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ABSTRACT
Computational Thinking (CT) is being infused into curricula in
a variety of core K-12 STEM courses. As these topics are being
introduced to students without prior programming experience and
are potentially taught by instructors unfamiliar with programming
and CT, appropriate lesson design might help support both students
and teachers. “Use-Modify-Create" (UMC), a CT lesson progression,
has students ease into CT topics by first “Using" a given artifact,
“Modifying" an existing one, and then eventually “Creating" new
ones. While studies have presented lessons adopting and adapting
this progression and advocating for its use, few have focused on
evaluating UMC’s pedagogical effectiveness and claims. We present
a comparison study between two CT lesson progressions for middle
school science classes. Students participated in a 4-day activity
focused on developing an agent-based simulation in a block-based
programming environment. While some classrooms had students
develop code on days 2-4, others used a scaffolded lesson plan
modeled after the UMC framework. Through analyzing student’s
exit tickets, classroom observations, and teacher interviews, we
illustrate differences in perception of assignment difficulty from
both the students and teachers, as well as student perception of
artifact “ownership" between conditions.
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1 INTRODUCTION
It is becoming increasingly necessary for every child to have ex-
perience with 21st-century Computational Thinking (CT) skills
[28]. However, these skills have typically been taught within elec-
tive Computer Science classes or outside of school activities [17].
To reach all students, CT must be integrated into required K-12
courses, such as science and math. This CT integration will pose
several challenges. First, lessons must not only focus on key CT
concepts but must also include and integrate domain knowledge,
though research demonstrates that CT topics can be integrated
without detracting from the learning of the core domain material
[3]. Further, these activities must be designed with the understand-
ing that they may be the first introduction to programming or CT
for many students and teachers. Successful integration depends
on equipped and capable teachers, though many do not have the
prerequisite background required to teach CT or computer science
[7]. Professional development can give teachers experience with
CT skills [8, 12, 21], however, to reach all students, we must de-
velop solutions that can be readily adopted by both experienced
and inexperienced teachers and that can improve student learning
in both CT and course content.

This study compares two separate design implementations of a
4-day computing infused science lesson across multiple classrooms.
One condition received a lesson including 3 days of coding while
the other received a scaffolded curriculum modeled after Lee’s Use-
Modify-Create (UMC) [16]. Through our quasi-experimental design,
we aim to investigate how UMC sequencing impacts:
1. Student-perceived difficulty of the lesson.
2. Student-perceived ownership of the used and developed programs.
3. Teacher-perceived difficulty of the lesson and ability to teach it.

2 RELATED WORK
As demand increases for incorporating computing into core K-12
subjects, so does the need for classroom activities that are tailored
for non-computing focused teachers and students. Through adding
computing activities directly into a STEM course, teachers gain
improved mastery of their discipline when using new instructional
approaches [26]. However, reporting suggests that teachers lose
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much of the control they traditionally have over the learning pro-
cess and may become uncomfortable when students pose and solve
open-ended integrated STEM and Computing problems [6]. For
teachers to support these students engaging in self-directed collab-
orative processes, they require an ability to diagnose difficulties
and give hints, rather than supply solutions.

A prior case study by Cateté et al. [4] on infusing CT into sci-
ence classrooms highlights how teachers were hesitant to lead
new programming activities, and were afraid of misguiding stu-
dents, even with professional development and classroom support.
These concerns are also identified in a 2017 report for UK teachers
facing computing infusion [23]. The most common challenges men-
tioned included subject knowledge, differentiation, lack of time,
approaches to teaching topics, students’ understanding, and ability
to problem solve. This report also lists successful teacher strate-
gies towards teaching computing such as unplugged activities[2],
computational thinking, contextual learning, and scaffolding of
programming tasks. In order to improve the incorporation of com-
puting into science classrooms, we attempt to utilize the above
findings to create more supportive materials for both teachers and
students facing computing.

