2018 21st International Conference on Intelligent Transportation Systems (ITSC)

Maui, Hawaii, USA, November 4-7, 2018

ShadowCam: Real-Time Detection of Moving Obstacles
Behind A Corner For Autonomous Vehicles

Felix Naser!, Igor Gilitschenski!, Guy Rosman?, Alexander Amini!,
Fredo Durand!, Antonio Torralbal, Gregory W. Wornell!,
William T. Freeman!, Sertac Karaman®, and Daniela Rus?

Abstract— Moving obstacles occluded by corners are a poten-
tial source for collisions in mobile robotics applications such as
autonomous vehicles. In this paper, we address the problem
of anticipating such collisions by proposing a vision-based
detection algorithm for obstacles which are outside of a vehicle’s
direct line of sight. Our method detects shadows of obstacles
hidden around corners and automatically classifies these unseen
obstacles as ‘“‘dynamic” or ‘static’’. We evaluate our proposed
detection algorithm on real-world corners and a large variety
of simulated environments to assess generalizability in different
challenging surface and lighting conditions. The mean classifi-
cation accuracy on simulated data is around 80% and on real-
world corners approximately 70%. Additionally, we integrate
our detection system on a full-scale autonomous wheelchair and
demonstrate its feasibility as an additional safety mechanism
through real-world experiments. We release our real-time-
capable implementation of the proposed ShadowCam algorithm
and the dataset containing simulated and real-world data under
an open-source license.

I. INTRODUCTION

Safety is a key challenge and promise of future mobility
solutions, specifically of autonomous cars. Advanced driver
assistance systems and autonomous driving research have
come a long way to make driving safer. We believe in
addition to improvements to existing methods both on the
hardware and the algorithmic side, we need to explore new
ways of how perception, planning, and control can contribute
to a safer driving future. This paper proposes a novel method
for using shadows as features to avoid collisions with unseen
moving obstacles.

In certain situations, human drivers and operators can
perceive obstacles even when they are occluded. This, in
turn, allows operators to anticipate collisions. One technique
used by humans for detecting hidden dynamic obstacles is
observing changes in illuminance which provides the ability
to infer the approaching of a person, a vehicle around a
corner, or when a car is backing out of a driveway.

LFelix Naser, Igor Gilitschenski, Alexander Amini, Fredo Durand,
Antonio Torralba, Gregory W. Wornell, William T. Freeman and Daniela Rus
are with the Massachusetts Institute for Technology, Computer Science and
Artificial Intelligence Lab (CSAIL), Cambridge, MA, USA. {fnaser ,
igilitschenski, amini, fredo, torralba, gww,
billf}@mit.edu and rus@csail.mit.edu

2Guy Rosman is with the Toyota Research Institute, Cambridge, MA,
USA. rosman@csail.mit.edu

3Sertac Karaman is with the Massachusetts Institute for Technology,
Laboratory for Information and Decision Systems (LIDS), Cambridge, MA,
USA. sertac@mit.edu

978-1-7281-0323-5/18/$31.00 ©2018 IEEE

Fig. 1: The proposed ShadowCam algorithm detects moving ob-
stacles behind a corner which cast a shadow in the marked green
area. This makes driving with the autonomous wheelchair safer by
avoiding dangerous potential collision situations.

A pronounced and easily observable cue is the night-time
illumination change generated by car-lights, which is used by
humans to anticipate an approaching vehicle. Inferring mo-
tion around corners becomes considerably more challenging
during daytime or while operating a mobile robotic platform
in a well-lit indoor environment. In these scenarios, shadows
can be used as a cue, providing information on whether
a potential obstacle behind a corner is in motion (Fig. 1).
However, use of shadows in obstacle detection systems is
particularly challenging as it requires motion detection given
a poor signal-to-noise ratio (SNR) due to a sometimes barely
visible shadow.

In this paper, we consider the problem of anticipating
daytime collisions with moving obstacles that are occluded
behind a corner. Our method performs a dynamic threshold
on color-amplified images allowing the detection of even
weakly visible shadows. It classifies an image sequence
as either “dynamic” or “static”, enabling the autonomous
vehicle to react and avoid a potential collision by slowing
down or stopping. An indoor dataset was created for the
evaluation of the proposed method using different corner
configurations during different times of day and motion
regimes. Furthermore, a synthetically-generated dataset was
created, which allows us to evaluate our algorithm under a
broader variety of corners and lighting conditions, including
difficult edge cases. Finally, the method was deployed on
an autonomous wheelchair to validate its capabilities in
challenging real-world experiments.

