
CEO: A Triangulated Evaluation of a Modeling-Based
CT-Infused CS Activity for Non-CS Middle Grade Students

Nicholas Lytle, Veronica Cateté, Yihuan Dong, Danielle Boulden, Bita Akram, Jennifer Houchins,
Tiffany Barnes, Eric Wiebe

{nalytle,vmcatete,ydong2,dmboulde,bakram,jkhouchi,tmbarnes,wiebe}@ncsu.edu

ABSTRACT
With the increased demand for introducing computational thinking
(CT) in K-12 classrooms, educational researchers are developing
integrated lesson plans that can teach CT fundamentals in non-
computing specific classrooms. Although these lessons reach more
students through the core curriculum, proper evaluation methods
are needed to ensure the quality of the design and integration. As
part of a research practice partnership, we work to infuse research-
backed curricula into science courses. We find a three-pronged
approach of evaluation can help us make better decisions on how
to improve experimental curricula for active classrooms. This CEO
model uses three data sources (student code traces, exit ticket re-
sponses, and field observations) as a triangulated approach that
can be used to identify programming behavior among novice devel-
opers, preferred task ordering for the assignment, and scaffolding
recommendations to teachers. This approach allows us to evaluate
the practical implementations of our initiative and create a focused
approach for designing more effective lessons.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
K-12 education;

KEYWORDS
Computational Thinking, Modeling and Simulation, Assessment
ACM Reference Format:
Nicholas Lytle, Veronica Cateté, YihuanDong, Danielle Boulden, Bita Akram,
Jennifer Houchins, Tiffany Barnes, Eric Wiebe. 2019. CEO: A Triangulated
Evaluation of a Modeling-Based CT-Infused CS Activity for Non-CS Mid-
dle Grade Students. In ACM Global Computing Education Conference 2019
(CompEd ’19), May 17–19, 2019, Chengdu,Sichuan, China. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3300115.3309527

1 INTRODUCTION
Computer science and computing technologies have become recog-
nized vehicles for economic growth and development across the
globe. In order to meet the demands of this growing workforce
with well-qualified employees, more countries are focusing on in-
creasing their primary and secondary grade computing courses.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6259-7/19/05.
https://doi.org/10.1145/3300115.3309527

Computational knowledge has far-reaching benefits beyond stan-
dard technology companies. Computational thinking (CT) [17] and
other aspects of computing are being used to solve advanced, multi-
faceted, problems around climate change, marine ecosystems, and
beyond. Introducing computing into the science classroom provides
equitable access to computing training as well as demonstrates to
students the usefulness of computing in outside fields.

Previous research has examined teacher preparedness and pro-
fessional development on the impact of classroom implementation
and teacher confidence [3, 5, 13]. Studies show that students with
teachers more interested in facilitating CT exhibit higher levels of
time on task and engagement than those with disengaged teachers.
While previous research focuses primarily on teacher outcomes,
more research is needed on student outcomes (i.e. learning and pro-
gramming behaviors) in order to successfully gauge the curriculum
and support materials.

We propose a CEO model to assess the implementation of a
CT-infused science curriculum. The model examines student Code
traces,Exit tickets, and fieldObservations in order to triangulate the
effectiveness of curriculum implementation and student learning
outcomes. In order to effectively infuse computing, students must
achieve both an understanding of computer programming as well
as reinforcement of the scientific concepts being taught in class.

Using the CEO model, we attempt to identify improvements for
the existing curriculum, specifically:

(1) How are students completing the assignment tasks?
(2) What emergent behaviors or observations can we identify

in order to better engage students in future iterations?
(3) How do students perceive the science vs CT learning goals?

2 BACKGROUND & RELATED WORK
Research practice partnerships (RPPs) are long-term collaborations
between practitioners and researchers that are organized to investi-
gate problems of practice and solutions for improving schools and
school districts [4]. One type of RPP focuses primarily on design-
based implementation research [6]. This research aims to study
solutions implemented in real world contexts, typically utilizing a
cycle of developing and testing instructional activities and curricula.