One such approach to improving CT acquisition with reduced
cognitive stress comes in the form of curricular materials that fol-
low a scaffolded intensity of interaction. Research by Lee et al,
suggests that using a Use-Modify-Create (UMC) learning progres-
sion can promote the acquisition and development of CT while also
limiting the anxiety from activities that teachers may have previ-
ously perceived to be “too hard" for students [15, 16]. In the first
phase, Use, students inspect code and run existing models acting
as “consumers of someone else’s creation[16]." In transitioning to
theModify phase, students go from solely using existing code to
changing the code to suit their intended desires as designers. This
act of modifying also brings about a change in perceived ownership
as students move toward viewing the code as their own. In the final
phase, Create, students end up in a state where they have created
a completely new model, having full ownership of the design and
agency over its development[16].

Lee promoted UMC not only as a lesson scaffolding framework,
but also a way to create this sense of “ownership" in learners. It has
been argued that in order to realize the full benefit of CT, students
must develop a sense of ownership over the models underlying
the CT concepts being taught [5]. During creation, the final step
of UMC, students increase engagement in learning and perceived
agency of their learning, which is associated with behavioral, emo-
tional, and cognitive engagement [22]. UMC allows students to take
increasing ownership of the learning by giving them progressively
more complex tasks. This increased ownership empowers students
to investigate CT and underlying assumptions behind the tasks.

Researchers have used UMC as a basis for a number of CT and CT-
infused activities across the K-8 curriculum [13, 15, 27]. Werner et
al. employed UMC in the creation of an elective game programming
course [27], finding that students demonstrated understanding of
several CT and CS concepts through developing games. Further-
more, Grizioti et al. developed a game-specific adaptation in which
players first play then modify/fix a “half-baked" version of the game,
and then create a new version [13]. Sentance andWaite extend UMC
in their PRIMM (Predict, Run, Investigate, Modify, Make) model for

teaching text-based programming[24]. Initial workshops suggest
that teachers are willing to adopt this model, but like Werner and
Grizioti, this work is situated in a pure CS context.

We believe the UMC framework can extend into core domains,
alleviating the burden of learning to program while simultaneously
learning domain material. This will allow students to ease into the
activity, become familiar with the programming environment, and
explore how smaller changes affect the code. We assume these same
benefits extend to teachers who also might not be familiar with
coding and would welcome scaffolded lessons. We finally posit that
as students go from users to creators in the Use-Modify-Create
lessons, their sense of ownership of the project will increase to
match that of students who participate in lessons where they always
create code from scratch. We test out these assumptions using an
A/B study across multiple classrooms as described in the section
below. If these hypotheses are supported, these benefits can reduce
teachers’ fears of being CT novices as well as students’ frustration
with the difficulty of learning to program, potentially increasing
adoption of materials developed using the UMC progression.

3 METHODS
3.1 Context
The study took place in two separate middle schools (School 1,
School 2) in the mid-atlantic United States. The classrooms were all
6th grade (age 11-12) science classrooms taught by one of 4 teachers
(1 from School 1, 3 from School 2). None of the teachers had experi-
ence instructing programing lessons. Each teacher was responsible
for multiple class periods with different students. Teachers in School
2 had 5 class periods each while the teacher in School 1 taught 2
class periods. Each period averaged 20 - 30 unique students. A total
of 394 students participated in the study, but we only analyze data
from the 160 consenting students who provided data for every day.
Demographic information for these students is reported in Table 1.
Chi-Square tests show no significant differences in gender or race
between the two populations.

Table 1: Gender and race/ethnicity by condition.

UMC
(N=95)

Control
(N=65)

Total
(N=160)

Gender Female 42.1% 41.5% 41.9%
Male 47.4% 55.4% 50.6%

Race
Ethnicity

Black 19.0% 13.9% 16.9%
Caucasian 26.3% 26.2% 26.3%
Hispanic 15.8% 18.5% 16.9%
Asian 14.7% 15.4% 15.0%
Multi-racial 3.2% 3.1% 3.1%
N/A 21.1% 23.1% 21.9%

We further surveyed students on their previous programming
experiences. Responses are shown in Table 2 ranging from Never
to Daily. Chi-Square tests show no significant differences in prior
programming experience between the two populations. In an open
response follow up to question 1, many students reporting "Rare"
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or "Occasional" described participating in an Hour of Code activ-
ity [14]. Those marking "Frequent" or "Daily" report being in a
computing club or technology elective course.