Images from Camera

Registration and ROI

AprilTag Detection
Image Rectification
ROI Selection

Cyclic Buffer

Pre-Processing

ShadowCam

Vehicle

)8

Dynamic Threshold
Classify pixels
Action

Resizing Excecution
Mean Image

Color Amplification

Fig. 2: Overview of the ShadowCam Algorithm: We run a cyclic buffer over the frames of the camera mounted on top of the autonomous
vehicle. After the pre-processing steps we classify sequences and ensure that the vehicle avoids collisions with unseen obstacles.

Overall, the contributions of this work can be summarized
as follows:

¢ A novel method for shadow-based motion detection of
dynamic obstacles occluded behind corners.

Extensive evaluations on synthetic data and recordings
of real-world corners.

Implementation of our algorithm as an open-source
Robotic Operating System (ROS)! package?, as well
as publication of a comprehensive dataset of evaluation
scenes”.

Integration of all code to a run in real-time on a full-
scale autonomous wheelchair*.

The remainder of the paper is structured as follows. We
discuss the related work in Sec. II. Subsequently, we present
and explain our detection algorithm in Sec. III. In Sec. IV,
we go into more detail about our experimental setup and
present the results of the experiments in Sec. V. The work
is concluded in Sec. VL

II. RELATED WORK

There have been several works on perception for mobile
robotics in non-line-of-sight (NLoS) scenarios. Most research
in that context considers ultra-wideband (UWB) systems
for localization, as e.g. in [21], and ranges up to using
WiFi signals for NLoS perception [1]. A first approach for
explicitly seeing around corners for mobile robotics was
presented in [25] using a drone which can be launched from a
car as an additional source of information. The present work
uses a vision-based approach and does not require hardware
infrastructure, assumptions about the occluding material, or
deployment of drones.

Handling object occlusion: Consideration of occlusion
for intelligent transportation systems mostly focused on
improved tracking by improving detectors of other vehi-
cles [16], [7] and pedestrians [18] while assuming partial

http://wuw.ros.org/

20Open-source ROS package ShadowCam before acceptance here https:
//goo.gl/RpTT1lm upon acceptance here https://github.mit.
edu/fnaser/shadow_cam.

3The dataset (both synthetic and real-world) is available here https:
//goo.gl/k5ixRd.

4Video of autonomous wheelchair with ShadowCam https://youtu.
be/rHgwBFEslu4

561

visibility or a merely a temporary occlusion. In [5], explicit
modelling of occlusions was also used for broader scene
understanding. In contrast to these approaches, we do not
assume even partial visibility of the potential obstacle but
use, when available, its shadow instead.

Shadow Processing: Shadow processing typically focuses
on its removal [11], [20], [6]. For mobile robotics, this is par-
ticularly relevant for improving visual localization, because
it enables generating a more weather invariant representation
of the environment [4], [14]. In contrast to these works,
we explicitly use shadows as cues in our system. While
in [13] shadows are also used in motion detection, that work
assumes a different scenario involving a static camera and
also considers visibility of the tracked object.

Hidden Scene Recovery: Computer vision approaches
which infer about hidden scenery usually rely on Time-of-
flight cameras [19], [22], [23], [12], [10], [8] which are prone
to interference from other unpredictable lighting sources and
therefore mostly rely on carefully controlled environments.
It was recently shown that lighting from behind the corner
and the created faint penumbra on the ground can be used
for creation of a 1D video [2] from a static camera. Drawing
inspiration from this work, our proposed approach considers
shadows and uses them for motion detection from a moving
platform. This is in contrast to most perception systems
which explicitly consider shadows so far, since they mostly
focus on its removal.