We detail the cycle of creating, piloting, and re-designing a life-
sciences curriculum in a prior case study [8]. The grounding deci-
sions for activity changes included realizations that the cognitive
demands for learning both CT and science concepts could be too
high for the diverse range of middle-grade students. Additionally,
students without prior programming exposure would benefit from
tutorials and scaffolded directions. Thirdly, interface distractions
could derail students and cause extra demands to cognitive load[16].
Many of these realizations however, came from short lab-controlled
settings or subjective team reflections and discussion.

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

58

https://doi.org/10.1145/3300115.3309527
https://doi.org/10.1145/3300115.3309527


CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China N. Lytle, V. Cateté, et al.

As Fishman points out, there is a broad challenge to gather and
interpret evidence of effectiveness in the field as this differs greatly
from a controlled setting [6]. Strategies for gathering evidence
include student assessments, self-report surveys, rigorous obser-
vations [11], along with trace data analyses and video-recorded
sessions. Although many of these practices are common in the field
of educational research, they are often difficult to set up and take
place primarily in closed lab environments [14, 15].

Upon entering the implementation cycle of design-based re-
search, additional data collection methods should be used. In a
previous report, educational researchers described the implemen-
tation of computing oriented science activities in middle grades
classrooms [3]. This research focused primarily on the teacher’s
willingness to adopt the activity and effects of just-in-time profes-
sional development, noting that teacher buy-in had a large impact
on student perception of usefulness and active on-task engagement.
Although this research is well documented, it relied solely on qual-
itative data, including teacher interviews and observations. The
report did little to convey the student learning outcomes or other
evidence of student success.

Conversely, work by Grgurina et al. focuses on assessing model-
ing activities in a secondary grade computing classroom [7]. The
assessment uses a combination of the Revised Bloom’s Taxonomy
[9] and SOLO taxonomy [2] to evaluate students’ written answers
to a number of questions regarding their models on multiple dimen-
sions ranging from prestructural (information makes no sense) to
extended abstract (generalization and transfer) for areas of design,
experimentation, and reflection on the model. This assessment,
however, is summative in nature using a multi-week modeling and
research homework assignment as it’s main vessel. The assess-
ment provides less formative feedback on their specific skills and
knowledge and instead measures larger concepts.

As our current research concerns middle grades students who
are still developing their scientific knowledge and coding abilities,
more formative feedback is needed. Consequently, we need to be
able to better assess their programming behaviors so that we may
provide more support or scaffolding for emergent behaviors in fu-
ture iterations. Prior research in assessing science and modeling
activities in secondary classrooms have focused on teaching, adop-
tion, and summative assessments. In our new research, we look at
evaluating an experimental curriculum through both empirical and
qualitative evidence of student understanding.

3 METHODS
We created and utilized a CEO model to assess student outcomes,
our curriculum as a whole, and the effectiveness of our implementa-
tion. Each of the elements of CEO describe a different data set and
methodology for curricula analysis. Code Traces (C) describe the
actions within the coding environment used by the students, Exit
Tickets (E) describe post-activity written responses, and Observa-
tions (O) are researcher notes taken during implementation. In the
following sections, we describe the curriculum and implementation,
followed by our data collection methods.

3.1 Curriculum & Implementation
The curriculum development team, composed of educational psy-
chologists and computing education researchers, created an 8th-
grade life science lesson on Epidemic Diseases infused with compu-
tational thinking. The lesson was designed to be aligned to national
and state-level science standards as well as the k12cs.org Computa-
tional Thinking Framework. This five-day unit focused onmodeling
the spread of epidemic diseases like the flu, see Figure 1.

Figure 1: A Cellular representation of an epidemic.

Individual activities are described as “plugged" if students used a
programming environment, or “unplugged" if students were learn-
ing without a computer. Students were given a block-based pro-
gramming tutorial prior to the run of the unit. The unit features 2
unplugged days focused on modeling agent-host relations in the
transmission of disease. There were also 3 plugged days: 2 of which
had students develop a simulation based off the model discussed on
the “unplugged" day using the block-based programming environ-
ment, Cellular [1], and 1 day where students used the environment
to solve scientific research questions about the spread of diseases.
An overview of the activities are shown in Table 1.