Table 2: Participants’ computing background self-ratings.

Never Rare Occasional Frequent Daily
Q1 Previous participation in computing activities
UMC 7.4% 9.5% 54.7% 11.6% 6.3%
Control 6.2% 15.4% 47.7% 20.0% 7.7%
Q2 Previous experience writing a computer program
UMC 15.8% 21.1% 41.1% 7.4% 4.2%
Control 13.8% 23.1% 40.0% 15.4% 4.6%

3.2 Curriculum
The activity was designed to be a 4-day, CT lesson. Though teach-
ers were trained on the material, on programming days, a research
team member taught the first period as part of a “Faded Instruc-
tor Scaffolding Model" designed to help teachers understand the
curriculum from a student’s perspective. Each programming day
took place within the Cellular environment [1], an extension of
the block-based programming language Snap! [10] that provides
a good method for agent-based modeling and has been used in
similar initiatives with infusing CT into STEM curriculum [4].

For use in the 6th grade science classroom, the topic of “Food
Webs" was chosen. In the food web curriculum, students learn about
how energy is transferred from producers to primary and secondary
consumers. The computing-infused activity let students explore
the transfer of energy in a simplified food web developed using the
block-based programming environment, Cellular [1]. We describe
each daily segment of the activity below, and a breakdown by
condition is visualized in Figure 1. The Use-Modify-Create (UMC)
versionwas adapted from a previous version of the foodweb activity
used in classrooms which acts as our control lesson in this study.

Figure 1: Programming methods for Food Web agents
(plants, bunnies, foxes) by day and condition

Day 1 - Both conditions completed an “Unplugged" activity [2] in
which students reviewed definitions and components of a FoodWeb
(e.g. primary and secondary consumer, how energy is transferred
through the system, etc.). This ended with completing a worksheet
lead by the instructor where students described the behavior of
agents in the model through pseudo-code. This was done to prepare
students for developing these ideas within the programming model.

Day 2 - Day 2’s focus was the “Plant" agent (the producer), which
would grow based on the solar energy given by the “Sun" (code
provided for both conditions). For the control condition, students
had to develop code for the Plant to be able to transition between
stages of its life cycle using the amount of ‘Solar Energy’ received
over time. This was represented in code as sequential conditionals,
checking both the plant’s current state and energy before transi-
tioning into the next state. The students in the UMC condition had
plant code provided and instead inspected and read through the
working code in order to become familiar with the different condi-
tions. The instructor led students in exploration by changing the
initial input (the solar energy intensity), the cutoff conditions (how
much energy is needed to transition) and the amount of energy lost
through transitioning. Students then used a worksheet to record
how those changes affected the speed in which flowers changed
state.

Day 3 - Day 3’s focus was the “Bunny" agent (the model’s pri-
mary consumer). Control condition students wrote code to add the
new agent to their working model. Meanwhile, the UMC condition
had Bunny code provided at the outset. However, the given bunny
behavior did not conform with their idea of the actual model (e.g.
bunnies never ate when they got low on energy, flowers transi-
tioned to an incorrect state after being eaten etc.). Thus, students
during this class periodmodified the existing code in order to make
it conform to the existing ideas they had discussed on Day 1’s activ-
ity of how the model should behave. This is similar to the activity
found in prior studies of fixing the "half-baked microworld"[13].

Day 4 - The agent focus for the final lesson was on this model’s
secondary consumer, the “Fox". Both conditions had to develop
the entire Fox code (in a sense, creating a new model with this
additional agent) and update the “Bunny" code to react to the new
agent and implement the desired final behavior in their model.
Once complete, as shown in Figure 2, students were tasked with
changing some functionality in their code and comparing how their
new simulations behaved differently from their previous one.

Figure 2: Food Web in Cellular showing how plant, bunny,
and fox agents appear on the grid at one time step.