III. APPROACH

It is hard to come up with a general solution for the
described NLoS problem. At some corners moving objects
are physically not able to cast a shadow and when they do
the shadow is mostly a low SNR signal that highly depends
on various factors — these include size of the object, speed
of the movement, lighting, reflection properties of the floor,
color of the floor, ego motion and speed, among others.
Despite these difficulties (as shown in [2]) it is possible to
create a signal of a moving obstacle behind a corner from
a static camera. But to actually make use of the signal in
a practical way, e.g. as a safety feature for autonomous
vehicles, it needs to work on a moving platform. This
requirement adds even more noise to the system and makes
it harder to achieve high detection accuracy.

We are providing a motion detection algorithm based on
shadows as features from a moving vehicle. We look at
corners where moving objects are physically able to cast
a shadow. Since we want to focus our efforts on this new
idea, we assume we can rely on an image registration
method and know the Region of Interest (ROI) of each
frame. The ROI could be determined using the map that
the autonomous wheelchair uses to localize itself, other
place recognition algorithms [24], or a deep-learning-based
detector, but determining the ROI is not the focus of this
paper. Instead we use AprilTags [17], [26] to provide extra
features for sequence stabilization and for cropping the ROI
where we expect to see a shadow. We take the furthest tag
and crop a dynamic rectangle using the size of that tag, which
results in a rectangle that is larger the closer we are to the
corner.

Fig. 2 shows how we embedded the ShadowCam in the
perception, planning and control cycle of the autonomous
vehicle, which is in our case a wheelchair. First, we observe
the corner and then we provide the frames as inputs for the
ShadowCam, which outputs a decision on whether or not it
is safe to continue along the path.

Algorithms 1 and 2 sketch out how we implemented the
ShadowCam. For the actual C++ code we refer to the open-
source ROS package. Algorithm 1 first gives an overview
of the main loop. The classification procedure, Algorithm 2,
shows how we determine “dynamic” or “static” which is our
core algorithmic contribution.

Algorithm 1 ShadowCam Algorithm

1: list < global var
2: while true do
3: f < getFrame()
d < getAprilTagDetections(f)
if checkDetections(d) then
s < createSequence(f)
¢ < classifySequence(s)
vehicleInter face(c)

® >R

Our system uses a cyclic frame buffer approach to achieve
real-time performance. This means we can output a detection
result whenever a new image fulfills the requirements to
get appended to the sequence, e.g. we require a maximum
number of detected AprilTags above a defined quality level.

Once a new image gets appended to the sequence we
identify corresponding tags to compute a homography h for
each frame to get projected to the viewpoint of the first frame
in the sequence. In other words we apply image registration
to all frames ¢ in the current sequence j according to

After the image registration step we crop according to the
tags the ROI. To reduce noise, we down-sample each cropped
and registered image using bilinear interpolation to a 100 x
100 patch,

fj.i = resize(fj, (w, h)) . 2)

562

Algorithm 2 Classify Sequence

1: procedure CLASSIFYSEQUENCE(S)
2 f < mean(S)
3 c+0
4 for all f € S do
5: f « color Ampli fication(f, f)
6 f« filter(f)
7 f « dynamicThreshold(f)
8 f« filter(f)
9 sum «+ sum + sumPixels(f)
if sum >= camT hreshold then:
c+1
return c.

10:
11:
12:

Then we compute the mean image over all down-sampled

images, i.e.,
n
- 1
fi= -~ E fii -
i=1

We subtract the mean image from each frame in the current
sequence and apply a Gaussian blur before we amplify the
difference to the mean. That is, we compute

dji = |G((fji = [3): ks o)| - a)

where G is a linear blur filter of size k using isotropic
Gaussian kernels with covariance matrix diag(c?, 02). We
chose o depending on k according to o = 0.3 - ((k — 1) -
0.5—1)+0.8 as in [3]. We call « the amplification parameter
since it amplifies the difference to the mean image. (Based
on empirical observations, k has been set to 3 and « has
been set to 5 for all experiments.) This process serves as
color amplification and helps to improve the detectability of
a shadow (sometimes even if the original signal is invisible
to the human eye). In other words, this process increases the
signal-to-noise ratio. Fig. 3 depicts an example of an image
before and after the color-amplification process. After the
frame is color amplified we run a temporal low-pass filter

