, and 5 made Bears. Of the 18
students that made an extension, half (9) programmed 2 or more
additional animals and 3 programmed 3 additional. Students in the
“Choose" activity took a variety of paths towards developing their

simulations. We outline this in Figure 3. Here, the number under
each state represents how many students attempted to complete
that animal and each edge describes a transition to a different
simulation. Here, we can see that the most common first additions
were to add Eagle (10 students) or Bunny (6 students).

5.3 Student-Perceived Difficulty

On each of the four days for both initiatives, students were asked
to fill out an end-of-day exit ticket. 31 of the 38 consenting students
in Fox-Only responded for all 4 days, though only 15 of the 28
consenting students in Condition 2 did. Students were asked each
day how difficult they thought the lesson was. A Friedman Test for
the responses for the Fox-Only condition does not give a significant
difference in student perceived difficulty across the 4 days (p =.10).
This corroborates our previous study which found no perceivable
difference in difficulty across days[15]. For the Choose condition, a
Friedman test finds no significant difference in difficulty as well (p
=.92). Mann-Whitney U Tests also find no significant differences
in difficulty responses between conditions in Days 1 (p = .22), 2 (p
=.34)3 (p=.52) or 4 (p=.91).

5.4 Teacher Interviews

An end-of-initiative semi-structured group interview with teachers
was conducted to understand their thoughts on how the two imple-
mentations compared. Both teachers felt that the UMC progression
found in the curricula was beneficial for students, especially since
many had never used the programming environment before. They
did suggest that the ‘Unplugged’ and ‘Use’ day be combined as they
found those the easiest to get through and finished both early.
Both teachers expressed preference for the Student-Choice con-
dition saying it was “cool that [students] could decide how many
of each thing they could add". They thought the students were
more engaged in the Choice condition remarking that “[students]
kept running up to me the whole class, ‘look, look what mine’s
doing!” ‘Look what I've got. They were pretty excited about it."
The Choice condition, having more species in the simulation, also
better aligned with scientific standards. A Food Web is defined as
having multiple actors of different types interacting (i.e. multiple
primary/secondary consumers) while a Food Chain, only has one
of each type, like the Fox-Only condition. Teachers “really liked
[the Choice condition] how it was more like a food web than a food
chain where you add a whole bunch of other little things." When
asked, both teachers said they would do the choice version again.
Neither teacher expressed discomfort with acting as a facilitator
for individual student projects even if they didn’t have an answer
for a student question immediately. A teacher remarked that she
was able to answer questions “most times" with only “one I couldn’t
figure out but then one of the other kids figured it out". While they
felt they could teach the Choice version without researchers present
next time, they acknowledged having done the Fox-Only condition
before the Choice version might have helped in their preparation.
In addition to combining the Unplugged and Use days, teachers
expressed the need for more time for students to program on their
own finding the final 20 minutes of the last class insufficient. Both
teachers, as previously described, allowed students to continue
making their simulations on the day after the initiative was done.

6 DISCUSSION

Finding no significant differences in student difficulty perceptions,
having the majority of students (18/28) complete the base activity,
and neither seeing nor hearing teachers report difficulty teaching
the new condition, we find that the Student-Choice design was not
more difficult for either students or teachers. Thus, we believe we
still maintain all the affordances that our original curriculum strat-
egy, UMC, has in easing students and teachers into programming.
In addition, the choice at the end gives students a chance to select
the option(s) they wish, promoting their autonomy, and choose as
many options as they need to satiate their need for competency
as defined in Self-Determination Theory [7]. While not explicitly
designed for, the emergent sharing of materials by students seemed
to promote student relatedness. We can imagine further curricula
explicitly adding a section for student sharing to make sure that this
relatedness is met. In analyzing the diversity of student artifacts and
the pathways students took to make their models along with how
engaged students were as noted by researchers and teachers, we
believe that the Choice version better engaged students in creating
individualized programs which aligns with previous research in the
design of constructionist learning environments [12]. Following
advice from teachers, we believe that further versions of this ac-
tivity should include more time for student differentiation. Further,
to more closely resemble the definitions of Create found in UMC,
PRIMM, and other models, we believe students can be given oppor-
tunities to choose their own extensions after they complete some of
the choices from the set provided by the instructor. It is important
to note that unlike these full constructionist models, our design
is situated in an infused context where it is important to match
computing and domain knowledge and creating pre-set choices for
students ensures they create things that are scientifically accurate.
Furthermore, these infused contexts involve novice teachers and
students, so we must not forgo easing them into a new learning
environment. As such, we feel ‘Use’ and ‘Modify’ as necessary steps
on our path towards open-ended, constructionist ‘Create’.