Although each programming day builds on previous topics, stu-
dents begin with the same starter code for their condition to reduce
effects from student absences or incompletion from a prior day. The
topic of Food Webs and the sequencing of our curriculum affords
the exploration of our research questions for a number of reasons.
First, as a life science topic found in common core guidelines, Food
Web is an exemplar STEM lesson that could be taught throughout
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the United States. Second, as the topic of Food Web focuses on the
interaction between different actors in an environment, it lends
itself nicely to a computing task focused on developing an agent-
based model or simulation like prior UMC-developed lessons [16].
Finally, as we use a multi-day assignment, we can segment each
programming day to be on a single Food Web actor, allowing us to
frame the UMC conditions’ activity to match each phase of UMC.

3.3 Data Collection
Evaluation of the initiative was recorded through a number of data
collection methods. For every period, at least one research team
member was present taking observation notes, focusing on the
students’ interactions within the environment as well as how the
teacher was teaching the lesson. After the conclusion of each day’s
activity, students took an end-of-activity “Exit Ticket" in which
they answered a series of questions about the activity. In order to
study student-perceived difficulty, we asked students to rate the
difficulty of the days’ activity on a 1-5 Likert scale (Very Easy to
Very Difficult). For student-perceived ownership, two questions
were included that addressed the ability to express one’s ideas and
the belief the code was their own creation. These questions were
on a 7-point Likert scale from Strongly Agree to Strongly Disagree.

For teacher-perceived difficulty, we first analyzed classroom ob-
servations that focused on the teacher’s ability to teach the lesson.
Additionally, a member of the research team conducted interviews
using a semi-structured interview protocol with each of the partici-
pating teachers at the conclusion of the lesson sequence. The proto-
col consisted of questions targeted to elicit general teacher feedback
about each of the days of the lesson sequence and their impact on
students (e.g., What are the strengths of the lesson? Weaknesses?)
Interviews lasted approximately twenty to thirty minutes and were
audio recorded and transcribed for analysis. A constant comparison
analysis [20] of the interview transcripts provided insights on the
teachers’ perceptions of the lessons from a pedagogical standpoint,
comparing teacher interviews within groups and between groups.

4 RESULTS
4.1 Student-perceived difficulty
Each day, students completed the exit ticket question “Please use
the [scale of 1 to 5 (Very Easy to Very Difficult)] to rate how difficult
or easy the lesson was today." The daily average values for students
in each condition are given in Table 3. A Friedman Test, similar to a
parametric repeated measures ANOVA but for non-parametric data
[9], was performed in order to determine if there were differences
found in the average values for each of the days. For the Use-Modify-
Create (UMC) condition, no significant difference was found among
the four days χ23 = 1.879,p = 0.598. However, for the control
condition, χ23 = 9.984,p = 0.019 showing significance. Therefore, a
post-hoc Wilcoxon Signed Rank Test, a non-parametric equivalent
to a paired T-Test [29], was performed between each of the pairwise
groups. No significant differences were found between days 1 and
3, 1 and 4, nor 3 and 4. However, for each pairwise comparison with
day 2, a significant difference was found (1-2: V = 240,p = .002;
2-3: V = 770,p = .003; and 2-4: V = 218,p = .004). An additional
Mann Whitney U Test, a non-parametric test similar to an unpaired
T-Test[19], was performed between groups for each of the 4 days

to determine differences in difficulty responses between conditions
for the same day. No significant differences were found in the
comparisons between conditions for Days 1 (W = 3187,p = 0.72),
3 (W = 3162,p = 0.79), or 4 (W = 3144,p = 0.84). However,
comparing Day 2 (the first coding day) between the two conditions
found a significant difference with UMC being significantly easier
(W = 2238,p = .002).