S))

where t;; is the filtered result of the difference images
d; ;. To become more robust against different corners and
light conditions, we take inspiration from [9] and apply
a “dynamic” threshold. We take the difference from the
mean of each channel of the filtered frame as a criterion
to determine motion with respect to the standard deviation
of the filtered image,

o]

where w is a tune-able parameter that depends on the noise
distribution. We set w = 2 for all our experiments. The
underlying assumption here is that dynamic pixels are further
away from the mean, since they change more drastically. A
combination of dilation and erosion is used to first connect
pixels which got classified as motion and then erosion is

3)

tji=dji-t+djia-(1-1)

0, V|tji—tij| <w-o(ty)

1 V‘t]"i — t_i7j| >w - O’(tj7i) ©)

)

used to reduce noise. We are applying morphological ellipse
elements with two different kernel sizes [3], i.e.,

¢;,i = dilate(cjq, 1) , ¢;,i = erode(c;;,3) .

At the end, we sum up all pixels under the intuitive assump-
tion that more movement in between frames will result in a
higher sum

si=_¢lzy) . (N
i=1

To classify the whole sequence as either “dynamic” or
“static” we then apply a camera-specific threshold. We show
in Sec. V how the threshold can be determined. The data
appears to prove what sounds intuitively correct: A less noisy
image results in fewer mis-qualified pixels which results in
a lower threshold. This implies that a better camera (frame
rate and resolution) and a better image registration quality
lead to a smaller threshold.

Fig. 3: Color Amplification: On the left side is an original Canon
camera frame and on the right side the corresponding color-
amplified frame.

Fig. 4: Ego-view: The autonomous wheelchair approaches a corner
without direct sight of what is going on behind the corner.

Fig. 5: Left: The cropped, re-sized and registered image. Middle:
Example of a frame which contains no moving obstacle behind the
corner. Right: Example of a frame which contains movement. The
white areas correspond to a shadow signal.

On the vehicle interface side, we run a temporal filter
on the detection results to further smooth the signal. Once

563

the ShadowCam detects an obstacle behind the corner the
autonomous vehicle stops until it is safe to continue.

IV. EXPERIMENTAL SETUP

To evaluate our algorithm in different scenarios and an-
alyze its performance statistically, we collected data in a
motion-capture room (referred to as the Holodeck), created
synthetic corners with different properties in a Blender simu-
lation, and collected real-world data using different cameras.
We composed the entire dataset to cover a broad range of
the mentioned nuisance factors, such as size of the object,
speed of the movement, lighting, reflection properties of the
floor, and color of the floor.

The experiments in the Holodeck and in simulation allow
us to analyze the spatial performance of the algorithm, since
we know the exact position of the moving obstacle behind
the corner. Additionally, we can label each sequence based
on the ground truth. In real-world experiments, we label
whole videos as “dynamic” or “static” depending on whether
or not a person was moving behind the corner. This leads
to potentially mislabeled sequences in the videos, since the
person behind a corner does not move at all times.

Holodeck: The controlled test setup in the Motion Capture
environment enables labeling of each sequence automati-
cally. There, we collected data with a stationary Canon EOS
70D camera using a EFS 17 — 58 mm lens. The frame-
rate was set to 30 fps, using codec H.264 at a resolution of
1920 x 1080. The motion capture system tracks the moving
object behind the corner at around 100 Hz. We synchronize
the video stream with the motion-capture data and label a
sequence as “dynamic” when more than half of the frames
contain a moving person behind the corner, otherwise it is
labeled as “static”.

In the Holodeck we were also able to vary a few scene
parameters, such as the size of the person behind the corner,
the light conditions produced by switching on and off differ-
ent ceiling lights and the material of the ground on which the
ShadowCam tries to detect shadows. Intuitively, we would
expect a better signal when the moving object is closer to
the corner, which is confirmed by our spatial analysis of the
signal in the Holodeck test setup shown in Fig. 7.

Simulation in Blender: We created a synthetic dataset
with Blender?, to test the algorithm under a greater variety
of lighting conditions, textures, person sizes, and material
properties. With a Python script we access Blender’s API to
change the scene parameters dynamically and get ground-
truth data for image registration and object motion. We use
Blender’s “Cycles Renderer” with only 10 samples to create
one frame of size 960 x 540. This results in more noisy
images making it harder for the algorithm to detect a shadow
and thus providing more realistic data. The chosen area light
casts shadows with soft edges based on ray tracing.