Table 1: Epidemics outline, P: plugged, U: unplugged

Day Learning Goals
1: U Able to explain a simple model. Understand Hosts and Agents

share properties with modified values.
2: P Define infection and infection rate. Demonstrate understanding

of agent properties. Understand and use loops and conditionals.
3: P Understand disease spread and rate of transmission/infection.

Use variables to maintain count. Analyze trends in data to iden-
tify patterns. Demonstrate understanding of how interaction
properties can affect simulations.

4: U Understand Morbidity/Mortality rates and their influence on
spread. Understand and use Finite State Machines to model logic
flow. Model algorithmic thinking through transition modeling.

5: P Understand how environmental factors affect disease spread;
Learn experimental procedure for hypothesis testing. Visualize
data; Use simulations to test hypotheses.

We tested the 5-day Epidemics activity with two 8th grade sci-
ence teachers at a localmiddle school. Each teacher taught 5 sections
of students with class sizes ranging from 20 to 25 students. Each of
the teachers’ classes were presented the same activity on the same
day. Teachers taught every class period on unplugged days of the
unit. On plugged days (2, 3, and 5), teachers had one observation
period at the start of the day where they experienced the content as
a student, following along as the researchers led the first class. They

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

59



CEO: A Triangulated Evaluation of a Modeling-based CT-Infused Activity CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China

then taught the remaining 4 periods of the day, guiding students
through program implementation. 61 students returned consent
forms for us to analyze their data.

3.2 Code Traces
On days 2 and 3, students’ actions within the Cellular environment
were logged in a database for later examination. We focus our
analysis on the actions that make changes to their code. Specifically,
we call a student’s code at any point a code state, and the sequence
of code states that leads to the final solution a code trace.

For days 2 and 3, students were given instructions with individ-
ual tasks to complete within the environment. These tasks were
presented sequentially, but the order in which students could com-
plete the assignment did not have to match the intended order.
These tasks are outlined in Tables 2 and 3. In examining student
code traces, we can identify whether or not a specified task has
been completed at any given point in the code trace. We refer to
the instance in which a specified task has been completed as a task
completion state. The second column of Tables 2 and 3 provides one
of the many solutions that would result in the completion of that
task.

Table 2: Task milestones for day 2 of the epidemics activity

Task/Feature Example Solution
(1) Write a program that moves
your sprite to an empty neighbor
cell.

(2) Use a control loop to have
your sprites move to empty
neighbor cells forever.

(3) Add an if control block to
your main script that checks
whether your sprite is healthy
before checking its neighbor cells
for an infected sprite.
(4) Add a script to your forever
loop that makes your sprite
infected if an infected sprite (a
sprite with infected costume) is
in a neighbor cell.

All

Task completion states were individually tagged by a member
of the research team and build sequentially as students complete
additional tasks. When a student has a task completion state with
all tasks present, they have fully completed the assignment. To
illustrate, take two students who completed day 2’s activity, one
by entering completion state “1234" and another by entering com-
pletion state “1243". The presence of all four tasks (i.e. tasks 1,2,3,4)

in both states signify both students completed the full assignment.
The order of the numbers in the state tells the sequence of tasks the
students completed in the assignment (notice the order difference
in how they completed the last two tasks - 3 and 4).

Using code traces to identify student programming behaviors
gives light to RQ1 as they can illustrate common solution strategies,
most difficult tasks, and common pitfalls in student implementa-
tions. As these states and actions are also time-stamped, specific
strategies by students can be compared to see whether or not certain
strategies are easier (i.e. faster to complete) than others.

To complement our task completion state analysis, we went
through traces andmade qualitative observations of other behaviors
in the environment we found interesting. These included behavior
taken by the students after the assignment was complete, resets of
the environment (giving up and starting over again), spots where
students found difficulty in completing tasks, and off-task behavior.

Table 3: Task milestones for day 3 of the epidemics activity

Task/Feature Example Solution
(1) Create a variable to hold
number of infected sprites and
name it # of diseased. Set this
variable to zero in the beginning
of your program (just after the
“when green flag clicked" block)

(2) Write a script that increases
the value of the infected people
by one when a sprite gets
infected.