This difference in difficulty is backed by classroom observations.
Researchers found that in the UMC classrooms, students were often
able to finish their designated tasks more quickly, especially on
the third day where the UMC group modified a bunny while the
control group coded one from scratch. This time difference means
that the UMC group had additional time to add elements or engage
in teacher-led discussions about connections to class topics. Further,
researchers found in some control condition classrooms (especially
on Day 2 and to some degree Day 3) that students had difficulty
finishing the task. As a result, teachers in the control group on Day
2 either forged ahead leaving many students behind, or slowed the
lesson so all students could keep up, but were unable to complete
the full lesson to add flowers. During the follow-up interviews,
teachers in the control condition commented on the need for more
scaffolding, while teachers in the UMC condition did not express
this concern. Teachers in the UMC condition indicated that the
progression of the curriculum served as an effective scaffold for stu-
dents’ conceptual understanding of the programming environment
that better prepares them for creating their own program models.
One of the teachers articulates this below:

“...like day [two], when we were on the computer. You really
understand the beginning part. And then day [three] it builds a
little bit more and you’re building the code. You’re playing with
it. And day [four] is really copying the bunny code, just tweaking
it a tiny bit. So at that point they’ve done so much with it already.
They’ve got it. I mean, they were playing with all kinds of things."

4.2 Student-perceived ownership
Two questions were added to the coding day exit tickets (Days 2,
3, and 4) to address student-perceived ownership. These were: “To
what extent do you agree with the following statement: I was able
to express my ideas in the model today" and “To what extent do you
agree with the following statement: The code I ended the lesson
with is my own creation" both on a scale from 1 (Strongly Agree)
to 7 (Strongly Disagree). The average values for these answers
are shown in Table 3. A Friedman Test was performed in order to
determine if there were differences found in the average values
for each of the days. No significant difference was found among
the three days for ‘expressing ideas’ for both the control group,
χ22 = 0.0231,p = 0.989 and for the UMC group χ22 = 1.1421,p =
0.565. However, in performingMannWhitney UTests between the 2
groups, significant differences were found in Days 3 (W = 3389,p =
0.03) and 4 (W = 3425,p = 0.04) though not for Day 2 (W =

3683,p = 0.21). For the statement “The code I ended the lesson with
is my own creation", a Friedman Test finds no significant difference
in the control condition answers: χ22 = 0.562,p = 755. However, for
the UMC condition, the Friedman Test found a significant difference
among the three: χ22 = 9.637,p = 0.008. A follow-up pairwise
Wilcoxon-Signed Rank Test was performed between each of the
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Table 3: Reporting of Average and Standard Deviation for student responses to Exit Ticket questions.

Use-Modify-Create Condition (N=95) Control Condition (N=65)
Likert Questions Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4
Rate how difficult or easy the
lesson was today: (Very Easy) 1 -
5 (Very Difficult).

χ = 2.11
σ = 0.93

χ = 2.04
σ = 1.18

χ = 2.15
σ = 1.03

χ = 2.25
σ = 1.09

χ = 2.03
σ = 0.85

χ = 2.58
σ = 1.13

χ = 2.11
σ = 1.03

χ = 2.25
σ = 1.09

“I was able to express my ideas
in the model today." (Strongly
Agree) 1 - 7 (Strongly Disagree)

N/A χ = 2.89
σ = 1.45

χ = 2.64
σ = 1.48

χ = 2.68
σ = 1.54 N/A χ = 3.13

σ = 1.18
χ = 2.98
σ = 1.32

χ = 2.99
σ = 1.32

“The code I ended the lesson
with is my own creation." (Strongly
Agree) 1 - 7 (Strongly Disagree)

N/A χ = 3.54
σ = 1.87

χ = 2.79
σ = 1.64

χ = 2.93
σ = 1.72 N/A χ = 3.39

σ = 1.42
χ = 3.24
σ = 1.44

χ = 3.21
σ = 1.43

days and while no significant difference was found between Days
3 and 4 (V = 769,p = 0.38), significant differences were found
between Days 2 and 3 (V = 1973,p < 0.001) and Days 2 and 4
(V = 1000,p = 0.006) within the UMC group. Additional Mann-
Whitney U Tests were performed between the two conditions.While
no difference was found between Day 2 (W = 4207,p = 0.8) or
Day 4 (W = 3485,p = 0.07) between the conditions, significant
differences were found between the Day 3 (W = 3284,p = 0.02)
responses between groups.