We change the textures of the scenes randomly. Floor
and walls are changed independently which results in more
combinations. We chose from 30 texture images (Fig. 8) to

Shttps://www.blender.org/

Fig. 6: The left image shows how we varied the size of the moving
object behind the corner: Wearing a winter jacket, sitting on a chair
with rollers and walking normally. The right image shows the corner
wall and a person walking from the top view.

Holodeck Performance I

2.5m

-

1.5m

SOPUDNRON=OOEIDUIAN—

[YNNI

I naN

Fig. 7: The left plot shows the region in which the person behind
the corner walked randomly from the top-view. The right plot shows
the spatial performance of the algorithm (with regard to the mean
position of the moving person in the blue area) to correctly classify
a sequence as “dynamic” or “static”. The darker the blue, the higher
the classification accuracy for both classes.

create 30 different corners. We render for each corner 1,000
frames for both classes (“dynamic” and “static”’) which sums
up to 50,000 synthetic images and around 6.2 GB.

In addition to the change of the texture, we change the
material properties such as surface quality (e.g. roughness)
and reflection strength (e.g. mirror or carpet) randomly. The
position and color of the light, the path of the moving
platform with the camera, and the scale and texture of the
person behind the corner are randomly modified within cer-
tain boundaries. E.g. the height of the occluded person ranges
from 0.75m to 2.2m (see Fig. 9 and Fig. 10). For both camera
and person the speed of motion changes independently for
each corner randomly within the range 1 — 3 m/s.

Fig. 8: Examples of the 30 textures we use to create different scenes
with Blender. We chose various textures ranging from dark to bright
colors.

Real-World Corners: Besides the controlled environ-
ments in the Holodeck and Blender we evaluated how the
algorithm performs “in the wild”. We created a real-world
dataset with 3 different cameras and 15 corners. In total,
we collected 85,000 images of around 1 hour of data and
7.4 GB. To not only cover different types of corners, but
also different image qualities, we chose the following three
cameras:

564

16 m

A®)blender

Fig. 9: Blender Scene: In addition to material changes (such as
texture or reflection properties) we change the position of the light
and the path of the camera. The person walks randomly at different
speeds within the blue box.

o Canon EOS 70D and the EFS 17 —58 mm lens (single-
lens reflect (SLR) camera): The frame-rate was set to
30 fps, with codec H.264 and image dimensions 1920 x
1080.

Webcam Logitech HD Webcam C525 (low-end web-
cam): The frame rate was set to 24 fps, with codec
VPS8 and image dimensions 1280 x 720.

Webcam Logitech HD Webcam C925-e (high-end we-
bcam): The frame rate was set to 20 fps, with codec
VP8 and image dimensions 1280 x 720.

AprilTags were used in order to focus on the detection
problem. We placed 13 AprilTags on the same plane at which
we expect to detect a shadow. In theory one tag would
be sufficient, but most of the time only a subset of the
AprilTags gets accurately detected and by adding more tags
we increase numerical stability. AprilTag is a visual fiducial
system. It’s targets can be created from an ordinary printer,
and the AprilTag detection software computes the precise 3D
position, orientation, and identity of the tags relative to the
camera. Real-time capable implementations are available®.

We chose mainly corners where it is physically possible
for a moving object behind a corner to cast a shadow. This
implies for these corners that humans, if they pay close
attention, might be able to see a shadow of an approaching
person on the ground. We collected data ranging from high
reflection floors and stone to dark carpet (see Fig. 11). In
all real-world videos, we label each video as a whole as
“dynamic” or “static” depending on whether or not a person
was asked to walk behind the corners. The camera is moving
in arange of 1 to 3 meters back and forth, whereas the person
behind the corner moves randomly in a similar range.

Autonomous Vehicle: The algorithm was also tested on
an autonomous wheelchair (see Fig. 12) which has been
designed as an indoor counterpart to the autonomous car
presented in [15]. Therefore, the wheelchair has a very
similar sensor configuration and a software stack based
on ROS. This enables us to run (besides vehicle specific

Shttps://april.eecs.umich.edu/software/apriltag/

Fig. 10: Simulation example corners.