(3) Write a script that restarts
your simulation when you hit
space. The restart script should
make all sprites healthy and set
the number of infected to 0. Add
your restart script to this part of
the code on the screen.

(4) Write a script that changes
the value of the variable: # of
diseased when you click on a
sprite.

(5) Remove the set # of diseased
from your main script (the script
after “when green flag clicked")

All 3,4, and 5 all co-present.

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

60



CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China N. Lytle, V. Cateté, et al.

3.3 Exit Tickets
On plugged days, students were asked to take an end of class “Exit
Ticket". This series of questions measured self-reported affect, stu-
dent engagement, and perception of what they learned. The 61
consenting students generated 127 responses over three days of
activity. The relevant questions are listed below:

(1) What did you learn today?
(2) What was the most helpful to you: the tutorials, your class-

mates, your teacher?
(3) Did you find anything difficult or frustrating? Please explain.
(4) Did the lesson go too fast, too slow, or just right?
(5) Do you have any suggestions to improve the activities?
For question 1, our aim was to answer RQ3 by analyzing student

perception of the intent of the activity. As this was a CT-infused
science lesson, we aimed to see whether or not the perception of the
activity leaned more towards computing or science. Our approach
consisted of having two researchers individually tag responses
as being more focused on computing, science, both, or neither.
After individual tagging, the researchers compared their tags and
discussed cases where conflict existed until agreement could be
reached. For questions 2 and 4, our aim was to see which of the
three choices or combinations thereof were most present within an
assignment. Finally, for questions 3 and 5, researchers counted and
grouped the most common answers to use as feedback for the next
development cycle.

3.4 Observations
During the implementation, at least one member of the research
team acted as an observer on each plugged day. Each observer had
prior classroom experience leading computing activities with mid-
dle and secondary age students (with three of the observers having
5+ years of experience). Our goal with classroom observations was
to experience and record how the activity was conducted across
different classrooms and to gather both insights for improving
teacher training practices as well as improving the actual activity
and its implementation environment. In most activity sessions, we
assigned one observer to watch the teacher, and others to observe
the students. We also had additional support to help students stuck
on programming tasks, so that observers could stay focused on
the field. Observers recorded student affect, behaviors, and inter-
actions of note. After each session, observers conferred and noted
interesting results to follow up with.

4 RESULTS
4.1 Code Traces
In Figures 2 and 3, we represent the paths students took to com-
plete the assignment as a transition of progressive task completion
states. These states correspond to the subset of tasks that have
been completed thus far (e.g. state “12" represents finishing task 1
and then 2). The size of the shape corresponds to the number of
individuals who entered that specific task completion state, and the
size of the edges corresponds with the number of individuals who
made that unique transition. Task completion states can often be
stuck states (octagons in this representation) meaning that some
students made no further progress in the assignment after reaching

this state. This representation was adapted from a similar analysis
of student programming paths(see [18]).

4.1.1 Day 2. The code traces for 61 participants on day 2 are shown
in Figure 2. The task completion was mostly uniform, with partici-
pants only differing on whether or not they completed task 3 or 4
first. Most students, 33, completed the tasks in the intended order
of 1234 while 22 completed the ordering as 1243. The third feature
was the most missed (7 students omitted).

Figure 2: Task completion strategies for day 2.

Timing trends were also recorded and analyzed within the en-
vironment. The average time spent in the environment was 36
minutes. However, average time in environment varied consider-
ably by class period. Periods 2 and 3 spent the most amount of time
(41 and 39 minutes respectively) and period 4 spent the least (31
minutes). The last two periods spent 36 and 33 minutes within the
environment. This difference in timing is important as all students
within period 4 completed the features in the order 1243.

In looking through the traces, there is clear evidence for student
confusion. 14 students reset the environment and started over at
least once. Many students tried to complete their implementation
with distractor blocks (blocks not useful in final solution). The most
common distractor block was the “Touching" block, which was
used to check if two sprites were overlapping, instead of checking
if an agent was in a “neighboring cell". Another common block that
students attempted to use in the solution was the “Move Step" block
which was used in lieu of the “move to empty neighbor cell" block.