While not as direct as the student-perceived difficulty differences,
there were key classroom observational differences between the
conditions that corroborate the findings from the exit tickets. First,
as stated before, students in the UMC condition were often able to
finish tasks faster and were therefore able to explore more within
the code, and add their own additional features. It is possible that
adding their own touches after the guided part of the lesson led to
an increased sense of artifact ‘ownership’. Second, researchers ob-
served (and teachers commented during follow-up interviews) that
students in the UMC condition seemed more engaged in the activity,
but it was actually difficult to keep students engaged in the control
condition. This disconnect with the material and the monotony of
the tasks in the control condition might have contributed to the
students’ sense that the code was not their own.

4.3 Teacher-perceptions
Teacher interview transcripts were analyzed using a constant com-
parative method [20] that entailed searching for themes amongst
the teachers within each condition and then comparing data from
the teachers across the two conditions. Results reflected the diffi-
culties that teachers in the control group faced. The two teachers
implementing the coding-intensive control version of the curricu-
lum expressed concerns that their students needed more scaffolding
to complete the lessons and concerns about their students’ daily
engagement. When asked about potential improvements to the
curriculum, both teachers suggested giving students more time
to “explore" and “play" with the code prior to creating their own
programs. UMC provides this opportunity for students. As one of
the teachers in UMC condition explains, “the kids [during the ‘use’
day] were understanding the coding; they were understanding why
it was changing and they were starting to play around with some of
that as well." Additionally, results from teacher interviews demon-
strated that teachers in the control condition perceived a decrease

in student engagement each day. Teachers themselves suggested
changing the approach each day, e.g. “I got a lot of comments that
they were bored with it because it was the same thing day after day.
So I can’t really think of it right now, but if there is, like some kind
of way to mix it up and still have the same information, but maybe
have them do it in a different way." Our data and teacher interviews
suggest that approaching coding through a variety of tasks, as the
UMC approach does, can improve student engagement. It is also
possible that the structured UMC sequence makes the Create day
more purposeful and engaging for students. One teacher explains
her students’ reactions to the Create day, “They’re like ‘day three
was very fun’. They really got a chance to understand how the
whole thing is connected."

The teacher interviews also corroborated that a UMC sequence
offers benefits to teachers, as it supports their learning and confi-
dence with the materials. One of the teachers revealed to us that,
researcher support “wasn’t needed the last day because I knew it.
At this point I was like, ‘I’m comfortable. I know where you’re
going with this.’" Both of the teachers in the code creation sequence
commented that the lessons were “exhausting," as one teacher de-
scribed that implementing the lessons entailed “standing in front of
a room and talking and basically having you being the first person
[they’re] gonna ask questions to for five hours."

The findings above are supported by observations of teachers
working through the curriculum. Like the teacher above noted,
researchers observed that teachers gained confidence in teaching
the lessons in both conditions, but this was more marked for UMC
teachers. The two UMC teachers, in addition to following the guided
material provided to them, were able to add new tasks to class
periods where time was still available, and led students in guided
discussions about the connections between the CT concepts and the
scientific concepts modeled within the environment. As previously
discussed, teachers in the control condition had difficulty engaging
and keeping all students on task as observed by the researchers,
and often needed to pause (especially on Days 2 and 3) to check
which task they needed to be doing or what the code was supposed
to look like. While this was also observed with one teacher of the
UMC condition, this behavior was occurring later in the assignment
sequence (on Days 3 and 4) and not to the same frequency.
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5 DISCUSSION
For student-perceived difficulty, students perceived the intro-
duction to coding on Day 2 as significantly harder in the
control group than any other day. While there was the same
procedure for each of the coding days in this condition (i.e. stu-
dents had to create an agent on each day) having to do this for
the first time might have been difficult without prior knowledge
or experience in the environment. Days 1, 3, and 4 having similar
reported levels of perceived difficulty, suggests that while the Day
2 activity was harder, getting through it and understanding the
procedure prepared students for the Day 3 and 4 coding activities.
No difficulty spike, however, was found in the sequence for the
UMC condition. The benefits of this sequence can be explained
using James Paul Gee’s principles of good learning [11]. It could
be that first “using" the new Cellular environment was “pleasantly
frustrating" – challenging but perceived to be easily done, and then
modifying it and then creating a new agent results in “well-ordered
problems" that allow students to develop mastery [11]. In contrast,
Day 2 for the control condition combined the need to learn the new
environment while also learning the basics of programming and
how they work within the environment, potentially increasing the
cognitive load of the students [25], which could result in a higher
perceived difficulty on Day 2.