L)
[=

Fig. 11: Real-world example corners.

software parts, such as the low-level control) the same
software packages on different vehicle types. This setup
enables easily deploying a similar functionality to the real
car. For the experiments, we added a Logitech HD Webcam
C925-e on top of the Wheelchair’s top laser scanner to
increase the look-ahead distance and improve the angle at
which the camera perceives the tags on the ground. Once
the ShadowCam detects movement behind the corner we
adjusted the control algorithm of the wheelchair so that it
stops as long as movement is detected. As soon as the way
is clear again the wheelchair resumes the forward motion.

2D LiDAR

Touch Screen
IMU

2D LiDAR
Encoder

Fig. 12: Autonomous wheelchair and the main sensors. We mounted
the webcam for the ShadowCam on top of the top LiDAR. Only
the webcam is required for the ShadowCam algorithm.

V. RESULTS

We quantitatively analyze the classification accuracy, real-
time capability of the algorithm and demonstrate the Shad-
owCam integrated into an autonomous wheelchair. Our re-
sults show that it is possible to detect moving obstacles based

565

on shadows out of the line of sight from a moving platform
at indoor corners given that the object can physically cast a
shadow, we have access to reliable image registration, and
the region of interest is known a priori (e.g. through a specific
detector or a map). Our algorithm is easy to deploy (it has
only a few tune-able parameters) and generalizes to different
corner settings. Importantly, we analyzed performance on
different floors, light conditions and object sizes.

Histograms over sequences are used to visualize the
performance of the algorithm on the respective datasets in
Fig. 15. The ShadowCam algorithm computes one value for
each sequence which represents the sum over all “dynamic’-
classified pixels. The better the distributions of this value
(for the cases with and without a moving obstacle) can be
separated, the higher the classification accuracy can be when
the threshold is set to the optimal point. For example in a
static sequence with 1% as dynamic misclassified pixels, the
method would yield a value of 255,000 (100 px x 100 px x
10 images x 1% x 255 pixel value).

In order to determine the threshold value upon which we
classify a sequence as “dynamic” or “static”’, we examine
the histograms over all corners of a specific recording setup
(e.g. simulation or real-world) and found the noise of the
camera to be correlated with the choice of the threshold.
This conforms to the intuition that higher noise levels lead
to higher misclassification rates. Table I gives an overview of
the final thresholds we chose to create the mean classification
accuracy plots in Fig. 13 and Fig. 14.

For evaluation on the wheelchair, we implemented the
algorithm in C++, using the AprilTag 2 detector and a cyclic
frame buffer. This enabled us to compute a classification
output at 30 Hz for a sequence of 10 frames. But since
the camera we use on the wheelchair only runs at 20 Hz
and only in around 1/3 of the images enough AprilTags get
detected, the rate on the real system is around 7 Hz. The
low rate of AprilTag detection is mostly due to motion blur.
However, for the speed of the wheelchair 7 Hz is fast enough,

TABLE I: Dataset Overview

Camera Type Threshold Percent of Pixel =~ Number of Corners
Holodeck 200000 ~ 1% 1

Blender 220000 ~ 1% 30

Canon 500000 ~ 2% 11

Webcam 650000 ~ 2.5% 3

and the performance could be easily increased by switching
to a better camera with a higher frame rate and/or image
registration method. Our experiments with the autonomous
wheelchair show that even with consumer grade cameras
(such as the Logitech Webcam) the signal can be detected
reliably.

Because our system is designed as an additional safety fea-
ture, we aim for a low rate of false “dynamic” classifications
to provide a driving experience (Fig. 13) without unnecessary
interruptions. That is, when the algorithm detects movement
then it is very likely someone is actually moving behind
the corner. Thus, the majority of sequences gets classified
as “static” even if they sometimes contain a moving obsta-
cle. It requires a strong movement behind the corner for
the sequence to get classified as “dynamic”. Currently the
classification accuracy is based on videos which got labeled
as a whole. We are expecting better results with the same
algorithm if the labels were more accurate, since “dynamic”
labeled videos contain also “static” sequences.