Students largely were able to complete the assignment with
relative ease as there was 17 minutes on average left from the last
feature was completed to close of the system. Due to the amount of
time left at the end, many students elected to complete additional
extension features with the most common (39/61) being a “reset
functionality" that resets the simulation to its initial position.

4.1.2 Day 3. Among the 59 code traces, the average time spent in
the environment was 39 minutes, ranging from 34 to 42 minutes.
There were markedly fewer resets (only 6 students) than the previ-
ous day’s programming assignment and many of these occurred
after students made an error such as creating a new sprite (and
losing track of their current sprite).

What is easily apparent by comparing the graphs of this assign-
ment with the other is the incredibly varied paths that students
take through the assignment. 11/59 students were unable to finish
the assignment with five of these students missing all but Task 5.
The 48 students who did finish the assignment took a myriad of
paths. The majority of these solutions (34) did NOT include tasks 1
and 5. In fact, 44 students did not complete task 1 at all and of the
15 that did, nearly half (7) did not complete task 5 afterwards (and
thereby not having correct final code).

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

61



CEO: A Triangulated Evaluation of a Modeling-based CT-Infused Activity CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China

Figure 3: Task completion strategies for day 3.

Students who completed the assignment had less time on average
(10 minutes) between finishing and close of the environment than
those working on assignment 2, but this split also varied by solution
strategy with those who did tasks 1 and 5 having less time (around
8.5 minutes) than those who just did only tasks 2, 3, and 4 (around
11 minutes). With the remaining time, students attempted a number
of self-created extensions. Some students attempted to make other
sprites in their model such as hospitals. Others attempted to extend
the logic of their modeling by either stopping the simulation once
the entire population was infected or keeping track of and graphing
the remaining healthy population. Another student attempted to
add interactivity into their model with key press events.

4.2 Exit Tickets
In addition to the main breakdown of students reporting learning
science vs computing (see Table 4), we also wanted to examine how
students articulate their new computing knowledge. We classified
their learning statements by whether they mention a computing
term or mention the term in connection to a specific goal. On day 2,
15 students mention sprites and costumes, 10 with specific goals in
mind. Seven students mention programming blocks, but only two
with a specific use in mind. On day 3, 23 students mention variables
and plotting, 13 of which with a specific goal for use. This time,
only four students mentioned sprites or costumes. Day 5, showed
the biggest swing with most students reporting science, though 5
students also mention programming in general.

Most students on each day reported that they did not find any-
thing frustrating with the activity. Of those that did, eight found
programming errors and debugging frustrating, while five students
found system related errors (problems saving, crashing, etc.) each
day frustrating to deal with. Five students on day 2 and day 3 specif-
ically mentioned adding the hospital was difficult, but this was
an extension activity not explicitly supported in the curriculum.
Finally, day 5’s specific activity brought new challenges for five
students as some were frustrated and confused about the terms
introduced (e.g. independent variable) as well as using the tools in
order to find the relationships in the assignment.

Table 4: Student responses to Exit Ticket questions 1, 2, and
4. Answers of none are omitted from the table.

Day Balance Most Helpful Pacing

2
N=39

Computing: 23
Science: 3
Both:12

Teacher: 28
Tutorial: 5
Classmates:2

Perfect: 29
Slow: 5
Fast: 3

3
N=49

Computing: 34
Science: 5
Both:7

Teacher: 32
Tutorial: 8
Classmates:6

Perfect: 30
Slow: 13
Fast: 2

5
N=39

Computing: 0
Science: 26
Both: 7

Teacher: 24
Tutorial: 3
Classmates:6

Perfect: 23
Slow: 4
Fast: 5

Finally, students had a number of suggestions on how to improve
the curriculum. Suggestions can be broadly categorized as having
to do with the instruction (providing more support or improving
the pacing); fixing technical problems with the programming envi-
ronment (e.g. crashes, bugs); and activity-related suggestions (e.g.
more extensions, time for group work, creative time).