In framing our teacher observations and responses to interview
questions through Frykholm’s theory, we did not find teachers expe-
rienced pedagogical or emotional discomfort through our activities.
As teachers discussed and our prior studies have shown, creating
the scaffolded progression of moving from ‘using’ code to ‘creating’
their own seemed to reduce teacher discomfort in teaching content.
Teachers also reported no difficulty in adopting a facilitator model.
This could help scale our research practice partnership efforts to
help expand CT activities into additional teachers’ classrooms.

7 CONCLUSION/LESSONS LEARNED

Despite its exploratory nature, this case study supports that a cur-
ricula designed for freedom of choice is useful for both teachers
and students. As we did not measure CT competency, we make no
argument that this design works better or best at teaching program-
ming and CT concepts. The small sample size of teachers (2) and
students (68) does not allow us to extrapolate that this method is
best for all teachers, contexts, or classrooms. Additionally, teachers
first leading the non-choice version prior to the choice version
could have greatly influenced their curricula preference as well
as their development of competency in teaching the material. The

activities’ warm reception, however, leads us to believe that con-
tent developers could benefit from creating activities that end in
perceived student freedom of choice. To aid with this, we provide
the following list of recommendations for creating these activities:

Scaffold Students and Teachers - Providing the necessary pro-
gramming blocks students need to complete a choice ala a Par-
son’s Problem greatly reduces cognitive load, especially in activities
where lots of choices means lots of blocks. Similarly, giving teachers
a “Cheat Sheet" of answers for each choice, scaffolds their ability
to act as a facilitator and debugger.

Differentiate Choices by Difficulty - This time, challenge came
from adding more choices, but each choice was relatively the same
difficulty. In the future, we wish to create choice systems that have
varying difficulty to give targeted tasks for each student skill level.
Create Choices that Show Visible Change - Prioritize choices
that produce immediate changes in the run of the simulation (e.g. a
new animal appearing in the environment).

Create Choices that Promote Content Inquiry - Our decision
to primarily focus on adding more animals came from the fact that
each new animal made the Food Web more complex.

Make things Complex, not Complicated - As demonstrated in
Figure 2, each animal had relatively the same set of code blocks.
In this way, a lot of choices were available without adding many
additional necessary blocks for students.

Draw from Student Desires - Some of the choice ideas (e.g. bear)
came from responses from students in the ‘Fox-Only’ condition on
how they wished to extend their model. We suspect if students are
asked in the beginning what they’d like in their model and these
choices are implementable at the end, students will engage more
with the material, feeling like the creations are their own.

In the future, we will describe how to develop these student-
choice, CT, activity types for professional development for K-12
teachers. We hope that in promoting successes from our implemen-
tation, we can encourage teachers to adopt, adapt, and create their
own activities that make them feel comfortable facilitating and
allowing students to engage in self-guided inquiry and learning.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grants 1742351 and 1640141. Anything expressed
in this material does not necessarily reflect the views of the NSF.

REFERENCES

[1] Bernd Meyer Aidan Lane and Jonathan Mullins. 2012. Simulation with Cellular

A Project Based Introduction to Programming (first ed.). Monash University,

Melbourne, Australia. Online: https://github.com/MonashAlexandria/snapapps.

Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer

science unplugged: School students doing real computing without computers.

The New Zealand Journal of Applied Computing and Information Technology 13, 1

(2009), 20-29.

[3] Veronica Cateté, Nicholas Lytle, Yihuan Dong, Danielle Boulden, Bita Akram,
Jennifer Houchins, Tiffany Barnes, Eric Wiebe, James Lester, Bradford Mott, et al.
2018. Infusing computational thinking into middle grade science classrooms:
lessons learned. In Proceedings of the 13th Workshop in Primary and Secondary
Computing Education. ACM, ACM, 21.

[4] Veronica Cateté, Kathleen Wassell, and Tiffany Barnes. 2014. Use and develop-
ment of entertainment technologies in after school STEM program. In Proc. of
the 45th ACM technical symposium on Computer science education. ACM, ACM,
163-168.

[2

[

[5] National Research Council et al. 2011. Successful K-12 STEM education: Identifying
effective approaches in science, technology, engineering, and mathematics. National
Academies Press, Washington, D.C.

[6] Jan Cuny. 2012. Transforming high school computing: a call to action. ACM
Inroads 3, 2 (2012), 32-36.

[7] Edward L Deci, Robert J Vallerand, Luc G Pelletier, and Richard M Ryan. 1991.
Motivation and education: The self-determination perspective. Educational
psychologist 26, 3-4 (1991), 325-346.