Threshold on Color Amp Seq

=
o
o

00
o

(o2}
o

40

20

Mean Classification Accuracy [%]

Static Dynamic Overall

[IBlender C__JCanon [__JWebcam

Fig. 13: As the distributions of the histogram suggest, we observe
a low number of false positives. The classification accuracy for
“static” sequences is high, whereas it is harder to detect movement
based on shadows. Overall is the mean performance of the algorithm
on both real-world data acquisition methods around 70%.

VI. DISCcUSSIONS AND CONCLUSIONS

From a high-level point of view we look at a low SNR
signal and reduced the SNR even further by adding cam-
era movement. By making two assumptions (given image
registration and ROI) we reduce our problem to the core
research problem of motion detection based on shadows. We
developed a real-time capable motion detection algorithm
which is robust against noise, but still able to detect a low
SNR signal. To the best of our knowledge we present the
first autonomous wheelchair which is able to detect and react

566

Overall Performance

100
~
2 80 ’_f_‘
© T
g [|
3 60 -
<
c -
k<] +
g
?’5
@
5 20
c
©
(0]
=

Blender Canon Webcam

Fig. 14: Looking more closely into the overall performance for
both classes “dynamic” and “static”, we can observe our algorithm
performs apart from one outlier corner with a very weak shadow
signal ((P(s)+P(d))/2 ~ (100%+0%)/2 = 50%) strictly better
than random. The outlier is caused by a corner where the shadow
isn’t casted within the ROL

to out of the line of sight moving obstacles based on their
shadows.

We were able to show that a shadow cast by a moving
obstacle out of the line of sight shouldn’t only be treated as
unwanted noise in an image but can actually provide safety
relevant features. We hope this will inspire others to treat
shadows more like an additional signal than as unwanted
noise. The new dataset can be used for further research and
in classes related to signal processing and computer vision.

We are excited to further explore new application areas
for our motion detection algorithm and ways to improve the
accuracy. We are also planning to collect more data and test
the algorithm at higher speeds with a camera at higher frame
rates. This will pave the way to bring the ShadowCam to
autonomous cars.

ACKNOWLEDGMENTS

Toyota Research Institute (TRI) provided funds to assist
the authors with their research, but this article solely reflects
the opinions and conclusions of its authors and not TRI or
any other Toyota entity. We want to thank our colleagues:
Christina Liao for her help with the dataset, plots and videos,
Prafull Sharma for the help with simulation, Steve Proulx
for the camera mount, Thomas Balch for the help with the
wheelchair, Vickie Ye, Adam Yedidia, and Manel Baradad
for discussions and feedback.

REFERENCES

[1] F. Adib and D. Katabi. See Through Walls with WiFi! In Proceedings
of the ACM SIGCOMM Conference, 2013.

[2] K.L.Bouman, V. Ye, A. B. Yedidia, F. Durand, G. W. Wornell, A. Tor-
ralba, and W. T. Freeman. Turning Corners Into Cameras: Principles
and Methods. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc., 2008.

[4] P. Corke, R. Paul, W. Churchill, and P. Newman. Dealing with
Shadows: Capturing Intrinsic Scene Appearance for Image-Based
Outdoor Localisation. In Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), 2013.

Blender
1600 T T

dynamic
static

1400

1200

1000

Number of Seqgs in Bins
0
3

mk\

0

0 0.5 1 1.5 2 2.5 3 3.5
Border of Bins

x10°

(a) All 30 simulated Blender corners combined in one histogram.

Canon
70 T T

dynamic
60 static

Number of Seqgs in Bins

0 0.5 1 1.5 2 2.5 3 3.5 4

Border of Bins %108

(b) One example corner where we collected the data with the Canon.

Webcam
80 T T
dynamic

0r static
g
&G 6or
£
" 50 -
o
(]
W a0+t
—
o
o 30
Qo
£
S 20+
=

10

0 .

0 0.5 1 1.5 2 2.5 3 3.5
Border of Bins %10°

(c) One example corner where we collected the data with a webcam.

Fig.

15: Histograms of detector values for different examples. (a)

Since the distributions of “dynamic” and “static” sequences are
quite distinct the mean classification accuracy of around 80% is
expected when the threshold is set to 220.000 as the black vertical
line indicates.