4.3 Observations
Observers identified general patterns on all three days. First, con-
cerns were raised about the task sequence in both days 2 and 3. For
day 3, observers noted that the action of setting # of diseased to 0
under the Green Flag in task 1 didn’t seem to serve a purpose and
caused confusion in some cases. In later periods, teachers skipped
this step entirely.

Observers noted that the ordering of tasks in day 2 was off.
When comparing periods, the class seems to run smoother when
students work to iteratively solve a problem and the nested-if (task
3) does not produce any visible change. Observers also noted that
teachers adopted different strategies in different periods, resulting
in the difference in pacing of the assignments. In some periods, the
activities were led in an incredibly instructionist manner, leading
students through each step. As teachers got more comfortable with
the assignment, they began to add their own pacing and scaffolding
approaches such as having students explain previous days code or
creating parsons problems [12] for students to reason through as a
group. Towards the end periods, teachers found ways to explicitly
connect science concepts into the programming instruction.

Researchers observed the majority of students actively engaged
during all three days of instruction with minimal off-task behavior.
While students were generally able to code within the environment,
some confusion was observed during day 5 of the activity. Students
struggled to setup the simulation environment in a way needed
to answer their group’s research questions. This was alleviated in
later periods with deliberate instructor support.

5 DISCUSSION & LIMITATIONS
In addressing the question “How are students completing the assign-
ment tasks?”, we examined the connection between code traces and
observations. Overall, day 2 and 3 completion rates were strongwith
55/61 and 42/59 students fully completing the assignment respec-
tively. Those that completed the assignment tended to have extra

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

62



CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China N. Lytle, V. Cateté, et al.

time left, suggesting mid to high performing students need addi-
tional activities and extensions. Initial observer concerns about task
sequencing were corroborated by examining students progression
through the completion states. For day 2, the quicker completion
time as well as observations suggest that the task sequencing should
be 1243 instead of 1234. Task 4 is the behavior that actually visually
changes the sprites to infected, which as observers noted, is critical
in engaging students. Moreover, task 3 requires a doubly nested if,
while task 4 only requires a single if, which is a better scaffolding
strategy and smoother sequence than the original task sequence
(as noted by field observations of teachers guiding the instruction).
The final recommendation for day 2’s sequence is informed by the
large number of field observed and code trace observed end of day
behaviors of adding in the reset functionality. This should be ex-
plicitly added as a day 2 task, as the behavior and functionality is
necessary for day 3’s activity.

In examining day 3’s sequencing, the most apparent result was
that the placing of the set block under the green flag in task 1 and
the removal of this block in task 5 were unnecessary additions to
the assignment. Not only did it impede progress in many cases as
evident by the code traces, observations from researchers showed
that teachers and students would often forego actually complet-
ing the tasks at all. This lead to faster overall completions of the
assignment as well as fewer stuck states. As the plurality of stu-
dents completed the task by completing task 3 first and without
doing tasks 1 and 5 fully, the results strongly support removal and
reordering of the tasks.

In answering the question “What emergent behaviors or obser-
vations can we identify in order to better engage students in future
iterations?", we identify several behaviors of actionable interest.
First, blocks that are identified as distractors impede progress and
can lead to student frustration and confusion, noted by both ob-
servers and exit tickets. Within the stuck states, it is also observ-
able when students don’t know which block to use. Since the goal
of the curriculum is for the student to build the correct logic for
the epidemics model instead of identifying the difference between
blocks, we will hide the distractor blocks in future iterations in
order to focus attention solely on blocks necessary for completing
the assignment. Second, student exit tickets, observations and code
traces all support the idea that students want more opportunities
for open-ended exploration. With many extensions attempted in
the extra time on days 2 and 3, the curriculum should explicitly
provide additional scaffolding for students to be able to complete
these extensions, including the reset functionality completed by
the majority of students on day 2. Supporting these extra activities
will also alleviate pacing issues with students finishing early and
displaying disruptive/bored behavior.

In answering the question “How do students perceiving the science
vs computational learning goals?", we primarily examine exit tickets
and observations. Students self-reported learning topics correlate
strongly with the amount of programming on a particular day. On
days 2 and 3, which focused creating the simulation to determine
rate of infection, the majority of students reported learning com-
puting (89.7% and 83.7% respectively). On these days, students were
able to articulate the connections between the sprites/costumes
and the resulting agent behavior in the simulation as well as the
usefulness of variables in being able to track the rate of infection.