Two questions were assessed to measure student perceived own-
ership of the models each day. While there are differences between
conditions for the question regarding expression of ideas, the most
pronounced differences between days and conditions is found for
the question on whether the code was their “own creation". While
the difference was not significant, the average value for the re-
sponse was higher in Day 2 of the UMC condition, indicating that
UMC students did not feel as much ownership over the final code
as students in the control condition. This was expected, as Day
2 represents the “Use" day where students changed parameters
and input variables, but did not create any new code. It is only on
Day 3, where students in UMC were “Modifying" existing Bunny
code, that there is a difference in perceived ownership between
groups. We were somewhat surprised that students in the UMC
condition felt significantly more ownership of their code, since they
made fewer programmatic changes (code adds, deletes, edits) than
the control group. It could be that the framing of the activity as
modifying existing code to make it perform the ‘correct’ behaviors
played into this mindset. In addition, the large number of program
edits needed in the control condition may have made more creative
activities, such as augmenting the model behavior, blend in with
more mechanical changes, like dragging in pre-specified blocks. In
some cases, these creative activities may not have even occurred,
since teachers struggled to help students complete the Day 3 and
Day 4 activities in the control group. The strengthening of arti-
fact ownership in the UMC condition that began on Day 3 carried
into Day 4, with the UMC group agreeing significantly more
than the control group that their final code was their own,
despite both conditions doing the exact same task.

In addition to student reported data, reflections from teachers
also suggest that they would benefit from and prefer the UMC
Condition. Teacher expertise is in supporting student learning, and
their perceptions confirm that a strict code creation approach is not

as effective for their classrooms. Since many teachers are novices
to programming and CT, and their courses are focused on other
topics, it is not realistic to expect disciplinary K-12 teachers to be
able to support such an intensive coding approach to integrating
CT. The UMC model helps teachers gradually learn how programs
represent their disciplinary knowledge, enabling them to make
those connections just in time with students. As stated by teachers,
having time to be able to “explore" the environment by first reading
and understanding code, then performing minor edits, and finally
being ready to add independent features, gives both students and
teachers an easier progression of tasks. This means that teachers
can adopt integrated CT curricula more readily, letting them learn
CT and programming along with their students.

6 CONCLUSION
In this paper, we present results from an A/B study of Use-Modify-
Create (UMC) versus a control group implementation of a CT-
infused Food Web activity. With student reports corroborated by
classroom observations and teacher interviews, we were able to
confirm previous research results showing that UMC sequencing
provides students a natural progression to learn computational
thinking within a science course, while giving students more own-
ership over the artifacts they create. We also found that teachers
using our UMC curriculum felt it was easy to teach, and that it pro-
moted student engagement and exploration, while teachers using
a code-intensive control curriculum desired more scaffolding and
features to improve student engagement.

Limitations of this work include potential population bias, in-
structor effects, and our interpretation of the UMC model. Partici-
pants are from two middle schools where many students have prior
exposure to learning computing. This population bias could have
improved students’ ability to go through the curriculum and the
ease in which they learned and experienced the topics. However, as
the daily difficulty ratings are discussed in relative terms, we assume
that a middle school with less access to CT and computing educa-
tion would show even greater differences in perceived difficulty
between the UMC and control conditions. It is not clear how more
or less programming experience would impact student ownership
ratings. Four teachers participated in the study, with two leading
instruction in each condition. As such, there is no way for us to
separate instructor effects from the curricular content/sequencing.
Though Kruskal-Wallis Tests [18] and Mann-Whitney U Tests find
no significant difference in student perceived difficulty by teacher
group, it is still possible that instructors played a role in the student
perception of difficulty and ownership. Finally, while Lee’s original
paper on the UMC model defined “Creation" as students making
their own designs [16], we interpret it specifically to mean that
students should develop all of their own code for an agent. In future
studies, we hope to design activities that facilitate more open-ended
student exploration and creativity.
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