[5]

V. Dhiman, Q.-H. Tran, J. J. Corso, and M. Chandraker. A Continuous
Occlusion Model for Road Scene Understanding. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

G. D. Finlayson, M. S. Drew, and C. Lu. Entropy Minimization
for Shadow Removal. International Journal of Computer Vision,
85(1):35-57, 2009.

567

[7]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Frank, M. Haag, H. Kollnig, and H.-H. Nagel. Tracking of Occluded
Vehicles in Traffic Scenes. In Proceedings of the European Conference
on Computer Vision (ECCV), 1996.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio.
Detection and Tracking of Moving Objects Hidden from View. Nature
Photonics, 10(1):23-26, 2016.

W. Jing, D. Xin, Z. Yun-fang, and G. Wei-kang. Adaptive Fuzzy
Filter Algorithm for Real-Time Video Denoising. In Proceedings of
the International Conference on Signal Processing (ICSP), 2008.

A. Kadambi, H. Zhao, B. Shi, and R. Raskar. Occluded Imaging with
Time-of-Flight Sensors. Transactions on Graphics (ToG), 35(2):15,
2016.

S. H. Khan, M. Bennamoun, F. Sohel, and R. Togneri. Automatic
Shadow Detection and Removal from a Single Image. Transactions
on Pattern Analysis and Machine Intelligence, 38(3):431-446, 2016.
M. Laurenzis, A. Velten, and J. Klein. Dual-mode Optical Sensing:
Three-Dimensional Imaging and Seeing Around a Corner. Optical
Engineering, 56(3), 2017.
A. Leone and C. Distante.
based on Texture Analysis.
2007.

W. Maddern, A. D. Stewart, and P. Newman. LAPS-II: 6-DoF day
and night visual localisation with prior 3D structure for autonomous
road vehicles. In Proceedings of the Intelligent Vehicles Symposium
(1v), 2014.

F. Naser, D. Dorhout, S. Proulx, S. D. Pendleton, H. Andersen,
W. Schwarting, L. Paull, J. Alonso-Mora, M. H. Ang, S. Karaman,
R. Tedrake, J. Leonard, and D. Rus. A Parallel Autonomy Research
Platform. In Proceedings of the Intelligent Vehicles Symposium (IV),
2017.

E. Ohn-Bar and M. M. Trivedi. Learning to Detect Vehicles by Clus-
tering Appearance Patterns. Transactions on Intelligent Transportation
Systems, 16(5):2511-2521, 2015.

E. Olson. AprilTag: A Robust and Flexible Visual Fiducial System.
In Proceedings of the International Conference on Robotics and
Automation (ICRA), 2011.

W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian
Detection with Occlusion Handling. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and
R. Raskar. Estimating motion and size of moving non-line-of-sight
objects in cluttered environments. In CVPR, pages 265-272. IEEE
Computer Society, 2011.

R. Ramakrishnan, J. Nieto, and S. Scheding. Shadow compensation
for outdoor perception. In Proceedings of the International Conference
on Robotics and Automation (ICRA), 2015.

C. K. Seow and S. Y. Tan. Non-Line-of-Sight Localization in Multi-
path Environments. Transactions on Mobile Computing, 7(5):647-660,
2008.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro. Photon-
Efficient Computational 3-D and Reflectivity Imaging with Single-
Photon Detectors. Transactions on Computational Imaging, 1(2):112—
125, 2015.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K.
Goyal, F. N. Wong, and J. H. Shapiro. Photon-efficient imaging with
a single-photon camera. Nature communications, 7, 2016.

K. Van De Sande, T. Gevers, and C. Snoek. Evaluating color
descriptors for object and scene recognition. Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1582-1596, 2010.

A. Wallar, B. Araki, R. Chang, J. Alonso-Mora, and D. Rus. Foresight:
Remote Sensing for Autonomous Vehicles Using a Small Unmanned
Aerial Vehicle. In Proceedings of the Conference on Field and Service
Robotics (FSR), 2018.

J. Wang and E. Olson. AprilTag 2: Efficient and Robust Fiducial De-
tection. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), 2016.

Shadow Detection for Moving Objects
Pattern Recognition, 40(4):1222-1233,