On day 5, which focused on solving research questions within
the simulation the majority of students (84.6%) reported learning
science. This trend in perceived learning, is further supported by
observations that suggest teachers make deliberate breakpoints
to connect the computing to science concepts previously covered
in class as teachers introduced more guided reflections and con-
nections with material as the day progressed. These moments of
connection, created by teachers, should be explicitly supported
within the curriculum in order to be able to truly promote the
lesson as an infused activity.

Furthermore, several students reported the tutorial being helpful
for each day, however, the majority of students report help from the
teacher being most useful. Observers noted the teacher had a good
sense of pace of the students on programming days, and helped
students construct hypotheses and explain terms like susceptibility
which they only briefly covered prior. The teacher also provided
logical reasoning and discussions for students to understand why
the simulation behaved they way it did.

The scope of this study is limited by mainly focusing on plugged
days and not unplugged. We also did not record the action logs of
students during the final day as no coding occurred in the environ-
ment. An issue that was not addressed in this study was student
assessment of scientific concepts as this was also beyond the scope
of our research. Finally, as is the case in much classroom research,
an observer effect may have influenced findings.

6 CONCLUSIONS & FUTUREWORK
In this analysis of a CT-infused life science lesson, we created and
used the CEOmodel to triangulate data from code traces, exit tickets,
and field observations to evaluate the success of student outcomes
in the experimental curriculum. Using these data measures, we
identified popular student programming pathways that lead to
successful completion of the assignment and pathways that lead
to stuck states. The code traces provide empirical support for the
subjective field observations and student exit tickets.

Other observations and suggestions corroborated by code traces
include staging tasks in such a way that each milestone has a visual
component or perceivable outcome by the students. Additionally,
on days where students complete the main tasks quickly, additional
content can be included, specifically, the functionality (such as re-
set) that most students already take upon themselves to complete.
In general, these findings suggest a role for code traces as a initial at-
tempt to empirically corroborate purely qualitative-based evidence.
Thus, promoting a more robust pathway for iteratively improving
computing-infused activities for non-computing students. While
this process was done through inspection by a member of the re-
search team, this process could be automated through the creation
of unit tests for intended code behavior for each task.

A natural progression of this work is to investigate the transfer-
ability of these activities. Following Means and Penuel 2005, we
want to further identify, “what works where, when, and for whom"
[10]. We have piloted the epidemics curriculum in two additional
schools within the same county. However, we would like to inves-
tigate if the lessons will also work at another institution, with a
different school culture at differing times in the school schedule
(i.e. before/after lesson plan; exploration vs. review activity).

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

63



CEO: A Triangulated Evaluation of a Modeling-based CT-Infused Activity CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under 1742351 and 1742332. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] Bernd Meyer Aidan Lane and Jonathan Mullins. 2012. Simulation with Cellular

A Project Based Introduction to Programming (first ed.). Monash University,
Melbourne, Australia. Online: https://github.com/MonashAlexandria/snapapps.

[2] John B Biggs and Kevin F Collis. 2014. Evaluating the quality of learning: The
SOLO taxonomy (Structure of the Observed Learning Outcome). Academic Press,
New York, New York, USA.

[3] Veronica Cateté, Nicholas Lytle, Yihuan Dong, Danielle Boulden, Bita Akram,
Jennifer Houchins, Tiffany Barnes, Eric Wiebe, James Lester, Bradford Mott, and
Kristy Boyer. 2018. Infusing Computational Thinking into Middle Grade Science
Classrooms: Lessons Learned. In Proceedings of the 13th Workshop in Primary and
Secondary Computing Education (WiPSCE ’18). ACM, New York, NY, USA, Article
21, 6 pages. https://doi.org/10.1145/3265757.3265778

[4] Cynthia E Coburn, William R Penuel, and Kimberly E Geil. 2013. Practice Partner-
ships: A Strategy for Leveraging Research for Educational Improvement in School
Districts. Technical Report. William T. Grant Foundation, New York, New York,
USA.