[8] Jeffrey Frykholm. 2004. Teachers’ tolerance for discomfort: Implications for
curricular reform in mathematics. Journal of Curriculum and Supervision 19, 2
(2004), 125-149.

[9] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

[10] Marianthi Grizioti and Chronis Kynigos. 2018. Game modding for computational
thinking: an integrated design approach. In Proceedings of the 17th ACM Confer-
ence on Interaction Design and Children. ACM, New York, NY, USA, 687-692.

[11] Shuchi Grover, Roy Pea, and Stephen Cooper. 2016. Factors influencing computer

science learning in middle school. In Proceedings of the 47th ACM technical

symposium on computing science education. ACM, ACM, 552-557.

Yasmin B Kafai and Mitchel Resnick. 2012. Constructionism in practice: Designing,

thinking, and learning in a digital world. Routledge.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce

Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in

practice. Acm Inroads 2, 1 (2011), 32-37.

Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of

a relationship between explaining, tracing and writing skills in introductory

programming. Acm sigcse bulletin 41, 3 (2009), 161-165.

Nicholas Lytle, Veronica Cateté, Danielle Boulden, Yihuan Dong, Jennifer Houch-

ins, Alexandra Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany

Barnes. 2019. Use, Modify, Create: Comparing Computational Thinking Lesson

Progressions for STEM Classes. In Proceedings of the 2019 ACM Conference on

Innovation and Technology in Computer Science Education. ACM, ACM, 395-401.

Nicholas Lytle, Veronica Cateté, Yihuan Dong, Danielle Boulden, Bita Akram,

Jennifer Houchins, Tiffany Barnes, and Eric Wiebe. 2019. CEO: A Triangulated

Evaluation of a Modeling-Based CT-Infused CS Activity for Non-CS Middle Grade

Students. In Proceedings of the ACM Conference on Global Computing Education.

ACM, ACM, 58-64.

[17] Jane Margolis. 2010. Stuck in the shallow end: Education, race, and computing.
MIT Press, Cambridge, MA.

[18] Frank Pajares. 1996. Self-efficacy beliefs in academic settings. Review of educa-
tional research 66, 4 (1996), 543-578.

[19] Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism
36, 2 (1991), 1-11.

[20] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun

and Effective Learning Tool for First Programming Courses. In Proceedings of

the 8th Australasian Conference on Computing Education - Volume 52 (ACE "06).

Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 157-163.

http://dl.acm.org/citation.cfm?id=1151869.1151890

Thomas W Price, Jennifer Albert, Veronica Catete, and Tiffany Barnes. 2015.

BJC in action: Comparison of student perceptions of a computer science prin-

ciples course. In Research in Equity and Sustained Participation in Engineering,

Computing, and Technology (RESPECT), 2015. IEEE, IEEE, 1-4.

Thomas W Price, Veronica Cateté, Jennifer Albert, Tiffany Barnes, and Daniel D

Garcia. 2016. Lessons Learned from BJC CS Principles Professional Develop-

ment. In Proceedings of the 47th ACM Technical Symposium on Computing Science

Education. ACM, ACM, New York, NY, 467-472.

[23] Robert Pucher and Martin Lehner. 2011. Project based learning in computer

science-a review of more than 500 projects. Procedia-Social and Behavioral

Sciences 29 (2011), 1561-1566.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S Silver, Brian

Silverman, et al. 2009. Scratch: Programming for all. Commun. Acm 52, 11 (2009),

60-67.

Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ Experiences of

Using PRIMM to Teach Programming in School. In Proceedings of the 50th ACM

Technical Symposium on Computer Science Education (SIGCSE '19). ACM, New

York, NY, USA, 476-482. https://doi.org/10.1145/3287324.3287477

[26] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257-285.

[27] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2014. Defining computational thinking for science,
technology, engineering, and math.

[28] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35.

[12

[13

[14

[15

(16

[21

[22

[24

[25

http://dl.acm.org/citation.cfm?id=1151869.1151890
https://doi.org/10.1145/3287324.3287477

	Abstract
	1 Introduction
	2 Related Work
	3 Context
	3.1 Background
	3.2 Curriculum

	4 Methods
	4.1 Adding Student Choice
	4.2 Implementation/Data Collection

	5 Results
	5.1 Classroom Observations
	5.2 Student Programming Data
	5.3 Student-Perceived Difficulty
	5.4 Teacher Interviews

	6 Discussion
	7 Conclusion/Lessons Learned
	Acknowledgments
	References