[5] National Research Council et al. 2011. Report of a workshop on the pedagogical
aspects of computational thinking. National Academies Press, Washington, DC.

[6] Barry J Fishman, William R Penuel, Anna-Ruth Allen, Britte Haugan Cheng, and
NORA Sabelli. 2013. Design-based implementation research: An emerging model
for transforming the relationship of research and practice. National society for
the study of education 112, 2 (2013), 136–156.

[7] Natasa Grgurina, Erik Barendsen, Cor Suhre, Bert Zwaneveld, and Klaas van
Veen. 2018. Assessment of Modeling and Simulation in Secondary Computing
Science Education. In Proceedings of the 13th Workshop in Primary and Secondary
Computing Education (WiPSCE ’18). ACM, New York, NY, USA, Article 7, 10 pages.
https://doi.org/10.1145/3265757.3265764

[8] J. K. Houchins, D. C. Boulden, B. Akram, E. Wiebe, V. Cateté, Y. Dong, N. Lytle,
A. Milliken, T. Barnes, J. Lester, B. Mott, and K. E. Boyer. 2019. Designing a
Computational Modeling Unit for Middle Grades Science Classrooms: Grounding
Decisions in Practice. In 2019 American Educational Research Association Annual
Meeting. AIED, Toronto, Canada, 15.

[9] David R Krathwohl. 2002. A revision of Bloom’s taxonomy: An overview. Theory
into practice 41, 4 (2002), 212–218.

[10] Barbara Means and William R Penuel. 2005. Scaling up technology-based edu-
cational innovations. Scaling up success: Lessons learned from technology-based
educational improvement . (2005), 176–197.

[11] Jaclyn Ocumpaugh. 2015. Baker Rodrigo Ocumpaugh monitoring protocol (BROMP)
2.0 technical and training manual. Teachers College, Columbia University.

[12] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and Effective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (ACE ’06).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 157–163.
http://dl.acm.org/citation.cfm?id=1151869.1151890

[13] Thomas W. Price, Veronica Cateté, Jennifer Albert, Tiffany Barnes, and Daniel D.
Garcia. 2016. Lessons Learned from “BJC" CS Principles Professional Devel-
opment. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, New York, USA, 467–472.
https://doi.org/10.1145/2839509.2844625

[14] Jonathan P Rowe, Scott W McQuiggan, Jennifer L Robison, and James C Lester.
2009. Off-Task Behavior in Narrative-Centered Learning Environments.. In Pro-
ceedings of the 14th International Conference on Artificial Intelligence in Education,
AIED 2019. IOS Press, Brighton, UK, 99–106.

[15] Robert Sawyer, Andy Smith, Jonathan Rowe, Roger Azevedo, and James Lester.
2017. Enhancing Student Models in Game-based Learning with Facial Expression
Recognition. In Proceedings of the 25th Conference on User Modeling, Adaptation
and Personalization (UMAP ’17). ACM, New York, NY, USA, 192–201. https:
//doi.org/10.1145/3079628.3079686

[16] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[17] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[18] Rui Zhi, Thomas W Price, Nicholas Lytle, Yihuan Dong, and Tiffany Barnes.
2018. Reducing the State Space of Programming Problems through Data-Driven
Feature Detection. In Educational Data Mining in Computer Science Education
(CSEDM) Workshop @EDM 2018. Educational Data Mining, New York, United
States, 7.

Paper Session: Pre-college Part 1 CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

64

https://doi.org/10.1145/3265757.3265778
https://doi.org/10.1145/3265757.3265764
http://dl.acm.org/citation.cfm?id=1151869.1151890
https://doi.org/10.1145/2839509.2844625
https://doi.org/10.1145/3079628.3079686
https://doi.org/10.1145/3079628.3079686

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Methods
	3.1 Curriculum & Implementation
	3.2 Code Traces
	3.3 Exit Tickets
	3.4 Observations

	4 Results
	4.1 Code Traces
	4.2 Exit Tickets
	4.3 Observations

	5 Discussion & Limitations
	6 Conclusions & Future Work
	Acknowledgments
	References



